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Abstract

We propose a system that finds text in natural scenes us-
ing a variety of cues. Our novel data-driven method incor-
porates coarse-to-fine detection of character pixels using
convolutional features (Text-Conv), followed by extracting
connected components (CCs) from characters using edge
and color features, and finally performing a graph-based
segmentation of CCs into words (Word-Graph). For Text-
Conv, the initial detection is based on convolutional feature
maps similar to those used in Convolutional Neural Net-
works (CNNs), but learned using Convolutional k-means.
Convolution masks defined by local and neighboring patch
features are used to improve detection accuracy. The Word-
Graph algorithm uses contextual information to both im-
prove word segmentation and prune false character/word
detections. Different definitions for foreground (text) re-
gions are used to train the detection stages, some based on
bounding box intersection, and others on bounding box and
pixel intersection. Our system obtains pixel, character, and
word detection f-measures of 93.14%, 90.26%, and 86.77%
respectively for the ICDAR 2015 Robust Reading Focused
Scene Text dataset, out-performing state-of-the-art systems.
This approach may work for other detection targets with
homogenous color in natural scenes.

1. Introduction

In natural scenes, text detection is made difficult by high
variation in character color, font, size, and orientation. In
addition, light sources introduce highlight, shadow, reflec-
tion and color offset in images, while cameras introduce ad-
ditional noise, blurring, and viewing angle distortion. In
the past, many text detection systems addressed this us-
ing strong prior knowledge and carefully engineered fea-
tures [24]. More recently, machine learning methods are
preferred over heuristic rules, with parameters and thresh-
olds inferred automatically from training data. This requires

less human intervention, and generally increases the accu-
racy and robustness of text detection.

As described by Ye et al. [24], step-wise text detection
is composed of different components, including localiza-
tion, verification, segmentation and sometimes recognition.
‘Holistic’ methods combine results from different stages,
often applying OCR results for use in lexicon matching.

In this paper, we present a highly accurate text detection
system for natural scenes utilizing only visual features.1

Our system is composed of the Text-Conv algorithm for
character patch detection, region growing to obtain Con-
nected Components (CCs) corresponding to characters, and
then word segmentation using the Word-Graph algorithm.

Contributions. The contributions of this work include:
(1) defining ground truth character patches differently for
coarse vs. fine character detection, first using constraints
on bounding box intersection, and then bounding box and
foreground pixel intersection; (2) using ‘contextual’ detec-
tion windows to improve discrimination based on adjacent
and/or missing characters; (3) multi-stage generation and
validation of character detections using convolutional, ge-
ometric and contextual features. Our system also obtains
state-of-the-art performance for the challenging 2015 IC-
DAR Robust Reading Focused Scene Text dataset [12].

In Section 2, we briefly review state-of-the-art text de-
tection systems, and the ICDAR Robust Reading Competi-
tion. In Section 3, we describe our system. In Section 4 we
present experimental results, and then conclude and identify
ways to accelerate and improve our system in Section 5.

2. Previous Work
In recent years, new discriminative features have been

proposed for text detection, including the Stroke Width
Transform (SWT) [7] and Maximal Stable Extremal Re-
gions (MSER) [14], both of which have been used widely.
Most characters have a narrow and uniform stroke width,

1Source code:
https://www.cs.rit.edu/˜dprl/Software.html.

https://www.cs.rit.edu/~dprl/Software.html


along with clear edges and homogeneous colors. SWT and
MSER are designed to capture these properties.

A variety of machine learning techniques have been used
for text detection, including unsupervised feature learn-
ing, Convolutional Neural Networks [13], deformable part-
based models [8], belief propagation [9], and Conditional
Random Fields [19]. Bai et al. [1] identify text regions us-
ing gradient local-correlation to find edge pairs and estimate
stroke width. The relationship between different CCs, col-
ors and shapes are fed into SVM classifiers to detect text.

Closely related to our own work, Coates et al. [5] pro-
posed convolutional feature-based algorithms for text de-
tection and recognition, and increased recognition rates rel-
ative to previous state-of-art systems. Wang et al. [22] ex-
tend this convolution-based approach with a lexicon model,
which further increases text detection and recognition accu-
racy. Our text detection algorithm is based on this work; to
increase accuracy, we modify the sliding window detector
by varying the sliding window shape, rotation and aspect
ratio.

2.1. ICDAR Robust Reading Competitions

Over the last two decades, a number of text recognition
competitions have been held as part of the International
Conference of Document Analysis and Recognition (IC-
DAR) [12]. In 2015, the task data sets are categorized into:
Digital Born, Focused Scene, Text in Videos and Incidental
Scene Texts. Each group contains three tasks: localization,
segmentation and recognition, and end-to-end performance
is also measured. We focus here on the scene text data set.

At ICDAR 2015, the StradVision corporation obtained
the strongest detection results for the Focused Scene Text
task. This system is closed, but from the company’s web
page appears to be based on active (‘agile’) learning.2

He et al. [10] placed second, using two main improve-
ments over earlier MSER-based text detection methods.
First, they introduce Text-CNN, where a multi-class clas-
sifier is defined instead of a conventional binary (text/non-
text) classifier. In each layer of a Convolutional Neural
Network, specific labels and locations for text pixels de-
fine targets alongside binary foreground/background labels.
The trained classifier is adapted to specific text types, and
achieves higher accuracy as a result. Objects like bricks,
windows and bars that can be easily confused with text may
be filtered, as they tend not to have a high classification con-
fidence for a character class. Second, Contrast-Enhanced
MSER is proposed to find text regions, using a data-driven
contrast enhancement method before MSER, allowing text
regions to be extracted in complex backgrounds and uneven
lighting conditions.

Jaderberg et al. [11] placed third. To train their system, a
large corpus of labeled text images is generated using a font

2http://www.stradvision.com/

rendering engine. Noise and variations are added, includ-
ing border, color, composition, distortion, and background
blending, mimicking texts in natural scenes. For detection,
they use a deep Neural Network with three different encod-
ings, including dictionary, character sequence and bag-of-
N-gram encodings. The dictionary encoding method pro-
vides the best performance, as lexical constraints improve
precision by pruning invalid word detections.

For the 2013 ICDAR Robust Reading task,
USTB TexStar developed by Yin et al. [25] obtained
1st place [26, 27]. This system introduces an MSER
pruning algorithm to improve precision, with single-link
clustering to group candidate regions instead of empirically
selecting a threshold, and character classification used to
filter non-text candidates in the final step. In second place,
Neumann et al. used an MSER-based algorithm [15].
In [16], they compared filtering methods considering iso-
lated CCs, CC pairs, and CC triples, and find the additional
context available in features extracted from CC triples
provide the best performance. In follow-on work [17]
they propose cascaded filtering of MSER regions. Simple
features are computed at first to remove easily detected
backgrounds, after which more complex features are used
with an AdaBoost classifier. In [18], multiple recognition
and character sequence candidates are used to improve
recall, along with improved handling for varying character
sizes using a Gaussian scale-space pyramid.

In our work we use a modified Convolutional k-means-
based sliding window detection performed in two passes,
using first a coarse resolution, and then regions of interest
with higher resolution matching and variations in the rota-
tion and aspect ratio of the detection window. We consider
multiple scales using direct subsampling of the input image,
to which we apply convolution masks for detection. Char-
acter hypotheses are formed from the ‘fine’ (higher resolu-
tion) detectors, and then regions are grown based on color
gradients, with multiple edge hypotheses used to generate
character candidates which are then validated. Characters
are then both merged into words and validated again in a fi-
nal pass, using the complete graph over detected characters.
Details of our approach are described in the next section.

3. Methodology
An illustration of our system is shown in Figure 1, and

example outputs from each stage are shown in Figure 2.
The system is a cascade, with each step designed to address
a specific aspect of natural scene text, initially generating
and then validating hypotheses passed on to the next step.
Similar to a design strategy used in the Viola-Jones face de-
tector [21], recall in the coarse detector, fine detector and
region growing steps is kept high by choosing a threshold
producing a fixed level of recall in the training data (possi-
bly sacrificing precision to some degree), in order to avoid

http://www.stradvision.com/
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Figure 1: System Architecture. The main stages localize
text pixels, generate and verify connected components as
characters, and finally segment words.

Figure 2: Detection Examples. From left-to-right inputs are
shown followed by their results for: i) coarse detection, ii)
fine detection and region growing, and iii) word segmen-
tation. In word detection results, words are in blue boxes,
and characters in green boxes. For simplicity, we represent
word segmentation results using a Minimum Spanning Tree
(MST) over character pairs (yellow lines) defining character
merges (blue lines) and word separations (red lines). In ac-
tual fact, all character pairs are labeled as ‘merge’ or ‘split.’

false negatives.

3.1. Text-Conv Detection System

We propose a feature learning-based convolutional de-
tector called Text-Conv. It is composed of a coarse-to-fine
two step scanning scheme, mimicking glancing and focused
attention by the human visual system.

3.1.1 Feature Learning Using Convolutional K-means

Feature learning algorithms were developed using restricted
Boltzmann machines (rBM) [6] or auto-encoders [20], etc.
However, these algorithms are computationally expensive
and not suitable for large images or real-time applications.
Coates et al. [5] proposed the convolutional k-means feature
learning algorithm, using simple k-means clustering to learn

feature banks. Convolutional k-means considers the angu-
lar distance between training sample patches, and generates
cluster center vectors (i.e. convolution masks) through it-
erative learning. The cluster centers represent typical pat-
terns, including horizontal and vertical bars, corners, slop-
ing bars, zebra textures etc. These patterns are learned auto-
matically from data, without elaborate modeling. The only
hyperparameter that needs tuning is the number of clusters.
These learned features are very similar to those acquired by
an auto-encoder or rBM, and lead to very similar perfor-
mance [6].

For sample matrix X containing m samples with n fea-
tures, we make the matrix size n × m. Each column is
a sample vector, and each row corresponds to a feature,
X ∈ Rn×m. For initialization, we randomly pick k samples
(initial cluster centers) from the sample matrix X and then
normalize each vector, so cluster center matrix D ∈ Rn×k.
Our goal is to minimize Equation 1 (see Coates et al. [5]):∑

i

||Dsi − xi||2 (1)

Each column of D is the normalized basis vector. si is a
bit vector (hot encoding) with exactly one non-zero element
representing the cluster center (column of D) training sam-
ple xi belongs to. Its magnitude is the dot product between
the sample and closest cluster center. To find a matrix D
that minimizes the total distance from samples to cluster
centers, we alternatively minimize D and si.

In our experiments, k = 1000 convolution masks (clus-
ter centers) are learned for both the coarse and fine detec-
tors. We found empirically that fewer than 1000 masks re-
duce accuracy, while additional masks lead to only minor
improvements in accuracy.

3.1.2 Coarse-to-Fine Character Detection

Conventionally in a CNN, the system is trained using
algorithms such as back-propagation. Instead, we use
confidence-rated AdaBoost to classify patches as fore-
ground (text) and background (non-text). Unlike the orig-
inal AdaBoost which provides discrete labels in {−1, 1},
a confidence-weighted AdaBoost classifier produces both
a label and confidence value. Applying our detector to
windows across the image, we obtain a detection hotmap
(saliency map). This is computationally very expensive. To
reduce computation, we implement a coarse-to-fine scan.

The Text-Conv system is trained and applied to testing
images after color Sobel edge detection has been applied.
Edge images are used so that the influence of luminance in-
homogeneity can be reduced. Our coarse-to-fine scanning
divides the raster scanning patch generation and classifi-
cation into two stages. In the coarse stage, the image is
scanned using a larger step size, i.e. with lower resolution



but faster execution. The saliency map of the coarse detec-
tor will then be used as a reference for fine detection. In the
fine scan, only regions of interest found by the coarse de-
tector are considered. The fine scan uses a very small step
size (1 pixel) to ensure high recall.

The coarse detector patch size is 32 by 32 pixels, with a
step size of 16 pixels. Therefore, two consecutive patches
have 50% area overlap. We found that using a standard
window such as shown in Figure 3(a) to capture local in-
formation gives poor performance. However, neighboring
pixels provide discriminative information (see Figure 3 (c)-
(f)). To consider neighboring patches during detection, we
design the image patch as shown in Figure 3(b). The cen-
ter block contains a 3 × 3 grid containing the target region
at center. The eight neighboring blocks around the center
block provide contextual information.

Coarse detection produces a hotmap representing the
likelihood of text. An example of a coarse detection hotmap
with and without contextual features is shown in Figure 4.
As seen in the example, a substantial increase in discrim-
inative power is provided by the surrounding blocks. To
define regions of interest for the fine detector, the hotmap is
thresholded. The threshold is defined as the value obtaining
the highest f-measure on a validation sample taken from the
training data, as shown in Figure 5(a).

For fine-grained character detection, the scan step size is
reduced to 1 pixel, and so it is less important to consider par-
tial overlap with characters, and surrounding pixels are ig-
nored. The fine detector is trained using patches containing
fully overlapped characters as foreground. To handle differ-
ent text aspect ratios caused by perspective transformations
and improve detection for very narrow and wide characters,
we compute multiple window aspect ratios and image rota-
tion angles. A grid search is performed over aspect ratios
and rotational angles, with output values maximal pooled.
We compute aspect ratios from 0.6 to 1.4, using step size
0.2. We also consider small rotations from−6◦ to 6◦, using
a step size of 2◦.

These transformations and a smaller scan step size make
fine detection much more computationally expensive. How-
ever, these computations are performed only in regions of
interest. The fine hotmap is then thresholded to maximize
the f-measure (see Figure 5(b)). Surviving pixels provide
seeds for the subsequent region growing step.

Scales. In order to catch texts in different sizes, the
coarse detector considers multiple scales. However, for fine
detection, only scales containing regions of interest remain-
ing after thresholding the coarse detection are considered,
along with the next-largest and next-smallest scales. We
iteratively decrease the image size by 10%, obtaining 30
different scales. The detector will cover texts with a size
variation of about 23.59 times. The definition of character
bounding box overlap for foreground patches is based upon

(a) (b) (c) (d) (e) (f)

Figure 3: Local 3x3 (a) and Contextual 9x9 (b) detection
windows. Contextual windows are a standard 3x3 window
surrounded by features from an 8 neighborhood. Panels (c)-
(f) illustrate resolving ambiguous local features by context.

(a) Input (b) Local 3x3 (c) Contextual 9x9

Figure 4: For the ICDAR 2015 test image in (a), differences
in coarse character detection maps for a standard 3x3 sliding
window (b) vs. a contextual 9x9 widow (c) are shown.

(a) Coarse Detection (b) Fine Detection (c) Verification

Figure 5: Recall, Precision and F-Measures at Different
Classification Confidence Thresholds for (a) Coarse Detec-
tion, (b) Fine Detection and (c) Verification. Training image
samples are divided into 80% training and 20% validation.
Validation set results are shown.

the scanning step size and scale ratio. If a patch is less than
10% smaller in width or height of a character bounding box,
and the overlapping area is greater than 0.752 = 0.56, then
it is considered a foreground patch. This defines a mini-
mal target overlap, to help insure detections only when a
substantial portion of a character is seen in the detection
window.

3.2. Region Growing

The thresholded fine detection saliency map provides
seeds for a flood-filling type of region growing, in order
to form CCs. For each position that was classified as text
from Text-Conv, we start to grow regions iteratively until
they reach an edge or a large shift in color. Some small
false CCs might appear, due to small homogeneous regions
around character edges. We implement a surrounding sup-
pression technique to remove these easy negative regions.
When a text region is detected, its surrounding area is sup-
pressed. The surrounding area is defined as 5 pixels in our



experiments.
Consider image I as a mapping: D ∈ Z2 → S. Re-

gion growing will add new pixels into foreground regions
iteratively by considering two criteria: 1) the edge intensity
along the growing direction is small, and 2) the color differ-
ence between a newly added pixel and a region seed pixel
is small.

If q = (iq, jq) is a pixel immediately adjacent to the
contour of CCQ (while not inQ), and p = (ip, jp) a pixel in
Q, then the growing direction is defined as Θ = atan2(iq−
ip, jq − jp). If multiple pixels p1, p2, ..., pn ∈ Q in D are
adjacent to q, the growing direction is defined as the average
of all directions for p1, p2, ..., pn ∈ Q.

Edge images are computed from the intensity gradient in
each color channel, in the horizontal and vertical directions.
For three color channels R,G,B, the color gradient map of
the image can be computed by the Laplacian Matrix L:

L = DTD,where D =


∂R
∂x

∂R
∂y

∂G
∂x

∂G
∂y

∂B
∂x

∂B
∂y

 (2)

The gradient amplitude can be computed using the largest
eigenvalues of the Laplacian matrix λ, and gradient direc-
tion can be computed using the eigenvector correspond-
ing to λ. Intensities of the gradient, ∂R

∂x etc. are com-
puted discretely using Sobel kernels. The angle between
the growing direction and gradient direction is computed by
δΘ = Θe − Θg , where Θe is the gradient (edge) direction
and Θg is the growing direction. Notice that δΘ is regu-
larized, therefore its range is between (−π/2, π/2). The
region growing criterion C is as follows:

C = cos(δΘ) λ+

∑
c∈R,G,B(|Ic,q − Ic,seed|)

Z
(3)

where the first term represents the edge intensity along the
growing direction, and the second term represents the color
difference between boundary pixel q and the region’s seed
pixel. Z is a normalization factor. Regions grow from seeds
iteratively, adding valid boundary pixels into the foreground
region based on C.

Initially, seed pixels and region boundaries are labeled
as foreground/background respectively. Unlabeled pixels
with minimal cost are labeled iteratively. Region growing
stops when no unlabeled pixels exist between foreground
and background.

Validating Character CCs. After growing candidate
CCs for characters, an AdaBoost classifier is trained to
prune CCs that are invalid. To accommodate the high vari-
ation in colors and intensities in natural scenes, using the
input image we generate multiple Canny edge maps, by us-
ing multiple Gaussian smoothing kernels with sizes from
3 to 11 pixels, with variance equal to half the kernel size.

Edge point thresholds are defined from 50% up to 90% of
the maximum gradient value.

We train the verification classifier using the pixel level
ground truth provided in the ICDAR data set. We count
overlapping pixels between generated CCs and true char-
acters, and use CCs whose area overlapping area is greater
than 90% as foreground. The fine-grained AdaBoost de-
tector used for Text-Conv is applied. Precision and recall
values can be tuned by choosing different cut-off thresh-
olds. As we need to keep as many true positives as possible
for later processing, we select the threshold so that recall is
higher than 95% (see Figure 5(c)). A similar thresholding
technique was used in the Viola-Jones face detector [21].

In a cascaded system, hypotheses are eliminated stage
by stage. To keep final recall within a reasonable range, re-
call in each stage should be kept high. However, precision
in each stage may be relatively low. As false positive sam-
ples are filtered in cascaded stages, the final precision of the
system may also be high.

3.3. Word-Graph

Characters within a word usually have similar color and
size, with relatively small and equally distributed distances.
For English, natural scene text usually appears in horizontal
text lines with small rotation, with some exceptions. For ex-
ample, isolated characters may be a word (e.g. ‘a’), and text
lines might not be straight, or may be curved. Objects with
regular textures like windows and bricks share some pat-
terns with text, making it difficult for them to be removed
using spatial relationship information alone. And so, to re-
liably merge characters into words, one needs to group CCs
based on both their appearance and spatial relationships.

The Word-Graph algorithm groups detected character
CCs into words, and then uses context to prune false pos-
itive CCs. It uses a graph model G(V,E), where characters
are vertices V and their relationships are edges E. Two
Random Forest classifiers are used in Word-Graph; the first
for character merge/split classification, and the second fil-
ters invalid characters after forming words. Instead of de-
signing features and predefined thresholds for linking char-
acters as in [23], Word-Graph is data-driven, with little hu-
man intervention.

Twenty-nine features are defined for Word-Graph edges,
including greyscale intensity differences and seven bound-
ing box features: three centroid distances (horizontal, ver-
tical, and Euclidean), the smallest bounding box vertical or
horizontal distance, differences in width and height, and the
angle of the main axis orientation (via PCA). Raw bound-
ing box features are used along with three normalizations
(by minimum, maximum, and mean). For example, mini-
mum normalization of center distance in the x direction for



CCs i and j is given by:

|xc,i − xc,j |
min(widthi, widthj)

(4)

When merging characters into words, challenges include
distant characters belonging to the same word, and adja-
cent characters belonging to separate words. One strategy
for tackling this problem is to examine only neighboring
characters for word segmentation. In the training data, a
minimum spanning tree based on spatial distance is used
to select training edges. This insures that only edges be-
tween neighboring characters are used to define positive
(merge) and negative (split) examples, increasing training
speed, and increasing the separability of the classes (vs. us-
ing all pairs of characters).

To increase recall, words are located by applying the
Random Forest classifier to all edges in the complete graph
over detected character CCs. A transitive relation over
‘merge’ edges is then used to locate words.

Second Stage Character Validation. A second random
forest is used to remove spurious ‘characters’ from the word
graph. Visual features for characters are combined with fea-
tures on edges (see above) connected to a character in the
word graph. CCs are characterized by 900 convolutional
features generated on a 3× 3 spatial pooling grid using 100
codebooks learned by convolutional k-means. Along with
this, we include features from the highest and lowest con-
fidence edges, along with average feature values for 1) all
connected edges, and 2) connected MST edges. Charac-
ters from ground truth are used to define complete and MST
graphs over characters, and these ideal graphs are then used
in training the random forest.

4. Experiments
We tested our system using the ICDAR 2015 Focused

Scene Text dataset (Challenge 2, Task 1), containing 258
training images and 251 testing images. The evaluation
metric checks the overlapping area for each word detection
with ground truth and computes the final precision, recall
and f-measure based on the total number of words that are
correctly detected. To be considered a valid detection, the
bounding box of a word hypothesis must have a precision
of 40% and a recall of 80%. Many-to-one and one-to-many
matching is implemented to accommodate merged and split
words, using a 20% accuracy scaling as a penalty [12].

4.1. Training

Coarse-to-Fine Character Pixel Detection. The set of
1000 cluster centers (convolution masks) obtained via Con-
volutional k-means are learned from training images, with
each feature 8×8 in size. These features are then convolved
with the image to form 32 × 32 patches. For coarse detec-
tion, each 32 × 32 patch is spatial pooled into 3 × 3 grids.

Figure 6: Correct Word Detections.

(a) (b) (c)

(d) (e) (f)

Figure 7: Word Detection Errors. Red boxes are false pos-
itives, yellow boxes are under-segmented words, and blue
boxes are over-segmented words.

Including context blocks, 9 × 9 grids are generated. In to-
tal, 72588 (36294 foreground and 36294 background) train-
ing samples are generated using ICDAR training images for
coarse detection. To train the fine detector, 50,000 ran-
domly selected foreground images from Wang’s synthetic
dataset [22] are used, along with 50,000 randomly selected
background samples generated from ICDAR images. The
AdaBoost classifier is trained towards minimum error, but
by utilizing the confidence-rated classifier, we can select a
final threshold confidence value to maximize the f-measure.
This is crucial when foreground and background samples
are highly unbalanced. Precision, recall and f-measures are
provided in Figure 5a and 5b, where we pick the maximal f-
measure point as the threshold to finally cut the foreground
regions. Examples of coarse detection after thresholding are
shown in Figure 2 column 2.

Comparing the hotmap we have generated to Coates’
et al.’s results for the ICDAR 2013 dataset [5], we have
achieved higher performance in patch level in terms of Area
Under Curve of Precision / Recall. Our detection hotmap
has 71.2% AUC, while Coates et. al obtain 62%.

Region Growing. In total, 4721 foreground and 7835
background samples are used for training. To tune the final
threshold for the confidence-rated classifier, we focus on
higher recall rather than precision. The highest f-measure
point for this classifier has a recall value less than 95% on
our validation set. This is lower than we would prefer, and
so we set the threshold to the point where we obtain 96%
recall (see Figure 5c). Experiments show that this configu-



ration produces the highest accuracy for the entire system.
Some examples of region growing results after verification
are shown in Figure 2 column 3.

Word-Graph Figure 2 column 4 shows examples of
edge classification results for segmentation. To train the
Random Forest classifier for edges, an important issue is
that the foreground and background training samples are
unbalanced. Experiments show that balancing samples is
very important for reliable segmentation and character ver-
ification (increasing f-measure from 95% without balanc-
ing to 99% with balancing). As non-neighboring edges
are removed from the training set, within-word edge sam-
ples are far fewer than between-word samples. To deal
with the class imbalance, we considered different sampling
methods, including using the original distribution, over-
sampling to balance the classes (using SMOTE [4]) and
random subsampling. Surprisingly, we found that subsam-
pling could produce better accuracy for testing samples than
over-sampling. We were able to train an accurate segmenter
using just 4557 foreground and 4557 background samples.
929 features are used to train the random forest with 100
trees and a maximum depth of 10, and each node split con-
sidering

√
929 ≈ 30 features.

After Word-Graph has completed our text detector has
finished, and word bounding box coordinates are extracted
and saved into a text file.

4.2. Results

We evaluated our system using the ICDAR 2015 Robust
Reading evaluation website, by uploading our word coor-
dinate files onto their system. Examples of correct detec-
tions are shown in Figure 6. The online evaluation sys-
tem checks the overlapping area for each detection with
ground truth and computes the final precision, recall and
f-measure based on the total number of words that are cor-
rectly detected. In the competition, systems were compared
based on their word detection results; our system obtained
stronger recall, precision and f-measure than the winning
system from StradVision Corporation, as shown in Table 1.

It is worth noting that including differing rotations and
aspect ratios during fine-grained character detection had a
dramatic effect on accuracy. Without these, the f-measure
for word detection decreases from 86.77% to 64.72%.

Although our system achieved state-of-the-art perfor-
mance for word detection, there is still room for improve-
ment. The system failed to deal with some overlapped text
lines properly, missing words in some images as shown in
Figure 7a and 7b. Isolated characters are more likely to be
missed by our detector. Some words have large within-word
distance between characters (see Figure 7c). Some specu-
lar highlights wash out characters, and there is no way to
retrieve the information using image data alone, as in Fig-
ure 7d. Some handwritten characters are also missed due to

Table 1: ICDAR 2015 Focused Scene Text Results.

Recall (%) Precision (%) F-Score (%)
StradV. (Word-bb) [12] 80.15 90.93 85.20
Our System

Word-bb 81.02 93.39 86.77
Char-bb 87.51 93.20 90.26
Pixels 92.75 93.53 93.14

Table 2: Mean Execution Time (seconds/image). System:
Intel Xenon CPU w. 24 processors (2.93GHz), 96GB RAM,
GeForce GTX 480 w. 1GB GPU memory.

CPU GPU
Convolution 503.4 77.3
Coarse Detection 10.9 2.7
Fine Detection 744.2 55.7
Region Growing 15.1 10.9
Word Seg. 2.3 2.611
TOTAL 1275.9 149.3

lack of training data, in Figure 7e. In some cases, we found
valid words, but they were recognized as false positives. For
example in Figure 7f, the red regions contain digits (0/1),
but they are considered to be background decorations of the
book cover in ground truth.

As seen in Table 1, character bounding box level accu-
racy is higher than word bounding box accuracy (f-measure
of 90.26%), suggesting that word segmentation rates may
be increased through improving Word-Graph. Pixel level
accuracy is even higher, with an f-measure greater than
93%. As seen in Figure 2, our system often creates pixel-
accurate masks for characters, even in complex scenes.

Our system is implemented in Python. As seen in Ta-
ble 2, convolutional feature generation and fine detection
consume most of the execution time. This is because we
apply convolution at different scales and use a grid search
over aspect ratios and rotation angles for fine detection, re-
quiring a very large number of convolutions. Convolution
and AdaBoost classification may both be accelerated utiliz-
ing a GPU. Using Theano [2, 3], average execution time is
reduced from about 20 minutes to 2.5 minutes.

5. Conclusion
We have proposed a relatively simple cascaded text de-

tection system that is accurate at the pixel, character and
word levels, and produces state-of-the-art performance on
a challenging dataset. Contextual features, a coarse-to-fine
detection strategy, and using greater visual detail to define
targets in later stages help improve sliding window-based
character detection. Character detection is cascaded with
multiple validation steps, culminating in detected words
providing contextual constraints at the final detection stage.

Faster execution can be obtained by re-implementing in
C and using multiple GPUs or dedicated hardware for con-
volution. Over-segmenting input images into ‘super-pixels’



based on color and edge information could also significantly
reduce the number of detection windows we need to con-
sider, at which point the system might even run in real-time.

It is important to note that we obtain high accuracy using
only visual features, without the use of a language model or
dictionary. However, detection can probably be improved
by integrating character recognition and models for a spec-
ified language.
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