
Multi-Stage Math Formula Search:
Using Appearance-Based Similarity Metrics at Scale

Richard Zanibbi
Kenny Davila

Rochester Institute of Technology, USA
{rxzvcs,kxd7282}@rit.edu

Andrew Kane
Frank Wm. Tompa

University of Waterloo, Canada
{arkane,fwtompa}@uwaterloo.ca

ABSTRACT
When using a mathematical formula for search (query-by-
expression), the suitability of retrieved formulae often de-
pends more upon symbol identities and layout than deep
mathematical semantics. Using a Symbol Layout Tree repre-
sentation for formula appearance, we propose the Maximum
Subtree Similarity (MSS) for ranking formulae based upon
the subexpression whose symbols and layout best match
a query formula. Because MSS is too expensive to apply
against a complete collection, the Tangent-3 system first re-
trieves expressions using an inverted index over symbol pair
relationships, ranking hits using the Dice coefficient; the top-
k formulae are then re-ranked by MSS. Tangent-3 obtains
state-of-the-art performance on the NTCIR-11 Wikipedia
formula retrieval benchmark, and is efficient in terms of both
space and time. Retrieval systems for other graphical forms,
including chemical diagrams, flowcharts, figures, and tables,
may benefit from adopting this approach.

Keywords
mathematical information retrieval (MIR), inverted index,
query-by-expression, subtree similarity

1. INTRODUCTION
The Web is a rich repository of mathematical informa-

tion, including large repositories of technical documents in
online paper databases, tutorials and instructional materi-
als, and other publications in mathematics and engineering.
Numerous online resources are available for both experts and
non-experts. Students may explore and review concepts us-
ing Wikipedia, MathPlanet, and the Khan Academy, while
experts consult resources such as the On-Line Encyclopedia
of Integer Sequences (https://oeis.org/).

While mature technologies for text search are readily avail-
able, search using formulae as queries (query-by-expression)
remains an open research problem [8, 18, 28]. Interest in
Mathematical Information Retrieval (MIR) has increased in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR 2016 July 18–20, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2911512

recent years, as witnessed by math retrieval tasks at the
NTCIR conferences [1, 2].

For the most part, large-scale search engines support for-
mula search indirectly, e.g., through LATEX strings as search
terms. There is no wildcard support for formula subexpres-
sions; for example, we cannot reliably locate expressions con-
taining α with an unspecified exponent (α∗), or coefficient
(∗α). This makes it difficult for users to browse for simi-
lar formulae in documents, clarify unfamiliar notation [25],
or discover non-obvious connections between research pa-
pers based on their mathematical contents [27]. A recent
report from the National Research Council (USA) considers
developing a global library for mathematics research, and
includes a discussion of limitations in existing search tools
with regards to mathematical information [5].1

Math encodings are naturally hierarchical, defining for-
mula appearance (through the arrangement of symbols on
writing lines) in Symbol Layout Tree (SLT) encodings such
as LATEX or formula semantics in Operator Tree (OT) encod-
ings such as Content MathML. Math symbol definitions are
dialectic and context-dependent, and in general translating
between appearance and semantic encodings is heuristic [28].

Both layout tree and operator tree representations have
been used for query-by-expression (see Section 2). In the
most general sense, query-by-expression involves tree match-
ing for a class of SLTs or OTs. Open problems include defin-
ing appropriate similarity metrics, identifying what prim-
itives to use for representing formula content, how to in-
dex and retrieve these primitives, and finally how to handle
trade-offs between recall and both retrieval time and index
size. In general, retrieval becomes more difficult when the
best matches are less similar to the query formula (e.g., due
to large expressions in the corpus with subexpressions simi-
lar to one or more parts of the query), and when wildcards
are included in the query [10]. As SLT formula encodings are
more common in practice, we focus on them in this paper.

Problem Statement. Create a formula search engine
model that 1) effectively retrieves and ranks formulae based
on formula appearance, 2) is fast enough to use in real-time
with large corpora, 3) has index sizes and indexing speeds
that are scalable, and 4) supports wildcards.

Contributions. This paper makes four primary contri-
butions: 1) the Maximum Subtree Similarity (MSS) metric
for ranking formulae using the best query match with unifi-
cation and wildcard support (see Section 6), 2) an improved
SLT model with consistent representation for lists, grids and
matrices (see Section 4), 3) a novel, effective and efficient

1See p.28, “What is missing from the mathematical landscape?”

https://oeis.org/
http://dx.doi.org/10.1145/2911451.2911512

core engine for symbol pair-based retrieval (see Section 5),
and 4) state-of-the-art performance on the NTCIR-11 for-
mula retrieval benchmark: our method is efficient in terms
of time and space, and produces effective formula search re-
sults (see Section 7).

2. RELATED WORK
In this section we provide an overview of existing tech-

niques for formula retrieval. We categorize approaches to
query-by-expression as text-based, tree-based, or spectral ac-
cording to the primitives used to represent formulae.

Text-Based Approaches. In text-based approaches,
math expression trees are linearized before indexing and re-
trieval. Common normalizations include defining synonyms
for symbols (e.g., function names), using canonical orderings
for commutative operators and spatial relationships (e.g., to
group a+b with b+a and x_i^2 with x^2_i), enumerating
variables, and replacing symbols by their mathematical type
(e.g., numbers, variables, and classes of operators) [19,28].

Although linearization masks significant amounts of struc-
tural information, it allows text and math retrieval to be car-
ried out efficiently by a single search engine. Most text-based
methods use TF-IDF (term frequency-inverse document fre-
quency) retrieval after linearizing expressions [14, 19]. In
an alternative approach, the largest common substring be-
tween the query formula and each indexed expression is used
to retrieve LATEX strings [17]. This captures more structural
information, but also requires evaluating all expressions in
the index using a quadratic algorithm.

Tree-Based Approaches. These methods represent for-
mula appearance or semantics directly as trees. Expressions
are indexed as complete trees, along with their subtrees to
support partial matching. Tree indices may be compressed
by storing identical subtrees uniquely [10]. In addition to
exact matching of trees and/or subtrees, tree-edit distances
with early stopping have been used for fast retrieval [11].
The substitution tree [6] has been used to create indices
for operator trees, with each path representing a series of
subexpression variable substitutions [12]. The NII group
from Japan has devised a hashing scheme to represent op-
erator trees by a set of interdependent codes for all subex-
pressions [2, 18] (see Section 7 for results).

One method adapts TF-IDF retrieval for SLTs, using vec-
tors of subexpressions, along with subexpressions where ar-
guments are replaced by wildcards [13]. SLTs are modified,
normalizing argument order for commutative operators and
representing operator precedences. Text in the paragraphs
preceding and following formulae are added to provide con-
textual features for improved ranking [24].

Spectral Approaches. These approaches use paths or
partial subtrees rather than complete subtrees as retrieval
primitives. This can improve recall through more flexible
partial matching of expressions (e.g. in the SLT for x2a, x2

is a subtree, but x2i is not). Nguyen et al. convert operator
trees to a bag of ‘words’ representing individual arguments
and operator-argument triples [15]. A lattice is defined over
generated word sets for formulae, and a breadth-first search
starting from the query formula set is used to find similar
formulae. Hiroya and Saito [9] use bags of paths from the
root to each operator and operand in an operator tree, with
an inverted index used for retrieval. The large number of
possible paths from the root make this technique brittle.

The Tangent-2 search engine uses the relative position of

symbols to create a bag of symbol pairs [20], along with
extensions to represent matrix and grid structures [16]. A
symbol pair gives the location of symbol s2 relative to an
ancestor symbol s1 in an SLT (s1, s2, δx, δy), where (δx, δy)
are horizontal and vertical displacements along writing lines
from s1 to s2. This representation supports partial matches
well, while preserving enough information to return exact
matches. Formula similarity is defined by the harmonic
mean for the percentage of matched pairs in the query and a
candidate (i.e., Dice’s coefficient).2 A Dice coefficient vari-
ant incorporating symbol pair frequencies was found to per-
form similarly [20]. This technique combined with keyword
retrieval in Lucene produced the highest Precision@5 result
for the NTCIR-11 math retrieval task (92%) [2].

Limitations of Symbol Pair-Based Retrieval. In
Tangent-2, symbol pair matches may be scattered through-
out a formula, and exact matches for small subexpressions in
candidates produce low similarity scores. Wildcards match
individual symbols, and pairs of wildcards are ignored to
avoid performance problems. Non-wildcard symbols are not
unified: symbol pairs that are equivalent after renaming are
missed (e.g., x2 does not match a2). The Tangent-2 formula
structure model is also inconsistent, with different groupings
for roots, matrices, vectors and parenthesized expressions,
and retrieval is very slow (see Section 7).

In this paper, we make improvements to the Symbol Lay-
out Tree model used in Tangent, along with the symbol pairs
data model. These changes reduce index sizes substantially
while improving retrieval results. We also define a new en-
gine for fast retrieval of symbol pair matches, and address
limitations in wildcard handling and locality of matching
through an additional re-ranking step.

3. FORMULA RETRIEVAL MODEL
The Tangent-3 formula search engine (i.e., the newest ver-

sion of Tangent presented in this paper) employs a two-stage
cascading search [23] for fast retrieval and intuitive rankings
(see Figure 1).3 Queries are parsed into a Symbol Layout
Tree, which is then traversed from the root, generating tu-
ples of the form (s1, s2, R,#) with ancestor symbol s1, de-
scendant symbol s2, edge label sequence R from s1 to s2,
and a count (#). Two parameters control the maximum
path length between symbols in tuples (the window size,
w) and whether to include tuples for symbols at the end of
writing lines (EOL).

After parsing, the first retrieval stage (the core engine)
ranks a given number of expressions k by matching query
tuples, using an inverted index mapping symbol pair rela-
tionships to expressions and counts (see Section 5). Tuples
with one wildcard are expanded, but tuples with two wild-
cards are ignored for efficiency. Iterator trees are used to
process postings quickly. The initial ranking weighs matched
vs. unmatched symbol pairs in the query and candidates.
The second (re-ranking) stage re-scores matches using an
approximate best matching subtree for the query in each
candidate (see Section 6), addressing limitations of symbol
pair-based retrieval described in the previous section.

Illustration. Table 1 shows queries processed using our
two-stage method. For query 1, using MSS for re-ranking

2Given query tree Tq and candidate tree Tc with symbol pair sets

Fq and Fc, Dice’s coefficient of similarity is given by
2|Fq∩Fc|
|Fq|+|Fc|

.
3Source code: http://www.cs.rit.edu/˜dprl/Software.html.

http://www.cs.rit.edu/~dprl/Software.html

����������������

�����������

�����
�������

����� �����������
��������������

���

��������
���������

����������

�����������
��������
����������

�����������

�
��������

�����������

�����������
���

�����������
�����

���������� ������������
��������������

��������

��������������
���

�������
�����

�������
������� �����

�������

Figure 1: Tangent-3 Formula Retrieval Model. System parameters include maximum symbol pair distance
(window size w), how end-of-line symbols are indexed (EOL), and the number of hits to return (k).

Table 1: Top-5 Results for Tangent-3 (k=100). As-
terisks represent wildcards (e.g., * or *1*).

Query 1: f∗(z) = z2 + c

Initial Ranking Re-ranked (MSS)

1. fc(z) = z2 + c fc(z) = z2 + c
2. fc(z) = z2 + c. Pc(z) = z2 + c
3. f(z) = z2 + c fc(x) = x2 + c
4. f0(z) = z2 fc(z) = z2 + c.
5. fc(z) = z ∗ z + c f(z) = z2 + c

Query 2:
∑∗1∗
∗2∗ ∗ =

∑∗1∗
∗2∗ ∗

Initial Ranking Re-ranked (MSS)

1. E =
∑N
i Ei

∑d
i=1 ai =

∑d
i=1 bi

2. Gnet =
∑
i

∑N
i=1

∑N
i=1 di =

∑N
i=1 λi.

3.
∑N1
i pi =

∑N2
j pj

∑∞
n=0 aσ(n) =

∑∞
n=0 an.

4.
∑n
i=1 xiki =

∑n
i=1 xi

∑N1
i pi =

∑N2
j pj

5. =
∑n
k=1 ak

∑∞
n=0 an =

∑
n∈N an.

produces top-5 hits matching the query formula exactly af-
ter unifying identifiers (before re-ranking, only the top-3
match). For query 2, the numbered wildcards *1* and *2*
should be identical when repeated. Before re-ranking only
one hit matches the query exactly (rank 4), but after re-
ranking the top-3 are exact matches for the query, and the
remaining two hits are strong partial matches.

4. FORMULA STRUCTURE MODEL
The Tangent formula search engines use a Symbol Layout

Tree (SLT) to represent formula appearance (see Figure 2).
Whereas Tangent-2 based its encoding on a two-dimensional
interpretation of formulas on a page, expressing symbol po-
sitions in terms of horizontal and vertical offsets (see Section
2), this revised SLT representation provides greater con-
sistency and expressivity in representing relationships be-
tween symbols. In our representation, matrices are an inte-
gral part of formulas rather than auxiliary relational struc-
tures. Tangent-3 also includes a unified representation of all
parenthesized subexpressions regardless of their interpreta-
tion (for example, as function arguments vs. parenthesized
matrices). We also add a crude representation of type, which
is critical for re-ranking using Maximum Subtree Similarity.
We describe these in more detail below.

Node Labels and Types. Nodes in an SLT represent
individual symbols and visually explicit aggregates, such as
fractions, matrices, function arguments, and parenthesized
expressions. More specifically, SLT nodes represent:
• typed mathematical symbols: numbers (N!n); identi-

fiers such as variable names (V!v); text fragments, such
as lim, otherwise, and such that (T!t)
• fractions (F!)
• container objects: radicals (R!); matrices, tabular struc-

tures, and parenthesized expressions (M!frxc)
• explicitly specified whitespace (W!)
• wildcard symbols (*w)
• mathematical operators

Because of their visual similarity, all tabular structures,
including matrices, binomial coefficients, and piecewise de-
fined functions are encoded using the matrix indicator M!.
If a matrix-like structure is surrounded by fence charac-
ters, then those symbols are indicated after the exclama-
tion mark. Finally, the indicator includes a pair of numbers
separated by an x, indicating the number of rows and the
number of columns in the structure. For example, M!2x3
represents a 2x3 table with no surrounding delimiters and
M!()1x5 represents a 1x5 table surrounded by parentheses.

Importantly, all parenthesized subexpressions are treated
as if they were 1x1 matrices surrounded by parentheses, and,
in particular, the arguments for any n-ary function are rep-
resented as a 1xn matrix surrounded by parentheses.

Every node has a label, and a node’s type (number, vari-
able, operator, etc.) is reflected in its label. If a node’s label
includes an exclamation mark (e.g., V!), the type is the la-
bel prefix up to the (first) exclamation mark. Node labels
starting with an asterisk (*) have type wildcard, and other
node labels without exclamation marks have type operator.
Using type V! for all identifiers simplies our SLT model, but
sometimes leads to unexpected unifications (see Section 7).

Spatial Relationships. Labeled edges in the SLT cap-
ture the spatial relationships between objects represented
by the nodes. With respect to a given object O, seven axes
reflect the following relationships:

1. next (→) references the adjacent object that appears
to the right of O and on the same line

2. within (·) references the radicand if O is a root or
the first element appearing in row-major order in O if
it is a structure represented by M!

3. element (() references the next element appearing
after O in row-major order inside a structure repre-
sented by M!

4. above (↑) references the leftmost object on a higher

5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

πi = 2∗
(
N
i

)

Figure 2: Query Formula with Corresponding SLT.
The query has one wildcard, and a tabular structure.

line starting at the position above O (e.g., superscript,
over symbol, fraction numerator, or index for a radical)

5. below (↓) references the leftmost object on a lower
line starting at the position below O (e.g., subscript,
under symbol, fraction denominator)

6. pre-above (⇑) references the leftmost object of a
prescripted superscript of O

7. pre-below (⇓) references the leftmost object of a
prescripted subscript of O

An SLT is rooted at the leftmost object on the main writing
line of the formula it represents. Figure 2 shows an exam-
ple of an SLT, where for simplicity, unlabeled edges repre-
sent the next relationship and the type prefixes are omitted.
We do not distinguish vertical from scripted regions.4 This
causes x̂2 to be represented without an accent, but also rep-

resents limits uniformly:
∫ n
i

and
n∫
i

are equivalent.

Creating SLTs. SLTs can be created in linear time from
Presentational MathML by a recursive descent parser. For
other input formats, we assume that converters such as La-
TeXML5 exist to produce Presentational MathML.

In most circumstances, whitespace is not represented in an
SLT. As a result, although unicode whitespace and related
characters, such as “invisible times” (U+2062), occasionally
appear as operators in Presentational MathML expressions,
they are all ignored for the purpose of matching expressions
in Tangent-3.

Tuple Representation for SLTs. An effective formula
search engine must be able to find formulae that contain
a query formula, appear within a query formula, or are in
many ways only similar to a query formula. Thus high-
quality search engines create indexes based on selected fea-
tures of formulae found in a corpus and match queries based
on those features. Previous versions of Tangent showed that
pairs of symbols together with their relative inter-symbol
distances in two dimensions are effective features to use [16],
and we improve on this approach.

As described above, a node in an SLT can have up to seven
labeled outgoing edges (with no edge label repeating for any
node) corresponding to the seven defined axes. For a given
SLT, Tangent-3 produces a set of tuples, each of which en-
codes the relationship between a pair of symbols occurring
on some path from the root to a leaf. Given two nodes on
such a path, we define the relative path between the nodes
by the sequence of edge labels traversed from the ancestor
node to the descendant. The features we use are tuples en-
coding pairs of labels occurring on ancestor and descendant
nodes, together with their relative path and the number of

4This was later changed for non-operator symbols.
5http://dlmf.nist.gov/LaTeXML/

times each such label-label-path triple occurs in an SLT.
For example, the tuple (V !x,N !2,→↑→→,3) indicates that
the corresponding formula includes three instances of a node
representing the number 2 that appears “to the right, then
above, and then twice to the right” with respect to some
node representing variable x; for example, such a formula
might include ...xyz+2....

Tuple Generation Parameters. As seen in Figure 1,
there are two parameters that control symbol pair tuple gen-
eration: the window size (w), and how symbols at the end
of writing lines are included in the index (EOL).

To save both space and time, and following the practice of
searching via n-grams [26], Tangent-3 extends the approach
used in Tangent-2 by storing only those tuples for which the
distance between symbols (measured by the number of edges
separating them) is less than or equal to a specified window
size w. For example, the tuple (V !x,N !2,→↑→→,3) will be
included in the index only if w ≥ 4.

In addition to symbol pairs, end-of-line information can be
captured by introducing special tuples of the form (symbol,
!0, →, count). Including these is likely to improve retrieval,
particularly for very small expressions. However, wildcards
as EOL symbols have very large wildcard expansions, in-
creasing retrieval time. To alleviate this problem, we exam-
ine adding EOL symbols for small expressions with height
two or less (Sm-EOL), adding all EOL symbols (EOL), and
omitting EOL symbols (No-EOL).

5. CORE ENGINE
The core engine is the first retrieval stage in Tangent-

3, quickly finding the top-k highly relevant matches for a
formula query, which are later re-ranked (see Figure 1). The
engine ranks these top-k formulae using a simple algorithm,
along with a list of document locations for each formula.

Since runtime performance is a high priority, the core en-
gine uses a customized inverted index data structure imple-
mented in C++. In addition, the engine evaluates only a
subset of the query language functionality to allow the use
of a fast and simple ranking algorithm that can still find a
good set of candidate results.

The input to the indexer is a set of document names and
the extracted mathematical formulae found in each docu-
ment, and the input to the search engine is a single query
formula. Each formula is converted to a set of tuples (see
Sections 3 and 4) that serve as index and search “terms.”

Index Data Structures. At index time, an inverted in-
dex is built over the given document-formula-tuple relation-
ships, using two main data structures: dictionaries (D∗)
convert objects (such as strings or tuples) into a compact
0-based range of internal identifiers (integers) and postings
lists (P∗) are lists of integer tuples ordered by the first in-
teger in the tuple. The data structures listed below can be
combined to produce compression, ease of storage, and fast
access speeds.

Df : formula → formID
Dt: tuple → tupleID
Dd: document → docID
Dw: wildcardtuple → wildcardtupleID
Pt: tupleID → (formID, count)+

Pf : formID → (docID, position)+

Pw: wildcardtupleID → (tupleID)+

The index includes postings lists Pt that map each tuple

http://dlmf.nist.gov/LaTeXML/

to all formulae containing that tuple. A query can thus be
implemented by combining the corresponding tuples’ post-
ings lists using an OR operator. We store these postings
lists as ordered lists of formula identifiers (integers), so that
the lists can be easily combined using a merge algorithm.
Dictionary Df defines a consistent assignment of a formula
to its identifier, and another dictionary Dt is used for tuples,
thus saving both space and time in the engine.

In order to return document information for query results,
the engine stores postings lists Pf mapping each formula
identifier to the identifiers of the documents containing those
formulae, along with their positions in documents. Dictio-
nary Dd is used for document names.

Wildcards. The core engine supports limited wildcard
functionality. As illustrated in Figure 1, query tuples con-
taining a single wildcard are implemented as iterator expan-
sions. The engine stores postings lists Pw that map each
wildcard tuple to the set of tuple identifiers that match. As-
signing tuple identifiers using a dictionary Dw again gives
some compression benefits. Implementing even this restricted
wildcard functionality can be expensive, since the iterator
expansion can be quite large.6

Searching. Query processing follows the architecture
shown in Figure 1. First, the query is parsed into an SLT,
and tuples are extracted. Then wildcard tuples are ex-
panded, the associated postings lists for each tuple are found,
iterators over these lists are created, and an iterator tree that
implements the query is formed. Next, the iterator tree is
advanced along formula identifiers in order, the scores are
calculated, and the top-k formulae are stored in a heap. Dur-
ing this process, non-wildcard iterators are advanced first so
that wildcard iterators only match unallocated tuples. As
optimizations, iterators may skip over some formulae based
on thresholds and max-score calculations (see below). After
the iterators are finished, matching formulae and scores are
returned along with the associated document names.

The engine uses Dice’s coefficient over tuples as a simple
ranking algorithm, counting the number of tuples that over-
lap between the query and a candidate formula using the
query iterators. The engine also stores the tuple count for
each formula (the size of the formula) in an array As and
uses these values in the ranking calculation:

As: formID → tuplecount

Since wildcards can often match multiple tuples in a query
and overlap with other wildcards, there could be multiple
ways to count the tuples that overlap. The engine imple-
ments a greedy counting approach by simply assigning the
matches for tuples when each of the iterators is advanced.

Optimizations. Even using simple dictionary and post-
ings list implementations (i.e., std::maps and 32-bit arrays),
the engine’s data structures are small enough to be run in
memory for the datasets being examined, so we do not con-
sider compressing these data structures here. Nevertheless,
query processing might still be slow, even though the data
structures are in memory, ranking is fast, and using a dictio-
nary avoids repeated processing of duplicate formulae. As a
result, the techniques below are used to reduce query exe-
cution time (related results may be found in Section 7):

6The engine does not try to enforce wildcard variable agree-
ment between tuples (wildcard joins), and it ignores multi-
wildcard tuples. An initial implementation handling multi-
wildcard tuples and wildcard joins was found to be approx-
imately one hundred times slower for a small dataset.

O1: Avoid processing all postings by allowing skipping in
query iterators. This functionality is implemented us-
ing doubling (galloping) search [3].

O2: Skip formulae based on size thresholds. We use the
current top-k candidate list to define a minimum score
that defines minimum and maximum tuple size thresh-
olds from the definition of Dice’s coefficient. We also
improve on the effectiveness of these thresholds by
reordering formula identifiers: sort the formulae by
size, split into quartiles {q1, q2, q3, q4}, and then re-
order {q2, reverse(q1), q3, q4}.

O3: Avoid formulae that match only wildcard tuples when
the score threshold allows. This is similar to the max-
score optimization [21], only at a coarser granularity.

O4: Avoid processing all wildcard tuple expansions. If a
tuple is matched to a wildcard for the next formula, do
not process the remaining iterators for this wildcard.

O5: Process iterators for large postings lists first. Evalu-
ate the binary operator tree left-first and order tree
operators descending by size when possible.

6. RE-RANKING BY MAXIMUM SUBTREE
SIMILARITY

In this section we describe an alternative to Dice’s coef-
ficient that is particularly effective in ranking mathemati-
cal formulae. We first formalize matching of subtrees based
on their structure and then on their consistent re-labelling,
providing support for unification of identifiers and constants
(which is absent in a direct application of Dice’s coefficient
to tuples). Next we define a metric based on such matched
subtrees, and then apply the definition to score a candidate
SLT against a query that may include wildcards.

Notation: The label on node n in SLT T is denoted λ(n).
The number of nodes in SLT T is denoted |T |. We also write
n ∈ T if n is a node in T and (n1, n2) ∈ T if (n1, n2) is an
edge in T .

Approximate matches of formulae might involve identify-
ing corresponding parts of the SLTs that represent a query
and a candidate match. We base such a correspondence on
structural equivalence of those parts.7

Definition (aligned SLTs): SLTs T1 and T2 are aligned
if there is an isomorphism f mapping nodes from T1 onto
nodes from T2 such that for every edge (na, nb) ∈ T1, there
is a corresponding edge (f(na), f(nb)) ∈ T2 that has the
same label. (Note that node labels in aligned trees need not
match.) For N a subset of nodes in T1, we define f(N) =
{f(n) | n ∈ N}.

Approximate matches might also involve simple replace-
ments of symbols in one SLT by alternative symbols (e.g.,
x for y or 3 for 2). Naturally, a wildcard symbol can be
replaced by any symbol.

Definition (unified nodes): Node n1 in SLT T1 can be
unified with node n2 in SLT T2, denoted n1 99K n2, if any
of the following conditions holds:
• Both n1 and n2 have type variable name (V!),

7Formally, a “part” of an SLT T will be a pruned subtree:
any connected subset of labelled nodes from T together with
the labelled edges connecting those nodes. Thus a pruned
subtree of T is itself an SLT, but it need not extend to
the leaves of T . Henceforth, we will use “subtree” to mean
“pruned subtree.”

• Both n1 and n2 have type number (N!),
• Both n1 and n2 have type matrix (M!),
• n1 has type wildcard (*), or
• λ(n1) = λ(n2).

Next, when matching T1 with T2 and allowing substituted
symbols, it is important that the substitutions are consistent
when determining that T1 and T2 match approximately. We
start by identifying candidate sets of nodes in T1 that can
be consistently relabelled.

Definition (alignment partition): Given T1 and T2, two
aligned SLTs with isomorphism f from T1 to T2, an align-
ment partition is a subset of nodes N in T1 such that (x ∈
N ∧ y ∈ N) ⇒ (λ(x) = λ(y) ∧ x 99K f(x) ∧ y 99K f(y) ∧
λ(f(x)) = λ(f(y))) (i.e., the nodes have identical labels and
their unified images have identical labels or identical SLTs).
For node n ∈ T1, we define P (n) to be the alignment par-
tition containing n if it exists and ∅ otherwise. (Note that
n ∈ P (n) ⇔ n 99K f(n).) For alignment partition A, λ(A)
denotes the label common to all nodes in A and λ(f(A))
denotes the label that is common to all nodes in f(A).

We can now choose a set of partitions that are consistent
in their relabelling of nodes.

Definition (matched set of nodes): Given aligned SLTs
T1 and T2 with isomorphism f from T1 to T2 and the set of
all corresponding alignment partitions, we define a matched
set of nodes M as

M = {n ∈ T1 | n ∈ P (n) ∧ ∀n′ ∈M
([λ(n′) = λ(n) ∨ λ(f(n′)) = λ(f(n))]⇒ n′ ∈ P (n))}

In preparation to preferring matches of large connected parts
of SLTs, let E(M) = {(n1, n2) | n1 ∈ M ∧ n2 ∈ M ∧
(n1, n2) ∈ T1}, the set of edges induced by M .

Note that there may be many possible matched sets of
nodes for a given alignment, depending on which alignment
partitions are chosen to be included.

Because the SLT for an arbitrary query formula will not
necessarily align with the SLT for an arbitrary candidate
match formula, we need to consider subtrees of the SLTs
that can be aligned. In so doing, we need to allow (but pe-
nalize) situations in which superfluous or mismatched sym-
bols might appear in the query or in the candidate match.
We wish to balance the amount of structural match with the
number of symbols that are identically preserved.

We suggest the following properties for a scoring function,
as illustrated in Figure 3: alignments with more matched
symbols, and especially identical symbols, in close proximity
to each other score higher than those with fewer matched
symbols or more disconnected matches; if two candidates
score equally with respect to matched symbols and their
proximity, the one with fewer superfluous symbols scores
higher; and everything else being equal, alignments with
more matched symbols that are identical scores higher. We
employ such a scoring function:

Definition (SLT score): Given a query SLT Tq, an SLT
Tc for a candidate match, and two aligned SLTs T1 and T2

where T1 is a subtree of Tq and T2 is a subtree of Tc, let
M be a matched set of nodes for T1 and T2. Let S be the
harmonic mean of the fraction of nodes from Tq preserved
by M and the fraction of edges preserved by E(M), i.e.,
S = 2

|Tq|
|M| +

|Tq|−1

max(|E(M)|,0.5)

if |M | > 0, otherwise 0; this is a

(1, 0, 3) (1, 0, 2) (1, -1, 2) (0.6, 0, 2) (0.6, -1, 2)

Figure 3: MSS Scoring for Query S(k). Ranking
triples contain MSS (1), and the number of candi-
date symbols that are unmatched (2) and match the
query exactly (3). Parentheses count as one symbol.

measure of the size of the consistent structural part of the
match. The score of Tc with respect to Tq, T1, T2, and
M is denoted s(Tq, Tc;T1, T2,M) and defined as the tuple
composed of the following parts:

1. structural match: S (favor large matches).
2. unmatched : the negation of the number of unmatched

nodes in Tc, i.e., |M | − |Tc|.
3. exact match: |{n ∈M | λ(n) = λ(f(n))}|.

Scores assigned to any two candidate matches are compared
lexicographically to determine which candidate ranks higher.

For aligned SLTs T1 and T2 with isomorphism f from T1

to T2 and the set of all corresponding alignment partitions,
we want to choose a matched set of nodes M that produces
a high score, but evaluating all matched sets induced by an
alignment is too expensive. Therefore we use a greedy algo-
rithm to select which partitions to include in the matched
set of nodes, based on the properties used for scoring.

Algorithm 1 Greedy selection of matching subtree M

1. Let A0 be the alignment partition containing the most
nodes; if multiple partitions have the most nodes, let A0

be one of those partitions where λ(A0) = λ(f(A0)) if it
exists; otherwise let A0 be any of the largest alignment
partitions. Initialize M to include all nodes in A0.

2. Repeatedly identify the largest alignment partition Ai such
that λ(Ai) does not label any node in M , and λ(f(Ai)) does
not label any node unified with a node in M , choosing Ai
where λ(Ai) = λ(f(Ai)) if it exists; replace M by M ∪Ai.

3. Stop if no more alignment partitions can be added to M .

If hash tables are used to record which node labels have
been included in M and in f(M), checking for duplicate
labels can be performed in O(1) time. Partitions can be
considered one by one in decreasing order of size, which re-
quires O(|Tq| log(|Tq|)) time to initialize and then O(|Tq|) to
enumerate since the number of partitions cannot exceed the
number of nodes in Tq.

Finally, to compare a query SLT Tq against a candidate
SLT Tc, we choose a pair of aligned subtrees that maximizes
the score for the candidate with respect to the query. Thus
for each node n in Tq, we consider the score of the largest
subtree rooted at n that can be aligned with some subtree in
Tc. We start with a formal definition of the largest subtree.
Definition (alignable and maximally similar subtree):
Given SLTs Tq and Tc and aligned SLTs T1 rooted at r1
and T2 rooted at r2 with isomorphism f from T1 to T2,
where T1 is a subtree of Tq and T2 is a subtree of Tc, let
m = |{n ∈ T1 | n 99K f(n)}|. Let 2m

|T1|+|Tq| be a measure of

similarity of T1 to Tq with respect to T2 (Dice’s coefficient).
T1 is then alignable and maximally similar to Tq with re-
spect to T2 if r1 can be unified with r2 and there is no other
SLT T ′1 rooted at r1 and T ′2 rooted at r2 with corresponding
measure m′, where T ′1 is a subtree of Tq, T

′
2 is a subtree of

Tc, |T ′1| > |T1|, and 2m′

|T ′1|+|Tq|
> 2m
|T1|+|Tq| .

Definition (Maximum Subtree Similarity score): Given
SLTs Tq and Tc, consider pairs of nodes ni1 ∈ Tq and
ni2 ∈ Tc such that ni1 can be unified with ni2 . Let Ti1 ,
rooted at ni1 , be alignable and maximally similar to Tq
with respect to tree Ti2 , rooted at ni2 . The Maximum Sub-
tree Similarity score MSS(Tq, Tc) of Tc with respect to Tq is
max
i
s(Tq, Tc;Ti1 , Ti2 ,Mi) over all such pairs, where Mi uses

Algorithm 1 to chose matched sets of nodes.

Theorem 1. Computing Maximum Subtree Similarity for
a candidate formula requires time O(|Tc||Tq|2 log(|Tq|)).

Proof. The number of pairs of aligned subtrees is at
most |Tq| ∗ |Tc|. For each pair, checking whether the roots
can be unified takes O(1) time, finding the largest alignable
subtrees takes O(|Tq|) time, and computing the score takes
constant time plus time O(|Tq|log(|Tq|)) to choose M .

MSS ranks more structurally similar subexpressions on a
candidate higher, on the assumption they will be perceived
as more relevant by users. Were this true, ranking by MSS
would be consistent with the Probability Ranking Princi-
ple [22], that hits are ideally sorted by decreasing order of
probable relevance, P (c|q). In the next Section we show ex-
perimentally that the MSS similarity metric performs very
well. In the future one might examine the correlation of
MSS with P (c|q) more directly.

7. EVALUATION
We now present experiments designed to observe the ef-

fect of system parameters on index size, retrieval time, and
results, along with a human assessment of top-10 results.

Our main dataset is the NTCIR-11 Wikipedia collection
with 30,000 articles totalling 2.5 GB and containing roughly
387,947 unique LATEX expressions. In addition, we use the
much larger NTCIR-11 arXiv collection to test the scalabil-
ity of Tangent-3; this collection is 174 GB uncompressed,
with 8,301,578 documents (arXiv article fragments) and 60
million formulae including isolated symbols.

7.1 Efficiency
Computational Resources and Parameters. We use

a Ubuntu Linux 14.04 server with 24 Intel Xeon proces-
sors (2.93GHz) and 96GB of RAM. While some indexing
operations were parallelized (as noted below), all retrieval
times are reported for single threaded processing. Paralleliza-
tion of query execution, and parallelizing re-rank scoring
over matching formulas could be used to further speed up
processing, and additional opportunities for decreasing run-
times are discussed below. All results reported for Tangent-3
in this Section were obtained using the top 100 formula from
the core engine (i.e., k = 100).

Indexing. As seen in Table 2, index size increases roughly
linearly from window sizes 1-4, with end-of-line tuples in-
creasing storage by a constant amount. Adding EOL tuples
just for small expressions (Sm-EOL; see Section 4) increases
the index size modestly (by less than 500k for Wikipedia,
and less than 10 MB for arXiv). The maximum Wikipedia
index size is 503.1 MB on disk; in contrast, for the arXiv
the maximum index size is 29 GB. For small window sizes
storage is much smaller; for w = 1 with No-EOL and Sm-
EOL, the index file is just over 64 MB for Wikipedia, and
just under 5.4 GB for arXiv; these are much smaller than
Tangent-2 (1.3 GB for Wikipedia, and roughly 36 GB for

Table 2: Index Sizes for NTCIR-11 Collections.

Index Sizes (MB)
Wikipedia arXiv

w No-EOL Sm-EOL EOL No-EOL Sm-EOL EOL
1 64.2 64.5 73.7 5,364 5,372 6,179
2 95.6 96.0 105.2 7,568 7,577 8,383
3 128.3 128.7 137.9 9,662 9,671 10,477
4 161.3 161.7 170.9 11,587 11,596 12,402

All 493.5 493.9 503.1 28,225 28,234 29,040

the arXiv dataset [16]). When these index files are loaded
into memory, they consume 2 - 2.5 times their space on disk.

For the arXiv data, it took 43 hours to pre-process the
documents (using 10 processes), and at most an additional
3.5 hours to generate the index (when w = All and end-of-
line tuples are included) using a single process. Wikipedia
was much faster, requiring 260 seconds for preprocessing,
and at most 95 seconds for index creation. As our document
pre-processor is implemented in Python, we believe that a
faster implementation (e.g., in C++) could reduce run times
by a factor of 4-10 in both cases.

Retrieval Times. We ran the 100 NTCIR-11 Wikipedia
formula queries over the large NTCIR-11 arXiv collection
to test retrieval speed for the core engine. Larger window
sizes increase index entries (see Table 2) and lead to longer
query execution times. For example, when EOL tuples are
ignored, retrieval times in milliseconds (given as (µ, σ, me-
dian)) increase from (372.95, 1649.24, 90.40) for w = 1 to
(1932.41, 9332.54, 281.64) for w = All. Including EOL pairs
has a much larger effect on performance: for w = 1, retrieval
times increase to (4334.86, 16368.06, 584.94). Again using
(w = 1, EOL), if we turn off the core optimizations O1-O5,
the average retrieval time doubles and the standard devia-
tion increases (9239.92, 23776.99, 681.79). Using the core
optimizations again, for w = 1 with Sm-EOL retrieval times
increase only a small amount over when no EOL pairs are
used (435.55, 1626.48, 111.39).

When running the queries on the smaller NTCIR-11 Wiki-
pedia collection, Tangent-2 requires 8 minutes to execute the
100 test queries using a parallelized index with nine sub-
indices on Amazon Web Services [16]. In contrast, using a
single process and the slowest configuration on our system
(w = All, EOL), Tangent-3 requires only 8.48 seconds with-
out re-ranking, and 106.14 seconds with re-ranking; in the
fastest condition (w = 1, no EOL) this reduces to 0.57 sec-
onds without re-ranking and 78.03 seconds with re-ranking.

Re-ranking times are consistent across w and EOL set-
tings because the number of formulae re-ranked is fixed
at k = 100. For the Wikipedia corpus, re-rank times are
(775, 3562, 72) milliseconds. The mean is skewed by a small
number of outliers: for one query re-ranking takes 46 sec-
onds, with retrieval from the core taking only 1.7 seconds
(w = All, EOL). This query expression is very large (Query
52), with 16 wildcard symbols producing large candidates
with many possible unifications. Re-ranking can be acceler-
ated by recoding from Python to C++.

7.2 Effectiveness
The NTCIR-11 Wikipedia benchmark [18] includes 100

queries for measuring specific-item retrieval performance.
Queries are associated with a single target formula in a spe-
cific document, ignoring identical formulae appearing within
the same or different documents. These 100 queries are split

Table 3: NTCIR-11 Wikipedia Formula Retrieval Benchmark Results. 100 Queries: 65 Constant, 35 with
wildcards (Variable). Metrics: % Recall@k for targets (k = 10, 000) and Mean Reciprocal Rank (MRR in %).

Recall@k mrr
Documents Formulae Documents Formulae

System Total Const Var Total Const Var Total Const Var Total Const Var
TUW Vienna † 97 *100 91 93 98 83 80 80 79 *82 86 75
NII Japan † 97 98 *94 94 97 89 74 79 74 72 *87 63
Tangent-2 ◦ 88 91 83 78 78 77 70 68 75 67 65 72
Tangent-3 Core ◦
w=1 No-EOL 95 97 91 95 97 91 79 80 77 76 76 76

Sm-EOL 97 *100 91 97 *100 91 80 *82 77 77 78 76
EOL *98 *100 *94 *98 *100 *94 81 *82 79 77 78 76

w=All No-EOL 95 97 91 95 97 91 79 80 78 76 76 76
Sm-EOL 97 *100 91 97 *100 91 80 *82 78 78 78 76
EOL 97 *100 91 96 *100 89 81 *82 78 77 78 75

Tangent-3 Re-rank ◦
w=1 No-EOL 95 97 91 95 97 91 80 80 *82 77 76 *80

Sm-EOL 97 *100 91 97 *100 91 *82 *82 *82 79 78 *80
EOL *98 *100 *94 *98 *100 *94 *82 *82 *82 79 78 *80

w=All No-EOL 95 97 91 95 97 91 80 80 80 77 76 77
Sm-EOL 97 *100 91 97 *100 91 81 *82 80 78 78 77
EOL 97 *100 91 96 *100 89 *82 *82 *82 78 78 78

†: uses Operator Tree (OT) formula representation (Content MathML)
◦: uses Symbol Layout Tree (SLT) formula representation (Presentation MathML)

into 65 Constant queries containing no wildcards and 35
Variable queries containing wildcards.

Search results are returned as a ranked list of (documentId ,
formulaId) pairs. Document-centric results are computed
using the list of document identifiers in their order of ap-
pearance after removing duplicates. Formula-centric results
are computed using the complete ranked list of matches.

Systems are evaluated using two metrics. First, by the
recall (i.e., percentage of targets located at rank 10,000 or
less) and second by the mean reciprocal rank (MRR) over
all queries (assigning zero when not found). Note that a
reciprocal rank of 50% indicates that on average, the target
formula appears at rank two.

Summary of Results. At the top of Table 3, NTCIR-
11 results from the two best systems and Tangent-2 are
shown as fractions rounded to the nearest percentage [18]. A
summary of participating systems is available [2]. The first
two systems are tree-based approaches applied to Operator
Trees encoded in Content MathML. As described earlier,
Tangent-2 is a spectral approach, using symbol pair-based
retrieval over Symbol Layout Trees encoded in Presentation
MathML. TUW Vienna indexes individual symbols and lin-
earized subexpressions. NII represents sub-expressions in
Operator Trees by hash code sets (see Section 2).

Tangent-3 results are shown at the bottom of Table 3, split
into core and reranked results. We include combinations of
window sizes w = {1, 2, 3, 4, All} (where All is all tuples)
and End-of-Line symbol indexing settings (No-EOL, Small-
EOL, EOL).

Using re-ranking, w = 1 and all EOL tuples, Tangent-3
obtains the highest document and formula recall (both 98%
vs. 97% and 94%), the highest Variable (wildcard) formula
MRR (80%) and the highest document MRR (82%) to date.
In all Tangent-3 conditions, the mean rank of a target for-
mula is just above the middle of ranks one and two (i.e.,
higher than an MRR of 75%). This is interesting, as previ-
ously the strongest results make use of Operator Trees rather
than SLTs for retrieval. This supports the idea that choice
of formula representation may be less important than the

choice of primitives for retrieval. The higher formula recall
obtained by Tangent-3 may be due to matching symbol pairs
rather than complete subtrees (see Section 2).

Relative to Tangent-2, recall is increased 10% for docu-
ments, and 20% for formulae. MRR values are also 10%
higher in Tangent-3 (all conditions) than Tangent-2.

Using Sm-EOL provides state-of-the-art performance com-
parable to EOL, but uses a smaller index size with faster
retrieval times. With Sm-EOL we obtain document and
formula recall of 97% (a reduction of only 1%) with un-
changed MRR values. For the same parameter settings, for-
mula MRR is 80% (the best reported value is 82%).

Window Size. Window size had little effect on perfor-
mance, and so for space we show only results for w = 1 and
w = All in Table 3. Interestingly, recall in the top-10,000 ac-
tually decreases slightly when w = All is used, missing two
additional formula with wildcards (V ar) and one document
relative to w = 1. This may be because of noise introduced
by the larger number of tuples, which may match anywhere
in a candidate formula. Window size had no effect on MRR
for queries without wildcards (Const), but we again see a
small decrease for queries with wildcards for w = All.

End-of-Line Symbols. For w = 1, adding all EOL tu-
ples increases the number of formulae retrieved by three
(e.g., the query ‘s’ produces no symbol pairs and thus re-
quires an EOL tuple if it is to be matched). Sm-EOL gave
fast queries and also retrieved two of the three formulae
missed when EOL tuples are omitted. For w = All using all
EOL tuples decreases formula recall slightly relative to Sm-
EOL (missing one query with wildcards), perhaps because
of the numerous matches obtained using w = All, EOL.
Adding the Sm-EOL tuples increases document and formula
MRR slightly for non-variable queries.

Re-ranking. The re-ranker does not affect recall for
Tangent-3, as the re-ranker only reorders hits returned by
the core. Exact matches are represented well by the Dice co-
efficient over tuples, particularly for concrete queries without
wildcards. However, the re-ranker does improve wildcard
(variable) formula MRR by 4% for queries with wildcards

Table 4: Likert Rating µ(σ) for Top-10 NTCIR-11 Wikipedia Hits (21 participants, 10 queries).
Rank/Position in Top-10 Hits

1 2 3 4 5 6 7 8 9 10

w = 1 4.54 (0.78) 3.79 (1.16) 3.48 (1.31) 3.23 (1.30) 2.83 (1.25) 2.94 (1.22) 2.65 (1.19) 2.78 (1.21) 2.78 (1.21) 2.85 (1.25)
w = 2 4.54 (0.78) 3.71 (1.22) 3.48 (1.30) 3.16 (1.28) 2.90 (1.26) 2.93 (1.20) 2.85 (1.25) 2.57 (1.18) 2.74 (1.22) 2.80 (1.13)

w = All 4.54 (0.78) 3.78 (1.19) 3.59 (1.23) 3.27 (1.16) 2.98 (1.25) 2.92 (1.23) 2.80 (1.17) 2.98 (1.24) 2.92 (1.21) 2.87 (1.17)

best 4.54 (0.79) 4.03 (1.07) 3.75 (1.12) 3.49 (1.13) 3.31 (1.20) 3.15 (1.16) 3.02 (1.17) 2.94 (1.17) 2.85 (1.19) 2.77 (1.19)

for w = 1, Sm-EOL. (80% with re-ranking, vs. 76% with-
out). This is 5% higher than the best previous MRR results
for formula MRR (75%).

On average, only 4.16 of the top-10 results (with stan-
dard deviation of 2.61) remain in the top-10 after re-ranking
by MSS. MSS will not re-order exact or very nearly exact
matches, hence constant queries have the same MRR val-
ues as the core engine, but the reranker is able to improve
MRR values for variable queries where the core implements
approximate wildcard handling.

Without re-ranking, the core engine produces comparable
results using k = 100. For the core engine, increasing k pro-
duces perfect recall (100%) without substantially increasing
query time. The reranker, however, cannot process a large
number of results in a reasonable amount of time. The core
engine also produces higher document-centric MRR values
than the best published results, although limited handling
of wildcards causes variable queries to underperform.

We now consider how well MSS-based rankings relate to
human perceptions of formula similarity, using the top-10
results from 10 of the NTCIR-11 Benchmark queries.

Human Evaluation: Data. 10 queries were selected us-
ing random sampling from the Wikipedia queries. Five con-
tained wildcards, and the other five did not. Some queries
were replaced using a new randomly selected query to ensure
a diverse set of expression sizes and structures.

To limit the number of hits for participants to evaluate, we
chose to consider only w = 1, 2, and All. We used No-EOL,
as none of the queries were a single symbol (the smallest
query, Q8 is ‘α(x)’), and we wished to observe the effect of
window size using actual symbol pairs, without EOL tuples.
Using the Wikipedia collection, for the three versions of the
core compared (w = {1, 2, All}, No-EOL), we applied re-
ranking to the top-100 hits, and then collected the top-10
hits returned by each query for rating.

Evaluation Protocol. Participants completed the study
alone in a private, quiet room with a desktop computer
running the evaluation interface in a web browser. The
web pages provided an overview, followed by a demographic
questionnaire, instructions on evaluating hits, and then fa-
miliarization trials (10 hits; 5 for each of two queries). Af-
ter familiarization, participants evaluated hits for the 10
queries, and finally completed an exit questionnaire. Par-
ticipants were paid $10 each at the end of their sessions.

Participants rated the similarity of queries to results using
a five-point Likert scale (Very Dissimilar, Dissimilar, Neu-
tral, Similar, Very Similar). It has been shown that present-
ing search results in an ordered list influences relevance as-
sessments [7]. Instead we presented queries along with each
hit in isolation, with query presentation order randomized,
and the presentation order for hits was also randomized.

Demographics and Exit Questionnaire. 21 partici-
pants (5 female, 16 male) were recruited from the Comput-
ing and Science colleges at RIT. Their age distribution was:
18-24 (8), 25-34 (9), 35-44 (1), 45-54 (1), 55-64 (1) and 65-
74 (1). Their highest levels of education completed were:

Bachelor’s (9), Master’s (9), PhD (2), and Professional (1).
Their reported areas of specialization were: Computer Sci-
ence (13), Electrical Engineering (2), Psychology (1), Sociol-
ogy (1), Mechanical Engineering (1), Computer Engineering
(1), Math (1) and Professional Studies (1).

In the post-questionnaire, participants rated the evalua-
tion task as Very Difficult (3), Somewhat Difficult (10), Neu-
tral (6), Somewhat Easy (2) or Very Easy (0). They reported
different approaches to assessing similarity. Many consid-
ered whether operations and operands were of the same type
or if two expressions would evaluate to the same result. Oth-
ers reported considering similarity primarily based on simi-
lar symbols, and shared structure between expressions.

Similarity Rating Results. As seen in Table 4, Likert
ratings are similar in all conditions. Average ratings increase
from the 5th to 1st hits, and are close to the best obtained
in the result pools (‘best’ in Table 4). On average Top-
4 hits have some similarity with the query, with average
ratings higher than ‘Neutral’ (3). For large formulae, strong
matches for small subexpressions were sometimes perceived
as dissimilar, and exact matches to the query were often
rated as ‘Similar’ (4). Reading large formulae is difficult and
may reduce perceived similarity; we wonder if highlighting
matches would have increased these ratings.

The top-5 hits are largely identical across conditions (at
least 4/5 match) with the exception of query 60:

p =
−x±

√
x∗ − 4(∗)(∗∗ − y)

2(−gx
2

∗)

w = All returns the best rated hits in the top-5, but w =
{1, 2} return only one of the best-rated matches in the top-5.
w = All generates more tuples for matching, compensating
for wildcard pairs not being indexed by matching relation-
ships between more distant symbols.

We produce ideal rankings by pooling top-10 hits and then
sorting them by average Likert rating. Relative to this ideal,
average nDCG@10 values increase and standard deviations
decrease with window size (w = 1: 0.87 (0.1); w = 2: 0.88
(0.08); w = All: 0.90 (0.03)). Selecting the best window size
for each query improves metrics further (oracle: 0.92 (0.02)).
Interestingly, the highest nDCG values are obtained for six
queries using w = 1; the additional symbol pair matches
considered for larger window sizes sometimes lead to very
scattered matches being returned in the top-k from the core
engine, which w = 1 avoids.

Unification works well when most of a candidate matches
the query (e.g., as in Table 1). In Tangent-3 all identifiers
are unifiable, including greek letters, latin letters, and func-
tion names. At times high MSS scores are obtained for can-
didates with weak Likert ratings due to a large number of
unifications, or unifying symbols of different types (e.g., x
with π). Unifying or matching symbols associated with op-
erators of different types appears to contradict some ratings
(e.g., a+ b and a ≤ b may be perceived as dissimilar, while
a+ b and a− b perceived as similar).

To improve unification and MSS scores, one could expand

the set of symbol and operator types in the SLT model, an-
notate SLTs with semantic information [24], or modify MSS
to be computed using matches in both Operator Tree and
SLT formula representations. It should be straight-forward
to adapt Tangent-3 to work with Operator Trees.

8. CONCLUSION
We have presented a new two-stage cascaded retrieval

model for appearance-based formula retrieval. The Sym-
bol Layout Tree and symbol pair retrieval models used in
the first stage out-performs earlier versions, being more effi-
cient in space and time. The second stage re-ranks the top-k
matches by Maximum Subtree Similarity (MSS), producing
state-of-the-art results for the NTCIR-11 Wikipedia formula
retrieval task. Human similarity ratings agree substantially
with formula rankings produced using MSS.

For future work, more human experiments are needed to
identify features that affect the perception of formula simi-
larity for mathematical experts and non-experts. Retrieval
efficiency may be improved by compressing dictionaries and
postings lists, and by using an implementation of weak-
AND [4] or a more fine-grained implementation of max-
score [21]. Retrieval effectiveness can be improved through
changes to the SLT, unification models, and the MSS func-
tion and scoring vector. Additional opportunities include
allowing wildcards to match subexpressions rather than sin-
gle symbols, implementing additional query functionality in
the engine, incorporating textual features and context [24],
and integrating Tangent-3 with keyword search.

Acknowledgements
This material is based upon work supported by the National
Science Foundation (USA) under Grant Nos. IIS-1016815
and HCC-121880. Financial support from the Natural Sci-
ences and Engineering Research Council of Canada under
Grant No. 9292/2010, Mitacs, and the University of Water-
loo is also gratefully acknowledged.

9. REFERENCES
[1] A. Aizawa, M. Kohlhase, and I. Ounis. NTCIR-10

math pilot task overview. In NTCIR, 2013.

[2] A. Aizawa, M. Kohlhase, I. Ounis, and M. Schubotz.
NTCIR-11 Math-2 task overview. In NTCIR, 2014.

[3] J. L. Bentley. An almost optimal algorithm for
unbounded searching. Inf. Process. Lett., 5(3):82–87,
1976.

[4] A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In CIKM, 2003.

[5] T. W. Cole, I. Debauchies, K. M. Carley, J. L.
Klavans, Y. LeCun, M. Lesk, C. A. Lynch, P. Olver,
J. Pitman, and Z. J. Xia. Developing a 21st Century
Global Library for Mathematics Research. The
National Academies Press, Washington, DC, 2014.

[6] P. Graf. Substitution tree indexing. In RTA, 1995.

[7] Z. Guan and E. Cutrell. An eye tracking study of the
effect of target rank on web search. In SIGCHI, 2007.

[8] F. Guidi and C. S. Coen. A survey on retrieval of
mathematical knowledge. In CICM, 2015.

[9] H. Hiroya and H. Saito. Partial-match retrieval with
structure-reflected indices at the NTCIR-10 math
task. In NTCIR, 2013.

[10] S. Kamali and F. W. Tompa. A new mathematics
retrieval system. In CIKM, 2010.

[11] S. Kamali and F. W. Tompa. Structural similarity
search for mathematics retrieval. In CICM. 2013.

[12] M. Kohlhase and I. Sucan. A search engine for
mathematical formulae. In AISC, 2006.

[13] X. Lin, L. Gao, X. Hu, Z. Tang, Y. Xiao, and X. Liu.
A mathematics retrieval system for formulae in layout
presentations. In SIGIR, 2014.

[14] B. R. Miller and A. Youssef. Technical aspects of the
digital library of mathematical functions. Ann. Math.
Artif. Intell., 38(1):121–136, 2003.

[15] T. T. Nguyen, S. C. Hui, and K. Chang. A
lattice-based approach for mathematical search using
formal concept analysis. Expert Syst. Appl., 39(5):5820
– 5828, 2012.

[16] N. Pattaniyil and R. Zanibbi. Combining TF-IDF text
retrieval with an inverted index over symbol pairs in
math expressions: The Tangent math search engine at
NTCIR 2014. In NTCIR, 2014.

[17] P. Pavan Kumar, A. Agarwal, and C. Bhagvati. A
structure based approach for mathematical expression
retrieval. In MIWAI. 2012.

[18] M. Schubotz. Challenges of mathematical information
retrieval in the NTCIR-11 Math Wikipedia Task. In
SIGIR, 2015.

[19] P. Sojka and M. Ĺı̌ska. Indexing and searching
mathematics in digital libraries. In CICM, 2011.

[20] D. Stalnaker and R. Zanibbi. Math expression
retrieval using an inverted index over symbol pairs. In
DRR, 2015.

[21] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Inf. Process. Manage.,
31(6):831–850, 1995.

[22] C. J. van Rijsbergen. Information Retrieval.
Butterworths, 2nd edition, 1979.

[23] L. Wang, J. Lin, and D. Metzler. A cascade ranking
model for efficient ranked retrieval. In SIGIR, 2011.

[24] Y. Wang, L. Gao, X. Liu, and K. Yuan. WikiMirs 3.0:
a hybrid MIR system based on the context, structure
and importance of formulae in a document. In Proc.
JCDL, pages 173–182, 2015.

[25] K. Wangari, R. Zanibbi, and A. Agarwal. Discovering
real-world use cases for a multimodal math search
interface. In SIGIR, 2014.

[26] P. Willett. Document retrieval experiments using
vocabularies of varying size. II. Hashing, truncation,
digram and trigram encoding of index terms. J.
Documentation, 35:296–305, 1979.

[27] A. Youssef. Roles of math search in mathematics. In
Proc. Math. Knowl. Manage., pages 2–16. 2006.

[28] R. Zanibbi and D. Blostein. Recognition and retrieval
of mathematical expressions. Int. J. Document Anal.
Recognit., 15(4):331–357, 2012.

	Introduction
	Related Work
	Formula Retrieval Model
	Formula Structure Model
	Core Engine
	Re-ranking by Maximum Subtree Similarity
	Evaluation
	Efficiency
	Effectiveness

	Conclusion
	References

