
Pattern Recognition (4005-759, 20092 RIT)

Exercise 1 Solution

Instructor: Prof. Richard Zanibbi

The following exercises are to help you review for the upcoming midterm examination on Thurs-
day of Week 5 (January 14th). If things are unclear, please bring questions to class, visit Prof.
Zanibbi during his office hours, or email Prof. Zanibbi to set up a meeting at another time.

Bayes: The Formula, the Rule, and the Error

1. Define Bayesian classification in terms of the canonical model of a classifier. Is Bayes’ rule
optimal, and if so, under what assumptions?

Answer: In a canonical classifier, each class ωi has a discriminant function,
and the class with the highest discriminant function output for the input vector
(features) is the one selected for output by the classifier. For a Bayesian classifier,
the discriminant function for each class is the posterior probability of the class,
as defined by Bayes formula:

gi(x) = p(ωi|x) =
P (ωi)p(x|ωi)

p(x)

where

p(x) =
c∑

j=1

P (ωj)p(x|ωj)

p(x) does not change for each class (is a fixed scaling factor), and so can be
removed from the discriminant functions. Bayes’ rule is optimal if the true prior
probabilities P (ωi) and probability density functions p(x|ωi) are known.

2. Define Bayes error mathematically. What significant property does the Bayes error posess?
There is an important relationship between Bayes’ error and the error made by a 1-Nearest
Neighbor (1-NN) classifier when the number of training samples n approaches infinity:
what is it?

Answer: The Bayes’ error is the smallest possible error rate, and is defined by:

Pe(D∗) = 1−
c∑

i=1

∫
Ri∗

P (ωi)p(x|ωi)dx

where D∗ is a (true) Bayesian classifier, Ri∗ is the region in feature space where
class ωi has the highest posterior probability (discriminant function value), and
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P (ωi)p(x|ωi) is the (un-normalized) discriminant function value (see p. 32 of
Kuncheva).

The Bayes error is the smallest possible error for a given feature space and set
of classes. For an infinite number of training samples, the 1-NN classifier has
an error that is at most twice the Bayes error (see 2.45, page 57 of Kuncheva).

Classification and Pattern Recognition: Miscellaneous

3. In class it was mentioned that one can speed up a (sequential) 1-NN classifier by organizing
the training samples within a search tree. Such a search tree is organized so that some
series of ’entry points’ appear below the root of the tree, each of which in turn have child
points that partition their associated subspace. The subspaces are defined by the voronoi
cells for the set of entry points: below the root this partitions the entire feature space, the
children of an entry point partition the vornoi cell of the entry point, and so on recursively
down the tree.

Provide a counter-example demonstrating that this technique will not always locate the
training point closest to a query point, i.e. will not always find the nearest neighbor.

Answer: (From Duda, Hart, Stork, p. 185) Imagine that we store a large num-
ber of prototypes that are distributed uniformly in the unit square. Imagine
that we prestructure [build a tree] with this set using four entry prototypes, at
(0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 0.75) - each fully linked only to
points in it corresponding quadrant. When a test pattern appears, the closest of
the four entry prototypes is found, and then the search is limited to prototypes
within the quadrant. In this way, 3/4 of the prototypes need never be queried.

Note that in this method we are no longer guaranteed to find the closest pro-
totype. For instance, suppose the test point is a boundary of the quadrants,
e.g. (0.49999, 0.49999). In this case only prototypes in the first quadrant will
be searched, but the closest prototype may be in another quadrant, somewhere
near (0.5, 0.5). More sophisticated search trees will have each point linked to a
small number of others...Nevertheless, unless we query all training prototypes,
we are not guaranteed that the nearest prototype will be found.

4. Explain the relationship between discriminant functions and decision boundaries.

Answer: For a canonical classifier, decision boundaries are defined at the posi-
tions in feature space where two or more classes have the maximum discriminant
function values.

5. Explain what is meant by generalization, and overtraining.
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Answer: generalization refers to how well a classifier performs on unseen data
(i.e. data not in the training set). Overtraining or overfitting occurs when a
classifier has been fit too closely to the training set, leading to poor generaliza-
tion.

Classification Methods

6. Briefly explain how each of the following may be understood in terms of the canonical
model of a classifier. Be specific about how discriminant functions are defined.

(a) Quadratic classifier
(b) k-Nearest Neighbor (k-NN)
(c) Mutli-layer perceptron
(d) Decision trees

Answer: In the canonical model of a classifier, we choose the class ωi with the
maximum discriminant function value for a feature vector, gi(x).
(a) Quadratic: discriminant functions are defined by an estimate of the poste-

rior probability of a class given a feature vector P (ωi|x), using gaussians
with mean vector µi and covariance matrix Σi to represent the distribution
of features for each class i. The discriminant function is simplified by using
the log probability (a monotonic, i.e. non-decreasing transformation), and
removing terms that are independent of a specific class. See Kuncheva, p.
46.

(b) k-NN: most simply defined, the discriminant function for each class is the
number of k closest neighbors to a test point. We discussed in class how
this may be understood as an estimate for the posterior probabilities for
each class, P (ωi|x) (see Kuncheva, p. 57).

(c) Multi-layer perceptron: each neuron i in the output layer of an MLP pro-
duces a discriminant value for class i. As the number of training samples
approaches infinity, these discriminant values become the posterior prob-
ability for each class, again P (ωi|x).

(d) Decision tree: For each test input, the tree has been constructed such that
the leaf node reached represents a set of training samples that occupy
one region in feature space; the class returned is the one with the largest
number of points at that leaf. Thus, the discriminant can be understood
as being similar to that for NN after we have traversed the tree to the
appropriate leaf (NOTE: normally in a decision tree, we do not store the
samples at each node in the final tree). For example, if for a two-class
problem we split the root of our tree into two leaves, splitting on x <
5, x ≥ 5, then for test sample t with x = 1, the left child can be used to
estimate P (ω1|x < 5) and P (ω2|x < 5), in both cases dividing the number
of points in class i by the total number of points at the leaf.
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7. Draw a 2D feature distribution for two classes, for which the training data is better fit
by a nearest neighbor classifier than a linear classifier. State briefly why you chose this
distribution.

Answer: There are many examples; one is the banana data set used in the
Kuncheva text. The two linear discriminants produce a linear decision boundary,
which cannot properly represent the shapes of the class boundaries. However,
assuming that we have a representative training sample, with the nearest neigh-
bor classifier we can capture the class boundaries more closely, as it depends
only on the k samples closest to a point.

8. Draw a 2D feature distribution for three classes, for which the training data is better fit
by a nearest neighbor classifier than a quadratic classifier. State briefly why you chose
this distribution.

Answer: Again, we can do this by choosing a distribution of features that
significantly violates the assumption of the probability densities for features
in each class being gaussian. Roughly speaking, this and the last question try
to get at where non-parametric techniques (e.g. k-NN) can be more effective
in representing complex class boundaries. This comes with added expense in
computation at classification time: once the gaussian parameters for LDC and
QDC are determined, they are quite fast, while plain k-NN requires comparison
with all stored samples (editing and/or extracting samples using Wilson, Hart,
Random, Bootstrapping or other techniques can be used to reduce the sample
set size).

One example: consider a distribution in R2 where the classes are close (nearly
overlapping) with a crescent-shaped distribution, similar to the banana data
set. The estimated likelihood of belonging to a class diminshes as we approach
the tails of the banana; if the center of a banana is situated at the each end-
point (making the center of that gaussian closer than that of the true class),
there will be class confusions. With sufficient samples, k-NN will represent the
boundaries of the classes more closely.

9. Look at Fig 1.11(a) in the Kuncheva textbook. Sketch how the decision boundaries move
if the prior probability of class 2 (ω2) increases relative to classes 1 and 3. Explain your
answer.

Answer: The left decision boundary for ω2 will shift to the left, and the right
decision boundary to the right. As the prior probability of class two increases,
it becomes the most probable for a larger part of the feature space, in particular
near points where the two most likely classes meet.

10. Explain the relationship between a Bayesian classifier, and the linear and quadratic clas-
sifiers that we have studied in class.
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Answer: The linear and quadratic classifiers assume that the probability den-
sity functions for the feature distributions in each class are normally distributed
(gaussian). For the linear classifier, it is assumed that all feature distributions
have the same covariance matrix; this is not assumed for the quadratic classi-
fier. Both the LDC and QDC are simply Bayesian classifiers (using the poste-
rior probability for the discriminant function), for which the stated assumptions
about the feature distributions hold (see Kuncheva, pp. 45-48).

In practice, LDC and QDC are often used by estimating the mean vector and
covariance matrix from a training set. In this case, they are not true Bayesian
classifiers, but are simple to define and are still often effective in practice.

11. What is different about the types of features that may be used for decision tree classifi-
cation, as opposed to the other classification techniques that we have studied?

Answer: Decision trees may be used with qualitative (nominal and ordinal
sets of values such as names and ranks, respectively) as well as quantitative (in
particular, real-valued) features.

Comparing Classifiers

12. In a paper that you have been reading while working on the course project, two classi-
fiers, a neural network and a support vector machine, are run on the MNIST data set.
The neural net produces a 1% error rate, while the support vector machine produces a
0.82% error rate. The authors conclude that their support vector machine is better suited
to handwritten digit classification than the neural network.

Is this a valid conclusion? If so, state why, and if not, explain anything further needed to
properly support the authors’ claim.

Answer: This is not a valid conclusion. Even if the SVM performs better on
MNIST, this does not guarantee better of performance than the neural net on
handwritten digits in general. In addition, the results may be an artifact of the
training set selected (sample bias), and the difference in performance may not be
statistically significant; a hypothesis test comparing the two error distributions
(such as McNemar test) should be made.

13. Explain how data is used to train and test classifiers in each of the following approaches.
Also, identify which method is generally avoided, and why.
• Resubstitution
• Hold out
• Cross-validation (including ’leave-one-out’)
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Answer: Resubstitution is the process of testing the classifier on the data used
to train it. As a testing method it is generally avoided, as it is positively biased
(in particular where a classifier has been overfit to the training set).

In the Hold out method, data is randomly split randomly into two or three sets
(three if a validation set is needed); in a shuffle, the random split is produced
L times, and the average error is reported. In cross-validation, the data set is
split into k disjoint sets, with each set being used once as a test set, with the
remaining k − 1 sets being used for training. The results are then averaged
across the k test sets. ’Leave-one-out’ occurs when we treat k = N (the number
of samples), in which case every sample takes a turn as a single test point, with
the remaining data used for training.

14. For a statistical test comparing two distributions, what is the null hypothesis?

Answer: that the two distributions are the same (that there is no difference
between them).

Programming (MATLAB/PRTools)

To get started, I suggest that you look at the PRTools examples that have been posted,
and the information on getting the MNIST data set under the ’Assignments’ link on the
course web page.

15. The PRTools toolbox contains a function named rejectc, which will create a modified
version of any classifier, by ‘padding’ decision boundaries with a reject region grown uni-
formly on either side until a given threshold of the training data lies within the rejection
region. Run the example shown when you type ’help rejectc’.

Write an m-file (MATLAB program) that modifies the example to show boundaries pro-
duced when we reject up to a maximum of 5%, 20%, and 50% of the training data, with
each boundary in a different color (don’t forget to include the original classification bound-
aries).

Then produce a new data set b, again using ’gendatb’. Compute the confusion matrix
for each classifier, along with the expected classification errors for both the training and
test sets. Briefly summarize the effect produced as the size of rejection region increases.

16. Try running 1-NN and 9-NN on the MNIST data, using the built-in knnc provided by
PRTools (note that these will take awhile to run!). Use the training and test sets provided.
Look at the confusion matrices and expected classification errors for each classifier when
run on the MNIST test set.

Comment on the recognition accuracy produced by each classifier. In terms of speed, in
what way would decision tree and neural network classifiers be faster than nearest neigh-
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bor? In what way would they be slower?

Using any method that you like, modify the MNIST data so that the feature vectors are
much smaller. Run the classifiers again, and compare the new confusion matrices and
error rates produced on the test set. Try to explain briefly (in a few sentences), why you
saw the result that you did.
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