Recognition of Mathematics Notation via
Computer Using Baseline Structure

Richard Zanibbi

zanibbi@cs.queensu.ca

August 2000
External Technical Report
ISSN-0836-0227-
2000-439

Department of Computing and Information Science
Queen’s University
Kingston, Ontario, Canada K7L 3N6

Document prepared August 3, 2000
Copyright (©2000 Richard Zanibbi

Abstract

The spatial structure of mathematical expressions may be represented using
the structure of baselines in an expression. This baseline structure may be
represented as a tree, and then rewritten to represent different interpretations
of spatial structure in an expression. This structure tree may also be trans-
lated into mathematical string languages such as IXTEX, Maple etc. A parsing
algorithm which extracts baseline structure in mathematics expressions from
a list of attributed symbols is presented, along with an implementation of
the algorithm. The implementation of the parsing algorithm has been in-
terfaced with an online mathematics entry system. The resulting integrated
system allowed testing of the parser on hundreds of input expressions, with
encouraging results. Future work in the extension of the current mathematics
recognition technique and application of direction-based recognition to other
notations such as music notation and circuit diagrams are also discussed.

Acknowledgments

Thanks to Dorothea Blostein who was a fun, knowledgeable, and supportive
supervisor, Ed Lank for all his help with the design of DRACULAE and
the ideas in this thesis, Nick Willan for his implementation of the user in-
terface for DRACULAE and patiently listening to me work out many of
the ideas in this thesis at the white board (for the record, Nick named the
parsing application DRACULA and T simply added an “E”), Ken Whelan
for his fantastic proofreading, Gary Anderson, who saved my life on many
an occasion and was consistently an amazing source of information useful
and entertaining, Hoda Fahmy, whose experience and insight have been very
helpful (and who raised some of the semantics issues discussed at the end
of this thesis), Jianping Wu, for his help with course work and things C++,
Talib Hussein, Laurie Ricker, and all the other students and professors who
helped me survive my M.Sc. in various ways.

Thanks to Genarro Costagliola, who provided what for me was a highly
influential draft paper on recognizing a subset of mathematics notation using
a positional grammar, and some valuable comments.

Thanks to Steve Smithies, Kevin Novins and Jim Arvo for letting me use
FFES to develop DRACULAE. Without FFES, it would have been much
harder to develop and test DRACULAE.

Thanks to Debby, Linda, Irene, Sandra, Tom Bradshaw and Gary Powley
for all the help with the hard, thankless stuff that keeps things going and
gets them done.

Finally, thanks to Katey for listening to my rambles about this stuff over
and over again, and for being a fabulous proofreader, wife and friend.

Chapter 1

Introduction

In certain domains, the ability to use visual languages to communicate with
computers allows simpler and more succinct expression of a user’s intentions
than is possible with a string language. For example, it is easier for a user
to draw a complicated mathematical expression in mathematics notation
(a visual language) than to write the same expression in a string language
such as ITEX or Maple. Due to the sometimes more succinct and intuitive
expressions available in visual languages in comparison to string languages,
disciplines such as music, architecture and engineering commonly use visual
languages to convey information in the form of diagrams.

Informally, a visual language is comprised of sets of symbols laid out
in two or three dimensions (“diagrams”) which comprise the set of legal
expressions under a syntactic and semantic definition of the visual language.
The principal difference between a visual language and a string language is
that the syntax of a visual language is of higher dimensionality. As a result,
book-keeping is required for spatial relationships between the terminals and
non-terminals of the language when parsing [1].

A visual language may be defined as in the following:

Graphical Primitive: A graphical primitive is a line or dot in
an image.
Symbol: A symbol is defined by a non-empty set of spatial rela-

tions on graphical primitives which are intended to be per-
ceived as a single unit.

Diagram: A diagram is a two or three dimensional collection
(set) of symbols.

6 Introduction

Visual Language: A visual language is a set of diagrams which
are considered valid expressions in the defined language.
Both the syntax and semantics of a visual language are de-
termined through the spatial relationships between symbols
in a diagram (based on description in[39)]).

Currently there is ongoing research into the design and development of
visual programming languages, including compiler-compilers for these lan-
guages [11, 19, 20]. The diagrams of a visual programming language may be
translated to an executable form using a visual language compiler. Spread-
sheets are the most common and perhaps also the most successful type of
visual programming language to date[43].

Some visual languages such as math notation, music notation, and engi-
neering drawings are not formally defined, and have dialects (i.e. notational
practices which are not standard, but accepted). We call these visual lan-
guages natural visual languages, and define them as in the following:

Dialect: A dialect of a visual language is a variant of a visual
language which employs symbolic and /or spatial conventions
which are not standard in all other variants of the visual
language.

Natural Visual Language: A natural visual language is a vi-
sual language for which no formal description exists and/or
dialects of the visual language exist.

Mathematics notation is the natural visual language on which we focus
in this thesis. For the remainder of this thesis, when “mathematics nota-
tion” is used, it is the Western standard, read left-to-right, which is being
indicated (for an interesting comparison, see [25] for a discussion of recogniz-
ing Arabic mathematical notation, which is read right-to-left). Mathematics
notation is not formally defined: we usually assume that “mathematics no-
tation” includes notations for algebra, calculus, logic, and a number of other
mathematical disciplines. Mathematical discourse also often involves the use
of defined notation, and symbols often have different semantic interpreta-
tions (e.g. f(b) may be interpreted as function application or as implied
multiplication, or may be defined notation), producing dialects.

Natural visual languages such as mathematics notation have both hard
and soft conventions[6]. Hard conventions are those aspects of a visual lan-
guage that are consistent across dialects. Soft conventions may or may not

Introduction 7

apply to a particular diagram depending on the dialect used when a diagram
was created. An example of a hard convention in mathematics notation is
the left-to-right direction of interpretation. Soft conventions in mathematics
notation include layout of symbols.

The lack of formal definition for natural visual languages necessitates
identification of hard and soft constraints before a language definition may
be constructed. Without formal definitions, it is difficult and perhaps im-
possible to produce a completely accurate list of the two sets of conventions
for any natural visual language, as these have to be obtained largely through
observation and introspection. Once the conventions of the language are felt
to be reasonably well understood and classified as hard or soft, one may set
about defining a syntax specifying legal symbol placement in diagrams, and
the semantic interpretation of this set of legal diagrams. Again, the lack of
formal definition prevents this language definition from being complete in
many cases.

In the case of mathematics notation, some general descriptions of the
structure of the notation are available from typesetting procedures [13, 34,
33], a history of the evolution of mathematics notation [10], and a history of
mathematics [9]. Cajori’s history of notation unfortunately focuses on the
evolution of symbols rather than on the use of space between symbols. In
addition, the typesetting references describe notation from the perspective
of generating mathematics notation, and do not explicitly state the hard and
soft conventions of the notation[7].

Dialects complicate syntactic and semantic definition due to the resulting
multiple interpretations that are possible. For example, in mathematics no-
tation it is impossible to determine whether “cos” should be interpreted as a
function, or implied multiplication of variables without a prior decision about
how to interpret this letter grouping; i.e., choosing a soft convention. This
is an example of how interpreting visual language dialects requires a priori
information about the intended dialect of interpretation before the intended
syntax and semantics can be obtained from a diagram. If this information
is available, the appropriate soft conventions may be adopted to properly
recognize a diagram.

8 Introduction

1.1 The Visual Language Recognition Pro-
cess

Figure 1.1 shows the process of recognizing visual languages by computer,
and the four general types of diagram representation usable by a computer
(labeled Types I-1V). Each of these diagrammatic representations is explained
further below.

Visual Language Editor

- Allowsdirect input of symbols ... > TYPE I1: Attributed Symbol List
viamouse, datatablet and keyboard.

Parsing

TYPE I: Pixel Map
a Handwritten, Noisy
b. Handwritten, Noise-Free

c. Typeset, Noisy J B

d. Typeset, Noise-Free b
Visual Language Definition Natura Visual Language Conventions
Ssyntax | meee- - Soft Conventi gns (di.alect d.ependent)
- Semantics - Hard Conventions (dialect independent)

LEGEND:

— > Conversion of Diagram Representation

********** = Definitions Influencing a Representation or other Definitions
""""" > User-Specified Symbol List

* Structure Analysis of Pixel Map and Partitioning of Graphical Primitives
in Pixel Map by Structural Representation

Figure 1.1: The Visual Language Recognition Process

1.1.1 Diagram Representation Type I: Pixel Map

Initial input is obtained either via a pixel map or an online visual language
editor. An online editor has the advantage of eliminating symbol ambiguity,
as a symbol recognition step is unnecessary. A user may either directly
select symbols from a list, or a facility is provided for correction of symbol
recognition errors by the user before passing the resulting attributed symbol
list for parsing as done in [48].

Two issues concerning the use of pixel map representations are noise and
manner of production. Noise in a pixel map is any additional pixel informa-

1.1 The Visual Language Recognition Process 9

tion which is not part of the diagram itself. For instance, pixels in a pixel
map added through smudges and/or spurious dots present on scanned hard-
copy or added by the scanning process are considered noise. Also, typeset
input is more consistent in terms of both layout and symbol composition
than handwritten input. Noise-free handwritten and typeset inputs are gen-
erally produced on-line: that is, a user creates the pixel map on the computer
itself. Two examples of noise-free typeset pixel map are postscript images
produced using KTEX, and pixel maps created using a mouse or data tablet
in a drawing application.

1.1.2 Diagram Representation Type II: Attributed Sym-
bol List

An attributed symbol list gives for each symbol a name and set of additional
attributes, which may contain coordinates indicating the relative position
of the symbol in the diagram. Often this coordinate information is given
in the form of bounding box coordinates for two-dimensional notations. A
bounding box is the minimal rectangular region which contains all the pixels
of a symbol in a digitized image of a diagram.

1.1.3 Conversion from Diagram Representation Type
I to Type 11

A pixel map may be converted to an attributed symbol list through the use of
a symbol recognizer. Generally symbol recognition involves two stages. First,
graphical primitives are located in the pixel map. Second, these graphical
primitives are partitioned into sets based on their relative positions and then
labeled using a process that maps these sets to symbol labels.

Both noise and the manner of production influence the certainty of symbol
recognition. Pixel maps from typeset information are more consistent, and
thus it is less difficult to recognize symbols than when handwritten input
is given. Similarly, noise reduces the certainty of a symbol recognizer in
both typeset and handwritten pixel maps. Generally, statistical methods are
used to rank certainty of symbol identification and then produce the most
statistically likely symbol list (according to the statistical model employed).
In some instances, multiple lists of symbols ordered by statistical likeliness
are maintained to allow analysis of different symbol sets.

10 Introduction

In some cases symbol recognition is performed directly on the pixel map,
while in others (such as projection profile cutting[45]) the pixel map is divided
into regions before the application of a symbol recognizer, obtaining spatial
structure concurrently (this is shown via the “*’ labeled arrow). A symbol list
may be produced iteratively using feedback, or after a complete partitioning
of the pixel map.

1.1.4 Diagram Representation Type III: Structural Rep-
resentation

A structural representation describes the spatial structure of symbols in a
diagram. For example, a IS TEX string is an example of a structural repre-
sentation of a mathematics expression. Another less explicit example is a
parse tree produced by a visual language parser (from which a IXTEX string
may have been translated).

An attributed symbol list may be converted to a structural representation
through a visual language parser. As mentioned earlier, in some recognition
methods a structural representation is obtained directly from a pixel map.

1.1.5 Diagram Representation Type IV: Semantic Rep-
resentation

A semantic representation of a diagram contains the information content of
a diagram. A Maple string is a semantic representation of a mathematical
expression diagram. Semantic representations may in some cases be used
for evaluation. In a visual programming language this is the execution of
the program. In the case of a Maple string, this is the evaluation of the
mathematical expression by Maple.

For a given visual language definition, a semantic representation may be
obtained from a syntactically valid structural representation.

1.1.6 Definition of the Visual Language

The visual language syntax and semantics are needed for structural and
semantic analysis. In the case of natural visual languages, significant work
is required to identify and codify the syntax and semantics.

1.2 Thesis and Contributions 11

1.2 Thesis and Contributions

The research presented in this document investigates the following thesis.

Through separating spatial structure from semantics in mathe-
matics notation, a general and flexible recognition of mathematics
expressions may be obtained.

By general we mean that dialects of mathematics notation may be conve-
niently handled. Flexible refers to the ability to handle a large range of
symbol placements.

The following contributions are made in support of this thesis.

1. A model for the structure of mathematics notation

A novel model, called the baseline structure tree, is introduced. Base-
line in mathematics notation is used to refer to two different things:
first, an imaginary line running through symbols which are horizontally
adjacent, and secondly the set of horizontally adjacent symbols them-
selves. Baseline structure trees represent the spatial structure between
sets of horizontally adjacent symbols in mathematics notation. This
model of baseline structure is consistent with all common dialects of
mathematics notation.

2. A visual language parsing algorithm

This algorithm creates baseline structure trees from attributed symbol
lists. The algorithm is more general than existing mathematics nota-
tion parsers because the spatial relationships used to obtain baseline
structure may be redefined, and tree rewriting may be used to handle
soft conventions (i.e. dialects) after an initial baseline structure tree
has been obtained.

3. An implementation

The visual language parsing algorithm was implemented and integrated
into a complete recognition system for handwritten mathematics no-
tation. The symbol recognition and user interface components of this
system were created by Steve Smithies, Jim Arvo and Kevin Novins
[48]. The system has been tested on hundreds of handwritten expres-
sions with excellent results. The system was demonstrated at CASCON

12

Introduction

'99 and was enthusiastically received. Public distribution of the system
is planned.

Chapter 2

Review of Mathematics
Notation Recognition

In this chapter the existing mathematics notation recognition literature is
examined. A survey of mathematics recognition research may be found in
[7], and a more general survey of diagram recognition in [6].

2.1 General Issues
Blostein notes in [7] that

any recognition method, including procedurally-coded rules, im-
plicitly or explicitly defines the syntax of recognizable expres-
sions.

Each of the systems described in this chapter thus make some assumptions
about the syntactic structure of mathematics notation. Unfortunately, in
many cases the reasons for choosing a particular structural definition and/or
syntax for mathematics notation are not described in detail.

Martin cites this type of analysis of mathematics notation syntax as a
key step in the production of an effective recognition system [40]. More
specifically Martin indicates that three things are necessary before a usable
mathematics notation recognition system may be created. First, a study of
the structure of mathematical notation. Second, the creation of recognition
systems which are extendible. Third, a user-friendly means for extending a
recognition system.

13

14 Review of Mathematics Notation Recognition

Towards analyzing the structure of mathematics notation, Martin pro-
vides some simple syntactic information on the notation (in the form of
spatial relationships) and a number of examples of ambiguous expressions
in [40]. He notes that

Mathematical notation is designed to be unambiguous. However,
if the expressions are not carefully written, or certain conventions
are not observed, they may appear ambiguous[40].

By conventions Martin is referring to layout of symbols, and the choice of
relative size of symbols.

Martin also states that a precedence parser may be built for recognizing
mathematics notation if all symbols which indicate vertical displacement
from the centre line are leftmost in their subexpressions. In this case, an
algorithm may be constructed which scans an attributed symbol list left
to right, producing an appropriate structural representation. The following
expression with overlapping limits would not be recognized by such a parser
as the symbol indicating vertical displacement from the centre line (37) is
not leftmost.

10000

>

1=100

2.2 Symbol Recognition in Mathematics No-
tation

The recognition of even typeset mathematical symbols has proven more diffi-
cult in the context of existing OCR systems that one might expect. Benjamin
Berman and Richard Fateman [5] have done some research in this regard to
develop character recognition systems better suited to the math notation
recognition context.

Berman and Fateman observed that commercial optical character recog-
nition systems with recognition rates of 99 % or higher were falling to 10%
or less once tried on perfectly formed characters in mathematical equation
contexts. They indicate that this is because the heuristics employed which
work well on straight text, multi-column printing (such as in newspapers)
and tables fails with math notation because of the following.

2.3 Existing Mathematics Notation Parsers and Structural
Analyzers 15

1. Variations in font size
2. Multiple baselines
3. Special characters

4. Different spelling digraph frequencies (i.e. statistical frequency of hor-
izontally adjacent symbols)

2.2.1 Symbol Recognition Techniques Employed

The techniques that have been used to recognize symbols in mathematics no-
tation are more or less standard in the pattern recognition literature. Tem-
plate matching is used in [15, 5], nearest neighbor classification in [48], neural
networks in [23], hidden Markov models in [35], and chain code recognition in
[14]. Winkler and Lang [52] discuss a hidden Markov model approach which
employs soft-decision making in order to generate multiple interpretations of
an input expression. Miller and Viola [42] discuss the resolution of symbol
ambiguity using higher level context. Recognition of Arabic mathematical
symbols is addressed in [25].

The majority of symbol recognition research in mathematics notation
focuses on handwritten input produced online via data tablet or scanned im-
ages of typeset equations. A smaller amount of research discusses recognizing
typeset pixel maps produced online[42, 28].

2.3 Existing Mathematics Notation Parsers
and Structural Analyzers

Existing mathematics recognition systems fall into two main categories. First,
there are methods which obtain a structural representation directly from pixel
maps, which we call Structural Analyzers. In the other category, analysis of
structure is performed after symbol recognition has occurred, i.e. these meth-
ods obtain a structural representation from an attributed symbol list. We
call these systems Mathematics Notation Parsers.

Below is a categorization of existing techniques.

1. Structural Analyzers

16 Review of Mathematics Notation Recognition

(a) Projection Profile Cutting
2. Mathematics Notation Parsers
(a
(b

) Attributed String Grammars
)
¢) Graph Grammars
)

)

Structure Specification Schemes

(
(d

(e) Procedural Translation

Stochastic Grammars

We discuss the above methods in greater detail in the following sections.

2.4 Projection Profile Cutting

Any mathematical expression can be considered as a collection
of a number of components (single symbols or subexpressions)
arranged horizontally, each of which may contain smaller compo-
nents arranged vertically[45].

Okamoto et. al. in [45, 44, 49] outline a method of obtaining a structural
representation of scanned images of mathematics notation using recursive
projection profile cutting. A projection corresponds to projecting pixels onto
the x and y axes of the image. The cutting process separates horizontally
adjacent subexpressions using a vertical projection, followed by horizontal
projection to separate baselines. This process is applied recursively.

Figure 2.1[44] shows an expression and the structural representation ob-
tained after projection profile cutting has occurred. Horizontally adjacent
nodes in the tree correspond to pixel regions obtained from a vertical projec-
tion, while vertically adjacent nodes in the tree correspond to pixel regions
separated by a horizontal projection. Connected pixel regions which cannot
be further separated by projection profile cuts are then recognized (shown as
symbols in boxes at the leaves).

This approach is not able to detect superscripts, subscripts, matrices,
limit expressions (e.g. summations) or expressions within square roots, each
of which requires additional processing. These additional processes rewrite
the structure tree created by the projection profile cutting process. A TEpX
string is then translated from the tree.

2.4 Projection Profile Cutting 17

_..'—j.-—Ld: +
dx f+eg
| -‘1 #] :
i + £

H--l-.—l

|HTL

Figure 2.1: Example of Projection Profile Cutting

The general approach taken here is interesting. The following steps are
employed in this system.

1. A structural representation is obtained using a structural feature of
mathematics notation (i.e. the structure of horizontally and vertically
adjacent symbols in a mathematics expression).

2. The structural representation is altered so that it is syntactically valid.
In this case a valid syntactic representation is considered to be a tree
which may be translated into valid TEX output.

18 Review of Mathematics Notation Recognition

3. The structural representation is mapped to a string (i.e. TEX).

In [49] projection profile cutting is augmented by bottom-up process-
ing. Essentially, character recognition is performed first, and the problematic
structures for projection profile cutting are located, analyzed and grouped
before projection profile cutting is applied.

This research is closely related to that of Wang and Faure[50, 29]. In
this research projections are used in conjunction with a more complicated
analysis of spatial relationships between handwritten symbols created online.
Separate methods are described for labeling superscripts and subscripts, and
a routine for handling square root expressions is mentioned. As in the system
by Okamoto et. al., an initial structure is obtained and rewritten to obtain
a syntactically valid structure.

The simplicity and speed of projection profile cutting is appealing. How-
ever, in addition to difficulty with square roots and sub and superscripts,
a strictly projection-based method may improperly segment characters with
broken lines, and skew in an input image may alter the necessary horizontal
and vertical relationships which are used for later analysis.

2.5 Mathematics Notation Parsers

2.5.1 Attributed String Grammars

Parsing mathematics notation using an attributed string grammar is per-
haps the most common type of mathematics recognition system [2, 25, 40,
28, 23, 4, 46, 53, 12]. Generally these systems involve slightly modifying ex-
isting parsing methods to obtain a structure representation and/or semantic
interpretation from attributed symbol lists[30].

The earliest reported mathematics recognition systems are those of Anderson[1],
and Martin [40]. Both Anderson and Martin used systems which they called
coordinate grammars. A coordinate grammar is essentially an attributed
string grammar, with constraints on production application based on the
relative positions of symbols. Unlike a string grammar, the order of symbols
in the input is unimportant.

Anderson proposes representing symbols through both a bounding box,
and a single coordinate intended to approximate the position of the centre
line, or baseline through horizontally adjacent symbols. Anderson defines the
“centre” of a symbol based on where the symbol lies relative to the baseline,

2.5 Mathematics Notation Parsers 19

as shown in Figure 2.2. In his system, all characters have a horizontal centre
coordinate corresponding to the middle horizontal point of the symbol (shown

[{E)]

as xcentre for “x” in Figure 2.2).

I , Y . Middle Line

::::X:::p ----- Pl - Centre Line / Baseline
o 4 ''''' S S R Writing Line
xcentre

Figure 2.2: Typographic Centre of Symbols

Anderson’s system accepts an attributed symbol list obtained from a data
tablet as input, and assumes that symbol recognition errors have been re-
solved before the input is received. The symbol list contains symbol identity
and bounding box coordinates (which define the rectangular region contain-
ing all the pixels of a symbol) for each symbol. Consider the following rule
from Anderson’s grammar for initially locating a division term. A nontermi-
nal DIVTERM is matched if a horizontal line is found with symbols above
and below which do not extend past the horizontal line on either side, or
overlap the horizontal line vertically. The parse tree resulting from a match
of this rule looks like Figure 2.3.

Anderson’s parser works top-down, attempting all possible partitions of
symbols until a valid parse is obtained (some heuristics to improve perfor-
mance are given in [2]). After the parse tree has been built, the semantics of
the expression are obtained by propagating a “meaning” string attribute from
the leaves to the root of the parse tree. For example, in the attribute syn-
thesis step after initially building the parse tree, the nonterminal DIVTERM
is assigned a ycentre coordinate equivalent to the ycentre coordinate of the
horizontal line, and a meaning attribute based on the meaning attributes of
S1 and S3.

Anderson’s grammar was possibly the most complete to date, including
a separate grammar for handling simple matrices. However, the system was
very computationally expensive. Fateman noted that

Anderson’s parser...handled a very large domain of mathematical
expressions. However, at the time of his work (1969), his rec-

20 Review of Mathematics Notation Recognition

DIVTERM

/\

EXPRESSION - (horiztonal line) EXPRESSION
(SL) (S2) (S3)

|
DIVTERM attributes:
meaning: (meaning(S1))/(meaning(S3))
y centre coordinate: ycentre(S2)

Spatial constraint:
-all symbolsin S1 and S3 have
bounding boxes neither Ieft nor right of S2
-all symbolsin S1 are above S2
-all symbolsin S3 are below S2

Figure 2.3: Partial Parse Tree for Anderson’s Coordinate Grammar

ognizer appears to have been tested to its limits with equations
having about eight symbols|28].

Later research in recognition of mathematics expression using attribute
grammars tends to focus more on symbol recognition and ambiguity issues
than producing a more expressive grammar.

2.5.2 Structure Specification Schemes

Chang in [12] presents another system for obtaining a tree structure rep-
resenting an expression based on definitions of operator range, precedence,
and dominance. Operator range refers to the syntactically valid spatial lo-
cations of an operator’s arguments. Operator precedence defines the order
of application of operators represented as symbols in an expression (e.g. *
has greater precedence than +). Operator dominance is defined through a
partial ordering of the operators in an input expression based on the operator
precedence and range.

2.5 Mathematics Notation Parsers 21

A structure specification scheme assigns to each operator a way in which
an input pattern is partitioned into regions for the operator and its operands.
Along with the ordering on operators given by operator dominance, a struc-
ture specification scheme may be used to obtain the structure of a mathe-
matics expression.

Input to Chang’s method is an attributed symbol list. The symbols in
the original input are then recursively partitioned into operator and operand
regions using the structure specification scheme, each time partitioning based
on the least dominant operator.

The parsing algorithm provided by Chang is fast, being of O(n?) time
complexity. The system described does not appear to handle subscripts or
superscripts, as these operators are implicit, represented through relative
position of symbols rather than symbols in the input.

2.5.3 Stochastic Grammars

In a stochastic grammar, probabilities are associated with productions of the
grammar. Chou presents a stochastic grammar which is capable of recogniz-
ing expressions in the context of a significant amount of noise produced by
flipping bits in a typeset pixel map [15]. Symbol recognition is performed
using exhaustive template matching. A dynamic programming algorithm is
then used to find the most likely parse for an input expression. The results
are impressive for the given test examples, but the expressions themselves
are quite small.

Miller and Viola in [42] discuss their work with a stochastic grammar
based on Chou’s, with some performance improvements. The inputs they
examined were noise-free pixel maps produced online.

2.5.4 Procedural Translation

Lee and Lee[38] describe a set of procedural methods used to translate an
attributed symbol list into a formatted string (e.g. in EQN format). Symbols
which deviate from the typographical centre of an expression are grouped into
units called symbol groups, and then the symbol groups and the remaining
symbols in the input are ordered left-to-right based on the y-coordinate of
their center points.

An output string is obtained by applying this group-order procedure re-
cursively. In a later paper this algorithm is modified so that symbol groups

22 Review of Mathematics Notation Recognition

are located recursively first, and a structural representation in the form of a
tree is built[37]. Some additional discussion is given about correcting recog-
nition errors through the use of semantic analysis.

A similar approach to Lee and Lee’s is described by Winkler who uses
a directed acyclic graph representation[51]. Winkler’s process has the ad-
ditional aspect of generating multiple interpretations using a probabilistic
model of symbol layout.

The advantage of a procedural recognition method is speed. The major
disadvantage of a procedural translation approach is the difficulty in under-
standing, maintaining and extending such a system (as it is represented solely
in terms of procedural code).

2.5.5 Graph Grammars

Bunke in [8] demonstrated how attributed graph rewriting is a useful ap-
proach for recognizing schematic diagrams. Graph grammar approaches to
diagram recognition have been used by Dori [24] for recognizing dimensions
in machine drawings, Fahmy [26, 27] and Baumann [3] for music notation,
and Grbavec [32] and Lavirotte and Pottier [36] for mathematics notation.

In graph-grammar based diagram recognition, a graph is initially built
from input symbols, containing relation-labeled edges representing spatial
structure. This graph is then constrained and/or collapsed using a graph
grammar parser which propagates attributes between nodes during produc-
tion application.

Individual rules in a graph grammar are relatively intuitive, due to the
visual representation via graphs. Graph grammars are a very general formal-
ism, but are computationally expensive to parse, as graph matching is NP-
complete. Lavirotte and Pottier attempt to alleviate this problem through
making their graph grammar deterministic, but this appears difficult to do
without restricting the expressivity of the graph grammar. Smithies in [48]
proposes using an A* searching algorithm to attempt to improve performance
through heuristic means.

2.6 Summary

It is worth noting that in the systems described, trees are used to represent
the structure of mathematics expressions, either explicitly, as in the case

2.6 Summary 23

of projection profile cutting, or implicitly, in the parse trees produced by
mathematical notation parsers (other than graph grammar parsers). This
pattern of representation influenced the choice of structural representation
to be explored in the next chapter.

The desirability of linearizing an attributed symbol list where possible is
also a common theme. Where possible, linearization improves performance
dramatically (as noted first by Anderson in [1}).

The problem of producing a system which is both efficient and sufficiently
flexible to recognize complex spatial relationships remains an open problem.
The area would probably benefit greatly if the kind of study of mathemat-
ics syntax proposed by Martin[40] were to be undertaken. The current lack
of information characterizing the problem domain makes it necessary to ex-
pend a considerable amount of effort identifying conventions of mathematics
notation before a recognition technique may even be designed.

24

Review of Mathematics Notation Recognition

Chapter 3

A Model for the Structure of
Mathematics Notation

A major objective [for mathematics notation recognition] is to de-
fine the syntax cleanly, to provide a unifying framework for han-
dling the myriad details and exceptions that arise during mathe-
matics recognition[7].

Mathematics notation is a natural visual language, and as a result there
is no existing formal definition, and dialects exist. However, in order to
recognize at least one or more of the dialects of mathematics notation, one
needs to produce a language definition.

A study of the hard and soft conventions of the notation may be made
through examining conventions observed in the literature, and through in-
trospection and observation. A visual language definition for mathematics
notation may then be specified.

Especially in light of the existence of defined notation, the possibility of
creating a complete visual language definition for mathematics notation is un-
likely. However, rather than attempt to produce an “as-complete-as-possible”
language definition for a recognition system, it may be more advantageous to
identify those notational conventions that seem to be present across dialects
(i.e. hard conventions) and then produce a representation which can be easily
manipulated for syntactic analysis and semantic interpretation under various
language definitions.

In this chapter, using the hard conventions of direction of interpretation
and operator dominance, a model of spatial structure in mathematics nota-

25

26 A Model for the Structure of Mathematics Notation

tion is provided. This is the baseline structure tree (BST), a tree representa-
tion which makes baselines and spatial relations between baselines explicit.
An example is provided which demonstrates how a baseline structure tree
may act as the starting point for a more detailed syntactic analysis under a
visual language definition.

3.1 Hard Conventions of Mathematics Nota-
tion

As indicated by Okamoto[45], any mathematical expression may be consid-
ered as a collection of symbols and subexpressions arranged horizontally.
This horizontal adjacency of symbols or subexpressions is referred to infor-
mally as a “baseline”. Through observation, the direction of interpretation
of symbols and/or subexpressions along a baseline is always left-to-right,
corresponding to the reading direction in Germanic languages. We propose
that this left-to-right direction of interpretation along baselines is a hard
convention of mathematics notation.

Anderson observed the usefulness of the directedness of baselines in math-
ematics notation in 1968[1], indicating that proceeding left-to-right along a
baseline may obtain the desired syntactic structure of linear expressions such
as:

a+b+c/x

The linear structure allows the relationship between the above symbols to
be represented in a string using only concatenation, unlike other spatial re-
lationships which require a more explicit representation of two-dimensional
spatial structure, as will be shown later.

Another hard convention of mathematics notation is the location of the
symbol from which interpretation begins in unambiguous expressions. Fate-
man states that the subset of TEX used for computer algebra systems (e.g.
Maple, Mathematica) is strictly left-to-right parseable if some heuristics are
employed. Specifically, he states that in a given subexpression,

the leftmost glyph governs the meaning of the expression. In the
few exceptions to this rule, we have tried, by manipulating the
expression glyphs to expand the key operator to the left to assert
this truth. For example, we consider extending [by a “virtual”
bar extending to its left[28].

3.1 Hard Conventions of Mathematics Notation 27

In other words, expressions are generally interpreted beginning with their
leftmost symbol. Common exceptions include the following:

1. Horizontal lines not being leftmost in their associated subexpression,
as in
2

where the four extends as far to the left as the horizontal line.

2. Limit symbols with overlapping limits. This occurs when symbols in
one of the limits extends to the left of the limit symbol, as in

10000

>

i=1

In these cases, where the symbol from which interpretation begins is not
leftmost, operator dominance as defined by Chang[12] may be used to locate
the dominant operator in the leftmost subexpression, from where interpreta-
tion begins. For example, the dominant operator in the first example above
is the horizontal line, and this horizontal line is the symbol from which to
begin interpretation. In the case of symbols which are not in the scope of an
operator and are leftmost, we simply begin interpretation from this symbol.

Martin in [40] provides a number of ambiguous cases where it is impos-
sible to determine the starting symbol of an expression because either it is
impossible to determine operator dominance (e.g. in the case where a frac-
tion such as a/b/c is displayed vertically with equal length horizontal lines)
or the range of operators is unclear (such as when a horizontal line repre-
senting a division overlaps a symbol slightly, making it unclear whether that
symbol is an argument of the division or an adjacent term). Resolving such
ambiguities requires a decision on the part of the reader concerning the range
of operators and/or the dominant operator in the leftmost subexpression.

In the case then where an expression has an unambiguous operator dom-
inance in the leftmost subexpression, interpretation begins from the dom-
inant operator in that expression, or the leftmost symbol if that symbol
alone constitutes the leftmost subexpression. This is a hard convention. The
interpretation of ambiguous examples involves soft conventions, as these am-
biguities may be resolved using a number of different approaches, none being
necessarily correct.

28 A Model for the Structure of Mathematics Notation

This process of finding the starting symbol of an expression may be rep-
resented using the function START. START is specified in the following:

START: START is a function which takes an attributed sym-
bol list representing an unambiguous expression (list,) and
returns the starting symbol in list, or () if list, is empty.

3.2 Symbol Layout as a Soft Convention

In mathematics notation, spatial relations are used to group symbols into
units, and to specify operators. For instance, horizontal adjacency and
the distance between horizontally adjacent symbols (whitespace) are used
to group symbols into syntactic units (as in “cos x”). The binary operator
for exponentiation is represented using the spatial relation between base and
exponent (as in x?).

Horizontal adjacency, subscripting and superscripting are hard conven-
tions of mathematics notation spatial structure. When perceived as being
clearly present by a reader, they are unambiguous spatial relationships be-
tween symbols. However, the set of layouts which define each spatial relation
is a soft convention; for instance, consider Figure 3.1.

a

Xq Xa Xxa X
a b. C. d.

Figure 3.1: Example Spacing Between Adjacent Symbols

It is impossible to state with certainty exactly where the position of the
“a” would stop being a subscript, as in Figure 3.1a, and start being hori-
zontally adjacent as in Figure 3.1b. Likewise the same problem occurs when
trying to decide where between the positions of “a” in Figure 3.1b and Fig-

ure 3.1c the “a” starts being in the superscripted position. Figure 3.1d is

3.2 Symbol Layout as a Soft Convention 29

itself either syntactically invalid or an exponent, depending on the syntactic
definition adopted.

From observation, superscripts, horizontal adjacency, above, below and
containing (e.g. by a square root) spatial relationships are hard notational
conventions. They are commonly used in the interpretation of mathematics
notation. However, given the soft convention of symbol layout, any character-
ization of spatial relations in mathematics notation will require the adoption
of a set of arbitrarily chosen thresholds to define regions for each relation.
Thresholds may be defined for what are felt to be ambiguous regions, but
this in itself will be a decision on the part of the visual language designer, as
what constitutes a “spatially ambiguous” diagram is not formally defined.

3.2.1 Mathematics Notation as a Context-Sensitive Vi-
sual Language

Many of the spatial relations employed in mathematics notation may be
described through a series of interacting spatial relations between symbols.
Consider Figure 3.2.

2 100000

xZi

Figure 3.2: Exponent and Summation

The reader does not simply look directly above the limit to find the
upper limit of the summation; this produces the wrong limit (00000). We
can informally describe a process of locating the upper limit in Figure 3.2 in
the following.

1. The 2 is closer to the x than the 3, the 1 (in the upper limit) closer to
the X

2. Though horizontally adjacent, the 2 is visibly separated from the 1 by
whitespace; the 2 is thus superscripted from the x, and the 1 is part of
the upper limit of the X

30 A Model for the Structure of Mathematics Notation

3. The zero which ends the upper limit is much closer to the ¥ than the
next symbol which is horizontally adjacent to the ¥ (i), and so is part
of the upper limit.

4. 0000 is directly above the X

5. Concatenating the 1 and 0 we have found to be part of the upper limit
with the 0000 above the ¥, we obtain an upper limit of 100000

The upper limit of the summation in Figure 3.2 may be obtained through
the process above or another similar process involving the examination of the
relative positions of symbols in the expression.

The kind of complex spatial interaction present in Figure 3.2 is common
in expressions with multiple baselines: obtaining the spatial relationship be-
tween two symbols may require knowledge of the relationship between those
symbols to other symbols in their associated expression. This demonstrates
how mathematics notation is a context-sensitive visual language.

3.2.2 Spatial Relations in Mathematics Notation

In this section a number of binary relations are informally defined in order
to describe spatial structure in mathematics notation. These definitions are
based in part on those discussed by Genarro Costagliola[22, 18,17, 11, 19, 20].
The specifications are in Table 3.1. For each, S; is a single symbol.

We discuss the spatial relations in greater detail in the following.

e HOR indicates horizontal adjacency between two symbols on a baseline.
For example, in Figure 3.1b, HOR(X,a) is a valid relation.

e ABOVE and BELOW correspond, intuitively, to baseline symbol sets
which are above or below a symbol, but directly, i.e. only those symbols
whose center horizontally overlaps the width of the domain symbol.

e CONTAINS indicates square root subexpressions. For example, /z
could be represented as CONTAINS(, /,x).

e BLEFT and TLEFT represent spatial relations between a limit symbol
(such as [) and symbols in limits which extend to the left of the limit
symbol, when the limit symbol starts a baseline. For instance, in

1000000

oo

1=10000

3.2 Symbol Layout as a Soft Convention 31

‘ Spatial Relation ‘ Definition ‘

HOR(S4, 55) Sy is the next symbol horizontally adjacent
to S

SUPER(S;, Sy) Sy is the set of symbols superscripted from
Sy

SUBSC(S;, Ss) S, is the set of symbols subscripted from S,

ABOVE(S;, Ss) S, is the set of symbols directly above S;

BELOW(S;, Sy) S, is the set of symbols directly below S;

CONTAINS(Sy, Ss) Sy is the set of symbols contained by the
bounding box of 5

TLEFT(S,, Ss) S, is the set of symbols to the top left of a
limit symbol which starts a baseline (5))
BLEFT(S, Ss) S, is the set of symbols to the bottom left of

a limit symbol which starts a baseline (S;)

Table 3.1: Spatial Relations

The i and = of the lower limit and the 1 and 0 beginning the upper
limit are in BLEFT and TLEFT relations with the limit symbol, i.e.
TLEFT(3:,{1,0}) and BLEFT(}_.{i,=}).

In the next chapter each of these relations are defined in greater detail
using coordinates of symbols. For now these general descriptions will suffice
for explanation.

The previously defined spatial relations, along with the hard conventions
of starting symbol and direction of interpretation along baselines may be used
to create a structural representation for mathematics notation, the baseline
structure tree.

We need first to define baseline symbol set and main baseline symbol set,
as in the following:

Baseline Symbol Set A baseline symbol set is a set of attributed
symbols for which the relation HOR holds between all s;, 5,11
for 1 <1 < n — 1 where n is the number of symbols in the
set.

Main Baseline Symbol Set Given a list of symbols list,, the
main baseline symbol set is the baseline bline,, ., associated

32 A Model for the Structure of Mathematics Notation

with the symbol in list; from which interpretation begins
(i.e. a non-empty set symbol returned by START (list)).

Using the spatial relations discussed along with the idea of baseline sym-
bol set, the structure of a large number of mathematics notation diagrams
may be characterized using a tree and parenthesized strings translated from
the tree.

Consider the expression

100000
> 42T+ 2
i=1
The spatial structure of the symbols in this expression can be represented
via a baseline expression tree as given in Figure 3.3. For the purposes of the
following examples, assume that the specified spatial relations are valid.

Expression

BELOW TLEFT ABOVE SUPER SUPER

e e e

Figure 3.3: A Baseline Structure Tree

The root is labeled “Expression”, and along with the nodes with spatial
relation labels, has children ordered left to right (i.e. a baseline symbol set
is represented as children of the root and each relation). This eliminates the
need in the tree to show HOR explicitly, as any two adjacent siblings below
the root or a relation are in a HOR relationship. Symbols, such as the i in 72
and)~ may have spatial relation-labeled children indicating a set of symbols
in a region relative to the symbol.

The main baseline of the expression is represented below the root, while
the main baseline of each subexpression appears under an associated relation
node.

3.2 Symbol Layout as a Soft Convention 33

3.2.3 Properties of Baseline Structure Trees

There are a number of advantages to structural representation via a baseline
structure tree. These include:

1. The grouping and left to right order of baseline symbol sets is explicit.
2. All spatial relations are explicit.

3. A depth-first traversal of this tree will produce a linearized string rep-
resenting the structure if bracketing is used. For instance, the lineariza-
tion via depth first traversal of Figure 3.3 gives:

Expression > BELOW {i=1} TLEFT {10} ABOVE {00} SUPER {00}
i SUPER{2}+27i+2

If the root (“Expression”) is eliminated, the above string possesses the
type of syntactic structure used in KXIgX strings.

4. The tree may be restructured in order to represent more complicated
structures via labeled relation nodes.

As a demonstration of restructuring a baseline structure tree, consider
Figure 3.4. Here a tree-rewriting rule has been applied to Figure 3.3. This
rule can be stated as: starting from the root, collect all TLEFT, ABOVE
and SUPER nodes associated with a Sigma and replace them with a single
relation node labeled “ULIMIT”, placing all children of the TLEFT, ABOVE
and SUPER nodes under ULIMIT. Then do the same for BLEFT, BELOW
and SUBSC. The tree now has a structure which contains a syntactically
valid representation of the limits of a summation. This is a very simple rule;
in the next chapter a more complicated rewrite is described which allows
almost arbitrary subexpressions as limits.

The original expression represented in Figures 3.3 and 3.4 is ambiguous;
it is not clear what the scope of the summation is (i.e. does it end with 2,
with 27i or does it encompass all subexpressions adjacent to the >7).

This may be resolved through the use of a soft convention. For instance,
specifying either a certain distance of white space indicating membership
in the associated subexpression of the >, or restricting scope to the first
subexpression in the summation’s scope if bracketing is not used.

Once having chosen a soft convention, the convention may be represented
in the tree using another tree rewrite. For instance, suppose a syntax defini-
tion where only the first unbracketed term is considered to be in the scope of

34 A Model for the Structure of Mathematics Notation

Expression

MN
Zi+27i+
/\\

BLIMIT ULIMIT SUPER

i = 1 1 0 0 0 0 0

2

Figure 3.4: Baseline Structure Tree with Rewritten Limits

the summation is used. Another type of relation node may be added to the
tree, which we will call SCOPE. The main baseline may then be scanned for
symbols up to an operator, and then a rewrite may be applied to produce
Figure 3.5.

In this thesis only a small number of rewrites are defined, and only for rel-
atively “hard” notational conventions. A design for a more complete system,
capable of handling many dialects is presented in the last chapter.

3.2 Symbol Layout as a Soft Convention 35

BLIMIT ULIMIT SCOPE

Figure 3.5: Baseline Structure Tree with Rewritten Summation Scope

36

A Model for the Structure of Mathematics Notation

Chapter 4

A Mathematics Notation
Parser

As discussed in the last chapter, a baseline structure tree is a flexible struc-
tural representation of a mathematics notation diagram. In this chapter a
parsing algorithm for obtaining baseline structure trees from an attributed
symbol list is presented. Examples of syntactic analysis performed through
tree rewriting, and context-sensitive translation to string languages are also
discussed, along with relevant issues.

4.1 Preprocessing and Symbol Attributes

For the purposes of this algorithm, symbols in the input list must have iden-
tity and bounding box attributes. A bounding box is defined as a pair of
coordinates used to specify the minimum and maximum (x,y) coordinates be-
tween which all the pixels of the symbol are located in the positive Cartesian
plane. An example is shown in Figure 4.1.

As a preprocessing step, each symbol is given additional attributes, cal-
culated using the identity and bounding box attributes. These additional at-
tributes are type, centroid class, centroid coordinate, and “wall” attributes,
which specify a partitioned region in the input.

The type attribute is used to group structurally similar symbols, for in-
stance limit symbols (3, [, 11, U, N), open brackets ({, (, [) and close brackets
(},],)). Type attributes simplify processing based on structural function.

Each symbol is assigned a centroid attribute which is used to represent

37

38 A Mathematics Notation Parser

(. (maxX, maxy)

(minX, minY)

Figure 4.1: A Bounding Box

. Middle Line

::::X:::::pﬁ::::' ::::::J ------ Centre Line / Baseline
- Ay mo I B Writing Line
3 2 S B
g g g £
5§ & °
©

Character Centroid Class

Figure 4.2: Centroid Class for Different Letters

the position of each symbol using a single coordinate. The value of this
coordinate is calculated by examining the normal position of the bounding
box of the symbol in relation to a baseline/centre line.

Figure 4.2 demonstrates different centroid classes for a number of letters.
Ascending characters extend above the middle line, descending characters
fall below the writing line, and what we term “centred” characters either fall
between the writing line and middle line or extend past both writing line and
middle line (such as the “” in Figure 4.2).

Table 4.1 is based closely on Grabavec’s list of centroid classes given
in [31]. It shows the centroid classes for a number of characters used in

4.1 Preprocessing and Symbol Attributes 39

mathematics notation. Symbols which do not appear in this list are in the
centred centroid class.

‘ Characters ‘ Alignment
0..9 Ascending
AZT,AO,AZ,0,Q Ascending
b,d.f,h.i k1t Ascending
2.p,q,y Descending
a,c,e,j,m,n,o,r,s,1,v,w,X,z Centred
0,0, A Ascending
VoM iy Py X U Descending
a, 6,6, kv, & 0,0, T, U, P, w Centred
Limit Symbols Centred

Table 4.1: Centroid Classes for Symbols

With the exception of brackets, the x coordinate of the centroid is always
the middle horizontal point, i.e. minX + ((maxX - minX)/2). In the case
of open brackets, the minX coordinate is assigned to the x coordinate of the
centroid, and the maxX coordinate is assigned to the x coordinate for close
brackets.

The y coordinate of the centroid is then assigned using the centroid
class. Ascending characters are assigned a y centroid coordinate at minY
+ (1/4)(maxY-minY). Descending characters are assigned a y centroid co-
ordinate at minY + (3/4)(maxY - minY), and centred class characters are
assigned their y-centre, i.e. minY + ((maxY-minY)/2).

These y-coordinate assignments are intended to reflect the approximate
location of the baseline through typeset characters. This corresponds to a
(rough) normalization of the input symbol. In particular, with handwrit-
ten input this may be a very crude approximation, essentially replacing the
contents of the bounding box by a single point based on a model of typeset
characters.

Finally, each symbol possesses four “wall” attributes (top, bottom, left
and right) which specify a region in the input pattern (specified by (bot-
tom,left) and (top,right)). Initially the bottom and left walls of all symbols
are set to -1, and top and right to an arbitrarily large positive integer (e.g.
oc). These wall attributes will be used in the parsing algorithm to partition

40 A Mathematics Notation Parser

the input when examining spatial relationships between symbols.

4.2 Syntax Directed Scanning

In this section we discuss syntax directed scanning, which is a key component
of the parsing algorithm described in the following sections.

In [17] Genarro Costagliola and Shi-Kuo Chang describe how syntaz di-
rected scanning of the input can allow conventional LR parser generators such
as YACC to be used for building parsers for a class of visual languages (in-
cluding a simple mathematic language) which may be described using what
they term positional grammars. The ability to build a positional LR parser
requires the use of syntax directed scanning of the input.

In this technique, functions corresponding to the spatial relations be-
tween symbols are used to describe the syntax of a visual language. These
functions are then used to drive the scanning of the input pattern during a
parse. Normally in an LR parser linear retrieval is employed, where the next
unexamined symbol in the input array is returned. The spatial functions
order the input pattern, resulting in a very efficient (i.e. O(n?)) parser for a
restricted, but useful, class of visual languages.

The input to a positional LR parser is assumed to be a list of attributed
symbols (i.e. containing centroid coordinates) on which the spatial functions
may operate. Each spatial function takes the index of a symbol in the input
array and returns the index of a token matching the associated relation, or
indicates that no symbol matching the spatial relation was found. A symbol
matched by a spatial function during a parse is marked in the input, allowing
that symbol to be removed from consideration during later analysis.

In Appendix A a positional grammar is given which corresponds to the
syntax of baseline structure trees. However, the creation of a generalized LR
parser as described by Costagliola[22, 18, 17, 11, 19, 21, 20] is not possible
(see Appendix A for further discussion).

4.3 Spatial Functions

In this section the spatial relations introduced in Chapter 3 are defined as a
set of functions. For the remainder of this discussion the term nput list will
refer to a pre-processed list of attributed symbols (i.e. with type, centroid

4.3 Spatial Functions 41

y
(maxX, maxy)
:
R :

|
|
|

(minX, minY)

0 X

Figure 4.3: An Example Region

class, centroid and wall attributes). An input list is assumed to have been
sorted by left-most bounding box x-coordinate, in ascending order.

A region R is defined as an axis parallel rectangular area in the positive
integer Cartesian plane defined by a pair of (x,y) coordinates. A coordinate
C is said to be in a region R if it lies in the region defined by R, and C does
not lie on the maximum Y or maximum X coordinate boundaries. Figure
4.3 demonstrates this. The maximum X and Y boundaries are shown with
dotted lines to indicate that a point C is not considered within region R on
those boundaries.

Horizontal overlap is defined as in the following:

Horizontal Overlap A symbol S; is horizontally overlapped by
a symbol Sy when the minX bounding box coordinate of Sy
is less than or equal to the centroid x coordinate of S.

4.3.1 START, OVERLAP and SP Functions

START is a function which returns the starting symbol for a partitioned
region of an input list. The algorithm for START provided in Appendix

42 A Mathematics Notation Parser

B contains a simplified analysis of operator dominance (i.e. it returns the
leftmost limit symbol if one is present, rather than analyzing the range of
limit symbols), but for the purposes of this research was found to be adequate
for a large number of test cases.

START calls a function OVERLAP before returning a symbol. OVER-
LAP is a function which determines whether a symbol is overlapped by a
horizontal line (this is part of the operator dominance analysis). OVERLAP
takes an integer, a pair of y-coordinates and an input list. The function then
returns either the passed integer if the symbol at that index is not overlapped
by a horizontal line, or the index of the largest overlapping line (see Appendix
B for the OVERLAP algorithm).

START scans the input to locate the leftmost symbol in R. If no symbol
is found, -1 is returned. If a symbol is found, the input is scanned further,
looking for the leftmost limit symbol. If no limit symbol is found or is the
same as the leftmost symbol, the leftmost symbol is checked for overlap with
horizontal lines and then the result is returned. If a limit symbol is found, the
scan reverses, checking all symbols to see if they are horizontally adjacent to
the limit symbol. If no such symbol is found, the leftmost symbol is part of
a limit and the limit symbol is checked for overlap, and the result of overlap
check is returned. Otherwise the leftmost symbol is not part of a limit, and is
checked for overlap. The result of the overlap examination is then returned.

Another function SP may be defined, corresponding to the type of start
symbol function for visual languages described in [22]. SP gives the start
symbol of the entire expression, using R defined as (0,0), (00,00). Assuming
list;, is non-empty, SP(list;,) returns the first symbol of the main baseline
symbol set of the entire expression (i.e. in the region defined above).

4.3.2 HOR Function

The extension of baselines can be summarized using the following spatial
function definition of HOR. HOR takes a symbol and an input list [ist;,, and
returns either a symbol of list;, or ().

Given an input list list;, and a symbol s, HOR(list;,,s) = a where

1. ais () if no unmarked symbol is horizontally adjacent to s in the region
defined by s’s wall attributes.

2. a is an unmarked symbol in the region defined by s’s wall attributes

4.3 Spatial Functions 43

which is the next horizontally adjacent symbol on the baseline symbol
set of which s is a member.

3. If a horizontally overlaps a horizontal line hline, let a be the longest
horizontal line which overlaps hline, or hline if no horizontal line over-
laps hline

Horizontal adjacency is defined using the wall attributes of s (i.e. a
region) and the centroid coordinates of a. HOR produces a defined result for
HOR(s) for each of the cases in Table 4.2.

The algorithm for HOR is very simple. If s is a horizontal line or bracket,
START is called on the region defined by the wall attributes of s and the
maxX bounding box coordinate of s (i.e. replacing leftWall). The remaining
cases simply require a scan of the input list, performing tests on coordinate
positions of s and the identity and coordinates of each symbol encountered.
The scan stops when a symbol meeting the criteria for HOR is met. A call
is then made to OVERLAP (again, to check with overlap with horizontal
lines).

As established in the last section, START is O(n) in the worst case. For
the other HOR cases, a scan of the input with O(1) comparisons for each
element (O(n)) is followed by a call to OVERLAP (O(n)). Thus HOR is of
O(n) time complexity in the worst case. Due to the input list being sorted,
in many cases only a single set of comparisons is made (i.e. O(1) best case).

Figure 4.4 shows the HOR region searched in the general case. In this
research the convention of assigning the Upper Threshold to 5/6 of the bound-
ing box height, and the Lower Threshold to 1/6 the height of the bounding
box was used, as in [45] and others. TLEFT and BLEFT are bracketed as
they are only searched if the “A” was a limit symbol. TLEFT and BLEFT
regions are only examined when a limit symbol starts a baseline, or follows
a bracket or horizontal line on a baseline.

The special cases for binary operator and calling START reflect the type
of deviations from the centre line that occur and which are still perceived as
adjacent. In the example in Table 4.2, if the addition sign moves up or down
in the binary operator case, the baseline structure is still clear.

In the general case, the leftmost symbol on the right of s in the HOR
region is returned as a if it is present and not overlapped by a horizontal
line. Note that in this definition of region, symbols may have the same minX
coordinate and be processed as being horizontally adjacent, in the order in

44

A Mathematics Notation Parser

@ EXAMPLE

Binary Operator
(not Horizontal
Line)

Horizontal Line to
right of binary op-
erator in proper
region +§

Any Symbol

Next leftmost symbol
in region which has a
bounding box that ex-

tends both above and x/
below that of the do-
main symbol

Horizontal Line
Open Bracket

START ((wall at-
tributes, let leftWall
= maxX of s),list;,)

+oo
(2

General Case Leftmost symbol with
center in HOR region [x

Table 4.2:

Horizontal Adjacency of Symbols Under HOR

4.3 Spatial Functions

45

bottomWall

leftwall* leftwall rightwall
(limit symbols)

Figure 4.4: General Regions for Spatial Functions

46 A Mathematics Notation Parser

For horizontal lines and open brackets, START is applied to the region
defined by the maxX bounding box coordinate of the symbol, and the re-
maining three wall attributes.

These definitions of HOR, START and the remaining spatial regions
clearly adopt some soft conventions of spacing (e.g. a definition of regions,
overlap and a series of thresholds). The thresholds adopted are designed to
be as flexible as possible, allowing for the widely separated symbols such as
those in Figure 3.1d to be recognized as spatially related (in this particular
case, as a superscript).

4.3.3 Secondary Baseline Symbol Sets

A given baseline symbol set can be divided in several ways, i.e. by the
occurance of other baselines in the regions shown in Figure 4.4. We call
these secondary baseline symbol sets, as their position is obtained relative
to the main baseline symbol set in a given region. The regions pertinent to
secondary baseline symbol sets may be examined using the following method.

e Let B be a baseline symbol set in region R ((RminX,RminY),(RmaxX,RmaxY))

e For i=1..n-1, where n is the number of symbols in B (s;...s, are the
symbols in B)

— set the rightWall attribute of s; to the minX coordinate of s;;

— set the leftWall attribute of s; to the symbols’” minX coordinate
unless this is a limit symbol. If the limit symbol follows an open
bracket or horizontal line, assign maxX of s; | to leftWall. If the
limit symbol starts a baseline, assign RminX to leftWall. Other-
wise set leftWall to the minX coordinate of the limit symbol.

— set the topWall attribute of s; to RmaxY

set the bottomWall attribute of s; to RminY

e In any order, examine the following two disjoint regions for each of the
symbols in B (see Figure 4.4)

1. ABOVE: {(minX,Upper Threshold),(maxX,topWall)}
2. BELOW: {(minX,bottomWall),(maxX,Lower Threshold)}

4.4 A Mathematics Notation Parsing Algorithm 47

Additionally, the following (also disjoint) regions may be examined:

SUPER: {(maxX,Upper Threshold),(right Wall,topWall) }
SUBSC: {(maxX,Lower Threshold),(right Wall,bottomWall) }
TLEFT: {(leftWall,Upper Threshold),(minX,topWall) }
BLEFT: {(leftWall,bottomWall),(minX,Lower Threshold)}
CONTAINS: {(minX,minY),(maxX,maxY)}

CrkE W =

For each region R above START(R,list;,) is applied, which returns the
starting symbol of the main baseline symbol set in that region.

Symbol identity of the symbols in B determines which regions are exam-
ined:

e TLEFT and BLEFT are examined only for limit symbols which either
start a baseline (first symbol in B), or directly follows a horizontal line
or an open bracket (both of which indicate the end of a subexpression).

e CONTAINS is used only for square roots.
e SUPER is not used for horizontal lines or open brackets.

e SUBSC is not used for horizontal lines or open brackets.

4.4 A Mathematics Notation Parsing Algo-
rithm

In Appendix B an O(n?) parsing algorithm is given which extracts a baseline
structure tree from an input list. Essentially the algorithm recursively locates
symbols which start a baseline, extracts the associated baselines, and then
records the observed baseline structure in a baseline structure tree. In this
section we discuss the algorithm in only a very general way. This discussion
is simplified; symbols are described as being pushed on and off the stack
when it is really the index to the symbol and an associated tree node that is
pushed onto either data structure, and a number of other details are ignored.
Please consult the appendix for the more detailed description.

While locating baselines (essentially using START in different regions),
symbols which start a baseline are pushed on a queue. In the extraction

48 A Mathematics Notation Parser

stage, symbols are removed from the queue one at a time. After removing
a symbol from the queue, it is pushed on a stack, and the function HOR is
then used in a loop to locate the associated baseline symbols, which are then
also pushed on the stack. When HOR returns () (e.g. the end of a baseline
is found) “EOBL” is pushed on the stack to act as a separator. The next
symbol in the queue is then removed and the same process repeated until
the queue is empty.

When the queue is empty, the algorithm reverts back to locating base-
lines, by using START on all the appropriate regions for secondary baselines
relative to the symbols on the stack. Any symbols which start a secondary
baseline are placed in the queue. The algorithm stops when either all sym-
bols have been added to the baseline structure tree, or no new baselines are
found (in which case an error is indicated). The baseline structure tree is
then returned.

Some alterations may be made to the algorithm. For instance, the al-
gorithm has been constructed so that the tree is built one level at a time,
though this is not necessary. An algorithm using a single stack which builds
the baseline structure tree depth-first may also be created. The paired data
structures of a stack and a queue are remnants of earlier research, before
START was used recursively.

4.5 Tree Rewriting

Graph rewriting is a powerful and flexible formalism. As discussed in Chapter
2, it has been used for parsing many different types of visual languages. Tree
rewriting, a subset of graph rewriting, has the advantage of being tractable.
Tree rewriting has proven a very powerful technique for translating program-
ming languages to different versions/dialects|16].

The context present in a baseline structure tree may be used to manip-
ulate the tree in order to represent higher order-spatial relations directly,
and/or subtrees may be regrouped and re-parsed. In this way, the initial
baseline structure tree produced by the algorithm above may be used for
structural analysis using different visual language syntax definitions, i.e. di-
alects. This is why the baseline structure tree represents a meta-syntax; the
original structure is a subset of the syntax of existing dialects (of which we
are aware).

As an example, recall Figure 3.3. In this instance the baseline structure

4.5 Tree Rewriting 49

tree, while valid in terms of representing the defined spatial relations, was
not descriptive enough to represent the common syntactic structure present
in the context of a summation.

The simple rule provided in Chapter 3 for rewriting Figure 3.3 as Figure
3.4 is adequate for limits comprised of a single baseline. This rule represents
a higher-order spatial relation (i.e. the new “ULIMIT” relation is defined in
terms of binary spatial relations in the tree).

However, it may be possible for fractions and /or other limits to be present.
To address this new possibility, one can simply remove and then concatenate
the three regions SUPER, ABOVE and TLEFT found as children of a limit
symbol. Place the concatenated regions in a separate input to the Baseline
Structure Tree parsing algorithm. Then place the resulting baseline structure
tree and place the result as a child of the limit symbol with the relation label
“ULIMIT”.

As a last example, consider Figure 4.5. The initial baseline structure
tree (Figure 4.5b)r shows the “1” from “10000” as part of the superscript
region of the “x”. This is because the Y~ does not start the main baseline.
However, the superscript region off of the “x” may be divided into two regions
partitioned by the rightmost symbol which has a centroid that overlaps the
>~ horizontally; in this case the “j”. All symbols to the left of and including
the partition symbol remain in the SUPER region; the remaining symbols
are placed in a new region labeled ULIMIT. The symbols in the SUPER and
ABOVE regions relative to the - are also placed in ULIMIT, and the subtrees
rooted at SUPER and ABOVE removed. The symbols in the ULIMIT and
SUPER regions (SUPER relative to the “x”) are then re-parsed, producing
the tree in Figure 4.5c.

It is worth pointing out that using whitespace analysis may have simpli-
fied this problem greatly. The algorithm described in this thesis uses neither
white space or point-size information. The expression in Figure 3.2 would
require this type of analysis, as the last tree rewrite provided would not alter
the baseline structure tree, leaving part of the limit (the 1) in the SUPER
region of the x.

The visual language syntax defined by the parsing algorithm and the
above rewrite rules is very simple. However, it is descriptive enough to obtain
the structure of a large number of expressions, as demonstrated in the next
chapter. Future work stemming from more complex syntax definitions is
discussed in the last chapter.

50 A Mathematics Notation Parser

4.6 Translation to Output Strings

A linear representation of a baseline structure tree, called a positional sen-
tence[22], may now be obtained by performing a depth-first traversal of the
tree. The structure of an expression in a positional sentence translated from
a baseline structure tree is a recursive structure of the form:

sy [ABOVE{SB;}] [BELOW{SB,}] [SUBSC{SB;}] [SUPER{SB,}]
[ULIMIT{SBs}] [BLIMIT{SBs}] [s1]

All items in square brackets are optional, and each nested baseline (SB,)
posesses the same structure as above.

A HTEX string can be obtained in a similar fashion, mapping the ap-
propriate symbol names and/or contexts in the tree to the corresponding
LaTeX symbol. Alternately the baseline structure tree may be rewritten
into a ITEX compatible form (i.e. replacing symbols and contexts) and
then directly translated to a string using a depth-first traversal. In either
case the root (“Expression”) needs to be removed in order to create a legal
[ATEX string.

In theory this type of translation is also possible for Maple and Mathemat-
ica or other computer algebra system languages, but this involves additional
semantic issues discussed in Chapter 7, and is beyond the scope of this thesis.

4.6 Translation to Output Strings 51

Expression
a; 10000 =
X z i /X % I

SUPER ABOVE BELOW

1=1 S~ AN~ T~
a 1 0000 i=1
a. Input Expression SUBSC

J

b. Initial Basaline Structure Tree

Expression

T
LI

SUPER ULIMIT BELOW
- R~ AT

a 10000 1=1

|
SUBSC

c. Rewritten Basaline Structure Tree

Figure 4.5: Tree Rewriting

52

A Mathematics Notation Parser

Chapter 5

Implementation and Test
Results

Based on the general parser outlined in Chapter 4 a parsing application was
built, the Diagram Recognition Application for Computer Understanding
of Large Algebraic Expressions (DRACULAE). DRACULAE was developed
using an existing mathematics entry system called FFES, developed by Steve
Smithies at the University of Otago, New Zealand. FFES had a parser of its
own which was based on existing graph grammar techniques[47] but which
was very restricted in terms of number of symbols and layout that the system
could handle. DRACULAE was developed with the intention to augment
and/or replace the graph grammar-based parser. The FFES graphical user
interface is shown in Figure 5.1.

DRACULAE was written in Java, and FFES was implemented in Tcl/Tk
and C++. DRACULAE has been interfaced with FFES through alteration
of the FFES Tcl/Tk code. Both DRACULAE and FFES have been built
on Linux platforms, and DRACULAE has also been succesfully built under
Solaris.

At present, only LaTeX and positional sentences are available as output,
i.e. structural representations. In the last chapter we discuss issues in obtain-
ing mappings to semantic representations such as Maple and Mathematica
strings.

In the following a general overview of FFES and DRACULAE are pro-
vided, followed by a discussion of test results for DRACULAE.

53

54 Implementation and Test Results

sort

Draw Mode

Figure 5.1: The Freehand Formula Entry System

5.1 The Freehand Formula Entry System

In this section we briefly outline the FFES system. For greater detail, please
see [47, 48].

The Freehand Formula Entry System is designed to allow an individual
to input math expressions to a computer using a mouse or data tablet. The
system is comprised of a graphic user interface, a graph-grammar parser and
a nearest-neighbour symbol recognizer (created by Jim Arvo at Caltech).

The user draws a number strokes, which FFES tracks and groups for
recognition in the background. After a specifiable time delay or after four
strokes have been made (the maximum number of strokes needed for the
set of symbols recognized), the symbol recognizer is called on all possible
partitions of the strokes sent to the recognizer. Note that Jim Arvo has
indicated that a newer version sends only O(n?) sets of stroke partitions to

5.1 The Freehand Formula Entry System 55

the recognizer.

The system allows easy correction of any stroke grouping or symbol iden-
tity recognition errors. The “Group” button allows the user to select strokes
to be joined by drawing a line through the strokes to be grouped. The
program then performs recognition on the selected group and any strokes
separated by the grouping.

If a symbol label is incorrect, the “Replace” button allows the user to click
the mouse on the misrecognized symbol, and then select from a pull-down
list of labels (in order of confidence from the symbol recognizer) or type a
labelling string in from the keyboard.

In addition, the spatial position of symbols may be moved using the
“Select” button. The user can select individual symbols or groups of symbols
and move them in the image. This is useful for interaction between the
parser output and the user; inputs which have their structure misparsed can
be easily altered.

The original graph-grammar based parser may be called on the recog-
nized symbols using the “FFES parser” button, while the “DRACULAE
parser” calls the implementation of the baseline structure-tree based parsing
algorithm described in the last chapter. The FFES parser was kept in the
application for comparison only, and in the future will be removed.

The error-correction facilities of FFES proved invaluable during devel-
opment of DRACULAE, because this allowed our research to assume the
presence of a perfect symbol recognizer. Because of the clear labelling in
FFES, any mis-labelled symbols in the image input can be quickly located
and corrected. While the user may occassionally miss mis-classified symbols,
these errors are easily detected. Likewise, if the layout of symbols confuses
the parser, this can be easily corrected through directly manipulating the
location of the symbols. Currently DRACULAE parses in under two seconds
on average on a Pentium-III 450MhZ Linux system, with a two to ten sec-
ond delay to create the graphical user interface window. This is due to the
implementation language (Java) rather than the complexity of the parser.

FFES was tested with human users, and was found to be a promising way
to input mathematical expressions to a computer[47]. The largest drawback
in the system, time and accuracy wise was the existing parser.

56 Implementation and Test Results

5.2 DRACULAE implementation

DRACULAE is comprised of a parser and a graphic user interface. DRAC-
ULAE takes a list of symbols as input (from any source providing bounding
box and symbol identity information), and passes it to the parser. Then
the baseline structure tree output by the parser is passed to the graphic
user interface, which displays the tree and calls translators to display the
[ATEX and positional sentence translations, as shown in Figure 5.2. Tabs
are used to switch between the “Image Viewer”, which displays an image
of the IXTEX processed string shown in the Output String line (e.g. @)
and the “Tree Viewer”, which shows the baseline structure tree and symbol
attributes.

3

— "
DRACULAE temp_file.dat K DRACULAE temp_filedat

Output String: ($ifrac {\sqrt {ab}} {x}§ ‘ Qutput String: ($\frac {isqrt {ab}}{x} |

| copy |[LaTex v| Exit ~ copy ||LaTex v | Exr |

- LaTeX -
Image Viewer [Trfu o | image viewer | Tree viewer|

P. Sentence " Expression
]
@ "y ABOVE Value
Q@ esqrr sqrt

@ “w CONTAINS
LE-1
sh
@ “wBELOW
L4

square Root

Alignment:

Centre

Eounding Box:
‘ [203,2893), (341,2952) |

B

Centroid

(272,2922)
Bottom /Top Wall:

2883, 3000
Left/Right Wall
190, 356

Callapse ...

Figure 5.2: DRACULAE Graphic User Interface (Image and Tree Views
Shown)

Java was an ideal prototyping language for the following reasons. First,
it creates a (theoretically) platform independent prototype. Second, the
javadoc facility was appealing from a program understanding and analysis
point of view. Third, the “Swing” library allowed automated visualization
of the tree structure, which was crucial to the program design.

5.3 Test Results 57

DRACULAE is relatively fast, parsing in under a second for many large
expressions. In Linux the largest delay seems to result because the version
of Java which was available did not posess a just-in-time compiler, resulting
in purely interpreted execution. Window creation and display is particularly
slow (taking up to 10 seconds at times).

In addition to being relatively fast, DRACULAE is robust. If symbols
are missed in the input, a message is sent to the terminal along with the
symbols missed. The part of the expression that was parsed is passed along.
If no input is passed, a single node labelled ”Expression” (the root of the
tree) is returned.

5.3 Test Results

Through FFES, DRACULAE has been tested on hundreds of mathematical
expressions. There are approximately one hundred test cases which act as a
test suite. Examples of inputs which have been properly recognized are pre-
sented in Figures 5.3 to 5.7. Figures 5.3 and 5.5 are taken from a Calculus
textbook[41], while Figure 5.4 is presented as an example of limit handling
in DRACULAE. Figure 5.6 shows an expression with accents properly han-
dled by DRACULAE, and finally Figure 5.7 demonstrates a large, complex
expression recognized by DRACULAE.

5.3.1 General Results

The following are some general results obtained during testing.

e On average the time from requesting a parse from DRACULAE to
viewing the graphical user interface is under ten seconds.

e We have tested on expressions with more than 40 symbols in complex
layouts, and noticed little or no performance discrepancy compared
with smaller expressions.

e DRACULAE is robust. If a misparse occurs, the generated positional
sentence and KTEX strings are returned, and a IXTEX image created. In
this case the structure of the baseline structure tree may be observed
if the image does not offer enough information. The IXTEX string
will often have the spatial relations explicitly in the output image in

58

Implementation and Test Results

this case (e.g. ABOVE, SUPER etc. appear directly in the generated
image). Empty input is handled by returning a baseline structure tree
with a single root and the string “Expression” as KTEX output.

As DRACULAE performs no semantic analysis, syntactically invalid
inputs (e.g. with unmatched parentheses) are handled without diffi-
culty, provided the baseline structure is clear to DRACULAE.

The thresholds used for regions work reasonably well if there is little
skew in the input expression. However, slanted expressions result in
improper subscripting or superscripting.

Horizontal lines are mapped to division lines, subtraction symbols, over-
line (e.g. boolean negation) or underline depending on the context in
the baseline structure tree. For instance, if a horiztonal line has sym-
bols above and below, IXTEX is instructed to create a fraction. If the
line has an argument above or below, underline or overline strings are
created. Finally, if no symbols are above or below the line, the line is
translated as a subtraction symbol. Horizontal lines are thus allowed
to interact in complex ways with little ambiguity.

When horizontal lines overlap less than the required thresholded amount
for overlap detection, unusual outputs are created.

Limit symbols (e.g. [, ") may have overlapping limits (see Figure 5.3),
and these limits may be of almost arbitrary complexity, as shown in
Figure 5.4. However, due to the current definition of START, the dom-
inant limit symbol must be leftmost in the case of an expression such as
that given in Figure 5.4. This could be resolved through incorporating
size information into START’s definition.

There is a rewrite rule to collect separated = signs using context in
the tree. The particular version that has been implemented does not
work if the = is in a limit, but otherwise performs well. This could
be resolved by a constraint on the length that a line must be to be
considered “overlapping” a limit symbol.

Many expressions which are not translated to IXTpX appropriately are
nontheless recognized accurately. For instance, choice notation created
using single integers and/or variables have the relative position of the

5.3 Test Results 59

Sigma omega u v

Figure 5.3: Test Input Example 1

symbols correctly represented in the baseline structure tree. A tree
rewrite to group the expression into an appropriate KTEX string simply
hasn’t been created yet.

60 Implementation and Test Results
7
Sigma
3
3 = u
Sigma () 2
1 7
+ = (6
Figure 5.4: Test Input Example 2
sqrt
1 ! ‘ 1 42
integrgl Uitegral ingegral
1 d
_ 1
()) /2
sgrt) X + y

Figure 5.5: Test Input Example 3

5.3 Test Results

61

R/

Figure 5.6: Test Input Example 4

& |
_\l i3

Lt
R

| bt

\ L e v

Figure 5.7: Test Input Example 5

|

SN

Q

62

Implementation and Test Results

Chapter 6

Future Work and Conclusion

In this chapter future work arising from this research is discussed. Improve-
ments which may to be made to DRACULAE are outlined, along with more
general issues such as reimplementation of DRACULAE in TXL, semantic
issues which arise in mapping from baseline structure trees to semantic in-
terpretations, and diagrammatic notations other than mathematics notation
which may benefit from a recognition method similar to baseline extraction.

6.1 Limitations of DRACULAE

6.1.1 Starting Symbol Definition

As noted in the last chapter, Figure 5.4 would not be successfully parsed if the
>~ in the upper limit were moved to the left of the lower >°. This is because
the operator dominance analysis currently performed by START does not
take symbol size into account. It also was not originally clear that this was
an analysis of operator dominance rather than simply a spatial analysis.
With this new information, DRACULAE would benefit greatly from a more
generally defined START function with a better defined operator dominance
analysis.

6.1.2 Whitespace

The current implementation of DRACULAE performs no tokenization of
input, and does not provide rewrite rules to group integers, separate function

63

64 Future Work and Conclusion

names, etc. This would not be difficult to add to the current system, however
analysis of whitespace is necessary for creating a more mature system.

Futher, neither matrices or multiple line expressions are recognized prop-
erly using DRACULAE. It is unclear whether simple rewrites could be cre-
ated to handle these cases, though it seems more likely that segmenting the
input and sending single-line expressions to DRACULAE would result in
better performance due to the potential complexity of analysis.

6.1.3 Sensitivity to Symbol Size

Very large symbols have very large regions, and small symbols vice-versa. It
is unclear whether representation of symbols by single points in handwritten
expressions is reasonable, or whether some additional bounding box and/or
pixel information would result in better performace, particularly in situations
where skew is present.

6.1.4 Pixel Level Information

DRACULAE cannot, nor will it be able to handle structures which require
pixel-level information. As an example, consider nth-roots. Without knowing
where the line dividing the expression into inner and outer parts of the square
root is, it is impossible to differentiate a value in the scope of a root from a
value indicating the degree of a root.

An arbitrary threshold could be used, but this would restrict the types
of expressions that could be accepted by DRACULAE.

In order to locate the degree of a root without uncertainty, DRACULAE
would need access to the position of the dividing line. Kerned symbols are
another example where pixel level information would result in improved per-
formance, for instance in the case of T,,, which DRACULAE would currently
recognize as T BELOW {n} if the T bounding box overlaps the centroid of
the n.

6.2 TXL Implementation of DRACULAE

Java was a convenient language for prototyping DRACULAE, abstracting a
great deal of low level details. However, it is not easy to express tree rewriting
rules in Java, requiring a fairly large amount of detailed code for even a single

6.2 TXL Implementation of DRACULAE 65

rewrite. Additionally, while the Java implementation of DRACULAE is fast,
it remains to be seen how rapidly a version in a compiled language would
execute.

TXL is a programming language which performs a process identical to
that used for DRACULAE: a tree is built using a grammar, the tree is rewrit-
ten using a set of productions, and then the tree is translated into an output
string[16]. TXL allows attributed nodes in its trees, making the translation
from Java to TXL relatively easy. TXL represents tree productions using
a compact and simple syntax; this makes extension and maintenance of a
system like DRACULAE easier than if the system is programmed in pro-
gramming language such as C, C++ or Java. To extend DRACULAE as
it currently is to a real system capable of handling dialects, Figure 6.1 is
proposed.

Type Il Representation Baseline Structure Tree Builder Typelll Repr&eentati_on)
(Attributed Symbol List) (TXL) (Structural Representation:
Positional Sentence)

(- i N
Type |11 Representation

(Structural Representation, TXL Dialect Transators

i.e. LaTeX) g Translation Program(s) for Dialect 1
Didlect 1 . .
) Tranglation Program(s) for Dialect 2
Dialect 2 :
: T Trandation Program(s) for Dialect n
Didlectn
- J

(N
Type IV Representation

(Semantic Representation, i.e. Maple)

Dialect 1
Didect 2

Dialect n

Figure 6.1: Proposed TXL Reimplementation of DRACULAE

66 Future Work and Conclusion

6.3 Issues in Semantics of Mathematics No-
tation

As stated earlier, mathematics notation is a natural visual language and as a
result does not possess a fixed semantic interpretation. Therefore, it would be
worth making a study to determine which parts of mathematical semantics,
if any, are fixed (i.e. are hard conventions) and which fluctuate by dialect
(i.e. are soft conventions).

In order for a semantic interpretation to be made, the baseline structure
obtained using a system such as DRACULAE must be broken/rewritten into
tokens: integer values must be distinguished from decimal values, exponential
numbers, function names, variable names, and so on. The current system
makes no such analysis, though this is clearly necessary for both displaying
more complicated expressions (i.e. to indicate to WTEX where whitespace is
to appear) and for semantic interpretation and/or evaluation of mathematical
expressions that have had their baseline structure extracted. This would not
be difficult to add directly to DRACULAE in the form of tree rewrite rules.

In the case of simple arithmetic, a semantic interpretation may obtained
through mapping from the baseline structure tree to the operator tree for
the expression[40], as shown in Figure 6.2.

2+(2*3) Expression /+\
S S .
2 0
2 + (2% 3) \
/N
3
a. Expression b. Baseline Structure Tree c. Operator Tree

Figure 6.2: Simple Arithmetic Expression and Representations

The operator tree may be obtained from the baseline structure tree using
operator dominance[12]. The operator tree indicates the order of application
of the operators bottom-up.

For more complex mathematical expressions, a computer algebra system
language such as Maple or Mathematica may be used for representation. For
this type of representation to be constructed, a priori semantic information is

6.4 Use of Directed Recognition Algorithms in Other Notations67

required. For instance, to produce appropriate output for a Maple program
that uses a function p, there must be a facility to indicate that p(a) is in fact
function applciation and not implied multiplication of terms.

It would be worth studying what other types of a priori semantic in-
formation are needed to produce valid semantic interpretations for different
dialects of mathematics notation. With such information, DRACULAE or a
similar system could be extended to produce strings in a computer algebra
system format (e.g. Maple) for different dialects of mathematics notation, as
shown in Figure 6.1.

6.4 Use of Directed Recognition Algorithms
in Other Notations

The algorithm used in this thesis exploits the direction inherent in baselines.
Given the ability to locate the beginning of a baseline symbol set, an al-
gorithm may be defined in order to progress left-to-right to find the other
symbols on a given baseline. In a divide and conquer fashion, baseline symbol
sets are located recursively using binary spatial relations.

Other notations besides mathematics notation have a clear element of
direction, and it may be possible to recognize the structure of these notations
in a similar fashion. Music notation for instance has direction inherent in
the progression of notes, left-to-right, across a staff. The analogy between
baselines in mathematics notation and a voice in music notation is strong; in
fact, a single musical voice can be viewed as a type of symbol set similar to
a baseline symbol set. A complicating factor in music notation is that unlike
baselines, voices in music notation can overlap, and as a result it is not trivial
to determine which voice a note belongs to. It is worth examining whether
a partially or completely dialect-neutral representation of the structure of
music notation may be obtained. There are many dialects of music notation,
so it is unclear whether this is possible.

Circuit diagrams also have an element of direction: the direction of cur-
rent flow. If power sources can be located in a diagram, it may be possible
to employ the direction of circuit flow directly to aid recognition.

68 Future Work and Conclusion

6.5 Conclusion

The research presented in this document has established the following thesis.

Through separating spatial structure from semantics in mathe-
matics notation, a general and flexible recognition of mathematics
expressions may be obtained.

As a reminder, general is used to indicate that dialects of mathematics no-
tation may be conveniently handled. Flezible refers to the ability to handle
a large range of symbol placements.

The following contributions which support this thesis have been discussed.

1. A model for the structure of mathematics notation

A novel model, called the baseline structure tree, was introduced in
Chapter 3. This model represents spatial structure between baselines
in mathematics expressions. It is demonstrated in Chapter 3 how a
baseline structure tree may be rewritten in order to perform syntactic
analysis for different dialects of mathematics notation.

2. A visual language parsing algorithm

In Chapter 4 an algorithm which creates baseline structure trees from
attributed symbol lists is described. The parsing algorithm presented is
more flexible than exisiting mathematics notation recognition systems
because the spatial relationships used to obtain baseline structure may
be redefined, and tree rewriting may be used to handle soft conventions
(i.e. dialects).

3. An implementation

An implementation of the visual language parsing algorithm was pre-
sented in Chapter 5. The implementation is named the Diagram Recog-
nition Application for Computer Understanding of Large Algebraic Ex-
pressions (DRACULAE). Chapter 5 outlines how DRACULAE has
been integrated into a complete recognition system for handwritten
mathematics notation, the Freehand Formula Entry System (FFES).
The symbol recognition and user interface components of FFES were
created by Steve Smithies, Jim Arvo and Kevin Novins [48]. The system
has been tested on hundreds of handwritten expressions with excellent

6.5 Conclusion 69

results. FFES and DRACULAE were demonstrated at CASCON 99
and were enthusiastically received. Public distribution of the system is
planned.

70

Future Work and Conclusion

Bibliography

1]

R.H. Anderson. Syntaz-Directed Recognition of Hand-Printed Two-
Dimensional Equations. PhD thesis, Harvard University, Cambridge,
MA, January 1968.

R.H. Anderson. Two-dimensional mathematical notation. In K.S. Fu,
editor, Syntactic Pattern Recognition. Springer-Verlag, New York, 1977.

Stephan Baumann. A simplified attributed graph grammar for high-level
music recognition. In Proc. Third Intl. Conf. on Document Analysis and
Recognition, Montreal, Canada, August 1995.

Abdelwaheb Belaid and Jean-Paul Haton. A Syntactic Approach for
Handwritten Mathematical Formula Recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 6(1):105 111, January
1984.

Benjamin P. Berman and Richard J. Fateman. Optical character recog-
nition for typeset mathematics. In Proceedings of the 1994 International
Syposium on Symbolic and Algebraic Computation, pages 348-353, July
1994.

Dorothea Blostein. General diagram-recognition methodologies. In Lec-
ture Notes in Computer Science, volume 1072, pages 106 122. Springer-
Verlag, New York, 1995.

Dorothea Blostein and Ann Grbavec. Recognition of mathematical no-
tation. In Handbook of Character Recognition and Document Image
Analysis, pages 557-582. World Scientific Publishing Company, 1997.

71

72

BIBLIOGRAPHY

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

H. Bunke. Attributed programmed graph grammars and their applica-
tion to schematic diagram interpretation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 4(6):574 582, November 1982.

Florian Cajori. A History of Mathematics. Chelsea Publishing Company;,
New York, 1919.

Florian Cajori. A History of Mathematical Notations. The Open Court
Publishing Company, Chicago, [llinois, 1929. 2 vols.

G. Castagliola, A. De Lucia, S. Orefice, and G. Tortora. A framework
of syntactic models for the implementation of visual languages. In Proc.
1997 Symposium on Visual Languages, pages 5865, 1997.

Shi-Kuo Chang. A method for the structural analysis of two-dimensional
mathematical expressions. Information Sciences, 2:253 272, 1970.

T.W. Chaundy, P.R. Barrett, and Charles Batey. The Printing of Math-
ematics. Oxford University Press, London, 1957.

Ling-Hwei Chen and Peng-Yeng Yin. A system for on-line recognition of
handwritten mathematical expressions. Computer Processing of Chinese
and Oriental Languages, 6(1):19-39, June 1992.

P. A. Chou. Recognition of equations using a two-dimensional stochastic
context-free grammar. In W. A. Pearlman, editor, Visual Communica-
tions and Image Processing 1V, volume 1199 of SPIE Proceedings Series,
pages 852-863, 1989.

J.R. Cordy, C.D. Halpern, and E. Promislow. Txl: A rapid prototyp-
ing system for programming language dialects. Computer Languages,
16(1):97 107, Jan 1991.

Genarro Costagliola and Shi-Kuo Chang. Parsing linear pictorial lan-
guages by syntax-directed scanning. Languages of Design, 2:223-242,
1994.

Genarro Costagliola, Andrea De Lucia, and Sergio Orefice. Towards

efficient parsing of diagrammatic languages. In Proceedings of Advanced
Visual Interfaces, pages 162—171. ACM Press, 1994.

BIBLIOGRAPHY 73

[19]

[20]

23]

[24]

[25]

[26]

28]

Genarro Costagliola, Andrea De Lucia, and Sergio Orefice. A parsing
methodology for the implementation of visual systems. IEEE Transac-
tions on Software Engineering, 23(12), December 1997.

Genarro Costagliola, Andrea De Lucia, Sergio Orefice, and Genny Tor-
tora. Positional grammars: A formalism for LR-like parsing of visual
languages. In Visual Language Theory, pages 171-191. Springer-Verlag,
New York, 1998.

Gennaro Costagliola and Shi-Kuo Chang. Using linear positional gram-
mars for the LR parsing of 2-d symbolic languages. draft paper; for copy
contact gencos@dia.unisa.it, 1998.

Gennaro Costagliola, Andrea De Lucia, and Sergio Orefice. Towards
efficient parsing of diagrammatic languages. In Proceedings of Advanced
Visual Interfaces 1994, pages 162 171. ACM Press, 1994.

Yannis A. Dimitriadis and Juan Lépez Coronado. Towards an art based
mathematical editor, that uses on-line handwritten symbol recognition.
Pattern Recognition, 28(6):807 822, 1995.

Dov Dori and Amir Pneuli. The grammar of dimensions in machine
drawings. Computer Vision, Graphics and Image Processing, 42:1-18,
1988.

Talaat Salem El-Sheikh. Recognition of handwritten arabic mathemat-

ical formulas. In United Kingdom Information Technology Conference,
March 1990.

Hoda Fahmy and Dorothea Blostein. A graph grammar programming
style for recognition of music notation. Machine Vision and Applica-
tions, 6:83 89, 1993.

Hoda Fahmy and Dorothea Blostein. A graph-rewriting paradigm for
discrete relaxation: Application to sheet music recognition. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, August
1997.

Richard J. Fateman and Taku Tokuyasu. Progress in recognizing typeset
mathematics. In Proceedings of the International Society for Optical
Engineering, volume 2660, 1996.

74

BIBLIOGRAPHY

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

37]

[38]

Claudie Faure and Zi Xiong Wang. Automatic perception of the struc-
ture of handwritten mathematical expressions. In R. Plamondon and
C. G. Leedham, editors, Computer Processing of Handwriting, pages
337 361. World Scientific Publishing Co., 1990.

K.S. Fu. Syntactic Pattern Recognition. Springer-Verlag, New York,
1977.

Ann Grbavec. Recognition of mathematics notation using graph rewrit-
ing. Master’s thesis, Queen’s University, Kingston, Ontario, Canada,
January 1995.

Ann Grbavec and Dorothea Blostein. Mathematics recognition using
graph rewriting. In Third Intl. Conf. on Document Analysis and Recog-
nition, Montreal, August 1995.

Nicholas J. Higham. Handbook of Writing for the Mathematical Sciences.
Society for Industrial and Applied Mathematics, Philadelphia, 1993.

Donald E. Knuth. TeX and METAFONT - New Directions in Typeset-
ting. Digital Press, 12 Crosby Drive, Bedford, MA 01730, USA, 1979.

Andreas Kosmala and Gerhard Rigoll. On-line handwritten formula
recognition using statistical methods. In Proceedings of the Fourteenth
International Conference on Pattern Recognition, pages 1306 1308, Au-
gust 1998.

Stéphane Lavirotte and Loic Pottier. Optical Formula Recognition. In
Proc. jth International Conference on Document Analysis and Recogni-
tion, volume 1, pages 357 361, Ulm, Germany, 1997.

Hsi-Jian Lee and Jiumn-Shine Wang. Design of a mathematical ex-
pression recognition system. In Proceedings of the third International
Conference on Document Analusis and Recognition, pages 1084-1087,
1995.

Hsi-Juan Lee and Min-Chou Lee. Understanding Mathematical Expres-
sions Using Procedure-Oriented Transformation. Pattern Recognition,
27(3):447-457, 1994.

BIBLIOGRAPHY 75

39]

[40]

[41]

[42]

[45]

Kim Marriott, Bernd Meyer, and Kent D. Wittenburg. A survey of vi-
sual language specification and recognition. In Visual Language Theory,
pages 5 85. Springer-Verlag, New York, 1998.

William A. Martin. Computer Input/Output of Mathematical Expres-
sions. In Proceedings of the Second Symposium on Symbolic and Alge-
braic Manipulation, pages 78-89, March 1971.

William G. McCallum, Deborah Hughes-Hallett, Andrew M. Gleason,
and et al. Multivariable Calculus: Draft Version. John Wiley and Sons,
Tnc., 1994.

Eric G. Miller and Paul A. Viola. Ambiguity and constraint in math-
ematical expression recognition. In Proceedings of the 15th National
Conference of Artificial Intelligence, Madison, Wisconsin, July 1998.
American Association of Artificial Intelligence.

Brad A. Myers. Taxonomies of visual programming and program visu-
alization. Journal of Visual Languages and Computing, 1:97-123, 1990.

Masayuki Okamoto and Akira Miyazawa. An experimental implemen-
tation of a document recognition system for papers containing math-
ematical expressions. In H.S. Baird H. Bunke and K. Yamamoto,
editors, Structured Document Image Analysis, pages 36-53. Springer-
Verlag, New York, 1992.

Nasayuki Okamoto and Bin Miao. Recognition of Mathematical Expres-
sions by Using the Layout Structures of Symbols. In Proceedings of the
First International Conference on Document Analysis and Recognition,
volume 1, pages 242-250, Saint-Malo, France, 1991.

Giulia M. Pagallo. Constrained attribute grammars for recognition of
multi-dimensional objects. In Advances in Pattern Recognition, pages
359-365. Springer-Verlag, 1998.

Steve Smithies. Freehand formula entry system. Master’s thesis, Uni-
versity of Otago, Dunedin, New Zealand, May 1999.

Steve Smithies, Kevin Novins, and James Arvo. A Handwriting-Based
Equation Editor. In Proc. Graphics Interface, Kingston, Ontario,
Canada, June 1999.

76

BIBLIOGRAPHY

[49]

[50]

[51]

[52]

[53]

Hashim M. Twaakyondo and Masayuki Okamoto. Structure Analysis
and Recognition of Mathematical Expressions. In Proceedings of the
Third International Conference on Document Analysis and Recognition,
volume 1, Montréal, Canada, 1995.

Zi-Xiong Wang and Claudie Faure. Structural Analysis of Handwritten
Mathematical Expressions. In Proceedings of the Ninth International
Conference on Pattern Recognition, pages 32 34, 1988.

H.-J. Winkler, H. Fahrner, and M. Lang. A Soft Decision Approach
for Structural Analysis of Handwritten Mathematical Expressions. In

International Conference on Acoustics, Speech and Signal Processing,
pages 2459-2462. IEEE, 1995.

Hans-Jirgen Winkler and Manfred Lang. Symbol segmentation and
recognition for understanding handwritten mathematical expressions. In
Progress in Handwriting Recognition. World Scientific, Singapore, 1997.

Yanjie Zhao, Tetsuya Sakurai, Hiroshi Sugiura, and Tatsuo Torii. A
methodology of parsing mathematical notation for mathematical com-
putation. In Proceedings of the International Symposium on Symbolic
and Algebraic Computation, July 1996.

Appendix A

A Positional Grammar for
Baseline Structure

In this appendix a positional grammar is presented which represents the
structure of baselines in mathematics notation (i.e. a syntax of baseline
structure trees). The strings derived from the grammar are positional sen-
tences which correspond to baseline structure trees.

A positional grammar is an attributed context-free grammar augmented
by a set of positional relations which are explicit in the derived parse string.
The output of a positional parser for a positional grammar is a string called
a positional sentence, which alternates terminals of the grammar with posi-
tional relations (see [22, 18, 17, 11, 19, 21, 20] for more details). There is
a class of positional grammars for which fast (i.e. O(n?)) LR parsers with
actions may be constructed using an automatic parser generator, such as
YACC.

In a positional grammar multiple positional relations on one symbol are
presented using enumeration of relations in the positional sentence. For ex-
ample, in

aHORy{c}SUPER,{2}SUBSC,{i}

the numeral n after each relation indicate that it applies to the symbol on the
immediate right, and the n-th last symbol in the string. The above example
represents aZc.

Figure A.1 defines a positional grammar for the structure of baselines in a
mathematics expression. Note that SYMBOL is a terminal of the grammar,

77

78

A Positional Grammar for Baseline Structure

Ne}

10

. E — SP BLSS

BLSS — BLS HOR BLSS | € *
BLS— SYMBOLBCDEF GH
B — TLEFT {BLSS} | ¢

C — BLEFT {BLSS} | ¢

D — ABOVE {BLSS} | ¢

E — BELOW {BLSS} | ¢

F — SUPER {BLSS} | ¢

. G — SUBSC {BLSS} | ¢

. H - CONTAINS {BLSS} | ¢

Figure A.1: Positional Grammar of Baseline Structure

representing an attributed symbol. Attributes are propagated from the left
hand side to the right hand side. This is done in the following way:

1.

Rule 1 will assign the wall attributes of BLSS to the pair ((-1,-1),(0c,00))

. In Rule 2 the wall attributes of the left-hand BLSS (baseline symbol
set) are passed to both of the nonterminals on the right hand side. The
right Wall attribute of BLS (baseline symbol) is then set to the mini-
mum bounding box coordinate for the symbol represented by the BLSS
nonterminal on the right side of the rule (this provides the necessary
partition for SUBSC and SUPER regions).

In Rule 3 the wall attributes of BLS are passed to SYMBOL and all
nonterminals (B to H).

In Rules 4-10 if a symbol is located the BLSS on the right hand side
inherits wall attributes equivalent to the region within which the symbol
was found.

A Positional Grammar for Baseline Structure 79

A problem with the grammar above is that the grammar presents context
through bracketing, which is not present in the original positional grammar
formalism. As a result, the manner in which to cleanly construct the bracket-
ing in a parser for the grammar above has not presented itself. The algorithm
in Chapter 4 is essentially equivalent to a top-down parser based on the gram-
mar above. For that parsing algorithm, the bracketing issue is resolved by
constructing a baseline structure tree during the parse, and then bracketing
based on context while translating the tree into a string.

Attributes need to be synthesized top-down for the grammar above, and
as a result an LR parser could not be constructed for the grammar even if the
bracketing issue were resolved. More research is needed to see whether the
techniques used by Costagliola et. al. to create LR parsers with actions may
be generalized to create LL parsers with actions. The advantage of such a
generalization is that it would allow the use of automatic parser generators to
build LL as well as LR parsers for visual languages describable by positional
grammars.

80

A Positional Grammar for Baseline Structure

Appendix B

Algorithms

B.1 START and OVERLAP

In the following we define spatial functions START (R,list;,), where R is a
region, and list;, an input list. START(R,list;,) returns the starting symbol
Sstart Of input list lzst;, in region R. We assume that list;, is a list sorted by
leftmost coordinate, indexed from 1 to the number of elements in the list.

START Let list;, be the passed input list

Let (leftW all,bottomW all),(rightW all,topW all) be the passed values defin-
ing a region R

Let leftmostInder := -1

Let limitIndex = -1

Let listIndex := 1

Let overlapIndex := -1

Let n be the number of items in list;,

While le ftmostIndex = -1 and listIndex < n

o If listy,(listIndex) is an unmarked symbol with its centroid in
region R, let leftmostIndex := listIndex

o else let listIndex := listIndex + 1
If leftmostIndex = -1 then return le ftmostIndex

else

e While listIndexr < n and limitIndex = -1

81

82 Algorithms

— If listi,(listIndex) is an unmarked limit symbol in region R
then let limitIndex = listIndex

— else listIndex = listIndex + 1

o If limitIndex = -1 or limitIndexr = leftmostIndex
return OVERLAP (leftmostIndex,topW all ,bottomW all,list;,)

e clse

— Let upperThreshold be the maximum y bounding box coor-
dinate value at list;y, (limitIndez)

— Let lowerThreshold be the minimum y coordinate bounding
box value at list;, (limitIndex)

— While listIndex > leftmostIndex
x listIndexr := listIndexr - 1

* If the centroid y coordinate of the symbol at list;y, (listIndex)
< upperThreshold and the same y centroid coordinate >
lowerThreshold then let overlapIndexr := listIndex

— If overlapInder < limitIndex then
return OVERLAP (leftmostIndex topW all ,bottomW all list;y,)

— else return OVERLAP (limitIndex topW all bottomW all list;y,)
END OF ALGORITHM

Next we describe OVERLAP (symbollndex,topWall,bottomWall, list;,).

OVERLAP Let symbolIndex be the passed index to list;,
Let topWall and bottomW all be passed y-coordinates
Let list;;, be the passed input list
Let listInder := symbolIndex
Let stop := false
Let n be the number of items in [¢st;,

If list;, (symbolInder) is a line, then let mazLength be maxX - minX of
that symbol.

else let maxLength = -1
Let mainLine := -1
While listIndex > 1 and stop = false

o Iflist;,(listIndex - 1) contains a symbol which has a minX bound-
ing box coordinate less than that of the symbol at list;, (symbolIndex)
then stop := true

B.2 Main Parsing Algorithm 83

o else listIndex := listIndex - 1

While listInder < n and minX bounding box coordinate of the symbol at
listip (listIndex) is less than maxX of list;, (symbolIndex)
o If listiy(listIndex) is

— An unmarked horizontal line with y centroid coordinate <
topWall and > bottomWall and

— Has a minX bounding box coordinate < minX of list;, (symbolIndex)
and

— Is longer than max Length

then let maxLength be the length of this line (maxX-minX) and
let mainLine := listIndex

If mainLine = -1, return symbolIndex

else return mainLine

END OF ALGORITHM

The worst-case time complexity for START and OVERLAP are O(n). In
the worst case, OVERLAP scans the entire list first forward, and then back-
ward, performing O(1) operations for each element, giving O(2n). START
in the worst case will first scan the entire input forward and backward, in the
case of a limit symbol which is rightmost in the input with the start of one of
the limits being leftmost (again, O(2n)). Assuming that all symbols horizon-
tally overlap, the subsequent call to OVERLAP then requires an additional
O(2n) steps. 2n + 2n € O(n). Therefore both algorithms are of linear time
complexity in the worst case.

B.2 Main Parsing Algorithm

In this section we present the full algorithm described in chapter 4.

Let list;;, be a sorted list of preprocessed symbols
Let T be a tree with a single node at the root, T},
Let S be a stack

Let Q be a queue

Let ParentNode, SymbolNode and RelationNode be tree nodes

84

Algorithms

Let Templ and Temp2 and sg4r¢ be integers

Let region R = {(0,0),(oc0,00)}

Obtain the index of the start symbol sg4,r = SP(R)

If ssiart # —1, set the wall attributes of sgqrr to R, enqueue (Sgiart,Troor) in Q,
and mark the symbol at list, (Ssiart)

While Q is not empty

e (EXTRACT BASELINES)
While Q is not empty

(Templ,ParentNode) := dequeue(Q)
Assign to SymbolNode a new tree node with all the attributes of

the symbol at Templ in list;),

Push (Templ,SymbolNode) on S

— R := wallAttributes(Templ)
— Temp2 := HOR(list;,, Templ)
— While Temp2 # -1

*

*

*

*

*

Mark the symbol at list;,(Temp2)
wallAttributes(Temp2) := wallAttributes(Templ)

Let SymbolNode be a new tree node containing all attributes
associated with list;,(Temp2)

Add SymbolNode as the last child of ParentNode

Push (Temp2,SymbolNode)

right Wall(Templ) := minX(Temp?2)

If Temp?2 is a limit symbol, and Temp 1 is a horizontal line or
open bracket, assign left Wall(Temp2) := maxX(Templ)
Templ := Temp?2

Temp2 := HOR(list;,, Templ)

— Push “EOBL” on the stack

e (LOCATE SECONDARY BASELINES)
While S is not empty
— If top(Stack) = “EOBL” then Pop(S)
— (Templ,SymbolNode) := Pop(s)

B.2 Main Parsing Algorithm 85

— Check all of the relevant secondary baseline regions for the symbol
at index Templ in list;, (TLEFT, BLEFT, ABOVE, BELOW,
SUBSC, SUPER, CONTAINS - each calls START(R,list;,) for
R defined for the region being examined (see Figure 4.4)). For
each region examined which returns an result (i.e. Temp2 :=
START(R,listi,(Templ)) and Temp2 # -1), do the following:

* Mark the symbol at list;,(Temp2)
« wallAttributes(Temp2) := R

x Let RelationNode be a new tree node labeled with the name
of the matching relation.

* Add RelationNode as a child of SymbolNode
* Enqueue (Temp2, RelationNode) in Q

Scan the input. If any unmarked tokens remain, output an error indicating
symbols in the input were not added to the baseline structure tree (this
corresponds to Genarro Costagliola’s “ANY” function[11]).

Return T

END OF ALGORITHM

The algorithm is of time complexity O(n?). At most n symbols are con-
sidered for each of the extract and locate processes (indicated in upper case
letters); i.e. the inner loops execute O(n) times each. HOR and START are
both O(n) as established earlier. This efficiency is due to the determinism
of the parser.

An adjacency list representation may be used for the tree T. With an
adjacency list, creating nodes is an O(n) operation in the worst case. We
never need to examine the tree during the process of the algorithm.

The maximum size of the tree is 2n, where n is the number of symbols in
the input list. The worst case occurs when no baseline symbol set has more
than one symbol as an element.

86

Algorithms

Vita

Name
Place and year of birth

Education
Experience

Awards

Richard Zanibbi
Sudbury, Ontario, 1974

Queen’s University, 1993 1999

Teaching assistant, Department of Computing and
Information Science, Queen’s University, 1998

Research assistant, Department of Computing
and Information Science, Queen’s University,
1998-1999

Software Developer, Legasys Corporation,
Kingston, Ontario, Canada, 1999

Wilfred Laurier University Scholarship(declined),
1993

Queen’s Graduate Award, 1998-1999

University of Otago Optical Music Recognition
Research Scholarship(declined), 1999

87

