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ABSTRACT

Many students use videos to supplement learning outside the classroom. This is particularly important
for students with challenged visual capacities, for whom seeing the board during lecture is di�cult.
For these students, we believe that recording the lectures they attend and providing e↵ective video
indexing and search tools will make it easier for them to learn course subject matter at their own pace.
As a first step in this direction, we seek to help instructors create an index for their lecture videos using
audio keyword search, with queries recorded by the instructor on their laptop and/or created from
video excerpts. For this we have created an unsupervised within-speaker keyword spotting system.
We represent audio data using de-noised, whitened and scale-normalized Mel Frequency Cepstral
Coe�cient (MFCC) features, and locate queries using Segmental Dynamic Time Warping (SDTW) of
feature sequences. Our system is evaluated using introductory Linear Algebra lectures from instructors
with di↵erent accents at two U.S. universities. For lectures produced using a video camera at RIT,
laptop-recorded queries obtain an average Precision at 10 of 71.5%, while 79.5% is obtained for
within-lecture queries. For lectures recorded using a lapel microphone at MIT, using a similar keyword
set we obtain a much higher average Precision at 10 of 89.5%. Our results suggest that our system is
robust to changes in environment, speaker and recording setup.

c� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent times, there has been a significant increase in digital
content in order to supplement the learning of students. Video
recordings of classroom lectures can help students to improve
their understanding significantly. With video recordings, stu-
dents may access lecture content multiple times according to
their need. However, video lectures do not have a well-defined
index. Students have to manually search to reach a point of
interest. This is a tedious task. However, this task becomes
increasingly di�cult for people having challenges in visual ca-
pacities. A text-like index for the video content will be im-
mensely helpful for such students, in order to improve the ac-
cessibility of video lectures.

AccessMath is a video lecture indexing and retrieval system
being designed at our institute. The main goal of AccessMath
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system is to facilitate the learning of linear algebra lectures for
students having challenges in visual capabilities. This paper
describes the audio indexing portion of AccessMath. We plan
for AccessMath to eventually be a lecture indexing and retrieval
system accepting queries issued in image, audio or text formats.
Using this system, a student could search a linear algebra lec-
ture for a formula, e.g. Ax̄ = b̄, by selecting a part of an image
or a spoken query from the lecture.

We propose a keyword spotting system which will enable an
instructor or student to perform search using audio queries spo-
ken by the instructor. We have also created a prototype to help
instructors and students organize search hits generated by the
system. This system helps create an index similar to the table
of contents for a textbook using within-speaker audio queries.
Keyword spotting is a relatively di�cult task as di↵erences in
speech characteristics such as accent, pitch and environment
cause high variance in utterances of the same keywords. In the
proposed system, we have considered single channel audio in-
put created in a single speaker environment.
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Fig. 1. Using indexing tools the user can play the video lecture from the
point of generated hits. The tree based indexing structure helps the user to
organize hits into groups such as ‘Definition’ or ‘Example’.

Keyword spotting systems convert an input speech signal into
a temporal spectral vector. After modeling the speech signal,
these systems usually fall within two di↵erent categories: Dy-
namic Time Warping-based or Hidden Markov Model-based.
Dynamic Time Warping (DTW) finds an optimal alignment
between two audio sequences, seeking to determine whether
they represent the same word (Rabiner et al., 1978). DTW
matches two temporal sequences by non-linearly comparing au-
dio frames and calculating the cost of alignment. In contrast,
Hidden Markov Model-based approaches require training data
for creating probabilistic temporal models for individual words.
DTW does not require labeled data for training. However, the
cost of computation is high for DTW, O(mn) where m and n
are sequence lengths. For this reason, many variations of DTW
attempt to reduce its computational cost.

As shown in Figure 1, our system creates an index of candi-
dates for a query within a lecture.1 We have o↵ered the func-
tionality of hierarchical annotations to make this index more
useful. For example, it would be helpful if a user can cre-
ate categories such as ‘Definition’ and ‘Example’ to organize
query results, such as shown in Figure 1. Once these categories
are created, the user can drag and drop hits into categories. The
user can also create copies of a search result, and then place
it in multiple categories. Finally, the current index state can
be saved in JSON format, and then later loaded to generate the
same tree structure again.2

Our approach employs Mel Frequency Cepstral Coe�-
cients (Davis and Mermelstein, 1980) and a variation of Dy-
namic Time Warping algorithm called Segmental Dynamic
Time Warping (Park and Glass, 2005). We have evaluated our
system using videos from introductory Linear Algebra courses
recorded at two di↵erent U.S. institutions (RIT and MIT). At
RIT, a set of linear algebra lectures was recorded using a lone
video camera in a classroom without students by one of the au-
thors (Dr. A. Agarwal). Using queries recorded on a laptop by
the instructor, our system achieved a Precision at 10 of 71.5%.
Using the same queries extracted from the lecture audio, a Pre-
cision at 10 of 79.5% was obtained. The MIT lectures were

1The working demo of interface is available at https://www.cs.rit.
edu/

~

dprl/keywords/index.html

2This prototype is created using ‘jsTree’ http://www.jstree.com/

recorded by an instructor with a di↵erent accent who used a
lapel microphone for recording. Without modifying system pa-
rameters and using keywords similar to that used for the RIT
lectures we obtained a much higher Precision at 10 of 89.5%,
suggesting that our system is robust to di↵erent speakers and
recording environments.

In the remaining of this paper, we summarize related work in
Section 2, our keyword spotting methodology in Section 3, the
experimental design and results in Sections 4 and 5, and then
conclude and identify future directions in Section 6.

2. Related Work

Previous systems have been proposed for indexing, retrieving
and annotating video content. For example, the MIT Lecture
Browser by (Glass et al., 2007) allows users to search lecture
audio using text queries. Automatic speech recognition is used
to create a transcript of the lecture audio, which can then be
searched textually. This transcription-based index may not have
temporal information, and may contain recognition errors for
rarer terms outside the language model. Similar to the MIT Lec-
ture Browser, the Speech@FIT Lecture Browser (Szoke et al.,
2010) uses speech recognition to support text search of lecture
audio. This system shares many of the strengths and weak-
nesses of the MIT Lecture Browser. It also detects lecture slide
changes using image features to provide pointers for lecture
navigation.

The Video Audio Structure Text Multimedia (VAST MM)
Browser designed by (Haubold and Kender, 2007) is another
example of an indexing and annotation system designed for
video presentations. This system creates a visual index for
speaker segmentation using changes in activities. It also of-
fers textual indices for searching through the transcription of
the video.

NTU Virtual Instructor (Lee et al., 2014) o↵ers sophisticated
tools for finding lecture recordings of interest, including au-
tomatic summarization and keyword detection. Keywords are
linked to particular points in the lecture in which they occur,
allowing the user to rapidly find relevant content. Bilingual au-
tomatic speech recognition is integral to the approach, which
also supports text-based search of spoken terms.

While these systems support lecture annotation and textual
search, they do not o↵er video search using audio queries. In
our work we seek to support audio queries, and avoid the need
to train speech recognizers for new lecturers. To do this, we
have chosen to use unsupervised keyword spotting in audio.

Mel Frequency Cepstral Coe�cients (MFCC) are frequently
used to represent speech audio in keyword-spotting systems.
MFCC features were first discussed by Davis and Mermel-
stein (Davis and Mermelstein, 1980). MFCCs are computed
based on a model of how human ears perceive speech, and com-
pensate for insignificant variations present in higher frequency
bands. MFCC feature extraction is usually followed by normal-
ization to reduce the impact of environmental mismatch. (Alam
et al., 2011) have discussed di↵erent normalization approaches
for MFCC features. The short-term mean variance approach
is similar to the whitening process used in this paper. How-
ever, they have used mean (µ) and standard deviation (�) values
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Fig. 2. Radius Constraint on SDTW Alignment. Frames must be aligned
within the gray region, defined by a radius of ±10 frames. This avoids
aligning frames distant in time. The black line shows an alignment with
longer horizontal and vertical segments representing skipped frames in the
test and query sequences, respectively.

computed over a moving window instead of the complete se-
quence as done in this paper. Using parameters obtained from
the complete sequence reduces processing time, which is im-
portant for a real-time system.

Noise reduction is used to remove non-speaker audio ele-
ments. (Doblinger, 1995; Kim and Stern, 2012) have discussed
Cepstral Subtraction from the MFCC features for noise reduc-
tion. These techniques model slowly changing noise using a
filtering approach. A noise profile is computed by filtering the
input audio asymmetrically if the current intensity value of the
MFCC feature is higher than the output of the filter from the
previous frames. This resultant noise profile represents slowly
changing audio signals which are considered to be noise. The
noise profile is computed for each MFCC feature. Noise signals
are then subtracted from the original feature values.

Dynamic Time Warping (DTW) is a common technique for
computing the similarity of two temporal sequences. DTW is
very similar to the edit distance algorithm. The edit distance al-
gorithm calculates the distance between two strings where the
cost of insertion, deletion and substitution is constant. Dynamic
Time Warping also calculates the distance between two tem-
poral sequences non-linearly, allowing ‘warping’ through the
insertion and deletion of frames in each sequence, but cost is
dependent upon the di↵erences between matched feature vec-
tors.

For keyword spotting, the query is usually much shorter than
the test sequence. The standard DTW algorithm will stretch a
query over the entire test sequence to evaluate similarity. Even
if such matchings have low cost they are impractical, as a word
utterance cannot realistically be spread across the test sequence.

To avoid this shortfall, (Park and Glass, 2005) have proposed
an improved version of Dynamic Time Warping called Segmen-
tal Dynamic Time Warping (SDTW). SDTW uses a restriction
on the warping path first proposed by (Sakoe and Chiba, 1978).
In SDTW each frame of the query can be matched with a re-
stricted number of frames of a test sequence based on a match-
ing radius r. Due to this restriction, the warping of each query

of length n is restricted within (n�r) to (n+r) frames of the test
sequence (see Figure 2). Matching is then performed upon dif-
ferent segments of the test sequence, each starting at a di↵erent
frame. The step size parameter controls the number of frames
between start points for alignment on the test sequence.

3. Methodology

Our keyword spotting system is divided into three parts:
Mel Frequency Cepstral Coe�cients (MFCC) extraction, fea-
ture normalization, and Segmental Dynamic Time Warping to
locate candidate matches.

3.1. MFCC Feature Extraction and Query Trimming

We have used the Sphinx-4 (Walker et al., 2004) library to ex-
tract MFCC features from speech recordings. While calculating
these features, Sphinx considers 25ms frames, generated every
10ms. Hence, there is an overlap of 15ms between two consec-
utive frames. Each frame is then transformed to the frequency
domain using Discrete Fourier Transform. The separated bands
are then passed through triangular filters placed at logarithmic
distances. The final features are calculated by transforming the
resulting frames in the time domain using the Discrete Cosine
Transform. The final feature vector contains 13 MFCC fea-
tures. To reduce the impact of environmental noise, we then
modify the MFCC features using the Sphinx 4 denoising mod-
ule (Doblinger, 1995; Kim and Stern, 2012). We then add first
and second order derivatives of the resulting MFCC features,
producing a 39-element vector.

Queries may unintentionally have leading or succeeding
pauses that are hard to detect by listening. These pauses can
have a substantial negative impact upon retrieval performance,
and so we have created a trimming function to remove them. As
seen in Figure 3, the first raw MFCC feature in queries often has
the largest values and variance. We observed empirically that
the first MFCC feature associated with a pause has a value less
than -10. To trim silence from queries, we remove consecutive
frames in the forward and backward directions where the first
raw MFCC value is less than -10.

3.2. Feature Normalization

While lectures are recorded in a classroom environment,
queries to AccessMath may come from the lecture audio it-
self, or from a recording made by the instructor in a di↵erent
environment (e.g. on a laptop in the instructor’s o�ce). Our
normalization process is designed to reduce the impact of these
changes in the recording environment.

Figure 3 shows raw MFCC feature values for a laptop-
recorded query, where the first (lowest) MFCC has much larger
values than those for higher frequencies due to the proximity of
the microphone. When this query is used for retrieval, the first
MFCC feature dominates the warping cost, mostly ignoring in-
formation in higher frequencies (e.g. ‘thuds’ are matched to
keywords). Without normalization, retrieval precision is poor
(see Section 5.1).

Normalization is divided into two steps. First, all 39 MFCC
features are transformed using a whitening transform. Let µi
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Fig. 3. Raw MFCC Value Distributions for Laptop-Recorded Query ‘solu-
tion.’ Intensities are much higher in the lowest frequency MFCC bands.
As a result, low frequency MFCC values dominate warp costs for SDTW.

and �i represent the mean and the standard deviation for fea-
ture fi in a sequence. Whitened value wi for feature fi is given
by:

wi =
fi � µi

�i
(1)

This reduces the low-frequency domination of warping costs by
producing features with similar distributions.

This whitening procedure is similar to short term mean vari-
ance normalization (Alam et al., 2011). As our datasets are rela-
tively small, µi and �i values may be computed using all MFCC
feature vectors in queries and lectures independently, without
the need to use a small window for normalization. Each frame
of speech input is whitened based on the value of µ and � for
that input (i.e. a query recording or lecture video).

In the second step, whitened MFCC feature vectors are con-
verted to unit vectors. This ensures that all frames have equal
weight when computing warp costs.

3.3. Segmental Dynamic Time Warping

Finally, to locate and score candidate matches of a query,
we use Segmental Dynamic Time Warping (SDTW). Segmen-
tal Dynamic Time Warping attempts to align two temporal se-
quences non-linearly using dynamic programming. In our work
we have used Euclidean distance as our distance metric. How-
ever, any other valid metric for computing the di↵erence be-
tween two frames can be substituted.

Consider a query sequence Q and the sub-sequence S of the
test sequence containing m and n frames respectively. The Dy-
namic Time Warping (DTW) algorithm will calculate the m by
n matrix C (Müller, 2007) to determine a minimum cost warp-
ing path as shown in Figure 2. The cost of matching first frame
S 0 of the test sequence against the first frame Q0 of the query
sequence is calculated using the Euclidean distance d(Q0, S 0).
The remaining values of the first row and the first column of

cost table C are calculated using Equation 2.

C0, j = d(Q0, S j) +C0, j�1

Ci,0 = d(Qi, S 0) +Ci�1,0
(2)

After calculating the first row and first column values, the re-
maining values of the cost table can be calculated using the re-
cursive formula expressed by Equation 3.

Ci, j = d(Qi, S j) + min

8>>>>><
>>>>>:

Ci, j�1

Ci�1, j�1

Ci�1, j

(3)

Finally the value of Cm,n gives the minimal warping cost for
the query against the test sequence. The warping path can be
calculated backwards by tracing back the cost starting from the
warping cost Cm,n.

As discussed earlier, this warping path will not be of practi-
cal importance if it is spread over a very long portion of the test
sequence. To avoid impractical warping paths we have created
a Java implementation for a modified version of the Segmental
Dynamic Time Warping (SDTW) algorithm discussed in Sec-
tion 2 (Zhang and Glass, 2009). Consider a short query se-
quence Q containing 150 frames being matched against a longer
test sequence T containing 2000 frames. Using the radius con-
straint r, a given frame Qi on the query can only be matched to
frames within at most r frames away on the test sequence. Con-
sider r = 15. The first frame of query Q0 can be only matched
to the frames between (T0 � T15). Similarly, the query frame
Q15 can be matched within a range of (T0 � T30). Hence, any
frame i can only match frames in the range (i� r) to (i+ r). Due
to this restriction, the first warping of the query starts at T0 and
ends between frames T135 to T165. A restricted warping path is
shown in Figure 2.

The next warping starts based on the value of the forward
step parameter s. Consider s = 20. In this situation, the next
warping will start at the frame T20 and ends between T155 and
T185. The degree of overlap between query warping paths de-
pends upon the step parameter. Smaller step values result in bet-
ter matching between query and test sequence, but also longer
processing times.

SDTW avoids impractical warping paths without a↵ecting
the quality of matches, and reduces processing time for the al-
gorithm. For each frame of the test sequence warping is re-
stricted to frames within r frames. The time complexity for
comparison is reduced from O(mn), where m and n are se-
quence lengths, to O(mr).

4. Experiments

Our goal in not requiring instructors to use a lapel micro-
phone is to reduce the setup e↵ort needed for capturing lec-
tures, and to accommodate instructors who do not like working
(directly) with microphones. We also want to allow lecturers
to record their query keywords in a di↵erent environment than
classrooms. We performed four experiments using two di↵er-
ent datasets to measure the impact of change in recording en-
vironment and environmental mismatch between a query and a
lecture on the performance of the system.
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Evaluation Metric and Protocol. The experiments are eval-
uated using Precision at N. A Precision at 10 of 70% indicates
that 7 of the top 10 hits for a query are valid (i.e. acoustically
and semantically related to the query). We use the term average
precision to represent the average Precision at k value over all
queries, i.e. the average Precision at 10 is the average of the
Precision at 10 scores for all queries.

To compute Precision at N values, hits were assigned by the
first author to one of 5 categories: 1. Exact, 2. Insertion (extra
sounds), 3. Delete (missing sounds), 4. Both (insertions and
deletions) , and 5. No Match (i.e. false positive). We use this
categorization to divide similar but non-identical hits based on
the addition and/or removal of utterances from the query.

In addition to the five acoustic categories for search hits,
the Insertion and Both categories have two sub-categories used
to identify whether a hit is semantically similar to the query.
For example, consider the query ‘dimensional,’ and two top-10
search hits ‘one dimension’ and ‘two dimensions.’ Each hit is
acoustically similar to the query with utterances both removed
and added, and so these are assigned to the Both category, and
the Similar sub-category. When a user searches with such a
short query, results with similar sounds and meaning may be
considered acceptable - due to the query brevity, it is highly
likely that the user wants to find matches related to the stem
of the query (‘dimension’). Users seeking more specific utter-
ances would likely have searched with a longer query such as
‘high dimensional’.

Based on this reasoning, valid hits are defined as those be-
longing to the Exact match and Insertion categories (where the
query term appears identically with sounds preceding and/or
following the query), along with matches in the semantically
Similar sub-categories for Delete and Both hits. Acoustically
dissimilar hits in the No Match category and acoustically re-
lated but semantically dissimilar matches in Delete and Both
are treated as misses (i.e. invalid hits).

MFCC Features and SDTW Parameters. For these ex-
periments, we used the MFCC feature extraction described in
the previous section, with a radius value of r = 8 frames, and
testing alignment with the query keywords starting from every
MFCC frame in a lecture (i.e. using a step size of s = 1). The
small step size leads to more accurate keyword detection, but
also longer processing times.

Computational Resources. We used a server with 96GB of
RAM and an Intel Xenon CPU with 24 processors, each with
a clockspeed of 2.93GHz for all experiments. Queries were
executed in parallel over available videos, after which results
were pooled and ranked.

4.1. RIT Linear Algebra Lectures
We want to provide the facility of recording queries outside

the classroom in a di↵erent environment. We also expect users
to be interested in re-querying the system using a result gener-
ated by a laptop-recorded query, and to extract queries directly
from lecture audio. We performed three experiments using RIT
Lecture Dataset to measure the performance of the system using
these di↵erent query sources.

Dataset. 18 lectures for an introductory Linear Algebra
course of between 45 and 60 minutes each was given by an

RIT Math Professor (Dr. A. Agarwal, one of the authors).
The instructor speaks with an Indian accent. The lectures were
recorded using a single video camera in a small classroom en-
vironment without students, but with two assistants in the class-
room typing notes. These lectures contain some noise, includ-
ing typing noise, and the opening and closing of doors. We
selected the left audio channel, to work with a monaural signal.
The total duration of the lectures is around 1000 minutes.

Queries. After lectures had been recorded, our RIT Math
Professor created a list of twenty keywords deemed useful for
indexing his videos. We have used three sets of recordings for
query keywords with the RIT dataset. This list of keywords can
be seen in Table 2.
• Experiment 1 (laptop). Query keywords are recorded on

a laptop by the instructor. The longest query and the short-
est queries have lengths of 1.62s and 0.45s for this set. The
mean length of a query is 0.74s with a standard deviation
of 0.28s.
• Experiment 2 (re-query). Search hits generated for Ex-

periment 1 are used to query the system. Hits are selected
from the top 10 results generated for Experiment 1. These
are not necessarily the first result generated by the sys-
tem, but rather the one deemed to be most phonetically
similar to the query. The longest query and the shortest
queries have lengths of 1.31s and 0.29s for this set. The
mean length of a query is 0.76s with a standard deviation
of 0.21s.
• Experiment 3 (manual). Queries are manually extracted

from lecture recordings. The longest query and the short-
est queries have lengths of 2s and 0.37s for this set. The
mean length of a query is 0.73s with a standard deviation
of 0.35s.

4.2. MIT Linear Algebra Lectures
As MFCC features are sensitive to both the speaker and envi-

ronment (Aradilla and Bourlard, 2008), we carried out an exper-
iment to test generalization of our system to new speakers and
environments, i.e. the robustness of the system. Aside from the
use of a new set of Linear Algebra lectures by another instruc-
tor, the experimental set-up is identical to that for the first three
experiments.

Dataset. We used a set of introductory Linear Algebra lec-
ture videos by Dr. Gilbert Strang available from MIT Open-
CourseWare.3 Dr. Strang speaks with an American accent. The
dataset contains 35 lectures of 40 to 50 minutes each. The lec-
tures are recorded in a live classroom with students, with the
instructor wearing a lapel microphone. The use of the lapel mi-
crophone reduces the volume of environmental noise relative to
the speaker’s voice. There are approximately 1300 minutes of
video for the course, roughly 300 minutes longer than for the
RIT lectures. Unlike for the RIT lectures, a complete transcript
for all lectures was available.

Queries. Similar to Experiment 3, queries were extracted
manually from the MIT lecture videos. We used 15 common

318.06 Linear Algebra, Spring 2010. http://ocw.mit.edu/courses/

mathematics/18-06-linear-algebra-spring-2010
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Table 1. Categorization of Top-10 Results for Three Laptop-Recorded
Queries. Hits missing part of the query (Delete, Both) are further cate-
gorized as semantically Similar or Dissimilar.

Acoustic Match with Query

Exact Insert Delete Both No Match
Similar Dissimilar Similar Dissimilar

dimensional - 2 - - 7 - 1
multiplicative 1 - - - 3 - 6
solution - 10 - - - - -

keywords for evaluating the performance of the system on both
datasets which are shown in Table 2. Three keywords out of
these 15, shown in parenthesis, are slight modification of orig-
inal keywords as the original keywords were completely ab-
sent or the modified form was highly preferred in MIT lectures.
These keywords represent the same concept with a slightly dif-
ferent word form. However, lecture transcripts showed that five
keywords were completely absent in MIT lecture. The RIT
Math Professor (our co-author) suggested additional terms con-
ceptually related to the missing terms. As a result, for the MIT
lectures the query keywords homogeneous, non-homogeneous,
consistent, linear span and closure were replaced by pivot,
elimination, linear combination, invertible and identity matrix.
• Experiment 4 (manual) The experimental setup is sim-

ilar to the first three experiments, di↵ering only in the
query and lecture recordings used. The query set con-
tains twelve identical, three modified and five distinct key-
words/keyphrases relative to the previous experiments.

5. Results

5.1. RIT Lectures (Experiments 1-3)
In Experiment 1 (laptop) the average Precision at 10 over

the 20 laptop-recorded queries was 71.5%, with a standard de-
viation of 29.6%. While scores for individual queries in the
top-20 are omitted for reasons of space, the average Precision
at 20 was 63% for this experiment. As discussed in the previ-
ous Section and illustrated in Table 1, the number of valid hits is
the number of hits assigned to the Exact and Insert categories,
along with semantically Similar hits where sounds are missing
(Delete) or where sounds are both added to and missing from
the query (Both).

A visualization of hit categorization for three queries is
shown in Table 1. As the SDTW algorithm considers the warp-
ing path between the length of the query within a given radius,
and that pronunciation in lecture was generally faster, the path
with lowest warping cost usually leads to generated hits pre-
ceded and/or followed by additional sounds, as seen by the con-
centration of hits in the Insert and Both categories. For many of
the laptop queries, results were concentrated within the Exact
and Insert categories. For queries like ‘multiplicative’ and ‘di-
mensional,’ hits are concentrated in the Both hit category. This
is expected as root forms ‘multiply’ and ‘dimension’ are very
common in linear algebra. Many hits contain both insertion and
deletion of sound for these queries.

Queries ‘row-reduced’, ‘system of equations’, ‘zero-vector’
and ‘echelon form of a matrix’ have 100% Precision at 10.
These four queries have a distinct pronunciation, and the term

Table 2. Valid Top-10 Hits for Experiments 1-4

RIT RIT MIT
laptop requery manual

Query Exp 1 Exp 2 Exp 3 Exp 4

augmented 5 10 10 3
dimensional 9 8 10 10
row-reduced 10 10 10

( reduced row ) 9
solution 10 10 10 10
system of equations 10 10 10 8
transpose 9 10 10 9
zero vector 10 10 10 9
echelon form of a matrix 10 10 9

( echelon form ) 10
independent 8 4 9 10
multiplicative 4 3 8

( multiplication ) 10
system 9 8 7 10
variables 6 4 6 10
coe�cients 8 9 5 8
reduce 3 10 5 4
orthogonal 1 3 4 10

RIT Only
homogeneous 7 10 10
linear span 6 10 9
consistent 9 9 9
closure 8 6 7
non-homogeneous 1 2 1

MIT Only
elimination 10
linear combination 10
identity matrix 10
pivot 10
invertible 9

Mean (µ) 7.15 7.80 7.95 8.95
Stdev (�) 2.96 2.93 2.56 1.97

is not connected with other syllables in the lecture record-
ings. However, such strong results were not observed with
the query ‘non-homogeneous’. The pronunciation of prefix
‘non’ is usually blended with ‘homogeneous’ in the lecture
videos. For the laptop-recorded query, the pronunciation of
‘non’ and ‘homogeneous’ is detached. These hits are catego-
rized in Both, with sub-category Dissimilar, as they are phonet-
ically but not semantically similar to the query. For example,
even though the pronunciation of ‘are homogeneous’ resembles
‘non-homogeneous’, the concepts associated with these are di-
rectly opposed to one another.

Another example of acoustically similar but semantically dis-
tinct hits was seen for ‘reduce.’ Many acoustically similar top-
10 hits are obtained, such as ‘introduce’ and ‘produce,’ due to
a much longer time spent pronouncing ‘duce’ than ‘re,’ and so
strong matches to the su�x of the query are likely weighted
higher. However, these hits are not semantically related to the
query, and are treated as misses (false positives).

E↵ect of Whitening. In an earlier preliminary experiment
we found whitening greatly improves performance - without
whitening, for the same set of 20 laptop-recored queries, aver-
age Precision at 10 was less than half, at 32%.

Accelerating Laptop Queries. Given that our laptop queries
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were often slower than utterances in-lecture, we investigated in-
creasing the speed for a subset of the laptop queries. The query
‘variable’ obtained a precision at 10 of 60% for the original
laptop recording of the query. This increases to 80% when the
query was increased to 1.05 times the original speed. A fur-
ther increase in speed resulted in a decrease in precision, due
to increasing distortion of the audio. A similar pattern was
observed for the query ‘orthogonal’. The performance for all
queries in our subset decreased with increases in speed beyond
1.10 times the original duration. The pronunciation of the query
becomes di↵erent beyond this speed, which a↵ects the extrac-
tion of MFCC features.

For Experiment 2 (re-query), we have used the top hit gen-
erated by Experiment 1 as a query. The average Precision at
10 is 78% with a standard deviation of 29.3%. The average
Precision at 10 is higher than for the laptop recorded queries.
In this experiment, ten keywords have perfect Precision at 10
(100%). For many queries, the top hit is assigned to the In-
sert category. For the query ‘variables,’ we used the closest hit,
which was ‘pivot variable’. As a result, hits which do not con-
tain ‘variable’ are produced due to their similarity with ‘pivot’.
A similar phenomenon was observed for queries ‘solution’ and
‘transpose’. These results also expanded the set of results ob-
tained by the original laptop queries in a manner similar to that
described below for Experiment 3.

For Experiment 3 (manual), an average Precision at 10 of
79.5% with a standard deviation of 25.6% was obtained for
queries manually extracted from the lecture recordings. This
is to be expected, as queries extracted from lectures are from
the same acoustic environment, and have ‘within-lecture’ pro-
nunciations (in particular, the lecturer speaks more quickly and
with di↵ering emphasis in the lecture recordings than in the lap-
top recordings).

Queries extracted from lectures generated numerous top-
10 hits not found in the top-10 for laptop recorded queries.
The results generated for laptop-recorded queries and extracted
queries have an overlap of 19.5% in the top-10 results. For ex-
ample, for ‘augmented’, three results generated by the laptop-
recorded query were captured by the query extracted from the
lectures. The within-lecture query captured seven new hits from
the video lectures, and all hits were valid (Precision at 10 is
100%).

5.2. MIT Lectures (Experiment 4)

In Experiment 4, the system achieved average precision at
10 of 89.5%. This exceeds the results for Experiment 3, which
also contains queries extracted from lectures by 10%. Except
for queries ‘augmented’ and ‘reduce’ all the queries have very
strong results. For the 15 common queries, Experiment 3 has
precision at 10 of 82% while Experiment 4 has precision at 10
of 86.67%, which are comparable results. The overall gain in
the performance can be attributed to lecture recordings using a
lapel microphone, which picks up less environmental noise.

Dr. Strang speaks emphatically in the MIT lectures, which
divides the query ‘augmented’ in two strong segments, ‘aug’
and ‘mented’. Due to this reason, ‘augmented’ is often con-
fused with some sound divided into two strong parts separated

by a small pause. One the other hand, ‘reduce’ occurs only
twice as a separate word. Mostly it is present in some other
word form as ‘reduced’ or ‘reduction’. Fewer occurrences cou-
pled with its similarity with other words, such as ‘produce’,
results in lower precision.

Based on the results obtained with MIT dataset, it appears
that our system generalizes reasonably well to new recordings.
Our system is also robust enough to produce strong results for
both lapel and camera microphone recordings.

5.3. Retrieval Times

The average run time for RIT lectures dataset was 108 sec-
onds with a standard deviation of 60 seconds. The longest run-
ning query was ‘echelon form of a matrix’ which is expected
as it is the longest query. The query ‘system’ took the short-
est time to run, at 67 seconds. The MIT lectures dataset had
a similar average running time of 97 seconds, with a standard
deviation of 40 seconds. The longest running query was ‘sys-
tem of equations’ (189 seconds) and ‘pivot’ was the shortest (38
seconds).

Even though MIT lectures dataset is longer than RIT lecture
dataset their run time are comparable. In RIT lecture dataset, 18
lectures are divided in total of 56 recordings while MIT dataset
contains only 35 recordings, one for each lecture. Our sys-
tem performs whitening and normalization based on the audio
recording in a single file. As a result, the run time are compara-
ble as the MIT videos are longer, but the RIT dataset contains
more videos.

5.4. Comparison with State-of-the-Art

The performance of our system is comparable to state-of-the-
art keyword spotting systems. (Zhang and Glass, 2009) used
Segmental Dynamic Time Warping algorithms with Gaussian
posteriorgrams to create a keyword spotting system. They ob-
tained an average Precision at 10 of 68.3% for an MIT lecture
dataset (Glass et al., 2004), comparing test queries against seg-
mented utterances. The dataset from which the utterances were
segmented contains nearly 300 hours of audio from di↵erent
classes at MIT. This data is collected in a classroom environ-
ment with a lapel microphone (e.g. as found in the MIT record-
ings used for Experiment 4). (Aoyama et al., 2014) used the
same dataset for keyword spotting using graph-based search.
They obtained an average Precision at 10 of roughly 80% for
20 keywords compared against 3000 test utterances. In contrast,
the AccessMath keyword search system identifies keywords in
complete lecture recordings, without a prior segmentation step.

Both of these systems require training to create Gaussian
Posteriorgrams or a graph index. Training GMMs requires seg-
menting files into speech and non-speech segments, and select-
ing the number of component Gaussians to include in the mix-
ture model. Our approach does not require prior segmentation
of audio files, and requires no training aside from setting the
query trimming threshold, SDTW radius, and SDTW step size
parameters. The parameter values used in this paper seem rea-
sonably robust, given that for the RIT and MIT lectures strong
results were obtained for two di↵erent lecturers with di↵erent
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accents, and in two di↵erent classroom environments with dif-
ferent recording setups (with average Precision at 10 values of
79.5% and 89.5% for within-lecture queries, respectively).

A limitation of our approach is that it is designed for use
with single rather than multiple speakers, while (Aoyama et al.,
2014; Zhang and Glass, 2009) support multiple speakers. How-
ever, for our intended application, single-speaker detection is
su�cient.

6. Conclusion

We have proposed a within-speaker keyword spotting sys-
tem to assist instructors with indexing their lecture videos, in
order to help low-vision students to more easily locate topics
in the videos. Our system has an average Precision at 10 of
71.5% for laptop recorded queries for Linear Algebra lectures
recorded at RIT, and 79.5% and 89.5% for RIT and MIT lec-
tures respectively using within-lecture queries. We have also
created a prototype for improving the accessibility of gener-
ated hits and organizing them into a tree structured index. Our
keyword spotting system is unsupervised, and generates results
using Segmental Dynamic Time Warping without any training
data. It is also robust enough to compensate for changes in
speaker, recording environment and recording setup.

In the future, it is possible to improve the accessibility of this
system by including the within-lecture searching functionality,
and support for re-querying using search hits. Sometimes an
instructor pronounces a word in a peculiar way, e.g. slow, fast
or stretched over a long interval. It may be useful to expand
the system to include query expansion techniques, such as by
changing the speed of queries.

We are able to reduce run times for indexing significantly
with parallelization. However, the system still requires no-
ticeable time to create an index. It would be interesting to
explore other techniques such as Information Retrieval based
DTW (Anguera, 2013), Randomized Acoustic Indexing and
Logarithmic Time Search (Levin et al., 2015) or pre-computing
similarity matrices using HMM (Chung et al., 2014). These
methods claim to improve speed and memory footprint over tra-
ditional DTW without a↵ecting the accuracy significantly.

Apart from these points, we would also like to improve ac-
cessibility by providing a within-lecture query facility in the
system interface, and to include a facility of creating an index
from the web interface itself. Our system has been designed pri-
marily to support linear algebra lectures. However, we would
like to explore the performance and adaptability of the system
in di↵erent domains where lectures consist of classroom dis-
cussion between students and the lecturer.
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