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Abstract

Recently math formula search engines have become a useful tool for novice
users learning a new topic. While systems exist already with the ability to
do formula retrieval, they rely on prefix matching and typed query entries.
This can be an obstacle for novice users who are not proficient with languages
used to express formulas such as LATEX, or do not remember the left end
of a formula, or wish to match formulas at multiple locations (e.g., using
‘
∫

dx’ as a query). We generalize a one dimensional spatial encoding
for word spotting in handwritten document images, the Pyramidal Histogram
of Characters or PHOC, to obtain the two-dimensional XY-PHOC providing
robust spatial embeddings with modest storage requirements, and without
requiring costly operations used to generate graphs. The spatial representation
captures the relative position of symbols without needing to store explicit
edges between symbols. Our spatial representation is able to match queries
that are disjoint subgraphs within indexed formulas. Existing graph and tree-
based formula retrieval models are not designed to handle disjoint graphs,
and relationships may be added to a query that do not exist in the final
formula, making it less similar for matching. XY-PHOC embeddings provide
a simple spatial embedding providing competitive results in formula similarity
search and autocompletion, and supports queries comprised of symbols in two
dimensions, without the need to form a connected graph for search.
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Chapter 1

Introduction

Query autocompletion provides users with suggestions of possible search terms
based on the query. It helps users to formulate their queries correctly when
they have a need for information but no clear way to fully express it [20]. A
user will prefer recognition over recall [11], as it takes less mental work to
recognize the desired search query than to recall the entire query. Giving the
user possible suggestions can speed up their workflow and reduce the amount
of effort needed. Autocompletion systems are designed to reduce the user’s
effort to increase their satisfaction with the search engine [21].

While text query autocompletion is a well-researched area there is a lack of
literature for math formulas [20]. This has caused an increasing gap as math

Figure 1.1: Symbol Layout Tree for the equation 2y8 =
√
x where the symbols

are represented in the nodes and the relationships are labeled on the edges
between symbols

1



CHAPTER 1. INTRODUCTION 2

search engines are developed but lack the extensive autocompletion provided
in text search engines. While there exist math search engines with autocom-
pletion, like Symbolab∗ and WolframAlpha†, these systems are closed source
and rely on prefix matching [20], which restricted to being input from the root,
leftmost symbol, of a Symbol Layout Tree (SLT). A SLT is a commonly used
representation for math formulas that captures the branching structure of the
formula where the nodes are the symbols and the edges between the nodes
represent the relationship between symbols (Next, Above, Pre-above, Below,
Pre-Below, Over, Under, Within and Element).

An example of an SLT is given in Figure 1.1 where the arrows indicate
the relationships of Next and Above, and · represents an element of. e.g in
√ · 8 means that 8 is an element of

√
. Additional autocompletion methods

have been proposed on LATEX in [20]. A Tree-based system Tangent-CFT [16]
mentions that it could be suitable for autocompletion. LATEX based systems are
limited in that there are many ways in LATEX to generate the same expression
and rendering these to a SLT requires that the symbols given do not form a
disconnected subgraph like that seen in Equation.1.1, below, which shows an
example of a rendered LATEX formula that can not be made into a SLT.

2 + 2 = 2 (1.1)

This equation can not be made into a useful SLT because it is a disconnected
subgraph of a full equation. The missing symbols remove missing nodes and
edges required to accurately represent the formula as a tree. Tree-based sys-
tems are not designed to account for disconnected graphs and will not be able
to provide formulas of a similar representation.

We propose a new system that will use spatial information from a math
formula query to perform similarity search and autocompletion. Techniques
from word spotting will be applied as a measure of visual similarity between
the query and the index. Word Spotting involves the exact matching of a
query word in scanned documents, starting from the need to provide search-
able archives of historical documents. The goal of this thesis is to study the
behavior of spatial vs. graph-based autocompletion with the hope of finding
a robust representation that can be used across modalities (e.g., handwritten

∗https://www.symbolab.com
†https://www.wolframalpha.com/
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(a) Visual query (b) WolframAlpha query

Figure 1.2: Comparison between 2 use cases for formula autocompletion using
the Pythagorean Theorem. (a) Symbols in circles represent a symbols placed
in space and the gray symbols represent autocomplete results.

and typeset).

Thesis Statement A relative spatial embedding for math formulas can pro-
vide competitive results for similarity search and autocomplete tasks, while
using less embedded relational information than graph-based systems.

This proposed system for math formula retrieval is designed to capture use
cases missed by other system. The system is useful in a math search engines
for nonexperts, who may not be well versed in LATEX syntax. This system can
directly use symbols in space rather, allowing a user to drag and drop symbols
onto a canvas or select symbols from a formula to perform search with.

In Figure 1.2 there is an input query using symbols on a canvas of 2+ 2 = 2

which could be a valid search for a novice user learning about the Pythagorean
Theorem. In this case, they remember that there are several symbols raised
to the second power but can not remember the variables used. This same
query provides no autocompletion results from WolframAlpha since it will not
match the prefix. That query is also typed out requiring that the user knows
that the ˆ symbol is used for superscript. This can be a hurdle for new users
and require more effort than simply writing the query by hand.

There are possible situations when a valid Symbol Layout Tree can not
be generated when the symbols are sparsely present on the canvas used for
generating queries, seen in Equation 1.1. In these situations a user should
still be able to get a valid autocompletion result with this system as it will
be matching on the visual similarity, symbols, and their positions in space, to
find matches.
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1.1 Contributions

This work makes the following contributions:

1. The XY-PHOC encoding and associated retrieval model, which supports
math formula search engine using any input order for symbols.

2. Competitive results on the ARQMath formula search task, using a simple
spatial retrieval model.

3. A new metric rsaved to measure autocompletion results.

4. An expansion on word spotting techniques that provides an embedding
capable of representing two dimensional symbol layouts.

1.2 Summary

Chapter 2 summarizes the previous work done in the fields of Word Spotting,
Math Spotting, and Math Formula retrieval. The work has been broken down
based on the input data, the output representation, the scoring function and
discussion on inverted indices.

Chapter 3 details the proposed XY-PHOC retrieval model. The work is
broken down based on our motivations, the a discussion on the embedding,
techniques used to index the collection and the way retrieval is performed on
the index.

Chapter 4 presents the experiments used to evaluate the system. Sev-
eral baseline systems are detailed, along with the ARQMath data that will
be tested on. Experiments are run for both formula similarity search and
autocompletion tasks to better understand which PHOC configurations work
best for each task. These experiments consider different amounts of data in
embeddings as well as different ways to embed symbols in a formula.

Chapter 5 illustrates and discusses the results of running our experiments.
The results are broken up based on the similarity search results followed by the
autocomplete results. We identify the best model for each task and elaborate
on the strengths and weakness of the model for each task.

Chapter 6 summarizes the contributions and outcomes of this work and
provides recommendation on future work.



Chapter 2

Related Work

The ideas behind spatial retrieval presented in this paper come from the field
of exact matching of math formulas, called math spotting. Math spotting is an
adaptation of word spotting, the exact matching of words in documents and
scenes [19]. Drawing from inspiration of how handwritten and typeset word
spotting has been done, we can build on these systems in order to handle the
task of similarity search and autocompletion of math queries. The main differ-
ences between these techniques are the input data, the output representation,
and ranking metrics. In this chapter, we will look at some of the approaches
taken by previous systems based on their inputs, outputs, and rankings. This
organization of the different types of systems is inspired by the survey on word
spotting by Giotis et al. [10]. The way the data moves through these systems is
illustrated in Figure 2.1. In order for any retrieval system to function at scale
there is a need for information retrieval optimizations, such as an inverted
index, which is used in many of the systems we looked at.

Figure 2.1: Pipeline illustration of the flow of data through these systems

5



CHAPTER 2. RELATED WORK 6

2.1 Input Data

Several different features have been used in approaches to word spotting. Some
previously common features include scale-invariant feature transform, the ex-
traction of local key points in the image, and histogram of gradients, which
are used to describe an image as a count of gradient orientations at localized
portions of the image, that extract information about local areas in the im-
age [25]. Other features directly use pixel values and positions. These systems
do not rely on a recognition system and operate directly on the image data.
Another set of features used in previous work are character primitives. These
systems rely on an initial character recognition system and operate on the rec-
ognized characters directly. These approaches are limited by the accuracy of
their recognizer but can work with limited symbol classes combining visually
similar classes to improve recall [5]. The features used will impact the visual
information that is present in the output embedding.

Scale-Invariant Feature Transform, SIFT features are similar to another set
of features, Histogram of gradients, HoG. HoG features were utilized in [25],
where they compared against SIFT features, this was interesting as the local
features captured by HoG were better for determining word matches then
SIFT features which were more popular at the time. Both of these methods
rely on capturing visual features about the image from the pixel values but
this is not the only way pixel values are used.

Pixel values are used directly as features in several approaches as well.
Column wise pixel projects, histograms representing the intensity values in
the image column, are used to create word profiles in [19]. This requires word-
level segmentation as the pixel projections are done across the entire word.
Column wise pixel projections are used on math data in [27] where scanned
document images were segmented with X-Y cutting as described in [18] and
than extracted the profiles of the formula. X-Y cutting is the process of
cutting along gaps in the pixel projects. Cuts are alternated between vertical
and horizontal directions made at the largest projection gap. In the XY-trees
that are created by the X-Y cuts each symbol is only represented once in the
leaves of the tree, giving no redundancy in the representation which can help
improve robustness.

Pixel values are directly used in Convolutional Neural Network (CNN)
approaches, as well, where the input is the entire word image. SIFT features
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Figure 2.2: PHOC representation with levels 1, 2, and 3 for the word “place.”
The right side represents the alphabet as a vector were a 1 indicates the
presence of the character, the green lines indicate a split and the level number
corresponds to the number of regions used to represent that level, where only
characters present in that split are indicated with a 1.

have been compared to the new CNN techniques in [28] where it was shown how
while historically SIFT features were useful, state-of-the-art instance retrieval,
which refers to the task of returning images of the same class of the query,
systems are using CNNs. An example of instance retrieval is using a picture
of a house as a query and similar house images are return.

An example of a system that uses a CNN in this way is PhocNet [22].
Pyramidal Histogram of Characters (PHOC) is a binary vector indicating the
presence of a character at N horizontal regions. Starting at level 1 with one
region, level 2 split in half and a further split at each level. For each split, the
binary vectors indicating the presence of a symbol are concatenated together.
These systems have been used for exact matching, which inspired it for us
in autocompletion, which normally requires identification of the exact match-
upon while also requiring more symbols to appear in the match than in the
query. An example of this representation for a word is given in Figure 2.2. A
similar system to PhocNet was proposed in [17] where a Pyramid of bidirec-
tional character sequences (PBCS) are generated from a CNN. The differences
in these representations will be discussed further in Output Representations
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Section 2.2. Both of these previous CNN models required pre-segmenting the
words, this is not the case in the R-PHOC network proposed in [9] where a
ROI, Region of Interest, pooling layer. With the inclusion of the ROI pooling
layer, the segmentation is done as a part of the CNN.

Binary pixel values can be used as connected components. Connected com-
ponents represent all of the pixels that are touching above a certain threshold,
in a binary image these would be the black pixels. Connected components are
utilized in the graph-based keyword spotting system presented in [1]. Then
each connected component represent a character in the image. The graphs
used in [1] work similarly to the strokes of online handwritten where a series
of x-y points are connected together in space to represent characters, where
several algorithms were tried to generate key points and an order in which to
connect the points.

Character primitives can also be used as features. In these systems, an
external recognizer is used to get recognition results that are then used as
features. In [7] an HMM-based recognizer is trained per symbol class on a
combination of geometrical features and global features. This Character prim-
itive models are chained together in a sequence that is used in another HMM
designed to do word matching. This technique is capable of partial matching
within a text-line, this is different than the tree structure of math formulas,
which would require the HMM to be able to traverse a sparse subgraph repre-
sentation of the tree. Another system using character primitives is presented
in [2] where a CNN is used to locate words in a scene and character recognition
is used to generate a PHOC embedding.

Two systems that use character primitive and are designed for math for-
mulas are Tangent-V [5] and Tangent-S [4]. The Tangent-V system is designed
to either work with born digital PDFs in which it can use the exact symbols la-
bels and bounding boxes or uses a pre-trained classifier for labeling connected
components which are input to the system. Tangent-S system uses a symbolic
or LATEX input.

In born digital PDFs, symbols labels and bounding boxes are used by
Tangent-V [5]. Here an external system SymbolScrapper [13] which takes a
born-digital PDF and extracts the exact bounding boxes for the symbols. The
symbol classes are known as they are contained in the pdf data and the bound-
ing boxes are generated from information about font and font size. Using the
known labels and bounding boxes for born digital documents allows you to full
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Figure 2.3: Visualization of the extract of a PHOC from a given math formula
at levels 1,2 and 3. Similar to Figure 2.2 the right side represents a binary
vector indicating the presence of a symbol where the vector will include all
valid math symbols recognized by the system.

test the output representation without the variance of a recognizer. In the next
Section 2.2 we will explain more about the different output representations.

2.2 Output Representations

Different systems return different output representations of the data used for
retrieval. These output representations can be classified into three different
groups. There are fixed-length vector representations, where any length input
will map to a fixed-length output. This is useful as all the outputs can be
directly compared for ranking. Another representation is the variable-length
vector which can also be seen as a sequence. This representation has a dif-
ferent length based on the size of the input. In variable-length vectors two
vectors of different lengths can still be representing the same word. Graphs
are an output representation that is able to represent the relationship between
symbols. Graphs are useful in math-related tasks since math formulas are tree
structures, where there are several different relationships between symbols as
seen in the SLT Figure 1.1.

Systems using SIFT return a bag-of-visual words. This is a vector with
a set number of key points and key point descriptors (e.g., orientation) that
make up the image. The fixed-length vector represents the count of the gra-
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dients at different orientations. Bag-of-Symbols (BoS) is a also a fixed length
embedding which captures which symbols are present. PHOCs, and other
similar embedding methods such as Spatial Pyramid of Characters (SPOC),
an expansion of PHOC that counts the number of symbols instead of using
a binary vector, and Discrete Cosine Transform of Words (DCToW), where
the symbols are represented as a one-hot vector over the alphabet and then
packed sequentially into a matrix, then discrete cosine transform is applied
per row and only the highest three values per row are concatenated into a vec-
tor to form the DCToW descriptor, which is a minimal representation of the
sequence of the word. Both SPOC and DCToW are fixed-length vectors [23].
The vectors represent the symbols and their relative spatial relationship to
one another. Embedding spatial information can be important for reducing
confusion in the model, this is expanded on in later examples in Section 4.1.2.

There is an important difference between words and math formulas and
that is the layout structure they represent. A word can be thought of as
a sequence that moves from left to right. Math, on the other hand, is a
tree-like structure so additional information may need to be packed into the
output to correctly match math formulas with these types of representation.
An example of a PHOC on a math formula is given in Figure 2.3 where at
the first level there is no split and is represented by a binary vector across
all the valid math symbols, in this figure a small list of symbols is used for
illustrative purposes. Level 2 has a single split along the middle of the formula
splitting it into the left and right half, the encoding at this level has two binary
vectors one for each area separated by the split. Any symbols that are on the
split points appear in both regions. This can continue for any number of
spits in this example we went to level 3 and after this process, all of the
vectors are concatenated together into one vector. Similar to PHOC, PBCS
[17] represents the word in a hierarchical structure but with some differences.
One difference is that it encodes the characters from in the forwards and
backward direction, this can add additional structure to the representation,
which could be helpful with the commutative nature of the formulas. Unlike
the PHOC and SPOC representations that have a vector the length of the
alphabet, the PBCS representation uses a predetermined fixed-length output
vector of the longest word the system can process. Each index in the vector
represents the class of symbol that appears at this position in the sequence,
and filler characters are used if the word is shorter than the max length. This
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Figure 2.4: Example of original image (a) and normalized projection profile
(b) [19]

does reduce the size of the embedding but also sets a max length on the number
of symbols which would need to be the length of the largest formula in the
index.

Variable-length vectors are another output that is returned by systems
that perform feature extraction across the entire variable-sized word images.
HoG features like the ones used in [25] are variable-length as the histogram
representations are collected across the entire image, counting the features at
each position. The output of the system in [19] is a word profile from the image.
This output is directly proportional to the size of the input image. There are
two word profiles used in this system, an upper and lower projection which
represent the tops and bottoms of each character moving across the image.
Figure 2.4 shows what the normalized word profile for the original image would
be. This is the same figure presented in [19]. These profiles would not work
directly in math in cases where there are symbols that overlap other symbols.
In cases where there are fractions the upper profile and lower profiles would be
describing two different sub-formulas. The use of an additional pixel projection
along the rows would give additional information for vertical layout [27] but
these projections would have large gaps still in case of autocompletion where
the goal is to match exactly the characters present with more characters in
the formula.

Graph-based outputs are also used to represent the output in previous sys-
tems. The connected components used in [1] are extracted into several graph
representations. The graphs represent nodes and edges that could be used to
draw the handwritten text. These graphs are similar to the data capture when
recording online handwriting, capturing the x-y points, and the sequence in
which to connect them. Graphs are a strong representation for math formulas
because you can capture the relationship between symbols and not just their
relative position to each other captured in spatial representations.
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A line-of-sight graph is the output representation used for formula search
of the Tangent-V system [5]. The line of sight graph is used directly as well as
symbol pair tuples that are made based on the symbols that can “see”, a line
can be drawn from the convex hull of one symbol to another symbols with out
crossing the convex hull of an additional symbol. An example of the Line-of-
Sight graph is presented in Figure 2.5 where the symbols are isolated and line
of sight lines connect the center of symbols that can see each other. A more
restricted graph representation is the SLT. This output structure represents
the tree structure that makes up a math formula with relationships between
symbols represented by edge labels (Next, Above, Pre-above, Below, Pre-
Below, Over, Under, Within, and Element). SLT outputs are used by [4], one
problem with this representation is that a valid auto completion query may
have a sparse subgraph representation which is not easily handled in a tree, an
example of this is shown in Equation 1.1. An example of a SLT can be seen in
Figure 1.1 where the relationships are represented as the labels on the edges.
Operator Trees (OPT) that represent the order of operation for a math formula
are also used to represent the formulas with their syntactic structure. Like
SLTs, OPTs are used as a part of the Tangent-S [4] and Tangent-CFTED [15]
systems. Where tuples are used to embed the graphs into vectors, which are
then indexed.

HMM-based systems return an output that represents a probability of
similarity. The system described in [7] utilizes a sequence of HMMs trained for
symbol recognition. Based on the results of these HMMs together a probability
of the desired word is returned. This could be useful when trying to do partial
matching between a formula query and autocompletion results. An HMM can

Figure 2.5: A LoS Graph [3]
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be designed to traverse a SLT of the formula modeling the likelihood that the
symbols given are similar to the index by traversing the tree and giving the
likelihood of the symbols and relationships of the query are represented by the
formula SLT. Building on the same input features used by [7] another system
was purposed using a BLSTM in [8], where the likelihood of a given word
being in the sequence is given as the output.

2.3 Similarity Measures

Based on the different output representations different similarity measures
must be used. Fixed-length vectors can be directly compared to each other.
Being fixed-length they have the same dimensionality so standard distance
measures can be applied. Common distance measures that have been used for
BoS and other fixed-length vectors include Cosine similarity and Euclidean
distance. The PhocNet system presented in [22] uses Bray-Curtis dissimilarity
Equation 2.1 as the distance measure for the fixed-length PHOCs. Given a
and b represent a fixed-length vector embedding and ai and bi represent the
value at the ith index of the embedding.

BC(a,b) =

∑
i |ai − bi|∑
i |ai + bi|

(2.1)

The Bray-Curtis dissimilarity represents the proportion of the number of
mismatched bits to the total number of on bits in either vector. In a follow
up paper [24] the cosine distance, Equation2.2, was used as it worked well for
comparison of large vectors.

dcos(a,b) = 1− aTb

||a|| · ||b||
(2.2)

The cosine distance formula represent the angle between the two vectors a
and b. This is done by taking the inner product of the vectors normalized to
a length of 1. Subtracting this value from 1 gets the angular distance rather
then angular similarity.

A common technique for similarity measure used in word spotting is Dy-
namic Time Warping, DTW. DTW is able to compare variable-length vectors.
The variable-length vectors represent a sequence of local features describing
the word image. DTW is used as it can squeeze sequences into a common
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dimensionality for comparison. This is the technique that is used in [19].
When determining the DTW-distance, dist(X, Y) between two time series
X = (x1, ..., xm) and Y = y1, ..., yN , a matrix DεRMxN is built, where each
entry D(i, j)(1 ≤ i ≤M, 1 ≤ j,≤ N) is the cost of aligning the sub-sequences
X1:i and Y1:j [19]

Each entry D(i, j) is calculated from some D(i′, j′) plus an additional cost
d, which is usually some distance between the samples xi and yi. For instance
the implementation of the algorithm in [19] uses

D(i, j) = min


D(i, j − 1)
D(i− 1, j)

D(i− 1, j − 1)

+ d(xi, yi). (2.3)

The algorithm determines a warping path composed of index pairs ((i1, j1),
(i2, j2), ..., (ik, jk)) , which aligns corresponding samples in the input sequences
X and Y. Once the necessary values of D have been calculated, the warping
path can be determined by backtracking along the minimum cost path starting
from (M,N), where M is the length of X and N is the length of Y. We want
the accumulated cost along the warping path, which is stored in D(M,N).
This matching cost is normalized by the length of the warping path as cost
for shorter paths would be lower for shorter sequences, which yields

dist(X,Y) = D(M,N)/K (2.4)

Where K is the path length. This distance represents the warping score
normalized by the length of the warping path.

Graph-based output representations have several common similarity mea-
sures. One common approach for graph representation is using an edit dis-
tance, a way of measuring the amount of change needed to take one graph
and get another graph. Hausdorff edit distance is utilized in [1] where rules
are assigned to several possible actions performed to get from one graph to
the other. The possible actions include deletion, insertion, and substitution
for edges and nodes. This works as a similarity measure in exact matching
since two representations of the same formula should only require minimal
editing to represent the same graph, but this approach would heavily penalize
autocomplete results as many nodes would need to be added to complete the
graph.
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Tangent-V [5] uses a two-stage scoring. The first stage is based on the
probability of classification results and angles for all symbol pairs that are
matched to symbol pairs in the index. All symbols with a relationship were
paired in tuples that were sorted lexicographically for this comparison. The
second stage function is based on matching the node of the subgraphs through
unification to find the largest matching. The first score would be useful in
partial matching as longs as symbols in the query that see each other would see
each other in the final match. Matching based on the largest line-of-sight graph
might be less useful if the symbols in the query are on the leaf nodes in the
final tree representation because having relationships in the query that don’t
exist in the final formula would make the line-of-sight graph more disjoint.
This scoring process is expensive, having to unify the query graph with each
candidate formula. Tangent-CFTED [15] uses an embedding of the tuple data
of the graph using a linear regression model to combine the embedding into
a single embedding for scoring. Followed by a Tree-edit distance measure for
re-ranking the top candidates, this scoring process is elaborated on in Section
4.1.

For the HMM-based outputs that represent a probability of matching,
Viterbi decoding probability is used. This ranks the likelihood that the word
appears in a given text line. This would need to be modified based on changes
to the HMM for math formulas to represent the likelihood that the symbols
are a sub-tree of a larger formula tree. A text line represents a sequence
of characters that are all at the same baseline level. When it comes to math
formulas there is a baseline for the formula along with a branching structure of
subscripts, superscripts, and above and below relationships. An improvement
for HMM-based systems was proposed in [6] where a formal grammar for the
language is used in the Markov Logic Network to improve the precision in word
spotting. Grammars are often limited since they must be manually created
which can negatively affect the results by not capturing all possible edge cases
or being too strict to generalize to all cases.

2.4 Inverted Index

In any information retrieval (IR) system it is import that the system can not
only function effectively, but also efficiently. There are several well known
techniques used in IR to help improve the efficiency of the search. A common
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approach is to begin with an inverted index mapping of the data as seen by
the Tangent Systems where symbol pairs/tuples are used as the keys into the
index where the postings consist of the formulaIDs that have that symbol
pair. Using an inverted index can help to reduce the search time as you can
quickly collect all the candidates for scoring with out need to traverse the
entire indexed collection.

2.5 Summary

The previous systems looked at following the same data pipeline shown in
Figure 2.1. The differences come down to the representation of the features,
the index representation generated from those features, and how those out-
puts are ranked. Fixed-length vectors are easy to work with because they
can be directly compared with distance metrics, without the required addi-
tional computation of DTW. For our approach, we will be looking at using
a fixed-length vector representation and graph-based approaches. A fixed-
length vector would reduce the computations required during ranking. If a
strong representation can be quickly computed for a fixed-length approach it
will reduce the needed steps of creating the graph. Graph representations are
useful to look at further because of the tree nature of math formulas. Variable-
length vectors while previously popular in the word spotting field have become
less popular with improvements to CNN encoding as seen with the shift from
earlier publications focused on DTW methods and recent papers focused on
CNNs. We will be focusing on an improved output representation that is ca-
pable of capturing the spatial structure of math formulas, without the need
to capture the graph relationship between symbols.



Chapter 3

XY-PHOC Retrieval Model

In this chapter we will describe XY-PHOC, our generalization of the PHOC
embedding to capture both horizontal and vertical symbol positions. First
we will discuss our motivation for designing this embedding, followed by the
specification of the embedding, how we will construct an efficient index, and
how we efficiently search on this index. In designing this embedding we hope
to capture a new set of possible inputs for autocompletion as well as create a
simple embedding capable of competitive results on similarity search.

3.1 Motivation

When using autocompletion for word based queries the left portion of the
query is given and it is expected to complete the right part of the query. This
works well for the sequential nature of text where typing out the query as a
sentence you start from the beginning and can use suggestions to complete
the end of the query. While writing a math formula you tend to write the
symbols on the left before the symbols on the right, this is not always the
case when there are fractions or exponentiation that are added after the fact.
There are three possible areas that we would like to address when it comes
to autocompletion of math formulas, symbols missing from the right (the leaf
nodes of the SLT, which include subscripted subexpressions), left (root of the
SLT), or the middle (inner nodes of the SLT).

Having missing symbols on the right, is the same condition which text
query autocompletion systems already work for. We expect that this would

17
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Figure 3.1: PHOC Representation with the addition of horizontal splits to
capture the relative vertical positions of symbols, these splits are represented
by Levels 2′ and 3′ where the number of splits is the same as on 2 and 3 but
the line is along the horizontal axis instead of vertical axis.

be the most useful autocompletion for users as it is similar to how other search
systems work. When writing a very complex math formula it is possible that
only portions of the formula are remembered when trying to search for it so
in this case parts of the left and right may be entered and symbols will be
missing from the middle. Even writing 2+2 =2 is possible for representing the
Pythagorean Theorem. In these cases the system should be able to provide a
valid autocompletion result.

One way to achieve this functionality is in using a canvas for query entries
that lay out the symbols in roughly their correct spatial locations in the final
query. Using the relative position on the canvas will help to establish where the
portion of the equation should be represented in the final formula. The PHOC
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representation utilizes relative positioning already with its cuts in space per-
level. This notation can be used with partial formulas to match by utilizing
the entire canvas as the dimensions of the spatial cuts and not normalizing
the symbols to the size of the entire canvas space. This will be able to capture
where the given symbols should be relatively in the formulas matches. An is
shown in Fig.3.1. In our work we are using 5 levels in both the horizontal
and vertical directions (only 3 are shown in Figure3.1). This embedding also
be useful for similarity search as the redundant representation is capable of
capturing the variance of formulas with similar symbols and structures.

In similarity search, current systems rely on graph-structured data, such
as in Tangent-S and Tangent-CFTED. These systems require special indexing
strategies in order to build inverted indexes on non traditional keys. The
scoring of these systems also requires several operations or a trained embedding
model to process tuples to be scored.

The XY-PHOC representation we propose will require less storage for the
index as all keys are symbols with postings consisting of a bitstring and a
formula, explained further in Section 3.2.1. Storing standard types in the
index will allow for standard information retrieval tools and techniques to be
utilized. Additionally the scoring of XY-PHOC embeddings is performed by
an optimized function which is rank equivalent to the cosine similarity. A
simple vector based scoring mechanism provides efficient rankings in less time
than the scores on the more complicated graph data. Next we will describe
in detail the embedding proposed that will be able to accomplish the cases we
aim to cover.

3.2 Embedding

When encoding the binary XY-PHOC vectors, as shown in Figure 3.1, if any
pixels from the symbol are included in that region the bit is set to 1, the same
for the vertical regions. For each horizontal level n greater than 1, there will
be a level n′ which represents the vertical splits at that level. In [23] several
variations on the PHOC embedding were tested, as explained in Section 2.2
and the conclusion they reached was more information than just the relative
positions and symbols present would need to be included to improve results
any further.

The criteria for being in a given region can be defined in several ways. In
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our experiments we look at the effect of having region membership defined as
any pixel in the region, the original definition, as well as having the centroid of
the symbol, the top left of the symbol and the horizontal span of the symbol
projected on the vertical center.

Improving the uniqueness of a formula in the embedding space will help
to increase the reciprocal rank, which is defined as 1

r where r is the rank of
the target, when doing autocompletion and exact matching. When ranking
formulas you want the representation to capture enough information so the
formulas will be close in embedding space to the query and the wrong queries
are further away. The use of distance measure for scoring similarity allows
for the distance in embedding space to be used in the ranking. The more
details that make a formula unique are embedded in the space the better the
reciprocal rank should be with a possible loss in similarity effectiveness.

In order to both improve the efficiency and efficacy of the results, an index
and retrieval system is designed for XY-PHOC which is described bellow.

3.2.1 Indexing

The original PHOC representation is a (very) sparse vector representing the
symbols present in each region. For math the symbol vocabulary is much
larger than the Latin alphabet, making the vector even longer. To use XY-
PHOC efficiently, we use an inverted index over symbols with each posting
as a pair (id, v) containing a formula identifier and a bit vector representing
only the XY-PHOC regions where that symbol appears. We use five levels,
making the symbol-specific XY-PHOC vector 29 bits long, which we store in
a 32-bit integer. An example of this embedding is given in Figure 3.2.

An additional index maps formula ids to their original file, the normal-
ization constant for formula’s XY-PHOC vector as described in Equation 3.2,
and the number of symbols in the formula.

To index the large collections of data, several technologies are utilized
together. In order to handle distribution of the work to index, Apache Spark∗

is used to read in the data and perform a map-reduction to produce a text
output index file. The formulas are rendered using the javascript library,

∗https://spark.apache.org/
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Figure 3.2: 29-bit XY-PHOC embedding for a query formula. Where the first
bit represents Level 1 and the second two bits represents Level 2

MathJax†. The index is loaded into a Redis‡ database to allow for efficient at
scale look up into the inverted index.

An important advantage of the reduced representation of XY-PHOC is that
standard information retrieval techniques and tools can be used to generate
an efficient and robust system. Other math formula retrieval systems that
work on graph representations need to use custom solutions in order to index
the paths that make up the graph, where the XY-PHOC embedding easily fits
into standard tools for text-based search engines.

3.2.2 Retrieval

We have designed retrieval models for both general formula retrieval, and
formula autocompletion. We use both conjunctive and disjunctive retrieval
over query formula symbols (i.e., requiring all (conjunctive) or at least one
(disjunctive) symbol to be located in returned hits). When doing similarity
retrieval there is no requirement for all the symbols in the query to appear in
the relevant responses. Due to this, it is possible that when doing conjunctive
queries that no formulas will be returned. When using disjunctive queries, a
large net is cast on all the formulas with any common symbols and the scoring
function will rank the formulas and any formula with few common symbols
will have lower scores.

†https://www.mathjax.org/
‡https://redis.io/
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For autocompletion we use a conjunctive query with the additional con-
straint that returned formulas must have at least as many symbols as the
query. These constraints come from how traditional autocompletion works.
It can be assumed when a user inputs a symbol that they expect that it will
appear in the autocompletion for that particular formula, as autocompletion
is a type of exact matching retrieval. It also does not make sense to score any
formulas with less symbols than that contained in the query, as the goal with
an autocompletion system is to reduce the effort for the user, as modeled and
talked about in [12]. If the user gave a query with the formulas x2+ it would
not make sense to return to them x2, since this is not completing a possible
formula and is just returning a formula that is similar to the query formula.

The work done in [23] demonstrated that cosine similarity worked well for
ranking with PHOCs, and so we use it in our work. For query vector a and
candidate formula vector b the cosine similarity is:

cos =
a · b
||a|| ||b||

=

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(3.1)

A faster rank-equivalent similarity metric bcos is defined as:

cos(a,b)
rank
= bcos(a,b) = |a ∧ b|1

1√
|b|1

(3.2)

The dot product of two binary vectors is the Hamming weight (shared bits)
in the logical AND of the vectors, which is equivalent to the L1 norm (||1). The
normalization factor for query a is constant across candidate formulas, and so
can be removed. To accelerate computation, the normalization factor for b is
pre-computed and stored for lookup at retrieval time. In Figure 3.3 we show
an illustration of how the scoring between the query and a candidate formula
is computed. Each symbol has a corresponding bitstring for the formula which
represents its relative position.

3.3 Summary

The XY-PHOC model is a relative spatial embedding which is able to capture
both horizontal and vertical position. An index can be efficiently generated
from the embedding by an inverted index of symbols with postings representing
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Figure 3.3: Computing the match score between a query formula and a can-
didate formula. The numerator represents the total number of common bits
between the query and the candidate. The denominator represents the nor-
malization constant for this candidate formula.
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the bitstring of the symbol for the associated formula. With this representation
in the inverted index efficient conjunctive and disjunctive queries can be used.
In order to efficiently score candidate formulas a scoring function is proposed
which is rank equivalent to cosine similarity with reduced computation.



Chapter 4

Experimental Design

In order to evaluate the efficiency and efficacy of the XY-PHOC encoding
experimentation will be performed for the recognition task and the autocom-
pletion task. In this chapter we will discuss the baseline systems that will be
compared against, the datasets that will be indexed, the experimental condi-
tions tested and metrics used. To the best of our knowledge there is little work
done in the area of math formula autocompletion, no work done looking at
using visual matching techniques for autocompletion. To help with evaluation
of the autocompletion a new metric is proposed based on the work on esaved
presented in [12].

4.1 Baselines

Comparing against baselines helps to better understand the impact of the
work done for this model, for improving both efficiency and efficacy. A naive
baseline, Bag-of-symbols (BoS), is useful in making sure that the system makes
an improvement on the bare minimum. A comparison against the PHOC
representation will help to determine if packing vertical spatial information
into the embedding provides an improvement. Tangent-V [5], Tangent-S [4],
and Tangent-CFTED [15] provide a comparison against graph based systems,
Tangent-V using visual information and Tangent-S and Tangent-CFTED using
features from the SLT and OPT.

25
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4.1.1 Bag-of-Symbols

Bag-of-Symbols (BoS) is a naive embedding for formulas which indicate what
symbols are present the formula. This embedding has no information of the
spatial relationship between symbols. A similar binary vector used to represent
the PHOC embedding, elaborated on in 4.1.2 can be used for BoS. The first
level of the PHOC embedding is equivalent to the BoS for the formula. The
LATEX string representations for formulas can be extracted and converted into
this embedding with minimum effort. A limitation of this representation is its
lack of spatial information, meaning two formulas with the same number of
unique symbols but completely different layouts will have the same embedding.
An example of two formulas with the same symbols with different structures
is show in equations 4.1 and 4.2

f(x) =
x

1 + x
(4.1)

f(x) = x+
1

x
(4.2)

To help illustrate how these formulas would retrieve the same formulas from
search when using BoS, the Conjunctive query, requiring all symbols present
in the query in the candidates before scoring, results are presented in Table
4.1 from the annotated ARQMath collection described in Section 4.2. Both
queries, returned the exact same results with the same scores, because with
BoS the embedding both formulas are is (, ), +, fraction(-), 1, =, f, x . There
is little structural similarity between the queries and the retrieved formulas.
Further more, all of these top-5 results also have the exact same embedding. To
improve the retrieval, so that these formulas that have the same symbols but
different structures will not be matched, spatial information must be added.

4.1.2 PHOC

Encoding spatial information about the symbols will be very important to
make improvements on matching the correct formula. Originally, PHOC was
designed to capture relative spacing between the symbols in words, by cutting
the word spatially into different regions where multiple regions will contain
overlapping information for redundancy in representation. As discussed ear-
lier in Section 2.2, this is enough spatial information for word spotting because
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Table 4.1: Bag-of-Symbols Conjunctive Query in the Annotated ARQMath
Collection for Equations 4.1 and 4.2

Bag-of-Symbols

Rank

1

2

3

4

5
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a word is a sequence that progresses from left to right. Math formulas on the
other hand are tree like structures where symbols can be above and below
the baseline for various operations such as fractions and exponentiation. An
example of the improvement in search results when using the PHOC embed-
ding can be seen in Table 4.2. Here the same queries made previously are run
again, with the PHOC embedding the retrieval results reflect the horizontal
placement of symbols in the formula, and not just the presence of specific
symbols.

PHOC vs. XY-PHOC. Experimentation with PHOC can help under-
stand if the difference in vertical layout that is seen in math formulas is im-
portant to be captured or if there is enough information in capturing the
horizontal layout of the symbols. If we look at the equation f(x) = x+1

x which
appears at rank 3 result of the query for Equation 4.1 and f(x) = x

x+1 which
appears at rank 2 of the query for Equation 4.2 both would have identical
PHOC embeddings since the symbols are in the same positions in the hori-
zontal direction but in XY-PHOC would have different embeddings because
of the vertical differences.

4.1.3 Tangent

The three Tangent systems that will be used as baselines represent the graph
based models being used for math formula retrieval, with all three capable of
similarity search and Tangent-V being also used for spatial autocompletion.
The Tangent models all use relational data between the symbols in the formula
in order to perform math formula retrieval. There is a difference in the types
of data each uses, with Tangent-V using visual data, the symbols in space, and
Tangent-S and Tangent-CFTED work on the relational trees that represent
the formulas. We will be comparing against these systems to gain a better
understanding of how the similar XY-PHOC embeddings against state-of-the-
art systems.

4.1.4 Tangent-V

To better understand how XY-PHOC compares against another system us-
ing only visual data we will be running Tangent-V. Tangent-V [5] generates
line-of-sight graphs representing what symbols can see other symbols, storing
these symbol pairs. Generating the entire graph representation is very time



CHAPTER 4. EXPERIMENTAL DESIGN 29

Table 4.2: PHOC Conjunctive Query in the Annotated ARQMath Collection
for Equations 4.1 and 4.2

PHOC

Rank

1

2

3

4

5
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consuming, as determining if two symbols can see one another through line
of sight is a nontrivial task. During the graph generation the line-of-sight be-
tween symbols must be tested, determining if two symbols can see each other
and if the distance between those symbols falls within a threshold along the
line-of-sight.

With in the index generated by Tangent-V and inverted index is generated
over the symbol pairs from the graph edges. That means that any symbol in
the query that doesn’t see a symbol it has a line-of-sight to in the target it will
never be able to match successfully, making it not as useful for autocomplete,
such as with 2 + 2 = 2 the exponents never see the variables a, b, or c and the
symbol pairs from the inverted index would not be returned. The reliance on
pairs of symbols also restricts how good the system will be at autocompletion
when only the first symbol is input, formulas with three or fewer symbols in
the index will be returned when a single symbol is in the query, due to special
case code in Tangent-V to index smaller formulas with self pairs.

When ranking, a two layer system is used. The first layer gets all postings
containing the symbol pairs from the inverted index. Then formulas with large
differences in displacement angles and/or symbol size ratios relative to the
query edge are filtered out. Then an edge-based ranking metric is applied,
keeping the top 1000 formulas. Then a re-ranking layer is applied which
focuses on mapping line-of-sight nodes one-to-one with the query. Structural
alignment is used for matching the graphs.

4.1.5 Tangent-S

To better understand how XY-PHOC compares against the state-of-the-art,
a comparison against Tangent-S the top performing system on the ARQMath
similarity search task will be performed. Tangent-S [4] utilizes the SLT and
OPT in order to generate tuples which are stored in the index. The SLT
representation is built around the writing lines, which leads to deep trees with
few branches. The OPT represents the formula as a hierarchy of operations,
which makes a shallow tree with many branches. The index is then made by
making an inverted index on symbol pair tuples. The symbol pair tuples are
made up of the ancestor and descendant symbols, as well as the sequence of
edge labels in the path from the ancestor to the descendant. The tuples from
the SLT and OPT contains a lot of relational data to help better match the
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formulas on.
When performing retrieval, first candidates are selected by matching the

query symbol tuples in the index. A harmonic mean of precision and recall
of matched symbol tuples is used to assign an initial score. Then a structural
matching score is made by finding the the largest connected match between
the query and candidates, which is obtained by a greedy algorithm, evaluating
pairwise alignments between trees. The output of the structural matching is
a subtree of the candidate formula that has been successfully aligned to the
query. A re-ranking is performed on the Maximum Subtree Similarity (MSS),
negative count of candidate nodes matched with unification, and negative
count of candidate nodes matched without unification. A linear regressor was
trained using the relevance numbers for query matches to learn how to best
combine these metrics in [4] and a learn to rank model was later applied in [14].

4.1.6 Tangent-CFTED

A further improvement on the Tangent-S system, Tangent-CFT(ED) [15].
Tangent-CFT as presented in [15] uses the output of the Tangent-S model
to generate the tuple embeddings for the SLT, OPT, and SLT-Type (each
node representing only the type and not the value) which are embedded into
a vector which is combined together. To better handle partial matching, tree-
edit distance is added to the model. Tree-edit distance (TED) is the minimum
cost of converting one tree to another. The tree-edit distance is used to re-rank
the retrieval results.

All three of these systems will be able to help show if a graph structure is
required for math formula retrieval. While embedding of the graph data are
able to hold a large amount of data about the relationships between symbols
this also take a large amount of time to compute and in the case of SLT,
in Equation1.1 we show a possible query formula this is a disjoint subgraph
which can not be handled by tree based systems. Additionally the TED used
for re-ranking in Tangent-CFTED adds a penalty on similarity between graphs
that require new nodes and edges be added, but in auto-completion adding
symbols will be necessary as the query being matched will be incomplete.
The XY-PHOC model, also prefers shorter matched formulas, with the redun-
dant capture of symbols in relative space there is less of a penalty for adding
more symbols if they already appeared once in the query compared to needing
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unique symbols.

4.2 Datasets

The ARQMath formula dataset will be used in order evaluate the XY-PHOC
embedding. ARQMath dataset [26] contains 9,340,034 visually distinct formu-
las, comprised of formulas from Math Stack exchange. Of the entire dataset
there is a subset of 5,676 annotated formulas, on 45 test topics. 10 of these
formulas were determined to not be valid LATEX, and were not included in the
index. All 10 of the invalid formulas had a relevance of 0. The total number
of formulas in the annotated index is 5, 666 and 9, 326, 795 formulas in the full
index. The annotated index size on disk is 1.6 MB for the symbol index and
836 KB for the formula index, and the full index size on disk is 2.3 GB for
the symbol index and 814 MB for the formula index. The annotated index
was generated for Tangent-V where in addition to the 10 formulas determined
to not be valid latex were not generated as well as 51 formulas that failed
to render during the index. All of these formulas have a 0 relevance rating
leaving the Tangent-V index with 5615 formulas.

In order to render the LATEX string the node.js library MathJax was used
to render the formulas to a SVG image file format. From the SVG the lo-
cations and labels were able to be extracted directly for use. To make sure
as many formulas as possible were able to be rendered certain tags and com-
mands were removed from the strings such as the MathJax specific \toggle
and \endtoggle commands which only work in HTML rendering. Along with
the latex commands for tag and label. The label command has no visual im-
pact on the formulas, removing them would not effect the output files and the
tag commands while effecting the visual output do not effect the actual math
content of the rendered formula, it simply allows the user to override what
reference number is used for the formula in display math mode.

4.3 Formula Search and Autocompletion Experiments

Since retrieval is based on similarity matching and autocompletion is based
on exact-matching, the conditions that work the best for one of the systems
will not necessarily be the best for both systems. Several parameters of the
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XY-PHOC system must be tested and tuned so that the best system using
this model can be compared to the state of the art.

Across tests of the system different variables can be adjusted. The first test
run will compare the the different individual levels of the embedding function,
the space split into N regions for level N, on their own. Starting with level 1
and running with just level-x for all 5 levels. Using just level 1 is equivalent
to the bag-of-symbols. The idea for this experiment is to demonstrate how
the embedding works without the redundant information from the previous
levels. Similar to how XY-Trees only compare at the leaf level of the tree
there will be no redundant information to improve robustness. Additionally
this experiment will give a sense of the importance of any specific level has
in retrieval. An experiment will be run on just the just the horizontal cuts,
which is equivalent to the original PHOC embedding, to determine if the added
vertical information provides an improvement for both retrieval tasks.

The next test will demonstrate the impact of more levels of the embedding
make starting with level 1-2 and increasing in levels till we get to 5 with both
vertical and horizontal cuts. These test will help to show how additional levels
giving both redundant information and better separation of symbols helps with
the robustness of the representation. The deeper the range of levels, the better
the XY-PHOC model performs at both similarity search and autocompletion.

The condition to include a symbol inside a split of the PHOC can be
experimented with to provider better distinguishing embeddings. The original
criteria is that any pixel of the symbol is with in the bounds of the given split.
Several additional criteria will be used including the top left corner of the
symbol, the centroid of the symbol, and projections of the symbols onto a
single axis. As well as test to test these conditions separately on their impact
on the vertical and horizontal cuts of the XY-PHOC. The condition used to
determine if a symbol is within a split helps to get better discrimination of
the location of symbol in the formulas. There needs to be a balance between
discrimination of symbols locations, to help better match exact matches, while
keeping enough redundancy of the symbol that is helpful for finding similar
formulas with different symbol spacing.
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4.3.1 Formula Similarity Search

The math formula retrieval task consists of a complete query formula and rel-
evant formulas are returned. To evaluate retrieval using XY-PHOC we use
the ARQMath formula retrieval task (45 topics). The three metrics used for
comparison on the ARQMath dataset are the normalized discounted cumula-
tive gain (nDCG), mean average precision (MAP), and precision (P). These
scores are measured using trec eval, a standard tool in the information re-
trieval space, which provides the ability to read in results files and generate
the desired scores.

The prime version of these metrics are use as defined in [26] because they
are only calculated on the dataset for the formulas with annotated relevance
scores. These are the standard metrics used for comparing systems on ARQ-
Math Task 2. nDCG is defined as follows:

nDCG@p =
rel1 +

∑p
i=1

reli
log2i

relmax +
∑p

i=1
relmax
log2i

(4.3)

Where reli represents the relevance score for the retrieved result at rank i,
and relmax represents the max relevance for this collection. The p represents
the cut off for how many results to look at when calculating the score, and
if no p is given then all retrieval results are used. The nDCG measure is the
discounted cumulative again divided by the ideal discounted cumulative gain
which gives a score which is ≤ 1 at any rank position.

The formula for MAP is defined as follows:

MAP =

∑|Q|
q=1AveragePrecision(Qq)

|Q|
(4.4)

Where Q is a set of queries, Qi represents the ith query in the set and |Q|
represents the number of queries in the set. This is the mean of the average
precision for all queries in the set. Precision is defined as follows:

Precision(q) =
|relq ∩ retq|
|relq|

(4.5)

Where relq represents the relevant results for query q and retq represents the
retrieved results for query q. This gets the ratio of retrieved relevant results
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to the total number of results retrieved. This metric is measured with cuts
represent as P@k where k represents the top-k documents retrieved to look at.

We run all test topics and generate nDCG′, nDCG′@5, MAP′ (mean av-
erage precision), P′@10, and P′@5 scores that can be compared directly to
previous systems, which are evaluated using only assessed hits. For our con-
junctive model, to avoid errors with trec eval, we generate an irrelevant hit
for queries that return no result (e.g., because some symbols in a test formula
are not in the indexed collection).

Tests will be done to see if a different number of vertical and horizontal
splits is helpful in improving the efficacy on the formula retrieval. The redun-
dant information given by extra levels could cause noise and so having different
resolution of cuts on the x and y axis may prove beneficial. The insight that
will be gained from these experiments is if the more information packed into
the embedding helps to improve results. In order to keep the embedding ef-
ficient a minimal representation required to get the best results can be used
so no unneeded information needs to be stored. It is also possible additional
layers cause extra noise which will decrease performance, removing any levels
that add too much noise to the embedding will help to improve the efficacy in
retrieval.

The highest performing system from the experiments will be compared
against the baseline and state-of-the-art systems. The default configuration
will also be compared to the state-of-the-art systems on both the annotated
and full ARQMath collection.

Tangent-V being another system using visual information for retrieval, will
help to show how the XY-PHOC embedding compares to another system using
visual data for math formula retrieval. In order to establish a comparable
baselines with Tangent-V the annotated ARQMath data will be indexed and
task 2 queries will be run.

4.3.2 Formula Autocompletion

To test autocompletion, we used a selection of formulas from the annotated
ARQMath index as targets for the completion. In a series of experiments we
will test the effect of the input order for the symbols in the query. In order
to evaluate the different input orders a new metric is presented rsaved, along
with the use of number of symbols needed to obtain a top-k rank for the target
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0 −dx
a) Left-to-Right b) Right-to-Left∫
0 x sin

x
c) Outside-in d) Middle-out

Figure 4.1: Example of inputting the Equation
∫∞
0

sin(x)
x dx with 3 symbols

when the order entered is a) Left-to-Right, b) Right-to-left, c) Alternating from
Left-Right from the Outside-in, d) Alternating Left-Right from the Middle-
Out.

query.
The queries used for the autocompletion testing are taken from the anno-

tated collection of ARQMath, as any query used for the autocomplete metrics
needs to be present in the index. A stratified sample of the queries is made,
where the queries are binned by the number of symbols they contain. Bins
spanning 4 sizes are generated starting with 2 symbols (e.g. 2-5, 6-9...) with no
queries of length greater than 200 include as formulas with this many symbols
are rare in the collection and by just being that long their autocomplete result
would be guaranteed after enough symbols are entered do to the minimum
length restriction included in the XY-PHOC autocompletion model. From
each bin 10 formulas are selected randomly and for some bins where there
were not 10 formulas all the formulas in that bin were selected giving a total
of 422 queries. All the formulas included in the autocomplete query set are
presented in Appendix A.

The orders that will be tested are left-to-right, right-to-left, middle-out,
and outside-in. The left-to-right order is equivalent to the standard use of
autocompletion on strings, where the symbols are input ordered on position
from left-to-right and top-to-bottom. Right-to-left uses the reverse order but
still breaking ties top to bottom. The middle-out order will start at the middle
an alternate between the adding symbols to the left and right until the full
string is used. For the Outside-in the left symbols is added to start followed
by the right-most symbols alternating left and right until the whole formula
is input. An example of these four input orders is shown in Figure 4.1, where
the equation

∫∞
0

sin(x)
x dx is input with 3 symbols for each order.
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The reason to test the input order in this way is to help to understand
the effect of giving users a new way of inputting symbols will impact there
ability to quick find the formula they are looking for. While we recognize
that these strict orders do not necessarily match how a user would actually
go about inputting a formula, these conditions let us easily automate the test
for large portions of data. While getting an accurate user test for the actual
orders a user might enter the symbols in would require a large user-study that
is beyond the scope of this paper and will be done as future work.

After identifying the optimal configuration on the annotated ARQMath
index, the same queries will be run again using the full ARQMath index,
again measuring with the same metrics. With the full ARQMath index we
will be able to identify how the system works at scale for both its efficiency
with large data and the impact of additional data impacts the results.

To establish a baseline for autocompletion the Tangent-V system will be
run with the same queries as the XY-PHOC System. For ease of comparison
the standard left to right input order will be used for the symbols. The
Tangent-V System being not designed for the same types of sparse queries as
XY-PHOC, the other orders error on some cases were the symbols are not with
in the threshold for line-of-sight, leaving disjoint nodes in the graph. This will
help better understand the efficiency of the XY-PHOC query model and to
understand how the scores compare against another visual system. To score
autocompletion a new metric based on esaved from [12] is proposed.

Previously the effort saved [12] metric was proposed for measuring the
amount of effort saved while entering each character in a word for autocom-
pletion, which weights a probability of user satisfaction for the rank of the
target formula in the results by the ratio of characters that have not been
typed in the word:

esaved(q) =

|q|∑
i=1

(
1− i

|q|

)∑
j

P (Sij = 1) (4.6)

We have opted for a simpler, more intuitive measure to characterize autocom-
pletion performance as each symbol is entered, the rsaved metric, which is the
average reciprocal rank of the target after each symbol is added to the query:

rsaved(q, k) =
1

|q|

|q|∑
i=1

rr(q, k) (4.7)
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This metric has a close relationship to the number of alternatives at and above
the rank of the target formula after entering each character.

Additionally for each query, we observe the number of symbols that needs
to be entered before the target appears in the top-k (where k is 5). Our
expectation is that the outside-in ordering of adding symbols will be most
efficient, as it constrains the formula structure from both ends of the query,
this is helpful for the XY-PHOC embedding because it stabilizes were the
symbols are in space based on the full span of the formula. When adding
symbols just from left-to-right, the spacing of the cuts based on the width of
the bounding box formed by all the symbols keeps growing, adding variance
as the embedding space grows.

4.4 Summary

In order to test the XY-PHOC model the ARQMath dataset [26] will be used
with a series of experiments. To understand how useful the XY-PHOC model
is, it will be compared against several baselines. These baselines include two
systems that are structurally similar with with different levels of data, that
being the BoS and PHOC models. Then a state-of-the-art visual system,
Tangent-V [5], will be run to understand how the simpler visual embedding
of XY-PHOC compares to embedding the line-of-sight graph for both simi-
larity search and autocompletion. Then the top performing systems on the
ARQMath Task 2 will be compared against to understand how XY-PHOC,
compares to the state-of-the-art systems for the similarity search on math
formula task.



Chapter 5

Results

In this section we will present the results for the XY-PHOC Model on the
ARQMath formula retrieval task [26], and an analysis of our XY-PHOC auto-
completion model for formulas using symbols entered in different orders (e.g.,
left-right and outside-in). Several experimental conditions were tested on both
tasks to get a better understanding of the impact of redundant information
in the embedding. Each task may favor different conditions for embedding
as ARQMath formula retrieval is based on similarity and autocompletion is
based on exact matching.

5.1 Formula Similarity Search

To gain an understanding of the strength of each individual level of the XY-
PHOC embedding we present the retrieval metrics for each single level in
Table 5.1. It is possible that having multiple levels can make the embedding
noisy by adding too much redundant information, so it is important to look at
these single levels to see if they out perform the full embedding. An important
pattern to recognize is that for levels 2 and 3 disjunctive queries the horizontal
levels have higher scores than their respective vertical levels and this pattern
inverts for levels 4 and 5. This makes sense, because in vertical spacing the
symbols are much closer together than in the horizontal spacing. So with just
vertical splits there are fewer distinguishing cuts which will matter more with
fewer cuts. In Levels 4 and 5 there are more splits which can provide more
information about the relative positions.

39
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Table 5.1: Single Level of XY-PHOC using Disjunctive and Conjunctive
Queries for Similarity Search in Annotated ARQMath collection. Prime (′)
levels are split vertically.

µ(σ)
Disjunctive Conjunctive

Level nDCG′ MAP′ P’@10 nDCG′ MAP′ P′@10

1 (BoS) 0.697 (0.166) 0.397 (0.238) 0.369 (0.279) 0.244 (0.269) 0.151 (0.218) 0.218 (0.277)
2 0.738 (0.145) 0.450 (0.214) 0.424 (0.240) 0.259 (0.278) 0.164 (0.217) 0.224 (0.266)
2′ 0.736 (0.158) 0.439 (0.230) 0.416 (0.286) 0.263 (0.282) 0.170 (0.229) 0.236 (0.288)
3 0.738 (0.158) 0.447 (0.225) 0.420 (0.266) 0.252 (0.270) 0.153 (0.205) 0.204 (0.250)
3′ 0.731 (0.164) 0.441 (0.236) 0.393 (0.296) 0.266 (0.285) 0.174 (0.232) 0.236 (0.281)
4 0.726 (0.169) 0.455 (0.241) 0.415 (0.253) 0.259 (0.276) 0.164 (0.215) 0.200 (0.238)
4′ 0.745 (0.160) 0.456 (0.233) 0.411 (0.290) 0.266 (0.281) 0.174 (0.228) 0.247 (0.291)
5 0.738 (0.162) 0.462 (0.228) 0.440 (0.259) 0.260 (0.279) 0.163 (0.215) 0.191 (0.2284)
5′ 0.741 (0.156) 0.446 (0.231) 0.422 (0.277) 0.269 (0.283) 0.179 (0.235) 0.240 (0.283)

As the depth increases for the single levels, for disjunctive queries, there
is a trend of increasing scores with level 5′ having the best nDCG′ and level 5
having the best MAP′ and P′@10. This is due to the increase of splits giving
more distinguishing information about the relative position of the symbols. A
surprising insight is that level 1, which is equivalent to a bag-of-symbols show
strong results. This is a very simple approach, just capturing if a symbol is
present at all in the formula and works well for this task. In the conjunctive
queries, 5′ is the best for nDCG′, MAP′, and 4′ has the best P′@10. This
shows a similar trend as the disjunctive that the more cuts in the embedding
help to improve the similarity search results.

Next we look to understand the impact of packing more information into
the embedding. We present the retrieval results for increasing the range of
level used in the embedding for both disjunctive and conjunctive queries in
Table 5.2. The expectation is that as we pack more information into the
embedding that the scores will improve, as we will have more information
about the placements of the symbols. This hypothesis holds true as the range
increases depth the scores improve across the board, for both disjunctive and
conjunctive queries. The best scores for disjunctive queries, with levels 1-5,
has an nDCG′ of 0.778 which while only slightly higher than the previous 1-4
with an nDCG′ of 0.775 and a bit better than just the single level 5′ with
an nDCG′ of 0.741 it is worth the over head of using all the levels because
the embedding is packed into bit-strings, and modern computer systems are
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Table 5.2: Increase Depth of XY-PHOC on Disjunctive and Conjunctive
Queries for Similarity Search in Annotated ARQMath collection. The Ranges
Include Both the Horizontal and Vertical levels (e.g 1-2 includes 1, 2, and 2′)

µ(σ)
Disjunctive Conjunctive

Range nDCG′ MAP′ P′@10 nDCG′ MAP′ P′@10

1 (BoS) 0.697 (0.166) 0.397 (0.238) 0.369 (0.279) 0.244 (0.269) 0.151 (0.218) 0.218 (0.277)
1-2 0.761 (0.156) 0.481 (0.237) 0.460 (0.268) 0.266 (0.284) 0.173 (0.232) 0.236 (0.288)
1-3 0.770 (0.153) 0.490 (0.235) 0.453 (0.276) 0.267 (0.285) 0.172 (0.227) 0.233 (0.274)
1-4 0.775 (0.153) 0.505 (0.240) 0.458 (0.270) 0.269 (0.285) 0.176 (0.233) 0.231 (0.266)
1-5 0.778 (0.152) 0.511 (0.240) 0.469 (0.268) 0.270 (0.285) 0.176 (0.229) 0.231 (0.264)

Table 5.3: Different Membership conditions using Disjunctive and Conjunctive
Queries for Similarity Search in Annotated ARQMath collection.

µ(σ)
Disjunctive Conjunctive

Condition nDCG′ MAP′ P′@10 nDCG′ MAP′ P’@10

Default 0.778 (0.152) 0.511 (0.240) 0.469 (0.268) 0.270 (0.285) 0.176 (0.229) 0.231 (0.264)
Top-Left 0.793 (0.136) 0.533 (0.233) 0.469 (0.261) 0.269 (0.285) 0.176 (0.232) 0.227 (0.263)
Centroid 0.791 (0.139) 0.535 (0.230) 0.473 (0.268) 0.269 (0.285) 0.178 (0.236) 0.236 (0.267)
Vert. Center 0.794 (0.143) 0.540 (0.235) 0.473 (0.267) 0.269 (0.284) 0.179 (0.236) 0.229 (0.259)

designed to work fastest on 64-bit integers so there is no in memory waste for
the extra level.

The next condition we look to study the effect of is changing the condition
for a symbol to be a member of a split. In the default conditions, if any part of
the symbols bounding box is with in the split the symbols is included in that
split, this gives a lot of redundancy in the embedding. This may also have the
effect of making it so there is less unique information in the embedding. We
hypothesised that changing this condition to make it so that the splits are more
discriminating with improve the score, as it will reduce redundancy that makes
the embedding less unique. Three alternative membership conditions along
with the default condition are presented for both disjunctive and conjunctive
queries in Table 5.3.

The Top-Left and Centroid conditions reduce each symbol to a single point
for determining membership and the Vertical Center condition reduces each
symbol to a line in the center of the symbol. Reducing the symbols mem-
bership helps make each cut either in the horizontal or vertical space more
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discriminating. In the disjunctive queries, using the vertical center condition
shows the strongest results across the board, and is the best system for the
XY-PHOC Model. This makes sense because of the difference in vertical and
horizontal spacing as mentioned previously. Since symbols are already spread
out more in the horizontal axis the redundant information given by including
it in any split along the horizontal axis more discriminating information. The
vertical spacing between symbols being smaller, benefits from the reduced re-
dundancy of only using the middle of the symbol rather than the entire span
of the symbol.

For conjunctive queries all the conditions provide very similar results, this
can be explained by the limited number for formulas that pass the initial
conjunctive filtering. With only a limited number of formulas to even consider
there is much less impact on score from having more or less discriminating
information in the embedding.

We present the current top systems for the ARQMath Task 2 retrieval,
along with our baseline systems in Table 5.4. The best disjunctive and con-
junctive systems for XY-PHOC are presented, along with Tangent-V as a com-
parison against another spatial system. The PHOC system utilizes the same
model as XY-PHOC but only uses the horizontal cuts, to help understand if
the added vertical information is helpful. The current top system Tangent-S
and Tangent-CFTED are presented twice, once with the original results for
the systems and once re-ranked with a learn to rank model [14]. An interest-
ing result present is how strong both the XY-PHOC mode and the Tangent-V
systems are on this task. The XY-PHOC system uses a much simpler represen-
tation than the Tangent-S and Tangent-CFTED systems and before re-ranking
XY-PHOC out performs both of them. Even with re-ranking, XY-PHOC has
the strongest MAP’ (0.54). A learn to rank model being trained on XY-PHOC
could further show the competitive results this embedding can provide, addi-
tionally it could be used in conjunction with the other features used in the
Tangent systems.

In order to confirm that the results seen on the annotated set applied
to the full collection, we ran the disjunctive query model with the default
membership condition on the full index. These results in Table 5.4 show that
on the full collection the metrics stay stable other than the MAP′. The lower
MAP′ can be explained by the larger collection having more formulas that are
matched in the top 1000 before filtering down to only the annotated formulas
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Table 5.4: ARQMath Task 2 Formula Similarity Search Benchmark

µ(σ)
System Collection nDCG′@5 MAP′ P′@5 Q. Time (s)

XY-PHOC-Dis. Vert. Center Annotated 0.63 (0.26) 0.54 (0.24) 0.56 (0.32) 0.25 (0.06)
XY-PHOC-Dis. Vert. Center Full 0.61 (0.24) 0.44 (0.23) 0.55 (0.29) 565.8 (162.5)
XY-PHOC-Con. Vert. Center Annotated 0.35 (0.33) 0.18 (0.24) 0.29 (0.32) 0.02 (0.01)
XY-PHOC-Dis. Default Annotated 0.61 (0.27) 0.51 (0.24) 0.56 (0.31) 0.26 (0.07)
XY-PHOC-Dis. Default Full 0.61 (0.26) 0.42 (0.23) 0.56 (0.30) 565.7 (170.2)

PHOC - Disjunctive Annotated 0.59 (0.27) 0.49 (0.24) 0.53 (0.30) 0.23 (0.05)
Tangent-V Annotated 0.62 (0.29) 0.53 (0.27) 0.59 (0.33) 0.59 (0.51)
Tangent-S Full 0.58 (0.27) 0.45 (0.22) 0.51 (0.30) 3.75 (5.53)
Tangent-CFTED Full 0.56 (0.26) 0.52 (0.27) 0.53 (0.36) 1.75 (1.62)

Re-ranked Runs
Tangent-S Full 0.69 (0.23) 0.52 (0.22) 0.62 (0.30) -
Tangent-CFTED Full 0.65 (0.26) 0.42 (0.27) 0.58 (0.32) -

for the ′ (prime) metrics. The query time on the full collection is much longer
than on the annotated collection and than the other systems working with the
full collection. With the disjunctive queries there is a wider net cast so more
formulas need to be scored, there is also room for optimization in the code
base for improving efficiency. With how well the XY-PHOC model performed
at similarity search we next will show how it performed at autocompletion.

5.2 Formula Autocompletion

In this section we will look at the results of running our autocompletion exper-
iments. We hope to gain an understanding of how the levels of the embedding
impact the exact retrieval of formulas in the index. We additionally will be
studying the impact of 4 different input orders on the autocompletion metrics,
to simulate the benefit of being unrestricted in which order you can input
symbols for queries. The orders test are left to right (standard input order for
strings), right to left, outside-in and middle-out.

To better understand the impact of the single levels have in the entire em-
bedding the autocompletion queries are run for all 4 orders with just a single
level of the embedding presented in Table 5.5. The mean rsaved is the new
metric proposed to help capture amount of ranks saved by entering more sym-
bols for a given query, and the in top-5 score represents the number of symbols
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Table 5.5: Conjunctive Queries on Annotated ARQMath Data For Autocom-
pletion Result For All 4 Input Orders With a single level where the number
represents the number of sections in that level. Prime (′) levels are split ver-
tically.

µ(σ)
Left to Right Right to Left Outside In Middle Out

Level rsaved In Top-5 rsaved In Top-5 rsaved In Top-5 rsaved In Top-5

1-(BoS) 0.774 (0.239) 10.8 (15.1) 0.778 (0.225) 11.2 (15.6) 0.819 (0.216) 8.19 (11.5) 0.760 (0.237) 12.0 (16.7)
2 0.805 (0.202) 8.87 (11.1) 0.807 (0.192) 8.55 (9.47) 0.868 (0.150) 6.31 (5.77) 0.824 (0.181) 9.11 (11.7)
2′ 0.806 (0.205) 9.47 (13.2) 0.813 (0.196) 9.97 (14.9) 0.846 (0.182) 7.44 (11.0) 0.802 (0.205) 10.4 (15.0)
3 0.812 (0.197) 7.54 (8.53) 0.808 (0.198) 7.65 (7.4) 0.886 (0.130) 5.48 (4.73) 0.815 (0.187) 8.67 (10.9)
3′ 0.816 (0.202) 9.07 (13.1) 0.822 (0.193) 9.28 (14.5) 0.853 (0.176) 7.08 (10.9) 0.810 (0.205) 9.28 (14.1)
4 0.811 (0.200) 7.34 (7.62) 0.810 (0.198) 7.58 (7.37) 0.898 (0.116) 4.99 (3.51) 0.823 (0.186) 7.84 (8.76)
4′ 0.821 (0.196) 8.86 (12.9) 0.825 (0.187) 9.09 (14.2) 0.858 (0.171) 6.93 (10.7) 0.818 (0.199) 9.22 (14.3)
5 0.807 (0.203) 7.15 (7.16) 0.801 (0.209) 7.48 (7.44) 0.905 (0.110) 4.71 (3.29) 0.810 (0.193) 7.91 (8.85)
5′ 0.825 (0.200) 8.43 (11.9) 0.828 (0.190) 8.52 (12.0) 0.863 (0.170) 6.71 (10.6) 0.819 (0.204) 8.70 (12.7)

required to get the target result in the top-5 results and the whole length is
used if no number of symbols ever gets a rank with in the top-5 because this
represents the full query being put in with no benefit of autocompletion for
that query.

A consistent pattern is that for each level the outside-in input order is the
best for rsaved and number of symbols for a rank in top-5. This is caused
by the span of the query adding symbols to both sides gives. XY-PHOC uses
splits that are based the bounding box formed by the symbols in the query,
giving symbols on both ends of the formula gives the same split locations as the
full formula. Outside-in also show a steady decrease in variance in both scores
as the levels go deeper. This is the most stable ordering so heading additional
splits to this order improves the scores and reduces variance between the scores.
A surprising result is how strong the autocompletion results are for level 5,
especially with the outside-in order with the highest rsaved (µ0.905, σ0.110)
and lowest number of symbols required for rank in top-5 (µ4.71, σ3.29).

Another important insight looking at the impact of the single levels is that
as the depth increases there is an improvement in the scores which is constant
across most orders. Depending on the order there is also an improvement on
using the vertical or horizontal split for the respective level.

To observe the impact of increasing the amount of data in the embedding
we present the 4 input orders withe increasing depth of the embedding repre-
sented as the range of levels included, presented in Table 5.6. The expected
pattern is observed as the depth in the embedding increases the autocomplete



CHAPTER 5. RESULTS 45

Table 5.6: Conjunctive Queries on Annotated ARQMath Data For Autocom-
pletion Result For All 4 Input Orders With Increasing Depth Represent As
A Range Of Levels Included. The Ranges Include Both the Horizontal and
Vertical levels (e.g 1-2 includes 1, 2, and 2′)

µ(σ)
Left to Right Right to Left Outside In Middle Out

Level rsaved In Top-5 rsaved In Top-5 rsaved In Top-5 rsaved In Top-5

1-(BoS) 0.774 (0.239) 10.8 (15.1) 0.778 (0.225) 11.2 (15.6) 0.819 (0.216) 8.19 (11.5) 0.760 (0.237) 12.0 (16.7)
1-2 0.815 (0.191) 9.04 (11.6) 0.822 (0.179) 9.26(12.6) 0.864 (0.154) 6.88 (9.93) 0.820 (0.182) 10.0 (14.4)
1-3 0.828 (0.177) 7.87 (7.9) 0.833 (0.169) 8.19(9.74) 0.877 (0.138) 6.16 (6.98) 0.835 (0.169) 8.6 (9.69)
1-4 0.838 (0.165) 7.54 (7.3) 0.842 (0.159) 7.85(9.84) 0.888 (0.119) 5.75 (5.0) 0.846 (0.157) 7.92 (9.02)
1-5 0.841 (0.163) 7.19 (6.93) 0.844 (0.159) 7.32 (7.08) 0.895 (0.107) 5.5 (4.67) 0.849 (0.157) 7.63 (8.77)

Table 5.7: Conjunctive Queries on Annotated ARQMath Data For Autocom-
pletion Result For All 4 Input Orders With Different Membership Conditions.

µ(σ)
Left to Right Right to Left Outside In Middle Out

Condition rsaved In Top-5 rsaved In Top-5 rsaved In Top-5 rsaved In Top-5

Default 0.841(0.163) 7.19(6.93) 0.844(0.159) 7.32(7.08) 0.895(0.107) 5.5(4.67) 0.849(0.157) 7.63(8.77)
Top-Left 0.846(0.161) 7.06(6.88) 0.846(0.156) 7.19(6.79) 0.901(0.104) 5.23(4.37) 0.850(0.160) 7.42(7.32)
Centroid 0.847(0.161) 7.0(6.75) 0.852(0.153) 6.98(6.66) 0.903(0.101) 5.1(4.25) 0.853(0.155) 7.08(8.25)
Vert. Center 0.845(0.164) 6.86(6.8) 0.851(0.157) 6.95(6.77) 0.902(0.102) 5.12(4.29) 0.855(0.154) 7.09(8.33)

results improve. The outside-in condition is the strongest for all ranges. A
surprising result is that, while the trend of more information improves the
embedding applies in this test, compared to the single levels just the level 5
is better than the range of levels 1-5. This could mean that there is too much
redundant information in the full range, making it less discriminating of an
embedding.

To help get a better understanding of making the embedding more discrimi-
nating, the 3 previously proposed split membership conditions are tested on all
4 input orders. The results on this experimentation are presented in Table 5.7.
All alternative conditions show improvement over the default condition, which
may have too much redundant information for the exact retrieval task. While
it is possible this redundant information is better at retrieving information if
there is more variance in the layout of symbols, when the symbol placement
is exactly the same the more discriminating conditions produce better results.
The centroid condition produced the best results, also beating the single level
5 results, but the other conditions show very similar improvements with the
differences between the alliterative membership conditions being small.
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Table 5.8: Autocompletion Benchmark on ARQMath Annotated.

µ(σ)
Left to Right

System rsaved In Top-5 Query Time (s)

XY-PHOC 0.847 (0.161) 7.0 (6.75) 0.038 (0.015)

PHOC 0.844 (0.159) 7.29 (7.09) 0.033 (0.012)
Tangent-V 0.863 (0.240) 9.91 (28.9) 1.75 (2.06)

To get a sense of how well the autocompletion works we compare the
results of the best XY-PHOC System for autocompletion with Tangent-V as a
comparison against another visual based system. Additionally, to get a sense
of how the addition of vertical splits improves the results we compare the
autocompletion of the PHOC system with just the horizontal splits. These
benchmarks are presented in Table 5.8. While the best XY-PHOC system has
the top scores, it is only marginally better than the baseline PHOC System.
The baseline PHOC System with conjunctive queries also have the fastest
query time (µ0.033, σ0.012), this could show that adding the vertical cuts is
not as useful in the autocompletion task. We believe since the additional
vertical splits showed stronger results in the similarity retrieval task, that
they will still provide an important advantage in autocompletion with more
variation in the input data. The query times for all three models (Tangent-
V, XY-PHOC, and PHOC) were gathered using a Python implementation
running on a desktop Linux system with and Intel i7-8700K CPU (3.7GHz)
with 32GB RAM.

To better understand the trend of the rsaved metric we graphed the rsaved
values based on the number of symbols in the target formula in Figure 5.1.
With the larger formulas the rsaved approaches 1.0 because there are less
formulas with those lengths in the collection and even less with all the same
symbols. What is important to recognize is the speed at which convergence
happens. The Outside-in as the tightest curve in the scatter plot that is
almost logarithmic. There are also significantly fewer outliers in the Outside-
in condition which accounts for the low variance observed for rsaved with the
outside-in input order.

To understand how the number of symbols entered and how the percent of
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Figure 5.1: rsaved Values By Target Formula Size Using a) Left-to-Right
b) Right-to-Left c) Outside-in d) Middle-out Input Order for the Centroid
Membership condition. The Quicker Convergence to 1 and lower number of
outliers in the Outside-in condition shows how its scores across the board are
better.
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Figure 5.2: Mean Reciprocal Rank (MRR) of all 4 input orders by the number
of symbols entered and the % of target formula symbols entered for the Cen-
troid Membership condition. The Quicker Convergence to 1 in the Outside-in
condition shows how its scores across the board are better.

total symbols from the target effects the retrieval we graphed the Mean Recip-
rocal Rank (MRR) to this conditions in Figure 5.2. Both of these line graphs
show all 4 input conditions. In Figure 5.2.a the graph ends at 100 symbols in-
put because beyond this point the MRR was just continuing to approach 1. In
Figure 5.2.b the x-axis represents bins of 10%, where all percents are plotted
in the center of the range. Graphing over both symbols entered and percent of
target enter, the Outside-in (left −→←− right) condition starts off better and
approaches 1 the fastest. This shows how outside-in is the most stable input
order when using the XY-PHOC model. The graphs in both Figure 5.1 and
Figure 5.2 for all other experimental conditions are presented in Appendix B,
C.

To get a better understanding of the behavior of the autocompletion we
present Table5.9 and Table 5.10. In Table5.9 there are 2 queries, the left
is given in a outside-in order and the right shown the Pythagorean theorem
example proposed in 1.1 which would not generate a valid SLT. With just 4
and 5 symbols respectively the target formula is at rank 1. These cases work
well for autocompletion because the left and right sides are bounded. Looking
at the other returned formulas the symbols have a similar placement of the
given symbols and in all retrieved results all the symbols in the query are
contained.
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Table 5.9: XY-PHOC Conjunctive Query in the Annotated ARQMath Col-
lection, Where the Target is Returned at Rank 1

XY-PHOC

Rank

1

2

3

4

5

In Table 5.10 there are 2 queries, both using a left to right input order. For
both of these queries, the left having 4 and Right having 5 symbols entered
their target is at rank 5. This helps to identify a problem case when the index
is full of too many similar formulas. With the queries given there is no way
to better identify the exact formula we want to match. While being in the
top 5 is still helpful to users, this pattern can also push the exact formula we
want to match out of the top 5, since there are more than 4 formulas in the
collection that start of with

∫∞
0 and ∂f

∂x .
To verify that the model holds up on the entire ARQMath collection we

have run a smaller number of the autocomplete queries to get a sense of the
impact of the full collection scale. In the current implementation query times
dramatically increase; changes in the system architecture could yield faster
searches. To see how the model compares on the whole collection the first 19
queries from the autocomplete collection and compare it to the first 19 queries
run on the annotated collection. In Table 5.11 we see all 4 input orders for both
models. The scores are lower when using the much larger collection because
there are more formulas that are candidates. To get an understanding of what
is happening we look at the Pythagorean theory query from the annotated set
and the full collection.

In Table 5.11 we can see a query that worked well for the annotated set
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Table 5.10: XY-PHOC Conjunctive Query in the Annotated ARQMath Col-
lection, Where the Target is Returned at Rank 5

XY-PHOC

Rank

1

2

3

4

5

Table 5.11: Comparing Conjunctive Queries on Annotated ARQMath and Full
ARQMath collection of the first 19 queries of the Autocomplete Benchmark.

µ(σ)
Left to Right Right to Left Outside In Middle Out

Condition rsaved In Top-5 rsaved In Top-5 rsaved In Top-5 rsaved In Top-5

XY-PHOC-Annotated 0.595(0.177) 2.7(1.35) 0.598(0.234) 2.95(1.47) 0.732(0.116) 2.15(0.726) 0.591(0.194) 3.05(1.69)
XY-PHOC-Full 0.281(0.130) 4.95(1.8) 0.294(0.150) 5.0(1.67) 0.346(0.150) 4.3(1.19) 0.290(0.129) 4.9(1.7)
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Table 5.12: XY-PHOC Conjunctive Query on the Annotated ARQMath Col-
lection and Full ARQMath Collection

XY-PHOC-Annotated XY-PHOC-Full

Rank

1

2

3

4

5

is not able to get the target formula in full collection. This is because in the
full collection there are several orders of magnitude more formulas. With so
many more formulas there are many more formulas with the same XY-PHOC
embedding. This pushes the correct formula out of the range of the top 5.

5.3 Summary

The XY-PHOC Model is able to produce competitive results in the similarity
search of ARQMath Task 2 and strong results in the autocomplete task. From
our experimentation the condition that performed the best similarity search is
not the same as the strongest system for autocompletion. In similarity search
there is an improvement of score when using all 5 levels of the embedding but
for autocompletion the best configuration was the single level 5. Changing the
membership condition for being within a split improves scores in both tasks
and more experiments can be performed to find the best condition. With a
single level performing the best for autocompleteion, it is possible that all
the redundant information is not as useful for autocompletion, but additional
experiments could be run with different combinations of levels to see if a
combination of levels (e.g., levels 5 and 5′) is better than the single level.



Chapter 6

Conclusion

In this thesis we present an expansion on the PHOC Embedding, XY-PHOC,
for the task for math formula retrieval. XY-PHOC is a spatial embedding
which captures the labels and relative positions of symbols in space. We
proposed an efficient way to index XY-PHOC, with an efficient way to score
candidate formulas. In this chapter we will summarize our findings and discuss
future work.

6.1 Summary of Findings

The XY-PHOC model using our proposed inverted index be easily and effi-
ciently searched with conjunctive and disjunctive queries. Using the reduced
bitstring representation, storage of the index is reduced in size and allows for
fast computation of scores.

The strong results on the ARQMath retrieval task 2 show that a simple
spatial representation is strong for similarity retrieval. With additional re-
ranking or used in conjunction with other systems can produce even better
results than the current state-of-the-art systems.

Across all autocompletion experiments the outside-in input order showed
the best results. This could mean that visual based queries are more powerful
for finding exact formulas faster. This could be a product of how putting
symbols on the left and right of the query helps fix the width of the query
which helps for the relative positioning captured by XY-PHOC and future
experiments should be run with a fixed width canvas that queries can be

52
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normalized to fit.
Through our experiments we showed that based on which task you are

doing, a different balance must be met between redundant information mak-
ing the embedding more generalized versus improving uniqueness to improve
distinguishability. Using an increased depth improved the results for similar-
ity retrieval but for autocompletion using a single level was the best before
studying the impact of the different split membership conditions.

The XY-PHOC model is an efficient and effective system for math formula
retrieval, for both similarity retrieval and autocompletion. The benefit of using
the XY-PHOC model is the ease of use that it will have for novice users as
they will not need to know anything about LATEX to effectively use the search
system nor will the need to be able to provide enough of the formula to produce
a valid SLT or OPT. The added power visual systems give for math formula
retrieval in combination with the efficient scoring this embedding gives makes
it useful for at scale math information retrieval systems.

6.2 Future Work

In future work, we believe that using the Inverse Document Frequency (IDF)
for symbols as a term weight during scoring may be beneficial, as well as
extending the PHOC encoding to include n-grams [22]. To help speed up our
conjunctive queries the use of skip lists would reduce the number of postings
that have to be looped through.

A user interface needs to be made and integrated with to better utilize the
embedding. This includes an easy way for symbols to be inserted in space.
Making it so the matching location can be a parameter controlled at run time
with the use of radio buttons or a drop down to select where to anchor the
symbols in the formula. As well a user test should be run to verify how useful
the added input methods XY-PHOC is capable of.

Additionally, a collection should be gathered for math autocompletion.
Currently using the entire ARQMath collection for autocomplete does not
make sense. Instead a collection generated from user logs of the most common
queries would make more sense as using common queries for autocompletion
would help to reduce the effort for users without having a collection full of
formulas that might not be relevant to the average user.

An area that can be explored in future work, is how handwritten queries
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perform in the XY-PHOC model. The configuration that worked best on
typeset queries might not work the best for handwritten queries. Handwritten
queries have more variation and the added redundancy from some of the ex-
perimentation conditions will work better for these queries. With handwritten
queries it will be easier to also to take advantage of the alternative input order
for the math formulas.

Finally, our queries are simply symbols in space, and there is nothing
math-specific about our approach. We expect that this technique may be
beneficial for retrieving other graphical objects by appearance (e.g., tables,
figures, plots, etc.). It is also possible that you could embed formula trees in
XY-PHOC embeddings, where splits are made at node depths and between
siblings rather than in space.
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Appendix A

Autocompletion Benchmark
Query Set

In this Appendix the we have included the render formulas used for autocom-
pletion.On the following pages are the visual ids and rendered formulas for the
formulas used for the autocomplete experiments. The formulas were rendered
using the MathJax API.
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Appendix B

Rsaved Graphs

The following graphs are the rsaved score by the target formula size using all
4 input orders for all the experimental runs.
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Figure B.1: Level 1 (BoS)
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Figure B.2: Level 2
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Figure B.4: Level 3
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Figure B.5: Level 3’
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Figure B.6: Level 4
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Figure B.7: Level 4’
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Figure B.8: Level 5
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Figure B.10: Levels 1-2
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Figure B.11: Levels 1-3
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Figure B.12: Levels 1-4
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Figure B.13: PHOC Embedding



APPENDIX B. RSAVED GRAPHS 88

0 25 50 75 100 125 150 175 200
Total Number of Symbols

0.2

0.4

0.6

0.8

1.0

rs
av

ed
 L

ef
t -

> 
Ri

gh
t

0 25 50 75 100 125 150 175 200
Total Number of Symbols

0.2

0.4

0.6

0.8

1.0

rs
av

ed
 R

ig
ht

 ->
 L

ef
t

a) Left-to-Right Right-to-Left

0 25 50 75 100 125 150 175 200
Total Number of Symbols

0.4

0.5

0.6

0.7

0.8

0.9

1.0

rs
av

ed
 L

ef
t -

> 
 <

- R
ig

ht

0 25 50 75 100 125 150 175 200
Total Number of Symbols

0.2

0.4

0.6

0.8

1.0

rs
av

ed
 <

-  
m

id
dl

e 
->

c) Outside-in d) Middle-out

Figure B.14: XY-PHOC Embedding
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Figure B.15: Top-Left membership condition
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Figure B.16: Vertical Center membership condition



Appendix C

Mean Reciprocal Rank
Graphs

Mean Reciprocal Rank of all 4 input orders by the number of symbols entered
and the % of target formula symbols entered for all experimental conditions.
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Figure C.1: Level 1 (BoS)
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Figure C.2: Level 2. The Quicker Convergence to 1 in the Outside-in condition
shows how its scores across the board are better
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Figure C.3: Level 2’
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Figure C.5: Level 3’
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Figure C.6: Level 4
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Figure C.7: Level 4’
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Figure C.8: Level 5
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Figure C.9: Level 5’
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Figure C.10: Levels 1-2
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Figure C.11: Levels 1-3
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Figure C.12: Levels 1-4
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Figure C.13: PHOC Embedding
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Figure C.14: XY-PHOC Embedding

0 20 40 60 80 100
Number of Symbols Entered

0.0

0.2

0.4

0.6

0.8

1.0

M
RR

Left -> Right
Right -> Left
Left ->  <- Right
<-  middle ->

0.005 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of total symbols

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
RR

Left -> Right
Right -> Left
Left ->  <- Right
<-  middle ->

a) MRR for symbols entered b) MRR for % symbols entered

Figure C.15: Top-Left membership condition
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Figure C.16: Vertical Center membership condition


