
Recognition of Mathematics Notation viaComputer Using Baseline StructureRichard Zanibbizanibbi@cs.queensu.caAugust 2000External Technical ReportISSN-0836-0227-2000-439Department of Computing and Information ScienceQueen's UniversityKingston, Ontario, Canada K7L 3N6Document prepared August 3, 2000Copyright c2000 Richard Zanibbi

3AbstractThe spatial structure of mathematical expressions may be represented usingthe structure of baselines in an expression. This baseline structure may berepresented as a tree, and then rewritten to represent di�erent interpretationsof spatial structure in an expression. This structure tree may also be trans-lated into mathematical string languages such as LATEX, Maple etc. A parsingalgorithm which extracts baseline structure in mathematics expressions froma list of attributed symbols is presented, along with an implementation ofthe algorithm. The implementation of the parsing algorithm has been in-terfaced with an online mathematics entry system. The resulting integratedsystem allowed testing of the parser on hundreds of input expressions, withencouraging results. Future work in the extension of the current mathematicsrecognition technique and application of direction-based recognition to othernotations such as music notation and circuit diagrams are also discussed.AcknowledgmentsThanks to Dorothea Blostein who was a fun, knowledgeable, and supportivesupervisor, Ed Lank for all his help with the design of DRACULAE andthe ideas in this thesis, Nick Willan for his implementation of the user in-terface for DRACULAE and patiently listening to me work out many ofthe ideas in this thesis at the white board (for the record, Nick named theparsing application DRACULA and I simply added an \E"), Ken Whelanfor his fantastic proofreading, Gary Anderson, who saved my life on manyan occasion and was consistently an amazing source of information usefuland entertaining, Hoda Fahmy, whose experience and insight have been veryhelpful (and who raised some of the semantics issues discussed at the endof this thesis), Jianping Wu, for his help with course work and things C++,Talib Hussein, Laurie Ricker, and all the other students and professors whohelped me survive my M.Sc. in various ways.Thanks to Genarro Costagliola, who provided what for me was a highlyinuential draft paper on recognizing a subset of mathematics notation usinga positional grammar, and some valuable comments.Thanks to Steve Smithies, Kevin Novins and Jim Arvo for letting me useFFES to develop DRACULAE. Without FFES, it would have been muchharder to develop and test DRACULAE.

4 Thanks to Debby, Linda, Irene, Sandra, Tom Bradshaw and Gary Powleyfor all the help with the hard, thankless stu� that keeps things going andgets them done.Finally, thanks to Katey for listening to my rambles about this stu� overand over again, and for being a fabulous proofreader, wife and friend.

Chapter 1IntroductionIn certain domains, the ability to use visual languages to communicate withcomputers allows simpler and more succinct expression of a user's intentionsthan is possible with a string language. For example, it is easier for a userto draw a complicated mathematical expression in mathematics notation(a visual language) than to write the same expression in a string languagesuch as LATEX or Maple. Due to the sometimes more succinct and intuitiveexpressions available in visual languages in comparison to string languages,disciplines such as music, architecture and engineering commonly use visuallanguages to convey information in the form of diagrams.Informally, a visual language is comprised of sets of symbols laid outin two or three dimensions (\diagrams") which comprise the set of legalexpressions under a syntactic and semantic de�nition of the visual language.The principal di�erence between a visual language and a string language isthat the syntax of a visual language is of higher dimensionality. As a result,book-keeping is required for spatial relationships between the terminals andnon-terminals of the language when parsing [1].A visual language may be de�ned as in the following:Graphical Primitive: A graphical primitive is a line or dot inan image.Symbol: A symbol is de�ned by a non-empty set of spatial rela-tions on graphical primitives which are intended to be per-ceived as a single unit.Diagram: A diagram is a two or three dimensional collection(set) of symbols. 5

6 IntroductionVisual Language: A visual language is a set of diagrams whichare considered valid expressions in the de�ned language.Both the syntax and semantics of a visual language are de-termined through the spatial relationships between symbolsin a diagram (based on description in[39]).Currently there is ongoing research into the design and development ofvisual programming languages, including compiler-compilers for these lan-guages [11, 19, 20]. The diagrams of a visual programming language may betranslated to an executable form using a visual language compiler. Spread-sheets are the most common and perhaps also the most successful type ofvisual programming language to date[43].Some visual languages such as math notation, music notation, and engi-neering drawings are not formally de�ned, and have dialects (i.e. notationalpractices which are not standard, but accepted). We call these visual lan-guages natural visual languages, and de�ne them as in the following:Dialect: A dialect of a visual language is a variant of a visuallanguage which employs symbolic and/or spatial conventionswhich are not standard in all other variants of the visuallanguage.Natural Visual Language: A natural visual language is a vi-sual language for which no formal description exists and/ordialects of the visual language exist.Mathematics notation is the natural visual language on which we focusin this thesis. For the remainder of this thesis, when \mathematics nota-tion" is used, it is the Western standard, read left-to-right, which is beingindicated (for an interesting comparison, see [25] for a discussion of recogniz-ing Arabic mathematical notation, which is read right-to-left). Mathematicsnotation is not formally de�ned: we usually assume that \mathematics no-tation" includes notations for algebra, calculus, logic, and a number of othermathematical disciplines. Mathematical discourse also often involves the useof de�ned notation, and symbols often have di�erent semantic interpreta-tions (e.g. f(b) may be interpreted as function application or as impliedmultiplication, or may be de�ned notation), producing dialects.Natural visual languages such as mathematics notation have both hardand soft conventions[6]. Hard conventions are those aspects of a visual lan-guage that are consistent across dialects. Soft conventions may or may not

Introduction 7apply to a particular diagram depending on the dialect used when a diagramwas created. An example of a hard convention in mathematics notation isthe left-to-right direction of interpretation. Soft conventions in mathematicsnotation include layout of symbols.The lack of formal de�nition for natural visual languages necessitatesidenti�cation of hard and soft constraints before a language de�nition maybe constructed. Without formal de�nitions, it is di�cult and perhaps im-possible to produce a completely accurate list of the two sets of conventionsfor any natural visual language, as these have to be obtained largely throughobservation and introspection. Once the conventions of the language are feltto be reasonably well understood and classi�ed as hard or soft, one may setabout de�ning a syntax specifying legal symbol placement in diagrams, andthe semantic interpretation of this set of legal diagrams. Again, the lack offormal de�nition prevents this language de�nition from being complete inmany cases.In the case of mathematics notation, some general descriptions of thestructure of the notation are available from typesetting procedures [13, 34,33], a history of the evolution of mathematics notation [10], and a history ofmathematics [9]. Cajori's history of notation unfortunately focuses on theevolution of symbols rather than on the use of space between symbols. Inaddition, the typesetting references describe notation from the perspectiveof generating mathematics notation, and do not explicitly state the hard andsoft conventions of the notation[7].Dialects complicate syntactic and semantic de�nition due to the resultingmultiple interpretations that are possible. For example, in mathematics no-tation it is impossible to determine whether \cos" should be interpreted as afunction, or implied multiplication of variables without a prior decision abouthow to interpret this letter grouping; i.e., choosing a soft convention. Thisis an example of how interpreting visual language dialects requires a prioriinformation about the intended dialect of interpretation before the intendedsyntax and semantics can be obtained from a diagram. If this informationis available, the appropriate soft conventions may be adopted to properlyrecognize a diagram.

8 Introduction1.1 The Visual Language Recognition Pro-cessFigure 1.1 shows the process of recognizing visual languages by computer,and the four general types of diagram representation usable by a computer(labeled Types I-IV). Each of these diagrammatic representations is explainedfurther below.
TYPE III:Structural Representation

Visual Language Editor

 via mouse, data tablet and keyboard.
- Allows direct input of symbols

a. Handwritten, Noisy
b. Handwritten, Noise-Free
c. Typeset, Noisy
d. Typeset, Noise-Free

TYPE I: Pixel Map

TYPE II: Attributed Symbol List

Visual Language Definition
- Syntax
- Semantics

Natural Visual Language Conventions

- Hard Conventions (dialect independent)
- Soft Conventions (dialect dependent)

TYPE IV: Semantic Representation

Semantic Evaluation

Symbol Recognition

*

Parsing

*

Definitions Influencing a Representation or other Definitions

Conversion of Diagram Representation

User-Specified Symbol List

LEGEND:

in Pixel Map by Structural Representation
Structure Analysis of Pixel Map and Partitioning of Graphical PrimitivesFigure 1.1: The Visual Language Recognition Process1.1.1 Diagram Representation Type I: Pixel MapInitial input is obtained either via a pixel map or an online visual languageeditor. An online editor has the advantage of eliminating symbol ambiguity,as a symbol recognition step is unnecessary. A user may either directlyselect symbols from a list, or a facility is provided for correction of symbolrecognition errors by the user before passing the resulting attributed symbollist for parsing as done in [48].Two issues concerning the use of pixel map representations are noise andmanner of production. Noise in a pixel map is any additional pixel informa-

1.1 The Visual Language Recognition Process 9tion which is not part of the diagram itself. For instance, pixels in a pixelmap added through smudges and/or spurious dots present on scanned hard-copy or added by the scanning process are considered noise. Also, typesetinput is more consistent in terms of both layout and symbol compositionthan handwritten input. Noise-free handwritten and typeset inputs are gen-erally produced on-line: that is, a user creates the pixel map on the computeritself. Two examples of noise-free typeset pixel map are postscript imagesproduced using LATEX, and pixel maps created using a mouse or data tabletin a drawing application.1.1.2 Diagram Representation Type II: Attributed Sym-bol ListAn attributed symbol list gives for each symbol a name and set of additionalattributes, which may contain coordinates indicating the relative positionof the symbol in the diagram. Often this coordinate information is givenin the form of bounding box coordinates for two-dimensional notations. Abounding box is the minimal rectangular region which contains all the pixelsof a symbol in a digitized image of a diagram.1.1.3 Conversion from Diagram Representation TypeI to Type IIA pixel map may be converted to an attributed symbol list through the use ofa symbol recognizer. Generally symbol recognition involves two stages. First,graphical primitives are located in the pixel map. Second, these graphicalprimitives are partitioned into sets based on their relative positions and thenlabeled using a process that maps these sets to symbol labels.Both noise and the manner of production inuence the certainty of symbolrecognition. Pixel maps from typeset information are more consistent, andthus it is less di�cult to recognize symbols than when handwritten inputis given. Similarly, noise reduces the certainty of a symbol recognizer inboth typeset and handwritten pixel maps. Generally, statistical methods areused to rank certainty of symbol identi�cation and then produce the moststatistically likely symbol list (according to the statistical model employed).In some instances, multiple lists of symbols ordered by statistical likelinessare maintained to allow analysis of di�erent symbol sets.

10 IntroductionIn some cases symbol recognition is performed directly on the pixel map,while in others (such as projection pro�le cutting[45]) the pixel map is dividedinto regions before the application of a symbol recognizer, obtaining spatialstructure concurrently (this is shown via the `*' labeled arrow). A symbol listmay be produced iteratively using feedback, or after a complete partitioningof the pixel map.1.1.4 Diagram Representation Type III: Structural Rep-resentationA structural representation describes the spatial structure of symbols in adiagram. For example, a LATEX string is an example of a structural repre-sentation of a mathematics expression. Another less explicit example is aparse tree produced by a visual language parser (from which a LATEX stringmay have been translated).An attributed symbol list may be converted to a structural representationthrough a visual language parser. As mentioned earlier, in some recognitionmethods a structural representation is obtained directly from a pixel map.1.1.5 Diagram Representation Type IV: Semantic Rep-resentationA semantic representation of a diagram contains the information content ofa diagram. A Maple string is a semantic representation of a mathematicalexpression diagram. Semantic representations may in some cases be usedfor evaluation. In a visual programming language this is the execution ofthe program. In the case of a Maple string, this is the evaluation of themathematical expression by Maple.For a given visual language de�nition, a semantic representation may beobtained from a syntactically valid structural representation.1.1.6 De�nition of the Visual LanguageThe visual language syntax and semantics are needed for structural andsemantic analysis. In the case of natural visual languages, signi�cant workis required to identify and codify the syntax and semantics.

1.2 Thesis and Contributions 111.2 Thesis and ContributionsThe research presented in this document investigates the following thesis.Through separating spatial structure from semantics in mathe-matics notation, a general and exible recognition of mathematicsexpressions may be obtained.By general we mean that dialects of mathematics notation may be conve-niently handled. Flexible refers to the ability to handle a large range ofsymbol placements.The following contributions are made in support of this thesis.1. A model for the structure of mathematics notationA novel model, called the baseline structure tree, is introduced. Base-line in mathematics notation is used to refer to two di�erent things:�rst, an imaginary line running through symbols which are horizontallyadjacent, and secondly the set of horizontally adjacent symbols them-selves. Baseline structure trees represent the spatial structure betweensets of horizontally adjacent symbols in mathematics notation. Thismodel of baseline structure is consistent with all common dialects ofmathematics notation.2. A visual language parsing algorithmThis algorithm creates baseline structure trees from attributed symbollists. The algorithm is more general than existing mathematics nota-tion parsers because the spatial relationships used to obtain baselinestructure may be rede�ned, and tree rewriting may be used to handlesoft conventions (i.e. dialects) after an initial baseline structure treehas been obtained.3. An implementationThe visual language parsing algorithm was implemented and integratedinto a complete recognition system for handwritten mathematics no-tation. The symbol recognition and user interface components of thissystem were created by Steve Smithies, Jim Arvo and Kevin Novins[48]. The system has been tested on hundreds of handwritten expres-sions with excellent results. The system was demonstrated at CASCON

12 Introduction'99 and was enthusiastically received. Public distribution of the systemis planned.

Chapter 2Review of MathematicsNotation RecognitionIn this chapter the existing mathematics notation recognition literature isexamined. A survey of mathematics recognition research may be found in[7], and a more general survey of diagram recognition in [6].2.1 General IssuesBlostein notes in [7] thatany recognition method, including procedurally-coded rules, im-plicitly or explicitly de�nes the syntax of recognizable expres-sions.Each of the systems described in this chapter thus make some assumptionsabout the syntactic structure of mathematics notation. Unfortunately, inmany cases the reasons for choosing a particular structural de�nition and/orsyntax for mathematics notation are not described in detail.Martin cites this type of analysis of mathematics notation syntax as akey step in the production of an e�ective recognition system [40]. Morespeci�cally Martin indicates that three things are necessary before a usablemathematics notation recognition system may be created. First, a study ofthe structure of mathematical notation. Second, the creation of recognitionsystems which are extendible. Third, a user-friendly means for extending arecognition system. 13

14 Review of Mathematics Notation RecognitionTowards analyzing the structure of mathematics notation, Martin pro-vides some simple syntactic information on the notation (in the form ofspatial relationships) and a number of examples of ambiguous expressionsin [40]. He notes thatMathematical notation is designed to be unambiguous. However,if the expressions are not carefully written, or certain conventionsare not observed, they may appear ambiguous[40].By conventions Martin is referring to layout of symbols, and the choice ofrelative size of symbols.Martin also states that a precedence parser may be built for recognizingmathematics notation if all symbols which indicate vertical displacementfrom the centre line are leftmost in their subexpressions. In this case, analgorithm may be constructed which scans an attributed symbol list leftto right, producing an appropriate structural representation. The followingexpression with overlapping limits would not be recognized by such a parseras the symbol indicating vertical displacement from the centre line (P) isnot leftmost. 10000Xi=100 i22.2 Symbol Recognition in Mathematics No-tationThe recognition of even typeset mathematical symbols has proven more di�-cult in the context of existing OCR systems that one might expect. BenjaminBerman and Richard Fateman [5] have done some research in this regard todevelop character recognition systems better suited to the math notationrecognition context.Berman and Fateman observed that commercial optical character recog-nition systems with recognition rates of 99 % or higher were falling to 10%or less once tried on perfectly formed characters in mathematical equationcontexts. They indicate that this is because the heuristics employed whichwork well on straight text, multi-column printing (such as in newspapers)and tables fails with math notation because of the following.

2.3 Existing Mathematics Notation Parsers and StructuralAnalyzers 151. Variations in font size2. Multiple baselines3. Special characters4. Di�erent spelling digraph frequencies (i.e. statistical frequency of hor-izontally adjacent symbols)2.2.1 Symbol Recognition Techniques EmployedThe techniques that have been used to recognize symbols in mathematics no-tation are more or less standard in the pattern recognition literature. Tem-plate matching is used in [15, 5], nearest neighbor classi�cation in [48], neuralnetworks in [23], hidden Markov models in [35], and chain code recognition in[14]. Winkler and Lang [52] discuss a hidden Markov model approach whichemploys soft-decision making in order to generate multiple interpretations ofan input expression. Miller and Viola [42] discuss the resolution of symbolambiguity using higher level context. Recognition of Arabic mathematicalsymbols is addressed in [25].The majority of symbol recognition research in mathematics notationfocuses on handwritten input produced online via data tablet or scanned im-ages of typeset equations. A smaller amount of research discusses recognizingtypeset pixel maps produced online[42, 28].2.3 Existing Mathematics Notation Parsersand Structural AnalyzersExisting mathematics recognition systems fall into two main categories. First,there are methods which obtain a structural representation directly from pixelmaps, which we call Structural Analyzers. In the other category, analysis ofstructure is performed after symbol recognition has occurred, i.e. these meth-ods obtain a structural representation from an attributed symbol list. Wecall these systems Mathematics Notation Parsers.Below is a categorization of existing techniques.1. Structural Analyzers

16 Review of Mathematics Notation Recognition(a) Projection Pro�le Cutting2. Mathematics Notation Parsers(a) Attributed String Grammars(b) Structure Speci�cation Schemes(c) Graph Grammars(d) Stochastic Grammars(e) Procedural TranslationWe discuss the above methods in greater detail in the following sections.2.4 Projection Pro�le CuttingAny mathematical expression can be considered as a collectionof a number of components (single symbols or subexpressions)arranged horizontally, each of which may contain smaller compo-nents arranged vertically[45].Okamoto et. al. in [45, 44, 49] outline a method of obtaining a structuralrepresentation of scanned images of mathematics notation using recursiveprojection pro�le cutting. A projection corresponds to projecting pixels ontothe x and y axes of the image. The cutting process separates horizontallyadjacent subexpressions using a vertical projection, followed by horizontalprojection to separate baselines. This process is applied recursively.Figure 2.1[44] shows an expression and the structural representation ob-tained after projection pro�le cutting has occurred. Horizontally adjacentnodes in the tree correspond to pixel regions obtained from a vertical projec-tion, while vertically adjacent nodes in the tree correspond to pixel regionsseparated by a horizontal projection. Connected pixel regions which cannotbe further separated by projection pro�le cuts are then recognized (shown assymbols in boxes at the leaves).This approach is not able to detect superscripts, subscripts, matrices,limit expressions (e.g. summations) or expressions within square roots, eachof which requires additional processing. These additional processes rewritethe structure tree created by the projection pro�le cutting process. A TEXstring is then translated from the tree.

2.4 Projection Pro�le Cutting 17

Figure 2.1: Example of Projection Pro�le CuttingThe general approach taken here is interesting. The following steps areemployed in this system.1. A structural representation is obtained using a structural feature ofmathematics notation (i.e. the structure of horizontally and verticallyadjacent symbols in a mathematics expression).2. The structural representation is altered so that it is syntactically valid.In this case a valid syntactic representation is considered to be a treewhich may be translated into valid TEX output.

18 Review of Mathematics Notation Recognition3. The structural representation is mapped to a string (i.e. TEX).In [49] projection pro�le cutting is augmented by bottom-up process-ing. Essentially, character recognition is performed �rst, and the problematicstructures for projection pro�le cutting are located, analyzed and groupedbefore projection pro�le cutting is applied.This research is closely related to that of Wang and Faure[50, 29]. Inthis research projections are used in conjunction with a more complicatedanalysis of spatial relationships between handwritten symbols created online.Separate methods are described for labeling superscripts and subscripts, anda routine for handling square root expressions is mentioned. As in the systemby Okamoto et. al., an initial structure is obtained and rewritten to obtaina syntactically valid structure.The simplicity and speed of projection pro�le cutting is appealing. How-ever, in addition to di�culty with square roots and sub and superscripts,a strictly projection-based method may improperly segment characters withbroken lines, and skew in an input image may alter the necessary horizontaland vertical relationships which are used for later analysis.2.5 Mathematics Notation Parsers2.5.1 Attributed String GrammarsParsing mathematics notation using an attributed string grammar is per-haps the most common type of mathematics recognition system [2, 25, 40,28, 23, 4, 46, 53, 12]. Generally these systems involve slightly modifying ex-isting parsing methods to obtain a structure representation and/or semanticinterpretation from attributed symbol lists[30].The earliest reported mathematics recognition systems are those of Anderson[1],and Martin [40]. Both Anderson and Martin used systems which they calledcoordinate grammars. A coordinate grammar is essentially an attributedstring grammar, with constraints on production application based on therelative positions of symbols. Unlike a string grammar, the order of symbolsin the input is unimportant.Anderson proposes representing symbols through both a bounding box,and a single coordinate intended to approximate the position of the centreline, or baseline through horizontally adjacent symbols. Anderson de�nes the\centre" of a symbol based on where the symbol lies relative to the baseline,

2.5 Mathematics Notation Parsers 19as shown in Figure 2.2. In his system, all characters have a horizontal centrecoordinate corresponding to the middle horizontal point of the symbol (shownas xcentre for \x" in Figure 2.2).
Writing Line

Middle Line

x p A j Centre Line / Baseline

xcentreFigure 2.2: Typographic Centre of SymbolsAnderson's system accepts an attributed symbol list obtained from a datatablet as input, and assumes that symbol recognition errors have been re-solved before the input is received. The symbol list contains symbol identityand bounding box coordinates (which de�ne the rectangular region contain-ing all the pixels of a symbol) for each symbol. Consider the following rulefrom Anderson's grammar for initially locating a division term. A nontermi-nal DIVTERM is matched if a horizontal line is found with symbols aboveand below which do not extend past the horizontal line on either side, oroverlap the horizontal line vertically. The parse tree resulting from a matchof this rule looks like Figure 2.3.Anderson's parser works top-down, attempting all possible partitions ofsymbols until a valid parse is obtained (some heuristics to improve perfor-mance are given in [2]). After the parse tree has been built, the semantics ofthe expression are obtained by propagating a \meaning" string attribute fromthe leaves to the root of the parse tree. For example, in the attribute syn-thesis step after initially building the parse tree, the nonterminal DIVTERMis assigned a ycentre coordinate equivalent to the ycentre coordinate of thehorizontal line, and a meaning attribute based on the meaning attributes ofS1 and S3.Anderson's grammar was possibly the most complete to date, includinga separate grammar for handling simple matrices. However, the system wasvery computationally expensive. Fateman noted thatAnderson's parser...handled a very large domain of mathematicalexpressions. However, at the time of his work (1969), his rec-

20 Review of Mathematics Notation Recognition

 bounding boxes neither left nor right of S2
-all symbols in S1 and S3 have

-all symbols in S1 are above S2
-all symbols in S3 are below S2

Spatial constraint:

DIVTERM

EXPRESSION- (horiztonal line)EXPRESSION
(S2)(S1) (S3)

meaning: (meaning(S1))/(meaning(S3))
DIVTERM attributes:

y centre coordinate: ycentre(S2)

Figure 2.3: Partial Parse Tree for Anderson's Coordinate Grammarognizer appears to have been tested to its limits with equationshaving about eight symbols[28].Later research in recognition of mathematics expression using attributegrammars tends to focus more on symbol recognition and ambiguity issuesthan producing a more expressive grammar.2.5.2 Structure Speci�cation SchemesChang in [12] presents another system for obtaining a tree structure rep-resenting an expression based on de�nitions of operator range, precedence,and dominance. Operator range refers to the syntactically valid spatial lo-cations of an operator's arguments. Operator precedence de�nes the orderof application of operators represented as symbols in an expression (e.g. *has greater precedence than +). Operator dominance is de�ned through apartial ordering of the operators in an input expression based on the operatorprecedence and range.

2.5 Mathematics Notation Parsers 21A structure speci�cation scheme assigns to each operator a way in whichan input pattern is partitioned into regions for the operator and its operands.Along with the ordering on operators given by operator dominance, a struc-ture speci�cation scheme may be used to obtain the structure of a mathe-matics expression.Input to Chang's method is an attributed symbol list. The symbols inthe original input are then recursively partitioned into operator and operandregions using the structure speci�cation scheme, each time partitioning basedon the least dominant operator.The parsing algorithm provided by Chang is fast, being of O(n2) timecomplexity. The system described does not appear to handle subscripts orsuperscripts, as these operators are implicit, represented through relativeposition of symbols rather than symbols in the input.2.5.3 Stochastic GrammarsIn a stochastic grammar, probabilities are associated with productions of thegrammar. Chou presents a stochastic grammar which is capable of recogniz-ing expressions in the context of a signi�cant amount of noise produced byipping bits in a typeset pixel map [15]. Symbol recognition is performedusing exhaustive template matching. A dynamic programming algorithm isthen used to �nd the most likely parse for an input expression. The resultsare impressive for the given test examples, but the expressions themselvesare quite small.Miller and Viola in [42] discuss their work with a stochastic grammarbased on Chou's, with some performance improvements. The inputs theyexamined were noise-free pixel maps produced online.2.5.4 Procedural TranslationLee and Lee[38] describe a set of procedural methods used to translate anattributed symbol list into a formatted string (e.g. in EQN format). Symbolswhich deviate from the typographical centre of an expression are grouped intounits called symbol groups, and then the symbol groups and the remainingsymbols in the input are ordered left-to-right based on the y-coordinate oftheir center points.An output string is obtained by applying this group-order procedure re-cursively. In a later paper this algorithm is modi�ed so that symbol groups

22 Review of Mathematics Notation Recognitionare located recursively �rst, and a structural representation in the form of atree is built[37]. Some additional discussion is given about correcting recog-nition errors through the use of semantic analysis.A similar approach to Lee and Lee's is described by Winkler who usesa directed acyclic graph representation[51]. Winkler's process has the ad-ditional aspect of generating multiple interpretations using a probabilisticmodel of symbol layout.The advantage of a procedural recognition method is speed. The majordisadvantage of a procedural translation approach is the di�culty in under-standing, maintaining and extending such a system (as it is represented solelyin terms of procedural code).2.5.5 Graph GrammarsBunke in [8] demonstrated how attributed graph rewriting is a useful ap-proach for recognizing schematic diagrams. Graph grammar approaches todiagram recognition have been used by Dori [24] for recognizing dimensionsin machine drawings, Fahmy [26, 27] and Baumann [3] for music notation,and Grbavec [32] and Lavirotte and Pottier [36] for mathematics notation.In graph-grammar based diagram recognition, a graph is initially builtfrom input symbols, containing relation-labeled edges representing spatialstructure. This graph is then constrained and/or collapsed using a graphgrammar parser which propagates attributes between nodes during produc-tion application.Individual rules in a graph grammar are relatively intuitive, due to thevisual representation via graphs. Graph grammars are a very general formal-ism, but are computationally expensive to parse, as graph matching is NP-complete. Lavirotte and Pottier attempt to alleviate this problem throughmaking their graph grammar deterministic, but this appears di�cult to dowithout restricting the expressivity of the graph grammar. Smithies in [48]proposes using an A* searching algorithm to attempt to improve performancethrough heuristic means.2.6 SummaryIt is worth noting that in the systems described, trees are used to representthe structure of mathematics expressions, either explicitly, as in the case

2.6 Summary 23of projection pro�le cutting, or implicitly, in the parse trees produced bymathematical notation parsers (other than graph grammar parsers). Thispattern of representation inuenced the choice of structural representationto be explored in the next chapter.The desirability of linearizing an attributed symbol list where possible isalso a common theme. Where possible, linearization improves performancedramatically (as noted �rst by Anderson in [1]).The problem of producing a system which is both e�cient and su�cientlyexible to recognize complex spatial relationships remains an open problem.The area would probably bene�t greatly if the kind of study of mathemat-ics syntax proposed by Martin[40] were to be undertaken. The current lackof information characterizing the problem domain makes it necessary to ex-pend a considerable amount of e�ort identifying conventions of mathematicsnotation before a recognition technique may even be designed.

24 Review of Mathematics Notation Recognition

Chapter 3A Model for the Structure ofMathematics NotationA major objective [for mathematics notation recognition] is to de-�ne the syntax cleanly, to provide a unifying framework for han-dling the myriad details and exceptions that arise during mathe-matics recognition[7].Mathematics notation is a natural visual language, and as a result thereis no existing formal de�nition, and dialects exist. However, in order torecognize at least one or more of the dialects of mathematics notation, oneneeds to produce a language de�nition.A study of the hard and soft conventions of the notation may be madethrough examining conventions observed in the literature, and through in-trospection and observation. A visual language de�nition for mathematicsnotation may then be speci�ed.Especially in light of the existence of de�ned notation, the possibility ofcreating a complete visual language de�nition for mathematics notation is un-likely. However, rather than attempt to produce an \as-complete-as-possible"language de�nition for a recognition system, it may be more advantageous toidentify those notational conventions that seem to be present across dialects(i.e. hard conventions) and then produce a representation which can be easilymanipulated for syntactic analysis and semantic interpretation under variouslanguage de�nitions.In this chapter, using the hard conventions of direction of interpretationand operator dominance, a model of spatial structure in mathematics nota-25

26 A Model for the Structure of Mathematics Notationtion is provided. This is the baseline structure tree (BST), a tree representa-tion which makes baselines and spatial relations between baselines explicit.An example is provided which demonstrates how a baseline structure treemay act as the starting point for a more detailed syntactic analysis under avisual language de�nition.3.1 Hard Conventions of Mathematics Nota-tionAs indicated by Okamoto[45], any mathematical expression may be consid-ered as a collection of symbols and subexpressions arranged horizontally.This horizontal adjacency of symbols or subexpressions is referred to infor-mally as a \baseline". Through observation, the direction of interpretationof symbols and/or subexpressions along a baseline is always left-to-right,corresponding to the reading direction in Germanic languages. We proposethat this left-to-right direction of interpretation along baselines is a hardconvention of mathematics notation.Anderson observed the usefulness of the directedness of baselines in math-ematics notation in 1968[1], indicating that proceeding left-to-right along abaseline may obtain the desired syntactic structure of linear expressions suchas: a+ b + c=xThe linear structure allows the relationship between the above symbols tobe represented in a string using only concatenation, unlike other spatial re-lationships which require a more explicit representation of two-dimensionalspatial structure, as will be shown later.Another hard convention of mathematics notation is the location of thesymbol from which interpretation begins in unambiguous expressions. Fate-man states that the subset of TEX used for computer algebra systems (e.g.Maple, Mathematica) is strictly left-to-right parseable if some heuristics areemployed. Speci�cally, he states that in a given subexpression,the leftmost glyph governs the meaning of the expression. In thefew exceptions to this rule, we have tried, by manipulating theexpression glyphs to expand the key operator to the left to assertthis truth. For example, we consider extending R by a \virtual"bar extending to its left[28].

3.1 Hard Conventions of Mathematics Notation 27In other words, expressions are generally interpreted beginning with theirleftmost symbol. Common exceptions include the following:1. Horizontal lines not being leftmost in their associated subexpression,as in 24where the four extends as far to the left as the horizontal line.2. Limit symbols with overlapping limits. This occurs when symbols inone of the limits extends to the left of the limit symbol, as in10000Xi=1In these cases, where the symbol from which interpretation begins is notleftmost, operator dominance as de�ned by Chang[12] may be used to locatethe dominant operator in the leftmost subexpression, from where interpreta-tion begins. For example, the dominant operator in the �rst example aboveis the horizontal line, and this horizontal line is the symbol from which tobegin interpretation. In the case of symbols which are not in the scope of anoperator and are leftmost, we simply begin interpretation from this symbol.Martin in [40] provides a number of ambiguous cases where it is impos-sible to determine the starting symbol of an expression because either it isimpossible to determine operator dominance (e.g. in the case where a frac-tion such as a/b/c is displayed vertically with equal length horizontal lines)or the range of operators is unclear (such as when a horizontal line repre-senting a division overlaps a symbol slightly, making it unclear whether thatsymbol is an argument of the division or an adjacent term). Resolving suchambiguities requires a decision on the part of the reader concerning the rangeof operators and/or the dominant operator in the leftmost subexpression.In the case then where an expression has an unambiguous operator dom-inance in the leftmost subexpression, interpretation begins from the dom-inant operator in that expression, or the leftmost symbol if that symbolalone constitutes the leftmost subexpression. This is a hard convention. Theinterpretation of ambiguous examples involves soft conventions, as these am-biguities may be resolved using a number of di�erent approaches, none beingnecessarily correct.

28 A Model for the Structure of Mathematics NotationThis process of �nding the starting symbol of an expression may be rep-resented using the function START. START is speci�ed in the following:START: START is a function which takes an attributed sym-bol list representing an unambiguous expression (lists) andreturns the starting symbol in lists or ; if lists is empty.3.2 Symbol Layout as a Soft ConventionIn mathematics notation, spatial relations are used to group symbols intounits, and to specify operators. For instance, horizontal adjacency andthe distance between horizontally adjacent symbols (whitespace) are usedto group symbols into syntactic units (as in \cos x"). The binary operatorfor exponentiation is represented using the spatial relation between base andexponent (as in x2).Horizontal adjacency, subscripting and superscripting are hard conven-tions of mathematics notation spatial structure. When perceived as beingclearly present by a reader, they are unambiguous spatial relationships be-tween symbols. However, the set of layouts which de�ne each spatial relationis a soft convention; for instance, consider Figure 3.1.
X X Xa a a X

a

a. b. d.c.Figure 3.1: Example Spacing Between Adjacent SymbolsIt is impossible to state with certainty exactly where the position of the\a" would stop being a subscript, as in Figure 3.1a, and start being hori-zontally adjacent as in Figure 3.1b. Likewise the same problem occurs whentrying to decide where between the positions of \a" in Figure 3.1b and Fig-ure 3.1c the \a" starts being in the superscripted position. Figure 3.1d is

3.2 Symbol Layout as a Soft Convention 29itself either syntactically invalid or an exponent, depending on the syntacticde�nition adopted.From observation, superscripts, horizontal adjacency, above, below andcontaining (e.g. by a square root) spatial relationships are hard notationalconventions. They are commonly used in the interpretation of mathematicsnotation. However, given the soft convention of symbol layout, any character-ization of spatial relations in mathematics notation will require the adoptionof a set of arbitrarily chosen thresholds to de�ne regions for each relation.Thresholds may be de�ned for what are felt to be ambiguous regions, butthis in itself will be a decision on the part of the visual language designer, aswhat constitutes a \spatially ambiguous" diagram is not formally de�ned.3.2.1 Mathematics Notation as a Context-Sensitive Vi-sual LanguageMany of the spatial relations employed in mathematics notation may bedescribed through a series of interacting spatial relations between symbols.Consider Figure 3.2.
X i

i = 1

1000002

Figure 3.2: Exponent and SummationThe reader does not simply look directly above the limit to �nd theupper limit of the summation; this produces the wrong limit (00000). Wecan informally describe a process of locating the upper limit in Figure 3.2 inthe following.1. The 2 is closer to the x than the �, the 1 (in the upper limit) closer tothe �2. Though horizontally adjacent, the 2 is visibly separated from the 1 bywhitespace; the 2 is thus superscripted from the x, and the 1 is part ofthe upper limit of the �

30 A Model for the Structure of Mathematics Notation3. The zero which ends the upper limit is much closer to the � than thenext symbol which is horizontally adjacent to the � (i), and so is partof the upper limit.4. 0000 is directly above the �5. Concatenating the 1 and 0 we have found to be part of the upper limitwith the 0000 above the �, we obtain an upper limit of 100000The upper limit of the summation in Figure 3.2 may be obtained throughthe process above or another similar process involving the examination of therelative positions of symbols in the expression.The kind of complex spatial interaction present in Figure 3.2 is commonin expressions with multiple baselines: obtaining the spatial relationship be-tween two symbols may require knowledge of the relationship between thosesymbols to other symbols in their associated expression. This demonstrateshow mathematics notation is a context-sensitive visual language.3.2.2 Spatial Relations in Mathematics NotationIn this section a number of binary relations are informally de�ned in orderto describe spatial structure in mathematics notation. These de�nitions arebased in part on those discussed by Genarro Costagliola[22, 18, 17, 11, 19, 20].The speci�cations are in Table 3.1. For each, S1 is a single symbol.We discuss the spatial relations in greater detail in the following.� HOR indicates horizontal adjacency between two symbols on a baseline.For example, in Figure 3.1b, HOR(X,a) is a valid relation.� ABOVE and BELOW correspond, intuitively, to baseline symbol setswhich are above or below a symbol, but directly, i.e. only those symbolswhose center horizontally overlaps the width of the domain symbol.� CONTAINS indicates square root subexpressions. For example, pxcould be represented as CONTAINS(p,x).� BLEFT and TLEFT represent spatial relations between a limit symbol(such as R) and symbols in limits which extend to the left of the limitsymbol, when the limit symbol starts a baseline. For instance, in1000000Xi=10000 i

3.2 Symbol Layout as a Soft Convention 31Spatial Relation De�nitionHOR(S1; S2) S2 is the next symbol horizontally adjacentto S1SUPER(S1; S2) S2 is the set of symbols superscripted fromS1SUBSC(S1; S2) S2 is the set of symbols subscripted from S1ABOVE(S1; S2) S2 is the set of symbols directly above S1BELOW(S1; S2) S2 is the set of symbols directly below S1CONTAINS(S1; S2) S2 is the set of symbols contained by thebounding box of S1TLEFT(S1; S2) S2 is the set of symbols to the top left of alimit symbol which starts a baseline (S1)BLEFT(S1; S2) S2 is the set of symbols to the bottom left ofa limit symbol which starts a baseline (S1)Table 3.1: Spatial RelationsThe i and = of the lower limit and the 1 and 0 beginning the upperlimit are in BLEFT and TLEFT relations with the limit symbol, i.e.TLEFT(P,f1,0g) and BLEFT(P,fi,=g).In the next chapter each of these relations are de�ned in greater detailusing coordinates of symbols. For now these general descriptions will su�cefor explanation.The previously de�ned spatial relations, along with the hard conventionsof starting symbol and direction of interpretation along baselines may be usedto create a structural representation for mathematics notation, the baselinestructure tree.We need �rst to de�ne baseline symbol set and main baseline symbol set,as in the following:Baseline Symbol Set A baseline symbol set is a set of attributedsymbols for which the relation HOR holds between all si; si+1for 1 � i � n � 1 where n is the number of symbols in theset.Main Baseline Symbol Set Given a list of symbols lists, themain baseline symbol set is the baseline blinemain associated

32 A Model for the Structure of Mathematics Notationwith the symbol in lists from which interpretation begins(i.e. a non-empty set symbol returned by START(lists)).Using the spatial relations discussed along with the idea of baseline sym-bol set, the structure of a large number of mathematics notation diagramsmay be characterized using a tree and parenthesized strings translated fromthe tree.Consider the expression 100000Xi=1 i2 + 27i+ 2The spatial structure of the symbols in this expression can be representedvia a baseline expression tree as given in Figure 3.3. For the purposes of thefollowing examples, assume that the speci�ed spatial relations are valid.
BELOW

i = 1

SUPERABOVETLEFT SUPER

i + 2 7 i + 2

Expression

21 0 0 0 0 0Figure 3.3: A Baseline Structure TreeThe root is labeled \Expression", and along with the nodes with spatialrelation labels, has children ordered left to right (i.e. a baseline symbol setis represented as children of the root and each relation). This eliminates theneed in the tree to show HOR explicitly, as any two adjacent siblings belowthe root or a relation are in a HOR relationship. Symbols, such as the i in i2and P may have spatial relation-labeled children indicating a set of symbolsin a region relative to the symbol.The main baseline of the expression is represented below the root, whilethe main baseline of each subexpression appears under an associated relationnode.

3.2 Symbol Layout as a Soft Convention 333.2.3 Properties of Baseline Structure TreesThere are a number of advantages to structural representation via a baselinestructure tree. These include:1. The grouping and left to right order of baseline symbol sets is explicit.2. All spatial relations are explicit.3. A depth-�rst traversal of this tree will produce a linearized string rep-resenting the structure if bracketing is used. For instance, the lineariza-tion via depth �rst traversal of Figure 3.3 gives:ExpressionP BELOW fi=1g TLEFT f10g ABOVE f00g SUPER f00gi SUPERf2g+27i+2If the root (\Expression") is eliminated, the above string possesses thetype of syntactic structure used in LATEX strings.4. The tree may be restructured in order to represent more complicatedstructures via labeled relation nodes.As a demonstration of restructuring a baseline structure tree, considerFigure 3.4. Here a tree-rewriting rule has been applied to Figure 3.3. Thisrule can be stated as: starting from the root, collect all TLEFT, ABOVEand SUPER nodes associated with a Sigma and replace them with a singlerelation node labeled \ULIMIT", placing all children of the TLEFT, ABOVEand SUPER nodes under ULIMIT. Then do the same for BLEFT, BELOWand SUBSC. The tree now has a structure which contains a syntacticallyvalid representation of the limits of a summation. This is a very simple rule;in the next chapter a more complicated rewrite is described which allowsalmost arbitrary subexpressions as limits.The original expression represented in Figures 3.3 and 3.4 is ambiguous;it is not clear what the scope of the summation is (i.e. does it end with i2,with 27i or does it encompass all subexpressions adjacent to the P?).This may be resolved through the use of a soft convention. For instance,specifying either a certain distance of white space indicating membershipin the associated subexpression of the P, or restricting scope to the �rstsubexpression in the summation's scope if bracketing is not used.Once having chosen a soft convention, the convention may be representedin the tree using another tree rewrite. For instance, suppose a syntax de�ni-tion where only the �rst unbracketed term is considered to be in the scope of

34 A Model for the Structure of Mathematics Notation

i = 1

SUPER

i + 2 7 i + 2

Expression

21 0 0 0 0 0

BLIMIT ULIMIT

Figure 3.4: Baseline Structure Tree with Rewritten Limitsthe summation is used. Another type of relation node may be added to thetree, which we will call SCOPE. The main baseline may then be scanned forsymbols up to an operator, and then a rewrite may be applied to produceFigure 3.5.In this thesis only a small number of rewrites are de�ned, and only for rel-atively \hard" notational conventions. A design for a more complete system,capable of handling many dialects is presented in the last chapter.

3.2 Symbol Layout as a Soft Convention 35

SUPER

2

i = 1

Expression

1 0 0 0 0 0

BLIMIT ULIMIT

 + 2 7 i + 2

SCOPE

i

Figure 3.5: Baseline Structure Tree with Rewritten Summation Scope

36 A Model for the Structure of Mathematics Notation

Chapter 4A Mathematics NotationParserAs discussed in the last chapter, a baseline structure tree is a exible struc-tural representation of a mathematics notation diagram. In this chapter aparsing algorithm for obtaining baseline structure trees from an attributedsymbol list is presented. Examples of syntactic analysis performed throughtree rewriting, and context-sensitive translation to string languages are alsodiscussed, along with relevant issues.4.1 Preprocessing and Symbol AttributesFor the purposes of this algorithm, symbols in the input list must have iden-tity and bounding box attributes. A bounding box is de�ned as a pair ofcoordinates used to specify the minimum and maximum (x,y) coordinates be-tween which all the pixels of the symbol are located in the positive Cartesianplane. An example is shown in Figure 4.1.As a preprocessing step, each symbol is given additional attributes, cal-culated using the identity and bounding box attributes. These additional at-tributes are type, centroid class, centroid coordinate, and \wall" attributes,which specify a partitioned region in the input.The type attribute is used to group structurally similar symbols, for in-stance limit symbols (P; R ;�;S;T), open brackets (f, (, [) and close brackets(g,],)). Type attributes simplify processing based on structural function.Each symbol is assigned a centroid attribute which is used to represent37

38 A Mathematics Notation Parser

(minX, minY)

(maxX, maxY)

Figure 4.1: A Bounding Box
Writing Line

Middle Line

x p A j Centre Line / Baseline

de
sc

en
di

ng

ce
nt

re
d

as
ce

nd
in

g

ce
nt

re
d

Character Centroid ClassFigure 4.2: Centroid Class for Di�erent Lettersthe position of each symbol using a single coordinate. The value of thiscoordinate is calculated by examining the normal position of the boundingbox of the symbol in relation to a baseline/centre line.Figure 4.2 demonstrates di�erent centroid classes for a number of letters.Ascending characters extend above the middle line, descending charactersfall below the writing line, and what we term \centred" characters either fallbetween the writing line and middle line or extend past both writing line andmiddle line (such as the \j" in Figure 4.2).Table 4.1 is based closely on Grabavec's list of centroid classes givenin [31]. It shows the centroid classes for a number of characters used in

4.1 Preprocessing and Symbol Attributes 39mathematics notation. Symbols which do not appear in this list are in thecentred centroid class.Characters Alignment0..9 AscendingA..Z, �;�;�;�;�;�;
 Ascendingb,d,f,h,i,k,l,t Ascendingg,p,q,y Descendinga,c,e,j,m,n,o,r,s,u,v,w,x,z Centred�; �; � Ascending; �; �; �; �; Descending�; �; �; �; �; �; �; o; ��; �; �; �; ! CentredLimit Symbols CentredTable 4.1: Centroid Classes for SymbolsWith the exception of brackets, the x coordinate of the centroid is alwaysthe middle horizontal point, i.e. minX + ((maxX - minX)/2). In the caseof open brackets, the minX coordinate is assigned to the x coordinate of thecentroid, and the maxX coordinate is assigned to the x coordinate for closebrackets.The y coordinate of the centroid is then assigned using the centroidclass. Ascending characters are assigned a y centroid coordinate at minY+ (1/4)(maxY-minY). Descending characters are assigned a y centroid co-ordinate at minY + (3/4)(maxY - minY), and centred class characters areassigned their y-centre, i.e. minY + ((maxY-minY)/2).These y-coordinate assignments are intended to reect the approximatelocation of the baseline through typeset characters. This corresponds to a(rough) normalization of the input symbol. In particular, with handwrit-ten input this may be a very crude approximation, essentially replacing thecontents of the bounding box by a single point based on a model of typesetcharacters.Finally, each symbol possesses four \wall" attributes (top, bottom, leftand right) which specify a region in the input pattern (speci�ed by (bot-tom,left) and (top,right)). Initially the bottom and left walls of all symbolsare set to -1, and top and right to an arbitrarily large positive integer (e.g.1). These wall attributes will be used in the parsing algorithm to partition

40 A Mathematics Notation Parserthe input when examining spatial relationships between symbols.4.2 Syntax Directed ScanningIn this section we discuss syntax directed scanning, which is a key componentof the parsing algorithm described in the following sections.In [17] Genarro Costagliola and Shi-Kuo Chang describe how syntax di-rected scanning of the input can allow conventional LR parser generators suchas YACC to be used for building parsers for a class of visual languages (in-cluding a simple mathematic language) which may be described using whatthey term positional grammars. The ability to build a positional LR parserrequires the use of syntax directed scanning of the input.In this technique, functions corresponding to the spatial relations be-tween symbols are used to describe the syntax of a visual language. Thesefunctions are then used to drive the scanning of the input pattern during aparse. Normally in an LR parser linear retrieval is employed, where the nextunexamined symbol in the input array is returned. The spatial functionsorder the input pattern, resulting in a very e�cient (i.e. O(n2)) parser for arestricted, but useful, class of visual languages.The input to a positional LR parser is assumed to be a list of attributedsymbols (i.e. containing centroid coordinates) on which the spatial functionsmay operate. Each spatial function takes the index of a symbol in the inputarray and returns the index of a token matching the associated relation, orindicates that no symbol matching the spatial relation was found. A symbolmatched by a spatial function during a parse is marked in the input, allowingthat symbol to be removed from consideration during later analysis.In Appendix A a positional grammar is given which corresponds to thesyntax of baseline structure trees. However, the creation of a generalized LRparser as described by Costagliola[22, 18, 17, 11, 19, 21, 20] is not possible(see Appendix A for further discussion).4.3 Spatial FunctionsIn this section the spatial relations introduced in Chapter 3 are de�ned as aset of functions. For the remainder of this discussion the term input list willrefer to a pre-processed list of attributed symbols (i.e. with type, centroid

4.3 Spatial Functions 41

x0

y

R

(minX, minY)

(maxX, maxY)

Figure 4.3: An Example Regionclass, centroid and wall attributes). An input list is assumed to have beensorted by left-most bounding box x-coordinate, in ascending order.A region R is de�ned as an axis parallel rectangular area in the positiveinteger Cartesian plane de�ned by a pair of (x,y) coordinates. A coordinateC is said to be in a region R if it lies in the region de�ned by R, and C doesnot lie on the maximum Y or maximum X coordinate boundaries. Figure4.3 demonstrates this. The maximum X and Y boundaries are shown withdotted lines to indicate that a point C is not considered within region R onthose boundaries.Horizontal overlap is de�ned as in the following:Horizontal Overlap A symbol S1 is horizontally overlapped bya symbol S2 when the minX bounding box coordinate of S2is less than or equal to the centroid x coordinate of S1.4.3.1 START, OVERLAP and SP FunctionsSTART is a function which returns the starting symbol for a partitionedregion of an input list. The algorithm for START provided in Appendix

42 A Mathematics Notation ParserB contains a simpli�ed analysis of operator dominance (i.e. it returns theleftmost limit symbol if one is present, rather than analyzing the range oflimit symbols), but for the purposes of this research was found to be adequatefor a large number of test cases.START calls a function OVERLAP before returning a symbol. OVER-LAP is a function which determines whether a symbol is overlapped by ahorizontal line (this is part of the operator dominance analysis). OVERLAPtakes an integer, a pair of y-coordinates and an input list. The function thenreturns either the passed integer if the symbol at that index is not overlappedby a horizontal line, or the index of the largest overlapping line (see AppendixB for the OVERLAP algorithm).START scans the input to locate the leftmost symbol in R. If no symbolis found, -1 is returned. If a symbol is found, the input is scanned further,looking for the leftmost limit symbol. If no limit symbol is found or is thesame as the leftmost symbol, the leftmost symbol is checked for overlap withhorizontal lines and then the result is returned. If a limit symbol is found, thescan reverses, checking all symbols to see if they are horizontally adjacent tothe limit symbol. If no such symbol is found, the leftmost symbol is part ofa limit and the limit symbol is checked for overlap, and the result of overlapcheck is returned. Otherwise the leftmost symbol is not part of a limit, and ischecked for overlap. The result of the overlap examination is then returned.Another function SP may be de�ned, corresponding to the type of startsymbol function for visual languages described in [22]. SP gives the startsymbol of the entire expression, using R de�ned as (0,0), (1,1). Assuminglistin is non-empty, SP(listin) returns the �rst symbol of the main baselinesymbol set of the entire expression (i.e. in the region de�ned above).4.3.2 HOR FunctionThe extension of baselines can be summarized using the following spatialfunction de�nition of HOR. HOR takes a symbol and an input list listin, andreturns either a symbol of listin or ;.Given an input list listin and a symbol s, HOR(listin,s) = a where1. a is ; if no unmarked symbol is horizontally adjacent to s in the regionde�ned by s's wall attributes.2. a is an unmarked symbol in the region de�ned by s's wall attributes

4.3 Spatial Functions 43which is the next horizontally adjacent symbol on the baseline symbolset of which s is a member.3. If a horizontally overlaps a horizontal line hline, let a be the longesthorizontal line which overlaps hline, or hline if no horizontal line over-laps hlineHorizontal adjacency is de�ned using the wall attributes of s (i.e. aregion) and the centroid coordinates of a. HOR produces a de�ned result forHOR(s) for each of the cases in Table 4.2.The algorithm for HOR is very simple. If s is a horizontal line or bracket,START is called on the region de�ned by the wall attributes of s and themaxX bounding box coordinate of s (i.e. replacing leftWall). The remainingcases simply require a scan of the input list, performing tests on coordinatepositions of s and the identity and coordinates of each symbol encountered.The scan stops when a symbol meeting the criteria for HOR is met. A callis then made to OVERLAP (again, to check with overlap with horizontallines).As established in the last section, START is O(n) in the worst case. Forthe other HOR cases, a scan of the input with O(1) comparisons for eachelement (O(n)) is followed by a call to OVERLAP (O(n)). Thus HOR is ofO(n) time complexity in the worst case. Due to the input list being sorted,in many cases only a single set of comparisons is made (i.e. O(1) best case).Figure 4.4 shows the HOR region searched in the general case. In thisresearch the convention of assigning the Upper Threshold to 5/6 of the bound-ing box height, and the Lower Threshold to 1/6 the height of the boundingbox was used, as in [45] and others. TLEFT and BLEFT are bracketed asthey are only searched if the \A" was a limit symbol. TLEFT and BLEFTregions are only examined when a limit symbol starts a baseline, or followsa bracket or horizontal line on a baseline.The special cases for binary operator and calling START reect the typeof deviations from the centre line that occur and which are still perceived asadjacent. In the example in Table 4.2, if the addition sign moves up or downin the binary operator case, the baseline structure is still clear.In the general case, the leftmost symbol on the right of s in the HORregion is returned as a if it is present and not overlapped by a horizontalline. Note that in this de�nition of region, symbols may have the same minXcoordinate and be processed as being horizontally adjacent, in the order inlistin.

44 A Mathematics Notation Parser
s a EXAMPLEBinary Operator(not HorizontalLine) Horizontal Line toright of binary op-erator in properregion +12Any Symbol Next leftmost symbolin region which has abounding box that ex-tends both above andbelow that of the do-main symbol x ZHorizontal LineOpen Bracket START((wall at-tributes, let leftWall= maxX of s),listin) (+1X�1General Case Leftmost symbol withcenter in HOR region R xTable 4.2: Horizontal Adjacency of Symbols Under HOR

4.3 Spatial Functions 45

A Upper Threshold

ABOVE

HOR

SUPER

BELOW SUBSC

(
(BLEFT)

(TLEFT)

minX maxX

maxY

Lower Threshold
minY

bottomWall
leftWall rightWall

topWall

leftWall*
(limit symbols)Figure 4.4: General Regions for Spatial Functions

46 A Mathematics Notation ParserFor horizontal lines and open brackets, START is applied to the regionde�ned by the maxX bounding box coordinate of the symbol, and the re-maining three wall attributes.These de�nitions of HOR, START and the remaining spatial regionsclearly adopt some soft conventions of spacing (e.g. a de�nition of regions,overlap and a series of thresholds). The thresholds adopted are designed tobe as exible as possible, allowing for the widely separated symbols such asthose in Figure 3.1d to be recognized as spatially related (in this particularcase, as a superscript).4.3.3 Secondary Baseline Symbol SetsA given baseline symbol set can be divided in several ways, i.e. by theoccurance of other baselines in the regions shown in Figure 4.4. We callthese secondary baseline symbol sets, as their position is obtained relativeto the main baseline symbol set in a given region. The regions pertinent tosecondary baseline symbol sets may be examined using the following method.� Let B be a baseline symbol set in region R ((RminX,RminY),(RmaxX,RmaxY))� For i=1..n-1, where n is the number of symbols in B (s1 : : : sn are thesymbols in B){ set the rightWall attribute of si to the minX coordinate of si+1{ set the leftWall attribute of si to the symbols' minX coordinateunless this is a limit symbol. If the limit symbol follows an openbracket or horizontal line, assign maxX of si�1 to leftWall. If thelimit symbol starts a baseline, assign RminX to leftWall. Other-wise set leftWall to the minX coordinate of the limit symbol.{ set the topWall attribute of si to RmaxY{ set the bottomWall attribute of si to RminY� In any order, examine the following two disjoint regions for each of thesymbols in B (see Figure 4.4)1. ABOVE: f(minX,Upper Threshold),(maxX,topWall)g2. BELOW: f(minX,bottomWall),(maxX,Lower Threshold)g

4.4 A Mathematics Notation Parsing Algorithm 47Additionally, the following (also disjoint) regions may be examined:1. SUPER: f(maxX,Upper Threshold),(rightWall,topWall)g2. SUBSC: f(maxX,Lower Threshold),(rightWall,bottomWall)g3. TLEFT: f(leftWall,Upper Threshold),(minX,topWall)g4. BLEFT: f(leftWall,bottomWall),(minX,Lower Threshold)g5. CONTAINS: f(minX,minY),(maxX,maxY)gFor each region R above START(R,listin) is applied, which returns thestarting symbol of the main baseline symbol set in that region.Symbol identity of the symbols in B determines which regions are exam-ined:� TLEFT and BLEFT are examined only for limit symbols which eitherstart a baseline (�rst symbol in B), or directly follows a horizontal lineor an open bracket (both of which indicate the end of a subexpression).� CONTAINS is used only for square roots.� SUPER is not used for horizontal lines or open brackets.� SUBSC is not used for horizontal lines or open brackets.4.4 A Mathematics Notation Parsing Algo-rithmIn Appendix B an O(n2) parsing algorithm is given which extracts a baselinestructure tree from an input list. Essentially the algorithm recursively locatessymbols which start a baseline, extracts the associated baselines, and thenrecords the observed baseline structure in a baseline structure tree. In thissection we discuss the algorithm in only a very general way. This discussionis simpli�ed; symbols are described as being pushed on and o� the stackwhen it is really the index to the symbol and an associated tree node that ispushed onto either data structure, and a number of other details are ignored.Please consult the appendix for the more detailed description.While locating baselines (essentially using START in di�erent regions),symbols which start a baseline are pushed on a queue. In the extraction

48 A Mathematics Notation Parserstage, symbols are removed from the queue one at a time. After removinga symbol from the queue, it is pushed on a stack, and the function HOR isthen used in a loop to locate the associated baseline symbols, which are thenalso pushed on the stack. When HOR returns ; (e.g. the end of a baselineis found)\EOBL" is pushed on the stack to act as a separator. The nextsymbol in the queue is then removed and the same process repeated untilthe queue is empty.When the queue is empty, the algorithm reverts back to locating base-lines, by using START on all the appropriate regions for secondary baselinesrelative to the symbols on the stack. Any symbols which start a secondarybaseline are placed in the queue. The algorithm stops when either all sym-bols have been added to the baseline structure tree, or no new baselines arefound (in which case an error is indicated). The baseline structure tree isthen returned.Some alterations may be made to the algorithm. For instance, the al-gorithm has been constructed so that the tree is built one level at a time,though this is not necessary. An algorithm using a single stack which buildsthe baseline structure tree depth-�rst may also be created. The paired datastructures of a stack and a queue are remnants of earlier research, beforeSTART was used recursively.4.5 Tree RewritingGraph rewriting is a powerful and exible formalism. As discussed in Chapter2, it has been used for parsing many di�erent types of visual languages. Treerewriting, a subset of graph rewriting, has the advantage of being tractable.Tree rewriting has proven a very powerful technique for translating program-ming languages to di�erent versions/dialects[16].The context present in a baseline structure tree may be used to manip-ulate the tree in order to represent higher order-spatial relations directly,and/or subtrees may be regrouped and re-parsed. In this way, the initialbaseline structure tree produced by the algorithm above may be used forstructural analysis using di�erent visual language syntax de�nitions, i.e. di-alects. This is why the baseline structure tree represents a meta-syntax; theoriginal structure is a subset of the syntax of existing dialects (of which weare aware).As an example, recall Figure 3.3. In this instance the baseline structure

4.5 Tree Rewriting 49tree, while valid in terms of representing the de�ned spatial relations, wasnot descriptive enough to represent the common syntactic structure presentin the context of a summation.The simple rule provided in Chapter 3 for rewriting Figure 3.3 as Figure3.4 is adequate for limits comprised of a single baseline. This rule representsa higher-order spatial relation (i.e. the new \ULIMIT" relation is de�ned interms of binary spatial relations in the tree).However, it may be possible for fractions and/or other limits to be present.To address this new possibility, one can simply remove and then concatenatethe three regions SUPER, ABOVE and TLEFT found as children of a limitsymbol. Place the concatenated regions in a separate input to the BaselineStructure Tree parsing algorithm. Then place the resulting baseline structuretree and place the result as a child of the limit symbol with the relation label\ULIMIT".As a last example, consider Figure 4.5. The initial baseline structuretree (Figure 4.5b)r shows the \1" from \10000" as part of the superscriptregion of the \x". This is because the P does not start the main baseline.However, the superscript region o� of the \x" may be divided into two regionspartitioned by the rightmost symbol which has a centroid that overlaps theP horizontally; in this case the \j". All symbols to the left of and includingthe partition symbol remain in the SUPER region; the remaining symbolsare placed in a new region labeled ULIMIT. The symbols in the SUPER andABOVE regions relative to theP are also placed in ULIMIT, and the subtreesrooted at SUPER and ABOVE removed. The symbols in the ULIMIT andSUPER regions (SUPER relative to the \x") are then re-parsed, producingthe tree in Figure 4.5c.It is worth pointing out that using whitespace analysis may have simpli-�ed this problem greatly. The algorithm described in this thesis uses neitherwhite space or point-size information. The expression in Figure 3.2 wouldrequire this type of analysis, as the last tree rewrite provided would not alterthe baseline structure tree, leaving part of the limit (the 1) in the SUPERregion of the x.The visual language syntax de�ned by the parsing algorithm and theabove rewrite rules is very simple. However, it is descriptive enough to obtainthe structure of a large number of expressions, as demonstrated in the nextchapter. Future work stemming from more complex syntax de�nitions isdiscussed in the last chapter.

50 A Mathematics Notation Parser4.6 Translation to Output StringsA linear representation of a baseline structure tree, called a positional sen-tence[22], may now be obtained by performing a depth-�rst traversal of thetree. The structure of an expression in a positional sentence translated froma baseline structure tree is a recursive structure of the form:s0 [ABOVEfSB1g] [BELOWfSB2g] [SUBSCfSB3g] [SUPERfSB4g][ULIMITfSB5g] [BLIMITfSB6g] [s1]All items in square brackets are optional, and each nested baseline (SB�)posesses the same structure as above.A LATEX string can be obtained in a similar fashion, mapping the ap-propriate symbol names and/or contexts in the tree to the correspondingLaTeX symbol. Alternately the baseline structure tree may be rewritteninto a LATEX compatible form (i.e. replacing symbols and contexts) andthen directly translated to a string using a depth-�rst traversal. In eithercase the root (\Expression") needs to be removed in order to create a legalLATEX string.In theory this type of translation is also possible for Maple and Mathemat-ica or other computer algebra system languages, but this involves additionalsemantic issues discussed in Chapter 7, and is beyond the scope of this thesis.

4.6 Translation to Output Strings 51

0000

00001

i

i = 1

x
10000

Expression

x i

BELOW

1
SUPER

i = 1
SUBSCa. Input Expression

b. Initial Baseline Structure Tree

c. Rewritten Baseline Structure Tree

a

j

Expression

x i

BELOWSUPER

i = 1
SUBSC

ULIMIT

a

j

j

a

ABOVE

Figure 4.5: Tree Rewriting

52 A Mathematics Notation Parser

Chapter 5Implementation and TestResultsBased on the general parser outlined in Chapter 4 a parsing application wasbuilt, the Diagram Recognition Application for Computer Understandingof Large Algebraic Expressions (DRACULAE). DRACULAE was developedusing an existing mathematics entry system called FFES, developed by SteveSmithies at the University of Otago, New Zealand. FFES had a parser of itsown which was based on existing graph grammar techniques[47] but whichwas very restricted in terms of number of symbols and layout that the systemcould handle. DRACULAE was developed with the intention to augmentand/or replace the graph grammar-based parser. The FFES graphical userinterface is shown in Figure 5.1.DRACULAE was written in Java, and FFES was implemented in Tcl/Tkand C++. DRACULAE has been interfaced with FFES through alterationof the FFES Tcl/Tk code. Both DRACULAE and FFES have been builton Linux platforms, and DRACULAE has also been succesfully built underSolaris.At present, only LaTeX and positional sentences are available as output,i.e. structural representations. In the last chapter we discuss issues in obtain-ing mappings to semantic representations such as Maple and Mathematicastrings.In the following a general overview of FFES and DRACULAE are pro-vided, followed by a discussion of test results for DRACULAE.53

54 Implementation and Test Results

Figure 5.1: The Freehand Formula Entry System5.1 The Freehand Formula Entry SystemIn this section we briey outline the FFES system. For greater detail, pleasesee [47, 48].The Freehand Formula Entry System is designed to allow an individualto input math expressions to a computer using a mouse or data tablet. Thesystem is comprised of a graphic user interface, a graph-grammar parser anda nearest-neighbour symbol recognizer (created by Jim Arvo at Caltech).The user draws a number strokes, which FFES tracks and groups forrecognition in the background. After a speci�able time delay or after fourstrokes have been made (the maximum number of strokes needed for theset of symbols recognized), the symbol recognizer is called on all possiblepartitions of the strokes sent to the recognizer. Note that Jim Arvo hasindicated that a newer version sends only O(n2) sets of stroke partitions to

5.1 The Freehand Formula Entry System 55the recognizer.The system allows easy correction of any stroke grouping or symbol iden-tity recognition errors. The \Group" button allows the user to select strokesto be joined by drawing a line through the strokes to be grouped. Theprogram then performs recognition on the selected group and any strokesseparated by the grouping.If a symbol label is incorrect, the \Replace" button allows the user to clickthe mouse on the misrecognized symbol, and then select from a pull-downlist of labels (in order of con�dence from the symbol recognizer) or type alabelling string in from the keyboard.In addition, the spatial position of symbols may be moved using the\Select" button. The user can select individual symbols or groups of symbolsand move them in the image. This is useful for interaction between theparser output and the user; inputs which have their structure misparsed canbe easily altered.The original graph-grammar based parser may be called on the recog-nized symbols using the \FFES parser" button, while the \DRACULAEparser" calls the implementation of the baseline structure-tree based parsingalgorithm described in the last chapter. The FFES parser was kept in theapplication for comparison only, and in the future will be removed.The error-correction facilities of FFES proved invaluable during devel-opment of DRACULAE, because this allowed our research to assume thepresence of a perfect symbol recognizer. Because of the clear labelling inFFES, any mis-labelled symbols in the image input can be quickly locatedand corrected. While the user may occassionally miss mis-classi�ed symbols,these errors are easily detected. Likewise, if the layout of symbols confusesthe parser, this can be easily corrected through directly manipulating thelocation of the symbols. Currently DRACULAE parses in under two secondson average on a Pentium-III 450MhZ Linux system, with a two to ten sec-ond delay to create the graphical user interface window. This is due to theimplementation language (Java) rather than the complexity of the parser.FFES was tested with human users, and was found to be a promising wayto input mathematical expressions to a computer[47]. The largest drawbackin the system, time and accuracy wise was the existing parser.

56 Implementation and Test Results5.2 DRACULAE implementationDRACULAE is comprised of a parser and a graphic user interface. DRAC-ULAE takes a list of symbols as input (from any source providing boundingbox and symbol identity information), and passes it to the parser. Thenthe baseline structure tree output by the parser is passed to the graphicuser interface, which displays the tree and calls translators to display theLATEX and positional sentence translations, as shown in Figure 5.2. Tabsare used to switch between the \Image Viewer", which displays an imageof the LATEX processed string shown in the Output String line (e.g. pabx),and the \Tree Viewer", which shows the baseline structure tree and symbolattributes.

Figure 5.2: DRACULAE Graphic User Interface (Image and Tree ViewsShown)Java was an ideal prototyping language for the following reasons. First,it creates a (theoretically) platform independent prototype. Second, thejavadoc facility was appealing from a program understanding and analysispoint of view. Third, the \Swing" library allowed automated visualizationof the tree structure, which was crucial to the program design.

5.3 Test Results 57DRACULAE is relatively fast, parsing in under a second for many largeexpressions. In Linux the largest delay seems to result because the versionof Java which was available did not posess a just-in-time compiler, resultingin purely interpreted execution. Window creation and display is particularlyslow (taking up to 10 seconds at times).In addition to being relatively fast, DRACULAE is robust. If symbolsare missed in the input, a message is sent to the terminal along with thesymbols missed. The part of the expression that was parsed is passed along.If no input is passed, a single node labelled "Expression" (the root of thetree) is returned.5.3 Test ResultsThrough FFES, DRACULAE has been tested on hundreds of mathematicalexpressions. There are approximately one hundred test cases which act as atest suite. Examples of inputs which have been properly recognized are pre-sented in Figures 5.3 to 5.7. Figures 5.3 and 5.5 are taken from a Calculustextbook[41], while Figure 5.4 is presented as an example of limit handlingin DRACULAE. Figure 5.6 shows an expression with accents properly han-dled by DRACULAE, and �nally Figure 5.7 demonstrates a large, complexexpression recognized by DRACULAE.5.3.1 General ResultsThe following are some general results obtained during testing.� On average the time from requesting a parse from DRACULAE toviewing the graphical user interface is under ten seconds.� We have tested on expressions with more than 40 symbols in complexlayouts, and noticed little or no performance discrepancy comparedwith smaller expressions.� DRACULAE is robust. If a misparse occurs, the generated positionalsentence and LATEX strings are returned, and a LATEX image created. Inthis case the structure of the baseline structure tree may be observedif the image does not o�er enough information. The LATEX stringwill often have the spatial relations explicitly in the output image in

58 Implementation and Test Resultsthis case (e.g. ABOVE, SUPER etc. appear directly in the generatedimage). Empty input is handled by returning a baseline structure treewith a single root and the string \Expression" as LATEX output.� As DRACULAE performs no semantic analysis, syntactically invalidinputs (e.g. with unmatched parentheses) are handled without di�-culty, provided the baseline structure is clear to DRACULAE.� The thresholds used for regions work reasonably well if there is littleskew in the input expression. However, slanted expressions result inimproper subscripting or superscripting.� Horizontal lines are mapped to division lines, subtraction symbols, over-line (e.g. boolean negation) or underline depending on the context inthe baseline structure tree. For instance, if a horiztonal line has sym-bols above and below, LATEX is instructed to create a fraction. If theline has an argument above or below, underline or overline strings arecreated. Finally, if no symbols are above or below the line, the line istranslated as a subtraction symbol. Horizontal lines are thus allowedto interact in complex ways with little ambiguity.� When horizontal lines overlap less than the required thresholded amountfor overlap detection, unusual outputs are created.� Limit symbols (e.g. R ;P) may have overlapping limits (see Figure 5.3),and these limits may be of almost arbitrary complexity, as shown inFigure 5.4. However, due to the current de�nition of START, the dom-inant limit symbol must be leftmost in the case of an expression such asthat given in Figure 5.4. This could be resolved through incorporatingsize information into START's de�nition.� There is a rewrite rule to collect separated = signs using context inthe tree. The particular version that has been implemented does notwork if the = is in a limit, but otherwise performs well. This couldbe resolved by a constraint on the length that a line must be to beconsidered \overlapping" a limit symbol.� Many expressions which are not translated to LATEX appropriately arenontheless recognized accurately. For instance, choice notation createdusing single integers and/or variables have the relative position of the

5.3 Test Results 59
Sigma

t 0

(

t

0

u v

t

−

j

)

omega

i

j =

−
n

Sigma

1

n
1

−

=

j

Figure 5.3: Test Input Example 1symbols correctly represented in the baseline structure tree. A treerewrite to group the expression into an appropriate LATEX string simplyhasn't been created yet.

60 Implementation and Test Results
7

j

+

2

7
)

i
(

i
6=

j =

Sigma

Sigma

4

Figure 5.4: Test Input Example 2
integral integral

0

1
1

−

1

integral −

−

1

2

+

2) 1

d

x

d

z

2/

yx

(

x
2

1
−

sqrt

sqrt
1 4

x

d

y
−

Figure 5.5: Test Input Example 3

5.3 Test Results 61
−

b

disjunctionc

(

disjunction
a

−

)

Figure 5.6: Test Input Example 4
4

x

2

2
a

sqrt

sqrt

−

integral

0

5

x

−
4

+ 6

x

d

+

−

−

b + b

2

−

4

ca

sqrt

2

a

2

)
(

+

46

−
2

x

2

3

3

2

2

−

Figure 5.7: Test Input Example 5

62 Implementation and Test Results

Chapter 6Future Work and ConclusionIn this chapter future work arising from this research is discussed. Improve-ments which may to be made to DRACULAE are outlined, along with moregeneral issues such as reimplementation of DRACULAE in TXL, semanticissues which arise in mapping from baseline structure trees to semantic in-terpretations, and diagrammatic notations other than mathematics notationwhich may bene�t from a recognition method similar to baseline extraction.6.1 Limitations of DRACULAE6.1.1 Starting Symbol De�nitionAs noted in the last chapter, Figure 5.4 would not be successfully parsed if theP in the upper limit were moved to the left of the lower P. This is becausethe operator dominance analysis currently performed by START does nottake symbol size into account. It also was not originally clear that this wasan analysis of operator dominance rather than simply a spatial analysis.With this new information, DRACULAE would bene�t greatly from a moregenerally de�ned START function with a better de�ned operator dominanceanalysis.6.1.2 WhitespaceThe current implementation of DRACULAE performs no tokenization ofinput, and does not provide rewrite rules to group integers, separate function63

64 Future Work and Conclusionnames, etc. This would not be di�cult to add to the current system, howeveranalysis of whitespace is necessary for creating a more mature system.Futher, neither matrices or multiple line expressions are recognized prop-erly using DRACULAE. It is unclear whether simple rewrites could be cre-ated to handle these cases, though it seems more likely that segmenting theinput and sending single-line expressions to DRACULAE would result inbetter performance due to the potential complexity of analysis.6.1.3 Sensitivity to Symbol SizeVery large symbols have very large regions, and small symbols vice-versa. Itis unclear whether representation of symbols by single points in handwrittenexpressions is reasonable, or whether some additional bounding box and/orpixel information would result in better performace, particularly in situationswhere skew is present.6.1.4 Pixel Level InformationDRACULAE cannot, nor will it be able to handle structures which requirepixel-level information. As an example, consider nth-roots. Without knowingwhere the line dividing the expression into inner and outer parts of the squareroot is, it is impossible to di�erentiate a value in the scope of a root from avalue indicating the degree of a root.An arbitrary threshold could be used, but this would restrict the typesof expressions that could be accepted by DRACULAE.In order to locate the degree of a root without uncertainty, DRACULAEwould need access to the position of the dividing line. Kerned symbols areanother example where pixel level information would result in improved per-formance, for instance in the case of Tn, which DRACULAE would currentlyrecognize as T BELOW fng if the T bounding box overlaps the centroid ofthe n.6.2 TXL Implementation of DRACULAEJava was a convenient language for prototyping DRACULAE, abstracting agreat deal of low level details. However, it is not easy to express tree rewritingrules in Java, requiring a fairly large amount of detailed code for even a single

6.2 TXL Implementation of DRACULAE 65rewrite. Additionally, while the Java implementation of DRACULAE is fast,it remains to be seen how rapidly a version in a compiled language wouldexecute.TXL is a programming language which performs a process identical tothat used for DRACULAE: a tree is built using a grammar, the tree is rewrit-ten using a set of productions, and then the tree is translated into an outputstring[16]. TXL allows attributed nodes in its trees, making the translationfrom Java to TXL relatively easy. TXL represents tree productions usinga compact and simple syntax; this makes extension and maintenance of asystem like DRACULAE easier than if the system is programmed in pro-gramming language such as C, C++ or Java. To extend DRACULAE asit currently is to a real system capable of handling dialects, Figure 6.1 isproposed.

Dialect 1

Dialect 2

...

Dialect n

(Semantic Representation, i.e. Maple)
Type IV Representation

Type III Representation

...

Dialect n

(Attributed Symbol List) (TXL)

TXL Dialect Translators

...

Translation Program(s) for Dialect 1

Translation Program(s) for Dialect 2

Translation Program(s) for Dialect n

Baseline Structure Tree Builder

Dialect 1

Dialect 2

i.e. LaTeX)
(Structural Representation,

Type II Representation Type III Representation

Positional Sentence)
(Structural Representation:

Figure 6.1: Proposed TXL Reimplementation of DRACULAE

66 Future Work and Conclusion6.3 Issues in Semantics of Mathematics No-tationAs stated earlier, mathematics notation is a natural visual language and as aresult does not possess a �xed semantic interpretation. Therefore, it would beworth making a study to determine which parts of mathematical semantics,if any, are �xed (i.e. are hard conventions) and which uctuate by dialect(i.e. are soft conventions).In order for a semantic interpretation to be made, the baseline structureobtained using a system such as DRACULAE must be broken/rewritten intotokens: integer values must be distinguished from decimal values, exponentialnumbers, function names, variable names, and so on. The current systemmakes no such analysis, though this is clearly necessary for both displayingmore complicated expressions (i.e. to indicate to LATEX where whitespace isto appear) and for semantic interpretation and/or evaluation of mathematicalexpressions that have had their baseline structure extracted. This would notbe di�cult to add directly to DRACULAE in the form of tree rewrite rules.In the case of simple arithmetic, a semantic interpretation may obtainedthrough mapping from the baseline structure tree to the operator tree forthe expression[40], as shown in Figure 6.2.
*

()

2

2

+

3

2 + 2 3*()

2 + (2 * 3)

a. Expression

Expression

b. Baseline Structure Tree c. Operator TreeFigure 6.2: Simple Arithmetic Expression and RepresentationsThe operator tree may be obtained from the baseline structure tree usingoperator dominance[12]. The operator tree indicates the order of applicationof the operators bottom-up.For more complex mathematical expressions, a computer algebra systemlanguage such as Maple or Mathematica may be used for representation. Forthis type of representation to be constructed, a priori semantic information is

6.4 Use of Directed Recognition Algorithms in Other Notations67required. For instance, to produce appropriate output for a Maple programthat uses a function p, there must be a facility to indicate that p(a) is in factfunction applciation and not implied multiplication of terms.It would be worth studying what other types of a priori semantic in-formation are needed to produce valid semantic interpretations for di�erentdialects of mathematics notation. With such information, DRACULAE or asimilar system could be extended to produce strings in a computer algebrasystem format (e.g. Maple) for di�erent dialects of mathematics notation, asshown in Figure 6.1.
6.4 Use of Directed Recognition Algorithmsin Other NotationsThe algorithm used in this thesis exploits the direction inherent in baselines.Given the ability to locate the beginning of a baseline symbol set, an al-gorithm may be de�ned in order to progress left-to-right to �nd the othersymbols on a given baseline. In a divide and conquer fashion, baseline symbolsets are located recursively using binary spatial relations.Other notations besides mathematics notation have a clear element ofdirection, and it may be possible to recognize the structure of these notationsin a similar fashion. Music notation for instance has direction inherent inthe progression of notes, left-to-right, across a sta�. The analogy betweenbaselines in mathematics notation and a voice in music notation is strong; infact, a single musical voice can be viewed as a type of symbol set similar toa baseline symbol set. A complicating factor in music notation is that unlikebaselines, voices in music notation can overlap, and as a result it is not trivialto determine which voice a note belongs to. It is worth examining whethera partially or completely dialect-neutral representation of the structure ofmusic notation may be obtained. There are many dialects of music notation,so it is unclear whether this is possible.Circuit diagrams also have an element of direction: the direction of cur-rent ow. If power sources can be located in a diagram, it may be possibleto employ the direction of circuit ow directly to aid recognition.

68 Future Work and Conclusion6.5 ConclusionThe research presented in this document has established the following thesis.Through separating spatial structure from semantics in mathe-matics notation, a general and exible recognition of mathematicsexpressions may be obtained.As a reminder, general is used to indicate that dialects of mathematics no-tation may be conveniently handled. Flexible refers to the ability to handlea large range of symbol placements.The following contributions which support this thesis have been discussed.1. A model for the structure of mathematics notationA novel model, called the baseline structure tree, was introduced inChapter 3. This model represents spatial structure between baselinesin mathematics expressions. It is demonstrated in Chapter 3 how abaseline structure tree may be rewritten in order to perform syntacticanalysis for di�erent dialects of mathematics notation.2. A visual language parsing algorithmIn Chapter 4 an algorithm which creates baseline structure trees fromattributed symbol lists is described. The parsing algorithm presented ismore exible than exisiting mathematics notation recognition systemsbecause the spatial relationships used to obtain baseline structure maybe rede�ned, and tree rewriting may be used to handle soft conventions(i.e. dialects).3. An implementationAn implementation of the visual language parsing algorithm was pre-sented in Chapter 5. The implementation is named the DiagramRecog-nition Application for Computer Understanding of Large Algebraic Ex-pressions (DRACULAE). Chapter 5 outlines how DRACULAE hasbeen integrated into a complete recognition system for handwrittenmathematics notation, the Freehand Formula Entry System (FFES).The symbol recognition and user interface components of FFES werecreated by Steve Smithies, Jim Arvo and Kevin Novins [48]. The systemhas been tested on hundreds of handwritten expressions with excellent

6.5 Conclusion 69results. FFES and DRACULAE were demonstrated at CASCON '99and were enthusiastically received. Public distribution of the system isplanned.

70 Future Work and Conclusion

Bibliography[1] R.H. Anderson. Syntax-Directed Recognition of Hand-Printed Two-Dimensional Equations. PhD thesis, Harvard University, Cambridge,MA, January 1968.[2] R.H. Anderson. Two-dimensional mathematical notation. In K.S. Fu,editor, Syntactic Pattern Recognition. Springer-Verlag, New York, 1977.[3] Stephan Baumann. A simpli�ed attributed graph grammar for high-levelmusic recognition. In Proc. Third Intl. Conf. on Document Analysis andRecognition, Montreal, Canada, August 1995.[4] Abdelwaheb Belaid and Jean-Paul Haton. A Syntactic Approach forHandwritten Mathematical Formula Recognition. IEEE Transactionson Pattern Analysis and Machine Intelligence, 6(1):105{111, January1984.[5] Benjamin P. Berman and Richard J. Fateman. Optical character recog-nition for typeset mathematics. In Proceedings of the 1994 InternationalSyposium on Symbolic and Algebraic Computation, pages 348{353, July1994.[6] Dorothea Blostein. General diagram-recognition methodologies. In Lec-ture Notes in Computer Science, volume 1072, pages 106{122. Springer-Verlag, New York, 1995.[7] Dorothea Blostein and Ann Grbavec. Recognition of mathematical no-tation. In Handbook of Character Recognition and Document ImageAnalysis, pages 557{582. World Scienti�c Publishing Company, 1997.71

72 BIBLIOGRAPHY[8] H. Bunke. Attributed programmed graph grammars and their applica-tion to schematic diagram interpretation. IEEE Transactions on PatternAnalysis and Machine Intelligence, 4(6):574{582, November 1982.[9] Florian Cajori. A History of Mathematics. Chelsea Publishing Company,New York, 1919.[10] Florian Cajori. A History of Mathematical Notations. The Open CourtPublishing Company, Chicago, Illinois, 1929. 2 vols.[11] G. Castagliola, A. De Lucia, S. Ore�ce, and G. Tortora. A frameworkof syntactic models for the implementation of visual languages. In Proc.1997 Symposium on Visual Languages, pages 58{65, 1997.[12] Shi-Kuo Chang. A method for the structural analysis of two-dimensionalmathematical expressions. Information Sciences, 2:253{272, 1970.[13] T.W. Chaundy, P.R. Barrett, and Charles Batey. The Printing of Math-ematics. Oxford University Press, London, 1957.[14] Ling-Hwei Chen and Peng-Yeng Yin. A system for on-line recognition ofhandwritten mathematical expressions. Computer Processing of Chineseand Oriental Languages, 6(1):19{39, June 1992.[15] P. A. Chou. Recognition of equations using a two-dimensional stochasticcontext-free grammar. In W. A. Pearlman, editor, Visual Communica-tions and Image Processing IV, volume 1199 of SPIE Proceedings Series,pages 852{863, 1989.[16] J.R. Cordy, C.D. Halpern, and E. Promislow. Txl: A rapid prototyp-ing system for programming language dialects. Computer Languages,16(1):97{107, Jan 1991.[17] Genarro Costagliola and Shi-Kuo Chang. Parsing linear pictorial lan-guages by syntax-directed scanning. Languages of Design, 2:223{242,1994.[18] Genarro Costagliola, Andrea De Lucia, and Sergio Ore�ce. Towardse�cient parsing of diagrammatic languages. In Proceedings of AdvancedVisual Interfaces, pages 162{171. ACM Press, 1994.

BIBLIOGRAPHY 73[19] Genarro Costagliola, Andrea De Lucia, and Sergio Ore�ce. A parsingmethodology for the implementation of visual systems. IEEE Transac-tions on Software Engineering, 23(12), December 1997.[20] Genarro Costagliola, Andrea De Lucia, Sergio Ore�ce, and Genny Tor-tora. Positional grammars: A formalism for LR-like parsing of visuallanguages. In Visual Language Theory, pages 171{191. Springer-Verlag,New York, 1998.[21] Gennaro Costagliola and Shi-Kuo Chang. Using linear positional gram-mars for the LR parsing of 2-d symbolic languages. draft paper; for copycontact gencos@dia.unisa.it, 1998.[22] Gennaro Costagliola, Andrea De Lucia, and Sergio Ore�ce. Towardse�cient parsing of diagrammatic languages. In Proceedings of AdvancedVisual Interfaces 1994, pages 162{171. ACM Press, 1994.[23] Yannis A. Dimitriadis and Juan L�opez Coronado. Towards an art basedmathematical editor, that uses on-line handwritten symbol recognition.Pattern Recognition, 28(6):807{822, 1995.[24] Dov Dori and Amir Pneuli. The grammar of dimensions in machinedrawings. Computer Vision, Graphics and Image Processing, 42:1{18,1988.[25] Talaat Salem El-Sheikh. Recognition of handwritten arabic mathemat-ical formulas. In United Kingdom Information Technology Conference,March 1990.[26] Hoda Fahmy and Dorothea Blostein. A graph grammar programmingstyle for recognition of music notation. Machine Vision and Applica-tions, 6:83{89, 1993.[27] Hoda Fahmy and Dorothea Blostein. A graph-rewriting paradigm fordiscrete relaxation: Application to sheet music recognition. Interna-tional Journal of Pattern Recognition and Arti�cial Intelligence, August1997.[28] Richard J. Fateman and Taku Tokuyasu. Progress in recognizing typesetmathematics. In Proceedings of the International Society for OpticalEngineering, volume 2660, 1996.

74 BIBLIOGRAPHY[29] Claudie Faure and Zi Xiong Wang. Automatic perception of the struc-ture of handwritten mathematical expressions. In R. Plamondon andC. G. Leedham, editors, Computer Processing of Handwriting, pages337{361. World Scienti�c Publishing Co., 1990.[30] K.S. Fu. Syntactic Pattern Recognition. Springer-Verlag, New York,1977.[31] Ann Grbavec. Recognition of mathematics notation using graph rewrit-ing. Master's thesis, Queen's University, Kingston, Ontario, Canada,January 1995.[32] Ann Grbavec and Dorothea Blostein. Mathematics recognition usinggraph rewriting. In Third Intl. Conf. on Document Analysis and Recog-nition, Montreal, August 1995.[33] Nicholas J. Higham. Handbook of Writing for the Mathematical Sciences.Society for Industrial and Applied Mathematics, Philadelphia, 1993.[34] Donald E. Knuth. TeX and METAFONT - New Directions in Typeset-ting. Digital Press, 12 Crosby Drive, Bedford, MA 01730, USA, 1979.[35] Andreas Kosmala and Gerhard Rigoll. On-line handwritten formularecognition using statistical methods. In Proceedings of the FourteenthInternational Conference on Pattern Recognition, pages 1306{1308, Au-gust 1998.[36] St�ephane Lavirotte and Lo�ic Pottier. Optical Formula Recognition. InProc. 4th International Conference on Document Analysis and Recogni-tion, volume 1, pages 357{361, Ulm, Germany, 1997.[37] Hsi-Jian Lee and Jiumn-Shine Wang. Design of a mathematical ex-pression recognition system. In Proceedings of the third InternationalConference on Document Analusis and Recognition, pages 1084{1087,1995.[38] Hsi-Juan Lee and Min-Chou Lee. Understanding Mathematical Expres-sions Using Procedure-Oriented Transformation. Pattern Recognition,27(3):447{457, 1994.

BIBLIOGRAPHY 75[39] Kim Marriott, Bernd Meyer, and Kent D. Wittenburg. A survey of vi-sual language speci�cation and recognition. In Visual Language Theory,pages 5{85. Springer-Verlag, New York, 1998.[40] William A. Martin. Computer Input/Output of Mathematical Expres-sions. In Proceedings of the Second Symposium on Symbolic and Alge-braic Manipulation, pages 78{89, March 1971.[41] William G. McCallum, Deborah Hughes-Hallett, Andrew M. Gleason,and et al. Multivariable Calculus: Draft Version. John Wiley and Sons,Inc., 1994.[42] Eric G. Miller and Paul A. Viola. Ambiguity and constraint in math-ematical expression recognition. In Proceedings of the 15th NationalConference of Arti�cial Intelligence, Madison, Wisconsin, July 1998.American Association of Arti�cial Intelligence.[43] Brad A. Myers. Taxonomies of visual programming and program visu-alization. Journal of Visual Languages and Computing, 1:97{123, 1990.[44] Masayuki Okamoto and Akira Miyazawa. An experimental implemen-tation of a document recognition system for papers containing math-ematical expressions. In H.S. Baird H. Bunke and K. Yamamoto,editors, Structured Document Image Analysis, pages 36{53. Springer-Verlag, New York, 1992.[45] Nasayuki Okamoto and Bin Miao. Recognition of Mathematical Expres-sions by Using the Layout Structures of Symbols. In Proceedings of theFirst International Conference on Document Analysis and Recognition,volume 1, pages 242{250, Saint-Malo, France, 1991.[46] Giulia M. Pagallo. Constrained attribute grammars for recognition ofmulti-dimensional objects. In Advances in Pattern Recognition, pages359{365. Springer-Verlag, 1998.[47] Steve Smithies. Freehand formula entry system. Master's thesis, Uni-versity of Otago, Dunedin, New Zealand, May 1999.[48] Steve Smithies, Kevin Novins, and James Arvo. A Handwriting-BasedEquation Editor. In Proc. Graphics Interface, Kingston, Ontario,Canada, June 1999.

76 BIBLIOGRAPHY[49] Hashim M. Twaakyondo and Masayuki Okamoto. Structure Analysisand Recognition of Mathematical Expressions. In Proceedings of theThird International Conference on Document Analysis and Recognition,volume 1, Montr�eal, Canada, 1995.[50] Zi-Xiong Wang and Claudie Faure. Structural Analysis of HandwrittenMathematical Expressions. In Proceedings of the Ninth InternationalConference on Pattern Recognition, pages 32{34, 1988.[51] H.-J. Winkler, H. Fahrner, and M. Lang. A Soft Decision Approachfor Structural Analysis of Handwritten Mathematical Expressions. InInternational Conference on Acoustics, Speech and Signal Processing,pages 2459{2462. IEEE, 1995.[52] Hans-J�urgen Winkler and Manfred Lang. Symbol segmentation andrecognition for understanding handwritten mathematical expressions. InProgress in Handwriting Recognition. World Scienti�c, Singapore, 1997.[53] Yanjie Zhao, Tetsuya Sakurai, Hiroshi Sugiura, and Tatsuo Torii. Amethodology of parsing mathematical notation for mathematical com-putation. In Proceedings of the International Symposium on Symbolicand Algebraic Computation, July 1996.

Appendix AA Positional Grammar forBaseline StructureIn this appendix a positional grammar is presented which represents thestructure of baselines in mathematics notation (i.e. a syntax of baselinestructure trees). The strings derived from the grammar are positional sen-tences which correspond to baseline structure trees.A positional grammar is an attributed context-free grammar augmentedby a set of positional relations which are explicit in the derived parse string.The output of a positional parser for a positional grammar is a string calleda positional sentence, which alternates terminals of the grammar with posi-tional relations (see [22, 18, 17, 11, 19, 21, 20] for more details). There isa class of positional grammars for which fast (i.e. O(n2)) LR parsers withactions may be constructed using an automatic parser generator, such asYACC.In a positional grammar multiple positional relations on one symbol arepresented using enumeration of relations in the positional sentence. For ex-ample, in aHOR0fcgSUPER1f2gSUBSC2figthe numeral n after each relation indicate that it applies to the symbol on theimmediate right, and the n-th last symbol in the string. The above examplerepresents a2i c.Figure A.1 de�nes a positional grammar for the structure of baselines in amathematics expression. Note that SYMBOL is a terminal of the grammar,77

78 A Positional Grammar for Baseline Structure1. E ! SP BLSS2. BLSS ! BLS HOR BLSS j � *3. BLS! SYMBOL B C D E F G H4. B ! TLEFT fBLSSg j �5. C ! BLEFT fBLSSg j �6. D ! ABOVE fBLSSg j �7. E ! BELOW fBLSSg j �8. F ! SUPER fBLSSg j �9. G ! SUBSC fBLSSg j �10. H ! CONTAINS fBLSSg j �Figure A.1: Positional Grammar of Baseline Structurerepresenting an attributed symbol. Attributes are propagated from the lefthand side to the right hand side. This is done in the following way:1. Rule 1 will assign the wall attributes of BLSS to the pair ((-1,-1),(1,1))2. In Rule 2 the wall attributes of the left-hand BLSS (baseline symbolset) are passed to both of the nonterminals on the right hand side. TherightWall attribute of BLS (baseline symbol) is then set to the mini-mum bounding box coordinate for the symbol represented by the BLSSnonterminal on the right side of the rule (this provides the necessarypartition for SUBSC and SUPER regions).3. In Rule 3 the wall attributes of BLS are passed to SYMBOL and allnonterminals (B to H).4. In Rules 4-10 if a symbol is located the BLSS on the right hand sideinherits wall attributes equivalent to the region within which the symbolwas found.

A Positional Grammar for Baseline Structure 79A problem with the grammar above is that the grammar presents contextthrough bracketing, which is not present in the original positional grammarformalism. As a result, the manner in which to cleanly construct the bracket-ing in a parser for the grammar above has not presented itself. The algorithmin Chapter 4 is essentially equivalent to a top-down parser based on the gram-mar above. For that parsing algorithm, the bracketing issue is resolved byconstructing a baseline structure tree during the parse, and then bracketingbased on context while translating the tree into a string.Attributes need to be synthesized top-down for the grammar above, andas a result an LR parser could not be constructed for the grammar even if thebracketing issue were resolved. More research is needed to see whether thetechniques used by Costagliola et. al. to create LR parsers with actions maybe generalized to create LL parsers with actions. The advantage of such ageneralization is that it would allow the use of automatic parser generators tobuild LL as well as LR parsers for visual languages describable by positionalgrammars.

80 A Positional Grammar for Baseline Structure

Appendix BAlgorithms
B.1 START and OVERLAPIn the following we de�ne spatial functions START(R,listin), where R is aregion, and listin an input list. START(R,listin) returns the starting symbolsstart of input list listin in region R. We assume that listin is a list sorted byleftmost coordinate, indexed from 1 to the number of elements in the list.START Let listin be the passed input listLet (leftWall,bottomWall),(rightWall,topWall) be the passed values de�n-ing a region RLet leftmostIndex := -1Let limitIndex := -1Let listIndex := 1Let overlapIndex := -1Let n be the number of items in listinWhile leftmostIndex = -1 and listIndex � n� If listin(listIndex) is an unmarked symbol with its centroid inregion R, let leftmostIndex := listIndex� else let listIndex := listIndex + 1If leftmostIndex = -1 then return leftmostIndexelse � While listIndex � n and limitIndex = -181

82 Algorithms{ If listin(listIndex) is an unmarked limit symbol in region Rthen let limitIndex := listIndex{ else listIndex = listIndex + 1� If limitIndex = -1 or limitIndex = leftmostIndexreturn OVERLAP(leftmostIndex,topWall,bottomWall,listin)� else{ Let upperThreshold be the maximum y bounding box coor-dinate value at listin(limitIndex){ Let lowerThreshold be the minimum y coordinate boundingbox value at listin(limitIndex){ While listIndex > leftmostIndex� listIndex := listIndex - 1� If the centroid y coordinate of the symbol at listin(listIndex)< upperThreshold and the same y centroid coordinate �lowerThreshold then let overlapIndex := listIndex{ If overlapIndex < limitIndex thenreturn OVERLAP(leftmostIndex,topWall,bottomWall,listin){ else return OVERLAP(limitIndex,topWall,bottomWall,listin)END OF ALGORITHMNext we describe OVERLAP(symbolIndex,topWall,bottomWall, listin).OVERLAP Let symbolIndex be the passed index to listinLet topWall and bottomWall be passed y-coordinatesLet listin be the passed input listLet listIndex := symbolIndexLet stop := falseLet n be the number of items in listinIf listin(symbolIndex) is a line, then let maxLength be maxX - minX ofthat symbol.else let maxLength := -1Let mainLine := -1While listIndex > 1 and stop = false� If listin(listIndex - 1) contains a symbol which has a minX bound-ing box coordinate less than that of the symbol at listin(symbolIndex)then stop := true

B.2 Main Parsing Algorithm 83� else listIndex := listIndex - 1While listIndex � n and minX bounding box coordinate of the symbol atlistin(listIndex) is less than maxX of listin(symbolIndex)� If listin(listIndex) is{ An unmarked horizontal line with y centroid coordinate <topWall and � bottomWall and{ Has a minX bounding box coordinate�minX of listin(symbolIndex)and{ Is longer than maxLengththen let maxLength be the length of this line (maxX-minX) andlet mainLine := listIndexIf mainLine = -1, return symbolIndexelse return mainLineEND OF ALGORITHMThe worst-case time complexity for START and OVERLAP are O(n). Inthe worst case, OVERLAP scans the entire list �rst forward, and then back-ward, performing O(1) operations for each element, giving O(2n). STARTin the worst case will �rst scan the entire input forward and backward, in thecase of a limit symbol which is rightmost in the input with the start of one ofthe limits being leftmost (again, O(2n)). Assuming that all symbols horizon-tally overlap, the subsequent call to OVERLAP then requires an additionalO(2n) steps. 2n + 2n � O(n). Therefore both algorithms are of linear timecomplexity in the worst case.B.2 Main Parsing AlgorithmIn this section we present the full algorithm described in chapter 4.Let listin be a sorted list of preprocessed symbolsLet T be a tree with a single node at the root, TrootLet S be a stackLet Q be a queueLet ParentNode, SymbolNode and RelationNode be tree nodes

84 AlgorithmsLet Temp1 and Temp2 and sstart be integersLet region R = f(0,0),(1,1)gObtain the index of the start symbol sstart = SP(R)If sstart 6= �1, set the wall attributes of sstart to R, enqueue (sstart,Troot) in Q,and mark the symbol at listin(sstart)While Q is not empty� (EXTRACT BASELINES)While Q is not empty{ (Temp1,ParentNode) := dequeue(Q){ Assign to SymbolNode a new tree node with all the attributes ofthe symbol at Temp1 in listin{ Push (Temp1,SymbolNode) on S{ R := wallAttributes(Temp1){ Temp2 := HOR(listin,Temp1){ While Temp2 6= -1� Mark the symbol at listin(Temp2)� wallAttributes(Temp2) := wallAttributes(Temp1)� Let SymbolNode be a new tree node containing all attributesassociated with listin(Temp2)� Add SymbolNode as the last child of ParentNode� Push (Temp2,SymbolNode)� rightWall(Temp1) := minX(Temp2)� If Temp2 is a limit symbol, and Temp 1 is a horizontal line oropen bracket, assign leftWall(Temp2) := maxX(Temp1)� Temp1 := Temp2� Temp2 := HOR(listin,Temp1){ Push \EOBL" on the stack� (LOCATE SECONDARY BASELINES)While S is not empty{ If top(Stack) = \EOBL" then Pop(S){ (Temp1,SymbolNode) := Pop(s)

B.2 Main Parsing Algorithm 85{ Check all of the relevant secondary baseline regions for the symbolat index Temp1 in listin (TLEFT, BLEFT, ABOVE, BELOW,SUBSC, SUPER, CONTAINS - each calls START(R,listin) forR de�ned for the region being examined (see Figure 4.4)). Foreach region examined which returns an result (i.e. Temp2 :=START(R,listin(Temp1)) and Temp2 6= -1), do the following:� Mark the symbol at listin(Temp2)� wallAttributes(Temp2) := R� Let RelationNode be a new tree node labeled with the nameof the matching relation.� Add RelationNode as a child of SymbolNode� Enqueue (Temp2, RelationNode) in QScan the input. If any unmarked tokens remain, output an error indicatingsymbols in the input were not added to the baseline structure tree (thiscorresponds to Genarro Costagliola's \ANY" function[11]).Return TEND OF ALGORITHMThe algorithm is of time complexity O(n2). At most n symbols are con-sidered for each of the extract and locate processes (indicated in upper caseletters); i.e. the inner loops execute O(n) times each. HOR and START areboth O(n) as established earlier. This e�ciency is due to the determinismof the parser.An adjacency list representation may be used for the tree T. With anadjacency list, creating nodes is an O(n) operation in the worst case. Wenever need to examine the tree during the process of the algorithm.The maximum size of the tree is 2n, where n is the number of symbols inthe input list. The worst case occurs when no baseline symbol set has morethan one symbol as an element.

86 Algorithms

VitaName Richard ZanibbiPlace and year of birth Sudbury, Ontario, 1974Education Queen's University, 1993{1999Experience Teaching assistant, Department of Computing andInformation Science, Queen's University, 1998Research assistant, Department of Computingand Information Science, Queen's University,1998-1999Software Developer, Legasys Corporation,Kingston, Ontario, Canada, 1999Awards Wilfred Laurier University Scholarship(declined),1993Queen's Graduate Award, 1998-1999University of Otago Optical Music RecognitionResearch Scholarship(declined), 1999

87

