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Abstract Document recognition and retrieval technolo-
gies complement one another, providing improved ac-
cess to increasingly large document collections. While
recognition and retrieval of textual information is fairly
mature, with wide-spread availability of Optical Char-
acter Recognition (OCR) and text-based search engines,
recognition and retrieval of graphics such as images, fig-
ures, tables, diagrams, and mathematical expressions
are in comparatively early stages of research. This pa-
per surveys the state of the art in recognition and re-
trieval of mathematical expressions, organized around
four key problems in math retrieval (query construc-
tion, normalization, indexing, and relevance feedback),
and four key problems in math recognition (detecting
expressions, detecting and classifying symbols, analyz-
ing symbol layout, and constructing a representation
of meaning). Of special interest is the machine learn-
ing problem of jointly optimizing the component algo-
rithms in a math recognition system, and developing
effective indexing, retrieval and relevance feedback al-
gorithms for math retrieval. Another important open
problem is developing user interfaces that seamlessly
integrate recognition and retrieval. Activity in these
important research areas is increasing, in part because
math notation provides an excellent domain for study-
ing problems common to many document and graphics
recognition and retrieval applications, and also because
mature applications will likely provide substantial ben-
efits for education, research, and mathematical literacy.
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1 Introduction

In practice, the problem of retrieving math notation
is closely tied to the problem of recognizing math nota-
tion. For example, a college student may want to search
textbooks and course notes to find math notation that
has similar structure or semantics to a given expression.
Or, a researcher may wish to find technical papers that
use or define a given function. In both of these exam-
ples, recognition of math notation is needed in order
to support the retrieval of math notation: the system
must be able to recognize math expressions that the
user provides as a query, and the system must be able
to recognize math expressions in the target documents
that are the subject of search. Retrieval of math no-
tation has received increasing research attention in the
past decade (see Section 3), while math recognition has
been a subject of research for over forty years (see Sec-
tion 4). To our knowledge, we provide the first survey of
mathematical information retrieval; in surveying math
recognition, we focus on research that has appeared in
the decade since the survey of Chan and Yeung [28].

The math domain provides an excellent vehicle for
studying pattern recognition and retrieval problems,
and for studying methods of integrating pattern recog-
nition algorithms to improve performance. The four
central pattern recognition problems – segmentation,
classification, parsing, and machine learning (i.e. opti-
mizing recognition model parameters) – all come into
play when recognizing mathematics. The math domain
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Fig. 1 Math Entry Systems. Left to right: The pen-based Freehand Formula Entry System (FFES/DRACULAE) [20, 169]; the

XPRESS mouse/keyboard based system offering direct symbol placement [116]; and InftyReader/InftyEditor, using OCR, pen, mouse
and keyboard [140].

Figure 13: Gestures used in the mathematical sketch-
ing paradigm.

or factorization of expressions. Other gestures are
used for deletion of ink, association of recognized ex-
pressions, and angle association. Figure 13 showa the
different gestures used in MathPad.

The system is writer-dependent to guarantee the
a more accurate symbol recognition. Handwriting is
recognized using hybrid recognizer. First, a dynamic
classifier calculates the similarity with prototypes [37]
is combined with an statistical classifier [55], to ob-
tain information to use once again dynamic program-
ming for the fine classification [15]. The structural
analysis uses the techniques described in [6].
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Fig. 2 Systems for Pen-Based Computer Algebra and Sketching. Clockwise from top left: MathBrush [81], E-chalk [143], MathPad2

[85], and the system of Li, Zeleznik et al. [89].

offers sufficient complexity to challenge researchers, yet
has characteristics that make the domain tractable: the
semantics of math notation are fairly constrained, and
a typical math expression is small, consisting of a rela-
tively small number of symbols.

The input to a math recognition system can take
three forms: vector graphics (such as PDF), strokes (such
as pen strokes on a data tablet), or a document image.
The processing that is needed to extract expressions
and recognize characters depends greatly on the form of
input. For example, a PDF document directly provides
encoded symbols, so there is no need to perform symbol
segmentation or optical character recognition [13, 14].
Figures 1 and 2 illustrate systems that accept various
forms of input: vector graphics is shown in Figure 1b;
strokes are shown in Figures 1a and 2a,b,c,d; and a
document image is shown in Figure 1c.

In the next sections, we discuss key recognition and
retrieval problems as they apply to all three forms of
input. As the need arises, we point out situations in

which differences in input format cause large differences
in processing methods.

1.1 Overview of Math Notation Recognition

Math recognition is used for various purposes. For ex-
ample, a user may write an expression by hand and in-
sert the recognition result (e.g. a LATEX string or image)
into a document. Alternatively, a recognized expression
can be evaluated using a computer algebra system such
as Maple or Mathematica. Yet another option is to use
the recognized expression as a query, to retrieve docu-
ments containing similar math notation. Recent work
in human-computer interaction further motivates the
development and use of pen-based math entry systems.
Bunt et al. study mathematicians in a research setting,
and find that in order to be useful, CAS systems need to
support annotation, provide multiple levels of formality,
and provide more transparency for the operations that
they apply [23]; they suggest that pen-based systems
for math might be used to address these needs.
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Fig. 3 Key Recognition Problems: Expression Detection, Symbol Extraction or Symbol Recognition, Layout Analysis, and Mathemat-

ical Content Interpretation. Shown at left are the possible input formats, including vector-based document encodings such as PDF

files, pen/finger strokes, and document images. The form of input and output for each problem is shown. Many systems perform
recognition in the order shown, but not all. For example, some systems combine Layout Analysis and Mathematical Content Interpre-

tation, producing an operator tree directly using the expected locations of operator/relation arguments [29,31]. Post-processing stages

used to apply language model constraints (e.g. n-grams) and other refinements are not shown (see Section 4.5).

Math recognition also finds application in tutoring
systems. For example, when middle school and high
school students tested a math tutoring prototype (based
on FFES/DRACULAE), students using pen entry com-
pleted their math tutoring sessions in half the time of
those that typed, with no significant difference between
their pre-to-post test score gains [7].

The following four key problems arise in the recog-
nition of math notation, as illustrated in Figure 3.

1. Expression Detection (Section 4.1). Expressions must
be first identified and segmented. Methods for de-
tecting offset expressions are fairly robust, but the
detection of expressions embedded in text lines re-
mains a challenge.

2. Symbol Extraction or Symbol Recognition (Section
4.2). In vector-based representations, such as PDF,
symbol locations and labels can be recovered, though
some handling of special cases is needed (e.g. root
symbols are often typeset with the upper horizon-
tal bar represented separately from the radical sign,
√ [14]). In raster image data and pen strokes, de-
tecting symbol location and identity is challenging.
There are hundreds of alphanumeric and mathemat-
ical symbols used, many so similar in appearance
that some use of context is necessary for disam-
biguation (e.g. O, o, 0 [103]).

3. Layout Analysis (Section 4.3). Analysis of the spa-
tial relationships between symbols is challenging.
Spatial structure is often represented using a tree,
which we term a symbol layout tree (Figure 4a).
Symbol layout trees represent information similar to
LATEX math expressions; they indicate which groups
of horizontally adjacent symbols share a baseline
(writing line), along with subscript/superscript, above/-
below, and containment relationships. Symbols may
be merged into tokens, in order to simplify later pro-
cessing (e.g. function names and numeric constants).

4. Mathematical Content Interpretation (Section 4.4).
Symbol layout is interpreted, mapping symbols and
their layout in order to recover the variables, con-
stants, operands and relations represented in an ex-
pression, and their mathematical syntax and seman-
tics. This analysis produces a syntax tree for an
expression known as an operator tree (Figure 4b).
Given definitions for symbols and operations in an
operator tree, the tree may be used to evaluate an
expression, e.g. after mapping the tree to an ex-
pression in a CAS language such as Matlab, Maple,
or Mathematica. However, determining the correct
mapping for symbols and structures can be difficult,
particularly if there is limited context available.

Figure 3 illustrates a series of stages commonly used
in recognition of mathematical notation. The order of
stages can vary [18]. Intermediate results produced by
one stage may provide contextual information to con-
strain analysis in other stages, or to constrain the anal-

( a + b )

SUPER

2

(a) Symbol layout tree. The tree is rooted at left (‘(’).
Horizontally adjacency relationship edges are unlabeled

EXP

ADD

a b

2

(b) Operator tree. The tree represents the addition

of a and b, squared.

Fig. 4 Symbol layout tree and operator tree for (a+ b)2
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ysis of other parts of the input. This is discussed further
in Section 4.6.

The first publicly available math-recognition sys-
tems appeared about a decade ago, building on math
recognition research dating back to the late 1960’s [5,
6, 17, 31]. The 1999 applet1 created by Matsakis et. al
recognizes simple handwritten expressions [99]. In 2001,
Chen and Yeung published a paper on the first pen-
based calculator [30]. In 2002, the FFES/DRACULAE
pen-based equation editor2 [136, 163, 165, 169] was dis-
tributed as an open-source prototype. Several more re-
cent systems recognize handwritten [81, 133, 143] and
typeset [46] expressions. Commercial applications be-
gan to appear, including MathJournal3, and pen-based
entry in the Windows operating system [113]. The In-
fty math OCR system of Suzuki et. al has also been
influential. Infty is sophisticated, and supports speech
and Braille output for the visually impaired [139]. Infty
supports both document image and pen-based input.

At present, most commercial systems for OCR do
not recognize mathematical expressions. To address this,
OCR output can be annotated with the results pro-
duced by a math recognition system. For example, the
InftyReader4 application (see Figure 1c) uses the Infty
system to recognize expressions and insert correspond-
ing LATEX strings into the PDF file produced by a com-
mercial OCR system [71].

User interfaces for expression entry and recognition
result visualization are important research topics that
we will discuss only briefly here for reasons of space.
In addition to the papers cited in Figures 1 and 2 and
mentioned already, the interested reader should consult
the following: [84, 118, 133, 168]. Key issues are ease of
input, and visualization of feedback. One repeated ob-
servation of interest is that for pen-based systems, pre-
senting recognition results separately from the user’s
input as a rendered image leads to situations where: 1)
in experiments, participants find themselves unable to
detect errors reported in the structure of their expres-
sion, not because they aren’t shown, but because they
have difficulty perceiving them [165, 168], and 2) users
try to edit the recognized expression image, rather than
the pen-based input [82,168].

1.2 Overview of Mathematical Information Retrieval

Figure 6 illustrates the information retrieval process.
The user formulates queries through the Query Inter-

1 http://www.ai.mit.edu/projects/natural-log/
2 http://www.cs.rit.edu/∼rlaz/ffes/
3 http://www.xthink.com/
4 http://www.inftyreader.org

a. Math WebSearch Interface [77, 78]. Queries are constructed

via keyboard and templates on the right. Symbol types may also

be constrained (bottom left)

b. Springer LaTeX Search. Results may be filtered by clicking
on a publication year or source document type

c. NIST Digital Library of Mathematical Functions. Shown are

results for a boolean query combining math and keywords [3,102]

Fig. 5 Mathematical Information Retrieval System Interfaces
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Fig. 6 Information Retrieval (adapted from Hiemstra [62]).

Data are shown in boxes, system processes in ovals, user in-
terfaces in double ovals, and user elements with no surrounding

shape. Beginning with an information need and query formula-

tion in the top left, the user enters the query through the Query
Interface. The query is normalized to reduce variation (e.g. text

can be normalized using word stemming and a thesaurus). As

shown on the right, the searchable documents are indexed; the
indexing process also carries out normalization operations. At

bottom, the normalized query and the indexed documents are
matched, to produce the set of retrieved documents. The user

views these through the Result Interface; the user can provide

relevance feedback, or can elect to formulate a new query

face, and views results through the Result Interface. In-
dexing, Normalization and Matching are three system
processes used to process the document collection and
query, and find matches for the query in the collection.

Math recognition can be applied both to the query
(e.g. to recognize a stylus-drawn expression, as in Fig-
ures 1 and 2) and to the searchable documents (e.g.
to recognize math expressions in document images or
PDF files). Prior to indexing, document images can be
annotated with region types (e.g. text, table, figure,
image, math), character information, and recognized
structure and semantics for detected math expressions.
Existing math retrieval systems lack the ability to rec-
ognize stylus-drawn queries. Instead template editors
are provided to assist in generating query strings; an
example is the Math WebSearch prototype (Figure 5a).

The following four key problems arise in the retrieval
of math notation, as illustrated in Figure 6.

1. Query Languages and Query Formulation (Section
3.1). Present-day query languages for mathemati-
cal information retrieval are text-based, influenced
by LATEX, MathML [10] and OpenMath [37, 147].
Challenges in query formulation include determin-
ing what types of queries are useful and feasible,
and providing an effective user interface for query
formulation.

2. Normalization (Section 3.2). In order to reduce vari-
ation, both the query and the searchable documents
are normalized. In text-based retrieval, normaliza-
tion involves word stemming and thesaurus opera-
tions [125]. Similarly, expressions must be reduced
to canonical forms to prevent mismatches between
equivalent expressions with different representations.
For example, normalization of symbol layout trees
imposes a unique ordering on spatial relationships.
As another example, enumeration of variables in op-
erator trees allows variables to be matched without
concern for their specific symbol identities.

3. Indexing and Matching (Section 3.3). Retrieval per-
formance depends heavily on the chosen document
representation, and on the similarity measures used
to compare queries to the index. Vector, image and
stroke data need to be indexed and retrieved using
different methods. At present, we know of no work
concerned specifically with indexing and retrieving
handwritten mathematical documents.

4. Relevance Feedback (Section 3.4). During examina-
tion of a retrieval result, the user can provide rel-
evance feedback, to allow the system to automat-
ically construct a refined query. This is an impor-
tant, but currently unexplored research direction
for math retrieval systems. Relevance feedback has
been studied intensively in text [125] and image-
based retrieval systems [35,132].

In addition to these four key problems, the evaluation
of a math retrieval system is also difficult. Evaluation
is discussed in Section 3.5.

Mathematical Information Retrieval (MIR) is a rel-
atively new research area, lying at the intersection of
text-based information retrieval [62,125], content-based
image retrieval [35, 38, 132] and Mathematical Knowl-
edge Management (MKM [25]). Mathematical knowl-
edge management is concerned with the representation,
archiving, extraction, and use of mathematical infor-
mation. Systems for mathematical information retrieval
have been developed for a variety of applications:

– Finding equations in a database of technical docu-
ments [8, 100,101] (e.g. Springer LaTeXSearch5)

5 http://www.latexsearch.com/
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– Semantic search for expressions on the internet (e.g.
Math WebSearch6 [77, 78])

– Finding functions in mathematical function libraries
such as the NIST Digital Library of Mathematical
Functions7 and Wolfram Functions Site8. In these
systems, partial definitions may be used to locate
complete equations [75,78,106]

– Supporting equation search in online learning tools
(e.g. ActiveMath [91]).

– Searching integral tables [41]
– Supporting proof assistants such as Coq [9]

It is interesting to compare question-answering sys-
tems to information retrieval systems. For textual data,
Salton distinguishes these two types of systems based
on the types of data stored and the form queries take
[125]. Information retrieval systems use stored data con-
sisting of documents; in contrast, question-answering
systems use stored data consisting of facts and general
knowledge Queries in information retrieval systems take
the form of keywords and excerpts; queries in quest-
answering systems use natural language. Recently, question-
answering systems for mathematical information have
been devised [170]. An example is the well-known Wol-
fram Alpha web site9. The Wolfram Alpha knowledge
base includes facts on mathematics and statistics, along
with many other topics including the sciences, technol-
ogy, finance, culture, and geography. Wolfram Alpha
provides some processing for natural language (though
keywords may be used), and responses are returned us-
ing a table of relevant facts, figures and computations.
For example, users may request that the system factor
a polynomial.

Investigation of image-based math retrieval has re-
cently begun. Retrieval is based on matching images of
math notation; no math recognition software is used.
For example, Marinai et al. propose a method based
on shape contexts for retrieving mathematical symbols
[96], while Yu and Zanibbi propose a retrieval method
in which handwritten queries are matched to document
images using a combination of X-Y cutting and word
shape matching [160,161].

According to the framework of Smeulders et. al [132],
math images are a ‘narrow’ image retrieval domain,
with constrained semantics and very controlled scene
and sensor properties. For example, math images tend
to have stable illumination. However, the math domain
does present challenges: images of math are polysemic,
meaning that a single expression may be interpreted

6 http://search.mathweb.org/index.xhtml
7 http://dlmf.nist.gov/
8 http://functions.wolfram.com/
9 http://www.wolframalpha.com

in multiple related ways. For example, the meaning or
value of an expression varies depending on the vari-
able binding, the type of a variable (e.g. natural, inte-
gral, real, or complex), and the interpretation of opera-
tors and functions (e.g. the function ‘f’ is heavily over-
loaded). It can be difficult to deduce which interpreta-
tion was intended by the author of a math expression.
Some clues may be found elsewhere in the document
(e.g. definitions of symbols and functions), but often
it is necessary to draw on knowledge of the notational
conventions used in a certain branch of mathematics.

Having provided an overview of math recognition
and retrieval, in the next Section we summarize math-
ematical notation and issues related to the represen-
tation and interpretation of mathematical expressions.
In the remaining sections we continue our discussion of
math recognition and retrieval in more detail.

2 Mathematical Notation

In this section we provide a brief overview of math-
ematical notation and file formats commonly used to
represent mathematics. Math notation may be under-
stood as a semi-formal visual language [97]. As with
other two-dimensional notations such as chemical dia-
grams, music notation, and flowcharts, math notation
is a graphical language for representing complex inter-
actions between primitive objects [21]. Defining math
notation is difficult, but some resources for study are
available, including books on typesetting for mathemat-
ics [33,63,74,156], and a history of the origins and evolu-
tion of the notation [24]. For both people and machines,
interpreting the notation provides many challenges: the
set of symbols used is very large, and ambiguities and
context-dependencies arise in interpreting symbol iden-
tity, layout, and semantics (see Figure 7).

In math notation, symbols are used to represent con-
stants (e.g. π, e, 0), variables (e.g. a, α), operators, func-
tions and relations (e.g.

∫
, fraction lines, f , cos, <), and

the scope of subexpressions (e.g. grouping using (), [ ],
{}). Unlike primitive arguments or objects in an expres-
sion, operations, functions, relations and subexpression
scopes are also represented implicitly, using the spatial
arrangement of symbols (e.g. the implicit multiplication
in xy). Table 1 summarizes the six spatial relationships
commonly used in isolated expressions. Both subscripts
and superscripts can be placed to the left of the symbol
or subexpression they modify, as in the Table 1 exam-
ple for ‘n choose k.’ Most math recognition systems
do not currently accomodate these ‘prefix’ super/sub-
scripts, because they are rare.

Subexpression scopes are often represented using
grid (or ‘tabular’) layouts, where subexpressions are ar-
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100∑
i=1

i2 + i + y − x s · t
(a) (b) (c) (d) (e)

Fig. 7 Ambiguous Mathematical Expressions. (a) Which division is performed first? (b) Is a superscripted? (c) What is the scope of
the summation? (d) Is this symbol a 9 or a q? The perceived answer depends on context (from [103]) (e) What do s, t and · represent?

Table 1 Spatial Relationships in Mathematical Notation. Re-
lationships shown are defined for standard symbol layout tree

encodings (e.g. LATEX, Presentation MathML), and used in most

recognition systems (as far back as Anderson’s [5]). Note that for
many expressions shown, mathematical content cannot be deter-

mined unambiguously.

Relation Expression Math. Interpretation
Adjacent xy Multiply x by y
(at right) x× y Multiply x by y

Superscript x3 x× x× x
Subscript x1 Element 1 of list x

x2
1 x1 × x1∫ +∞

−∞

p(x|ωi) dx

Integrate density function
p over all vectors x for
class ωi

nCk n choose k

Above
Below

x not x

x

y
x divided by y

n∑
i=1

i Add 1, 2, . . . , n− 1, n

Contains
√

x2y2 xy

Grid Layout: rows, columns contain subexpressions

Grid

[
x 0
0 y

]
2× 2 diagonal matrix

Nested
Grid

x! =

{
1, if x = 0
x((x− 1)!), if x > 0

Inductive function def.

ranged in rows and columns. An example is shown at
the bottom of Table 1. Grid layouts are also used fre-
quently in derivations. A number of well-known symbol
shorthands are used to represent patterns and repeated
matrix elements; these include ellipses (e.g. x1 . . . xn),
lines, and large symbols such as a large 0 to represent
zeros in the upper-triangular region of a matrix.

Mathematical expressions represent an application
of functions, operators and relations to arguments. As
can be seen in Table 1, multiple mathematical state-
ments may be represented by a single expression; in

other words, mathematical expressions are polysemic.
For example, if x is a list the expression x1 can rep-
resent the first or second element in the list. The defi-
nition and even role of symbols frequently change; for
example, in an arbitrary expression, λ can represent
a variable, a constant or a binding function as in the
Lambda Calculus. Even when the domain is clear, sym-
bol definitions are often ambiguous. Consider P in the
context of Bayesian probability: is P used to represent a
probability mass function or a probability density func-
tion?

Without knowing the precedence and associativity
of operations, the order in which operations are to be
applied and relations tested may be unclear. For ex-
ample, in Table 1, x2

1 is indicated as representing the
square of x1; in another context, this might be repre-
senting a restriction on sequence x2, where the prece-
dence of operations is reversed. The precedence of op-
erators is determined using the following [19]:

Operator range defines legal spatial locations for ar-
guments of an operator or relation (e.g. for ‘+’, or
fractions)

Operator dominance (Chang [31]), defines a partial or-
dering on the application of operators and relation
predicates. An operator/relation which nests com-
pletely within the range of another operator/rela-
tion is said to be dominated. For example, the + in
(x+y)/2 is dominated by the fraction line. Dominat-
ing operators are applied after the operators they
dominate.

Operator associativity orders application when two or
more of the same operator appear in each others’
range. For example, addition is normally left-associative:
x+ y + z = (x+ y) + z.

Operator precedence orders the application of different
operators when they are within each others’ range.
For example, 2 + x× y = 2 + (x× y).

An unambiguous definition for operator range, domi-
nance, associativity and precedence imposes a unique
evaluation order on an expression. The result may be
represented as an operator tree, with operators and re-
lations at internal nodes, and constants and variables
at the leaves (see Figure 4b).
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(a + b)2
<msup>

<mfenced>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mfenced>
<mn>2</mn>

</msup>

(a+b)ˆ2

<apply>
<power/>
<apply>

<plus />
<c i>a</ c i>
<c i>b</ c i>

</apply>
<cn>2</cn>

</apply>

(a) Expression Image (b) Symbol layout tree: (c) Symbol layout tree: (d) Operator tree:

Presentation MathML [10] LATEX Content MathML [10]

Fig. 8 Math File Encodings (adapted from [1]). The Presentation MathML tree in (b) contains additional formatting not present in
the LATEX string representation (c).

However, some expressions are not intended for eval-
uation. For example, consider the integral shown in Ta-
ble 1. The vector space is continuous, and thus this
integral cannot be computed directly. Doing so would
also not be of interest, as this expression is commonly
used in a constraint that the expression needs to eval-
uate to 1.0.

We now briefly describe file formats used for sym-
bol layout trees and operator trees. Symbol layout trees
represent the placement of symbols on baselines (writ-
ing lines), and the spatial arrangement of the baselines.
File formats for representing symbol layout trees in-
clude Presentation MathML and LATEX, as shown in
Figure 8b and c. Compared to LATEX, Presentation MathML
contains additional tags to identify symbols types; these
are primarily for formatting. Grid layouts are repre-
sented by rows and columns of subexpressions (e.g. us-
ing the array construct in LATEX), with each subexpres-
sion represented by a symbol layout tree or grid. Grids
may occur as subexpressions in symbol layout trees, as
in the factorial function definition in Table 1: the main
baseline of the expression consists of x! = {[sub], where
[sub] represents a grid containing four subexpressions
(two value–condition pairs) used to define the function.

An operator tree, as shown in Figure 4b, represents
the operator and relation syntax for an expression. Op-
erator trees may be encoded in a number of ways, in-
cluding Content MathML and OpenMath [36, 37]. To
evaluate an expression, it is necessary to know the def-
initions for all symbols and operations. As shown in
Figure 8d, tags in Content MathML represent defined
primitives (e.g. <cn>2</cn>), operations (e.g. < plus/>)
and relations. The OpenMath standard provides an en-
coding for formalizing the semantics of symbols and
operations using content dictionaries. Given this infor-
mation, an expression may be evaluated mechanically,
using a Computer Algebra System.

3 Mathematical Information Retrieval

Figure 6 summarizes the process of information retrieval.
In general, users have an information need that they
attempt to satisfy using the retrieval system. Informa-
tion needs take many forms (Table 2), and are seldom
concrete: often, they change as a user interacts with a
retrieval system. Consider image retrieval: Smeulders
et. al point out that often users’ impression of the im-
ages they want are only partially defined, such as when
looking for an image belonging to a class of objects (e.g.
chairs), or not defined at all, as when browsing through
an image collection [132]. A discussion of research on
information needs, including difficulties associated with
their observation and common misconceptions, is pro-
vided by Case [26] Chs. 1 and 4. Research on image
search needs and behaviours is summarized by West-
man [155].

A better understanding of users’ information needs
will further the development of MIR systems. At present,
MIR research has been motivated primarily by develop-
ing new search techniques based on query-by-expression
[75, 170]. Better response to information needs will al-
low MIR to mirror the advances in internet search in-
terfaces over the last two decades [61]. In a study of
MIR usage, Zhao et al. report that participant queries
are motivated by a specific information need, such as
the need for a definition or derivation [170]. In addi-
tion to information needs, participants expressed re-
source needs, requesting resources with a certain style
and depth of presentation (e.g. tutorials versus research
papers), or requesting resources with a particular func-
tion (e.g. written documents, including slides and web
pages, versus code and data sets).

General-purpose search engines such as Google can
be used to locate mathematical content, but the results
may be weak in relation to the user’s goals, as these sys-
tems use term-based indexing with no model for math-
ematical content. For example, one can try matching
MathML tags, or matching the LATEX strings that oc-
cur in some web pages as annotations for the expres-



9

Table 2 Information Needs for Mathematical Information Re-
trieval, from Kolhase and Kolhase [75], and Zhao et al. [170]

Information Need

1 Specific/similar formulae

· Form/appearance (given by a symbol layout tree)

· Mathematical Content (given by an operator tree)
· Name

2 Theorems, proofs, and counter-examples

3 Examples and visualizations (e.g. graphs/charts)
4 Problem and solution sets (e.g. for instruction)

5 Algorithms

6 Applications (e.g. for the Fourier transform)
7 Answer mathematical questions/conjectures

8 People (by math content in publications)
9 Determine novelty/sequence of mathematical discoveries

sion images they were used to create. It seems likely
that as MIR research advances, users will continue to
use a combination of general-purpose search engines
along with specialized MIR systems for their mathe-
matical information needs, as was observed in Zhao et
al.’s study [170].

In the remainder of this section we address four key
problems in MIR: query formulation and languages for
expression queries, normalization of queries and docu-
ments, document indexing and matching, and query re-
finement and relevance feedback. The final section dis-
cusses evaluation of MIR systems.

3.1 Query Languages and Query Construction

Systems for MIR using standard keyword-based query
languages (see [125], Ch. 2) have existed for quite some
time. Examples include the web pages for searching
Mathematical Reviews10 and Zentralblatt für Mathe-
matik11. Both services have been compiling bibliogra-
phies and disseminating reviews of published work on
mathematics since the first half of the twentieth cen-
tury. Their materials have been manually indexed, us-
ing the Mathematical Subject Classification (MSC) [121].12

In the web interfaces provided by these services, MSC
categories can be used to constrain searches.

To make existing text-based query languages bet-
ter suited to MIR, researchers are extending them with
syntax expressing the appearance and content for math-
ematical expressions (e.g. using LATEX and MathML).
Also, content-based image retrieval (CBIR) methods
[35, 132] can be adapted to allow expression images to
be used directly as queries.

Expressions have been represented in MIR query
languages using Lisp [41], LATEX and LATEX-like string

10 http://www.ams.org/mr-database
11 http://www.zentralblatt-math.org/zmath/en/
12 The MSC is quite detailed; the 2010 revision is 47 pages long.

languages [3, 9, 102], Mathematica (for Wolfram web
sites), MathML [78], and operator tree shorthands [77].
Example queries are shown in Figure 5. Recently, im-
ages of symbols [96] and complete expressions (hand-
written [160,161] and typeset [167]) have been used for
query-by-expression.

To make expression queries more precise, boolean
constraints (AND, OR, NOT) may be used [78, 91],
and cardinality and matching constraints added. Fig-
ure 5c shows an example of a simple boolean constraint
in a query language supporting both expression and
keyword matching. Wildcards to permit matching any
symbol or subtree at a specified point in an expres-
sion have also been used [9, 77, 105]. An example is
shown in Figure 5c, where the wildcard character $
matches any subscript on the integral. Altamimi and
Youssef use an AWK-like syntax [2] and regular expres-
sion patterns to identify matching subexpressions, and
allow equivalence and type constraints to be imposed
on matched entities [3]. Constraints can also be applied
to indicate which document regions to match; an ex-
ample is indicating a preference for theorems, proofs,
and section headings demarcated within the document
collection [102,170].

A variety of query interfaces for MIR have been pro-
posed, a small number of which we summarize here. The
simplest interfaces provide a box in which to type a
query string, such as used in the Springer LATEX search
interface and the NIST Digital Library of Mathemat-
ical Functions (see Figure 5a and c). The MathWeb-
Search interface shown in Figure 5a [78], provides tem-
plates for structures such as fractions and summations;
text representing these operations is inserted into the
query using a mouse click. In the Mathdex system, users
can enter expressions using a graphical equation editor
similar to the editors provided in word-processing pro-
grams [104].

Query expressions constructed using string languages
and template editors tend to contain a small number
of symbols (see Figure 5). Single-symbol query expres-
sions are imprecise, while query expressions containing
a large number of symbols are uncommon, because of
the effort required to express and interpret them [59,67].
The rarity of large query expressions is an example of
the principle of least effort [172] commonly observed for
natural language (see p. 60 of Salton and McGill [125]).
In contrast, large queries are easy to construct when
queries are expression images: a user can easily select
large image regions, so a large number of symbols does
not affect the effort involved in query construction.

Despite the efforts to add expressions into query lan-
guages, their addition may not always add value for
users [75]. Zhao et al. studied a small group of profes-
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sors, graduate students and librarians affiliated with the
Math Department at the National University of Singa-
pore, and found that most of their participants could
not identify a situation where they would want to search
using an expression [170]. Expressions are often named
(e.g. the Pythagorean theorem), may be overly specific
for some information needs, and may be inconvenient
to enter using the methods known to the participants,
which included graphical template editors and string-
based interfaces (image-based querying was not consid-
ered). When asked what their preferred expression en-
try method would be, participants responded that they
would like to use LATEX, due to its familiarity.

Kohlhase and Kohlhase suggest pen-based entry may
be a more natural expression input modality [75]. We
propose that pen-based entry will be most effective when
paired with keyboard and mouse input. There should
also be support for query-by-example, in which queries
are constructed using expression images from the doc-
ument collection. It remains to be seen whether such
an interface would make query-by-expression more ap-
pealing to math experts such as those in Zhao et al.’s
study.

As MIR matures, we expect the ability to browse
expressions and their surrounding text within a single
document or document collection will be useful, par-
ticularly for non-expert users in elementary school and
high school, and in technical disciplines.

3.2 Query and Document Normalization

For information retrieval, normalization is the process
of reducing variation within queries and documents, to
facilitate matches between related or identical entities
with different representations. In textual IR, common
normalization operations include replacing words by
their stems (e.g. ‘information’→ ‘inform’ and ‘retrieval’
→ ‘retriev’ [125]), and the removal of high-frequency,
low-discrimination stop words such as but, to and the.
Often a thesaurus is used to add synonyms for low-
frequency terms to the query.

The normalizations that are performed for math
retrieval depend on the representation (symbol layout
tree vs. operator tree), and on the matching algorithm
used for search. For example, the order in which spatial
relationships are presented is critical in systems that
match symbol layout trees that have been linearized.
Identical expressions will fail to be matched if relation-
ships appear in different orders, as in xˆ2 1 and x 1ˆ2.
Standardized ordering is also needed in operator trees,
as ultimately the tree structure is used in matching.

Analogous to synonyms in text, mathematical con-
cepts often have multiple notational representations.

Consider ‘n choose k’, which may be written as
(
n
k

)
, nC

k, Cn
k ,

or Ck
n [78]. In terms of expression semantics, the vari-

ability is even more severe: consider the number of ex-
pressions that evaluate to 0. It is not clear when or to
what extent transformation and simplification should
be used to recover such equivalences.

Below is a short list of query and document normal-
izations that have been applied in MIR systems.

– Thesaurus: adding synonyms for symbols to a query
(e.g. adding equivalent function names [102]).

– Canonical orderings: fixing the order for spatial
relationships such as subscripts and superscripts in
symbol layout trees (e.g. expressed in LATEX [102]),
and defining a fixed ordering for children of associa-
tive and commutative operations in operator trees,
such as for sums [109,129].

– Enumerating variables: variables may be enu-
merated (ignoring symbol identities) to permit uni-
fication of query variables with variables in archived
expressions [109].

– Replacing symbols with their types: allows match-
ing symbol types around an operator, rather than
specific symbols [67]. It also allows for a sub-expression
to be matched to an individual symbol of a given
type.

– Simplification: produce smaller representations with
less variation. For example, one may eliminate <apply>
tags (see Figure 8) from Content MathML [159], or
use Computer Algebra Systems to simplify expres-
sions symbolically [41,102].

3.3 Indexing and Retrieval

Most MIR research assumes that mathematical expres-
sions are represented explicitly in the document collec-
tion, using markup languages such as LATEX, MathML
[10] or OpenMath [37, 138]. These encodings allow ex-
pression appearance or mathematical content to be ex-
tracted directly and then embedded in documents or
evaluated using CAS systems. New languages, formats,
and tools for creating mathematical documents have
also been developed.

The OMDoc format developed by Kohlhase [76] is
XML-based, allowing expressions to be embedded us-
ing MathML and OpenMath. OMDoc was used to rep-
resent documents for Math WebSearch (see Figure 5a),
and ActiveMath, an on-line math tutoring system that
supports query-by-expression [91]. Miller created LATEXML,
a tool for translating LATEX to XHTML and MathML
[102]. This is analagous to the well-known latex2html
converter used to translate LATEX documents to HTML,
embedding mathematical expressions as images (e.g.
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.png files). LATEXML was used in creating the NIST Dig-
ital Library of Mathematical Functions (DLMF) (see
Figure 5c). In contrast, Springer’s LATEX search (Figure
5b) represents documents using the LATEX sources pro-
vided directly by the authors of academic papers and
books. These encodings allow expression data to be rep-
resented explicitly, in a suitable form for indexing and
retrieval prior to archiving a document collection.

Unfortunately, many documents do not represent
mathematical information explicitly. Examples include
document images such as .tiff or .png files, and vector-
based representations such as .pdf files [13, 14]. This
makes it necessary to recover mathematical information
using pattern recognition techniques, and then anno-
tate documents with recognition results prior to index-
ing. Pattern recognition has been used to identify math
symbols and structure in raw document images [8,101]
and .pdf files [14, 71]. Another use of pattern recogni-
tion is to segment documents into region types such as
theorem, proof, and section heading [170]; these region
types can then be used in queries.

A German and Japanese project led by Michler de-
veloped a prototype for annotating documents in digital
mathematics libraries in the early 2000’s [100,101]. Doc-
ument images were recognized using commercial OCR
software (AABBY FineReader), mathematical expres-
sions were segmented and converted into LATEX using
techniques developed by Okamoto et al. [8], and paper
references were linked to online reviews from Zentral-
blatt für Mathematik and Mathematical Reviews. Ref-
erences were detected using regular-expression match-
ing in OCR results. Archived documents were stored us-
ing the DjVu format, which represents document pages
in three layers: 1. image, 2. OCR and math recognition
results, including associated page coordinates, and 3.
links to reviews for cited papers, with the associated
page coordinates for the citations [101]. DjVu viewers
allowed OCR/math recognition results to be seen in-
place while viewing a document image, and for reviews
of references to be consulted simply by selecting a ref-
erence (e.g. using a mouse click).

During indexing, documents are converted to the
representation used in the document index. In the early
stages of indexing, documents are filtered (e.g. to select
expressions and/or index terms) and normalized in the
same fashion as queries.

3.3.1 Vector-Space Models

In vector-space models, documents are represented by
vectors in Rn, where each dimension corresponds to an
index term [62, 95, 125]. Index terms normally exclude
stop words (very high frequency terms such as ‘the’

that carry little information) as well as highly infre-
quent terms, whose inclusion would have little effect on
retrieval performace, while increasing the dimensional-
ity of the vector space. Salton and McGill discuss index
term selection, the use of synonyms for low frequency
terms, and the construction of term phrases for high
frequency terms (Ch. 3 of [125]). Documents are repre-
sented by the weighted number of occurrences of each
index term (the term frequencies). Commonly, term fre-
quencies are weighted using some variation of inverse
document frequency, to emphasize terms that appear in
fewer documents in the collection, and thereby likely to
be more informative [62,125]:

ui = freq(i, u) · log
N

docfreq(i)

where freq(i, u) is the frequency (occurrence count) for
term i in document u, docfreq(i) is the number of doc-
uments containing term i, and N is the number of doc-
uments in the collection.

The most common similarity measure used is the
cosine of the angle between two document vectors ui

and vi:

sim(u, v) = cos(u, v) =
∑n

i=1 uivi√∑n
i=1 u

2
i

√∑n
i=1 v

2
i

This is simply the inner product of the document vec-
tors divided by the product of their magnitudes. If term
vectors are first normalized (length 1.0), then the de-
nominator need not be computed. sim(u, v) has a value
of 1 when the vectors coincide (0◦), and 0 when the vec-
tors are orthogonal (±90◦).

For large document collections, the document in-
dex must be pre-structured to reduce the number of
comparisons made for a query. A common approach
uses clustering, and then compares a query vector with
the centroid of each child cluster at a node (Ch. 6.4
of [125]). The cluster tree is traversed top-down un-
til individual documents are reached, pruning paths in
which similarity is less than a threshold value. This
greatly reduces retrieval time, but carries the risk that
the document(s) most similar to the query will not be
located (see [40] pp. 185-186). Smeulders et al. identify
three methods for hierarchically decomposing a docu-
ment index in image retrieval [132]: partitioning the
feature space, partitioning the data, or distance-based
indexing relative to examples. Spatial data structures
used by these three decomposition approaches, respec-
tively, include k-d trees, R-trees, and M-trees [126].

A number of MIR systems implement vector-space
models using the popular Lucene13 [60] indexing and re-
trieval library, both for indexing entire documents that

13 http://lucene.apache.org
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include expressions [91, 102], and for indexing individ-
ual expressions in LATEX documents [167]. In these ap-
proaches, mathematical symbols are treated as terms,
and the expressions are linearized (‘flattened’) before
conventional text-based indexing is performed. For ex-
ample, consider the LATEX expression for xt−2 = 1,
which is xˆ{t-2} = 1. Below we show the symbol lay-
out tree for the LATEX expression, along with the lin-
earization produced by Miller and Youssef [102]:

x

SUPER

t − 2

= 1

x BeginExpt t minus 2 EndExpt Eq 1

This string is a depth-first linearization of the symbol
layout tree for the expression. Note that the exponent
scope is represented by folding the LATEX superscript
operator into the fence tokens BeginExpt and EndExpt.
For the ActiveMath system, OMDoc is used to encode
the document collection, and OpenMath representa-
tions for expression operator trees are extracted and lin-
earized depth-first in a manner similar to the example
above [91]. Once mathematical expressions have been
converted, documents are indexed using traditional term-
based indexing methods. Lucene may be used to auto-
matically determine the set of index terms for use in
indexing and retrieval.

3.3.2 Tree-Based Indexing and Retrieval

Other methods for indexing and retrieving math ex-
pressions use the hierarchical structure in layout and
operator trees. The hierarchical structure can be used
in its entirety, or as a set of trees representing subtrees
of the expression. Retrieval is performed using subex-
pressions extracted from the query expression.

Matching operator trees may be viewed as a varia-
tion of the unification problem addressed in automated
reasoning systems: given a query expression, identify
indexed expressions whose variables and/or subexpres-
sions may be matched consistently with those of the
query. Graf developed a term indexing method for first-
order logic known as substitution tree indexing [57]. A
substitution tree represents the structure of all indexed
first-order logic terms, with paths from the root to the
leaf defining a sequence of variable substitutions. Sub-
stitution trees can be adapted for indexing operator
trees in a straightforward manner, as illustrated in Fig-
ure 9.

Retrieval in a substitution tree is performed through
a backtracking search over variable bindings (similar
to Prolog [57]). Using different matching functions, we

0

0 → exp(f(z, a, z))

0 → sqrt(f( 1 , 2 , 3 ))

3 → a

1 → z, 2 → y 1 → −1, 2 → k

1 → 1, 2 → z, 3 → n

0 → π

Fig. 9 A Substitution Tree (adapted from Kohlhase
and Sucan [78]). The tree represents all indexed ex-

pressions using paths of substitutions. Substitution

variables are represented by boxed numbers. Five ex-
pressions are represented at the leaves of the tree:

exp(f(z, a, z)), sqrt(f(z, y, a)), sqrt(f(−1, k, a)), sqrt(f(1, z, n))

and π.

may search for exact matches, instances, generaliza-
tions, and variant substitutions. An example of instance-
based matching using Figure 9 is that the query sqrt(X)
returns the three expressions at the leaves of the tree
that contain an outermost sqrt(). An example of match-
ing with generalizations is to ignore specific symbol
identities. In matching with variant substitutions, we
match expressions that are equivalent up to variable
renaming.

Substitution tree retrieval was applied to MIR by
Kohlhase and Sucan [78]. To simplify matching sub-
expressions, Kohlhase and Sucan add all sub-expressions
in the document collection to the substitution tree along
with their parent expression. They claim that this leads
to a manageable increase in the index size, because
many sub-expressions are shared by the larger expres-
sions, and each sub-expression appears only once in the
substitution tree. To facilitate rapid retrieval, all sub-
stitution tree nodes contain references to matched ex-
pressions in the document collection.

Earlier, a related method was used by Einwohner
and Fateman for searching through integral tables, given
an integrand expressed as an operator tree in Lisp (e.g.
(expt (log (cos x)) 1/2)) [41]. Expressions from the
integral tables were indexed using hash tables: after
normalization of the Lisp expressions, the head (first
atom) of each list in the lisp expression is used as the
key for storing the associated sub-expression (sub-tree)
in the table. Retrieval was performed by recursively
looking up each lead atom (key); if the first key re-
turns a non-empty set of expressions, the current key is
expanded to include the next key, and the intersection
of the previous returned and current lists of matches is
taken. This differs from the substitution trees in that
operator trees are matched using a depth-first traversal
of the query operator tree rather than based on com-
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mon substitutions that may not be strictly depth-first,
and symbols are matched exactly.

Hashimoto et al. generate an index using paths from
the root of the tree for Presentation MathML expres-
sions [59]. Expressions are indexed in an inverted file us-
ing two paths: the first (leftmost) and the deepest paths
from the root of the tree to a leaf. Retrieval is performed
based on the longest partial match along the two paths.
The authors also consider producing inverted files us-
ing the nodes at the first depth with more than three
nodes.

Kamali and Tompa propose rewriting trees and com-
puting relevance using a set-based measure [67], in the
context of Content MathML (an operator tree encod-
ing). Intersections between nodes in two operator trees
are defined using syntactic equivalences (possibly in-
volving transformations, e.g. to detect a + b = b + a)
with a noise/mismatch tolerance. A weighting function
ω is used to weight trees by the nodes they contain,
most simply counting nodes in the tree:

simtree =
ω(T1 ∩ T2)

ω(T1) + ω(T2)

This is closely related to the Tanimoto metric for set
similarity ( [40], p. 188). This approach resembles the
graph probing methodology for comparing table struc-
ture recognition algorithms [64,92].

Miner and Munavalli [104] take a different approach,
in which symbol layout trees expressed in Presentation
MathML are decomposed into a set of n-grams (lin-
earized sub-expressions). In their formulation 1-grams
are single symbols; higher n-grams are defined by the
number of children of a node in the MathML tree (i.e.
there may be more than 5 symbols in a ‘5-gram’). In the
symbol layout tree, weights are assigned to ‘n-grams’
associated with nodes based on their depth in the tree,
structural complexity, and length (the ‘n’ for the asso-
ciated n-gram). A threshold is then used to select nodes
for use in querying: roughly speaking this prefers larger,
and more complex sub-expressions. Expressions are in-
dexed based on the linearized ‘n-grams’, and retrieval
is performed by combining queries issued to a Lucene
implementation.

In image-based MIR, representations for symbol lay-
out trees have been constructed using X-Y cutting to
decompose document pages and expression regions [161].
Recursive binary X-Y cuts decompose each page image,
and subtrees of the X-Y tree up to a maximum depth
and number of components are stored in a single ex-
pression index. Indexed regions are then re-segmented
using a simplified X-Y cutting, to approximate symbol
layout trees for expressions present in the candidate
set. Previously, pixel projection profile methods with

post-processing were used successfully to recover sym-
bol layout trees from expression images by Okamoto
et al. [111, 152]. Retrieval is performed using (stan-
dard) XY-tree structure, and dynamic time warping of
query and candidate image columns similar to the word-
spotting technique of Rath and Manmatha [119,120].

A related approach was developed for visual match-
ing of LATEX-generated expression images [167]. Con-
nected components in the query image are matched
with connected components in archived images using vi-
sual similarity of connected components, again based on
features similar to Rath and Manmatha’s. The match-
ing process also measures similarity in layout between
pairs of connected components.

3.4 Query Reformulation and Relevance Feedback

After query submission the retrieved documents are
presented to the user through an interface. In order to
support reformulation of queries, one interface is nor-
mally used both for constructing queries and evaluating
results, as seen in Figure 5. If a user’s information need
is satisfied by a retrieval result or if the user becomes
frustrated, he or she will stop searching. Otherwise the
user may craft a new query or may refine the existing
query, for example by filtering retrieved documents by
source or publication year (Figure 5b). New queries may
also be created automatically, in response to relevance
feedback.

Users provide relevance feedback by indicating whether
returned documents are relevant or irrelevant to their
information need. These positive and negative examples
can be used to automatically produce a new query. Rel-
evance feedback is provide through the result interface,
using a selection mechanism such as check boxes, or
clicking on relevant/irrelevant objects. For interesting
examples from image retrieval, see [123].

For vector-based representations, a new query may
be produced by averaging and re-weighting the vec-
tor elements that define the feature space: increase the
weights for features present in positive examples, and
decrease the weights for features in negative examples.
A concise explanation of relevance feedback operations
using re-weighting is given by Salton and McGill [125]
Chs. 4.2.B, 4.3.B and 6.5. Machine-learning methods
have also been investigated. Discriminative methods es-
timate classification boundaries for relevant and irrele-
vant documents, whereas generative methods estimate
probability distributions [35,171].

Ideally, relevance feedback algorithms learn opti-
mal transformations of the feature space using user-
provided relevance indications [171]. Optimality is de-
fined by the user’s information need, which may change
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as the user interacts with the system [35]. Modifications
produced through relevance feedback may occur in mul-
tiple ways: the set of searched documents may be mod-
ified, the feature representation changed, or the simi-
larity metric modified. For annotated images, the rela-
tionships between text annotations and image features
are often exploited, e.g. producing ‘concept classes’ for
sets of images that have similar annotations [132].

At the time of this writing, the authors are unaware
of any work on relevance feedback for MIR. In text-
based retrieval, Hearst has noted that despite signif-
icant improvements for text-based retrieval in labora-
tory experiments when relevance feedback is used, mod-
ern search interfaces tend not to provide a relevance
mechanism ( [61], Ch. 6). Instead, they make metadata
visible for query refinement (e.g. Figure 5b), or suggest
alternate queries. In contrast, for image-based retrieval
systems using query-by-example, relevance feedback is
essential for a usable system, and is an active area of re-
search. Zhou and Huang have suggested two reasons for
this [171]: 1) images are more ambiguous than words,
and 2) evaluating the relevance of text documents may
require more effort than evaluating the relevance of im-
ages.

For MIR, it may often be faster to discern the rele-
vance of a document based on the appearance of expres-
sions than based on the document text, particularly in
the case where a user is browsing rather than searching
for a specific item as in done in Zhao et al.’s experi-
ment [170]. This distinction between retrieval tasks in-
volving a specific item vs. a class of items or browsing
is important in information retrieval [35, 132]. In ad-
dition to using expressions within queries, returned ex-
pressions may be used for relevance feedback. A revised
query can be generated based on the relevant and non-
relevant expressions’ visual appearance, symbol layout,
mathematical content and associated text. We feel that
this is an important future research direction.

3.5 Evaluation of Math Retrieval Systems

Evaluation of information retrieval systems is difficult
due to variation in the information needs of individual
users, and the impracticality of having participants in
human experiments identify all relevant documents in
large collections (see [125] Ch. 5, [22] and [132]). This
leads to the definition of relevance being inherently sub-
jective.

In practice, it is necessary to either define test sets
for a pre-defined collection, query set, and relevance as-
sessments as done for many of the NIST TREC retrieval

competitions,14 or to perform user-centered evaluations
where searching behavior within real workflows (e.g.
[75,170]) or constructed task scenarios is observed, with
assessments provided by participants regarding the sat-
isfaction of their information needs [22]. For off-line
experiments such as those done for TREC, relevance
assessments are usually binary (relevant/non-relevant)
and produced before an experiment is run. In contrast,
user-centered experiments permit relevance evaluations
to be made using a scale, and allow relevance evalua-
tions to change during iterations of relevance feedback.
Constructed task scenarios paired with pre-defined rele-
vance assessments allow off-line as well as user-centered
metrics to be collected [22]. Hearst provides guidelines
for evaluating retrieval interfaces [61].

The standard metrics for off-line retrieval are recall
(% of relevant documents retrieved) and precision (% of
retrieved documents that are relevant). There is a well-
understood trade-off between the metrics: as more rele-
vant items are located (higher recall), the number of ir-
relevant items returned generally increases (lower preci-
sion), and vice versa. Relevance assessments by human
participants normally consider just the first k elements
returned. This is sometimes called precision-at-k (e.g.
with observations at k = 1, k = 5, and k = 10 [61,132]).
For off-line experiments, precision-at-k may be used to
measure relevance for results users might actually ex-
amine. A variation frequently used in image retrieval is
mean average precision [35]. Here, the precision from
the first to each of returned results up to top k-th re-
sult is computed (for {(1), (1, 2), . . . , (1, 2, . . . , k)}) and
then averaged, producing a bias for relevant results that
have high rank. This set of precision values is averaged
for the query, and the mean of these average precisions
is computed over the query test set.

Systems are often compared visually by plotting pre-
cision against recall (‘precision-recall’ curves). More quan-
titative comparisons have been made using statistical
hypothesis tests, or using AUC (area-under-the-curve)
metrics for precision-recall plots. AUC metrics require
interpolation for missing points [125]. Salton and McGill
demonstrate using the Wilcoxon signed rank test to
compare average precision for different recall value ranges
(≤ 0.1, . . . , ≤ 1.0, see [125] Chapter 5.2.C), and deter-
mine whether the distributions are significantly differ-
ent. The Wilcoxon test is non-parametric, making no
assumption regarding the distribution of recall/preci-
sion values (e.g. they need not be normally distributed,
as for a t-test).

To date published evaluations for MIR systems have
been largely illustrative, and by example. One inter-
esting approach compared retrieval using the Active-

14 Text REtrieval Conference http://trec.nist.gov/



15

Math system [91] with retrieval from the ActiveMath
web pages using the Google search engine, as well as a
human-centered evaluation using a ‘talk aloud’ proto-
col, where participants are asked to speak their thoughts
as they completed search tasks involving keywords and/or
small expressions. Marinai et al. [96] provide precision-
recall plots for their method for image-based math sym-
bol retrieval using a bag-of-visual-words produced from
clustered shape contexts [15]. Precision at 0% recall
is presented, with precision values as high as 87% re-
ported. Examination of the precision-recall curves shows
a rapid decrease in precision before recall reaches ap-
proximately 20% (precision falls to roughly 20% in all
conditions presented), but this likely includes many more
elements than would be considered by a user. Their
metrics were produced for almost 400 queries on a very
large dataset of binary symbol images from document
scans (from the Infty dataset [141]). Note that in this
case determining relevance reduces to matching symbol
labels in ground truth.

Yu and Zanibbi use a combination of off-line and
user-centered evaluation for an image-based handwrit-
ten expression retrieval system [160, 161]. Participants
were shown typeset expressions, which they drew using
pen-and-paper. The pages were scanned to produce ex-
pression images for use in retrieval. For simplicity, only
the region containing each test expression was identified
in the ground truth. The system returned a ranked list
of ten regions, each corresponding to the best match on
an individual page. The observed measurements were
(1) maximum ratio of overlap for the target region,
and (2) whether the associated page appeared in the
top k elements for k = {1, 5, 10}. These are essentially
recall-at-k measures, but where a specific expression is
sought after. These metrics are conservative: no credit
is given for anything other than one region on a single
page.

Fig. 10 User Interface for Evaluating Image-Based Query-by-

Expression using Handwritten Queries [161]. Each returned re-
gion is ranked on a 1-5 scale, with 1 indicating no match, 3

indicating roughly half the query is matched, and 5 indicating

the query is contained completely within a returned region.

Search was run offline, and participants were brought
back to evaluate the top-10 regions using a Likert scale
(see Figure 10); participants were asked to evaluate the

proportion of the query expression contained in each
returned region. For comparison, the original query im-
ages were also used for retrieval, and performance eval-
uated on-line by each participant, and off-line. Retrieval
of original images was much more effective than for
handwritten queries; the average maximum ground-truth
region overlap was 43% for handwritten queries, but
90% for the original images. The corresponding human
similarity evaluations were an average of 3.15/5 for the
handwritten queries, and 4.83/5 for the original images.

Going forward, perhaps the most important direc-
tion in evaluating MIR systems is determining exper-
imental protocols that can be easily replicated, and
that reduce the need for manual identification of rele-
vant documents or document regions, and perhaps cre-
ating a labeled test set similar to those developed for
TREC. For MIR in general, relevance pertains to both
text and expressions, making this a very time-intensive
task, one that is sensitive to the expertise of the in-
tended users. Once a reasonable method for defining or
approximating relevance is determined, existing infor-
mation retrieval metrics are likely sufficient.

4 Recognition of Mathematical Notation

Pattern recognition methods for mathematical notation
may be used in a variety of contexts. Firstly, in Mathe-
matical Information Retrieval, math recognition can be
used to interpret user queries and to annotate document
collections. An important open problem is to develop
robust MIR methods that make effective use of recog-
nition results even when recognition errors are present.
Secondly, math recognition is used to support the inser-
tion of expressions into documents; for example, entry
of LATEX expressions using images, pen, keyboard and
mouse is illustrated in Figure 1. Thirdly, math recogni-
tion is used to recover layout and operator trees from
images, handwritten strokes, or vector-based encodings
(e.g. .pdf files). Finally, math recognition is used to in-
tegrate pen-based math entry into CAS systems (see
Figure 2); in the future, expression images might also
be used as input. This requires recognition of mathe-
matical content, with the resulting operator tree used
to support evaluation and manipulation of the expres-
sion.

Research on the recognition of math notation began
in the 1960’s [5, 6, 31, 98], and a number of surveys are
available [19, 28, 52, 145]. In this paper we do not at-
tempt to summarize the entire history as provided in
these surveys, but rather provide an updated account
of the state of the art, with an emphasis on advances
since the well-known survey by Chan and Yeung [28]
written a decade ago.
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Many factors make the recognition of mathematical
notation difficult. There may be noisy input in the case
of images and strokes, and ambiguities arise even for
noise-free input (see Figure 7). Math notation contains
many small symbols (dots and diacritical marks) which
can be difficult to distinguish from noise. Symbol seg-
mentation can be difficult, particularly in handwritten
mathematical notation. Symbol recognition is challeng-
ing due to the large character set (roman letters, greek
letters, operator symbols) with a variety of typefaces
(normal, bold, italic), and a range of font sizes (sub-
scripts, superscripts, limit expressions). Several com-
mon symbols have ambiguity in their role; for example,
a dot can represent a decimal point, a multiplication
operator, a diacritical mark, or noise. Also, spatial re-
lationships are difficult to identify; for example, it is
difficult to distinguish between configurations that rep-
resent horizontal adjacency and those that represent
superscripts or subscripts. The lack of redundancy in
mathematical notation means that relatively little in-
formation is available for resolving ambiguities.

As shown in Figure 3, we identify four key problems
that every math recognition system must address.

1. Expression detection
2. Symbol extraction or symbol recognition
3. Layout analysis
4. Mathematical content interpretation

These key problems are discussed in Sections 4.1 to 4.4.
Most systems address these problems in sequence, but
alternative control flow can be used to allow analysis
at later stages to constrain or repair decisions made in
earlier stages (Section 4.5), or to integrate and jointly
optimize solutions to two or more of these problems
simultaneously (Section 4.6).

4.1 Expression Detection

The input to a math recognition system can consist
of vector graphics (such as PDF), pen strokes, or a
document image. As discussed below, different chal-
lenges arise in detecting expressions in each of these
input types, and there is an interaction between de-
tecting symbols and expressions. For document images,
some methods apply OCR or perform a coarse classifi-
cation of connected components before segmenting ex-
pressions in documents, while others attempt to locate
expressions using geometry or other methods. For pen-
based entry systems, symbol segmentation and recog-
nition is normally performed as the user writes, in part
because it simplifies the system design, but also because
it avoids requiring the user to check recognition results
over a large set of objects and relationships.

4.1.1 Expression Detection in Vector Graphics

For vector graphics, work has begun on methods for ex-
tracting symbols and recognizing manually segmented
expressions, but not on methods for automatic detec-
tion. Currently vector file formats such as PDF do not
demarcate math regions. This is an important direction
for future work, particularly for Mathematical Informa-
tion Retrieval applications.

4.1.2 Expression Detection in Pen-based Input

For pen-based applications, expressions are often seg-
mented using gestures [85, 143]. For example, the ‘c’
gesture is used in the E-chalk system to indicate the
end of an expression, and request its evaluation (see
Figure 2(b)). Typically, a gesture gives a partial or ap-
proximate indication of the extent of an expression. Ad-
ditional clustering or region growing methods can be
applied, based on the properties of recognized symbols.
Matrix elements can be detected using similar meth-
ods [89,146].

4.1.3 Expression Detection in Document Images

In images, expressions are normally found using prop-
erties of connected components. Before discussing these
methods, we distinguish between displayed expressions
that are offset from text paragraphs and expressions
that are embedded in text lines (Figure 11). Displayed
expressions are easier to detect than embedded expres-
sions, because text lines and displayed expressions tend
to differ significantly in attributes such as height, sep-
aration, character sizes and symbol layout [52,66].

Kacem et al. detect displayed expressions in images
based on simple visual and layout features of adjacent
connected components [66]. Embedded expressions are
found by coarsely classifying connected components.
Regions are grown around components that are iden-
tified as operators. The region growing is based on the
expected locations for operands (i.e. operator range and
dominance).

An alternative approach for detecting embedded ex-
pressions first locates text lines, then computes sym-
bol n-grams [52]. Training data provides frequencies for
adjacent symbols, in textlines that are pure text, ver-
sus textlines that contain embedded expressions. A 97%
recognition rate is reported for this technique . In sub-
sequent work, Garain extends this approach by aver-
aging over more general feature values for embedded
and displayed expressions [49]. He obtained recall rates
as high as 95% for embedded expressions, and 97% for
displayed expressions.
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Fig. 11 Expression Detection and Layout Analysis. At left, the document image contains a mix of expressions that are displayed

(vertically offset) and expressions that are embedded in textlines (from [66]). Top right: a detected baseline (red) and minimum
spanning tree used to associated non-baseline symbols with symbols on the baseline [143]. Bottom right: a virtual link network, in

which a minimum spanning tree is constructed that minimizes costs based on symbol identity and spatial relationships [42].

Offset expressions can be detected without symbol
classification. Drake and Baird use properties of the
neighbor graph for connected components (a pruned
Delaunay triangulation) to distinguish text lines from
displayed expressions [39]. The reported accuracy for
this method is high (over 99%), but it has not yet been
used for embedded expressions.

4.2 Symbol Extraction or Symbol Recognition

OCR for math is a difficult problem, due to the large
number of classes (see [94]), and problems caused by
touching and over-segmented characters [27,52,99,136].
Berman and Fateman observed that commercial optical
character recognition systems with recognition rates of
99% or higher fell to 10% or less once tried on perfectly
formed characters in mathematical equations: heuristics
that work well on straight text, multi-column printing
and tables fail with math notation because of variations
in font size, multiple baselines, special characters, and
differing n-gram frequencies [16].

Techniques have improved since, and recognition rates
as high as 97.7% have been reported for typeset symbols
in the work of Malon, Uchida and Suzuki [94], where
Support Vector Machines [153] are used to reduce com-
mon class confusions in the Infty OCR system [140] for
608 symbol classes.

Accuracies for online recognition of handwritten math-
ematical symbols have also been reported at rates of
over 95%. In recent years there have been a number
of methods based on Hidden Markov Models (HMMs
[117]) that extend early work by Winkler [157] and Kos-
mala and Rigoll [80]. There is a general trend here,
where HMMs were first used to perform simultaneous

segmentation and recognition for a time series of pen
strokes, but now later stages in processing, particularly
layout and content information, are being incorporated
into training and recognition stages. An open challenge
is to adapt these methods to better handle ‘late ad-
ditions’ to symbols, e.g. when a dot is added to the
top of an ‘i’ after a large expression has been entered.
Developments in HMM-based recognition methods are
discussed further in Section 4.6.

Another group of successful methods employ fea-
tures that approximate handwritten strokes via linear
combinations of basis vectors or parametric curves. Var-
ious techniques for this have been used, including Prin-
cipal Components Analysis [99] and polynomial basis
functions [32, 54, 55]. These features allow recognition
to be performed effectively within a small feature space
(e.g. using the first fifteen principal components [99]),
while allowing regeneration of the original data up to a
chosen level of fidelity, making the interpretation of the
features simple.

Voting-based methods for classifier combination have
been employed to good effect. The method of Golu-
bitsky and Watt [56] utilizes runoff elections in order
to combine 1-against-1 SVM classifiers for a set of 280
symbols (280*279/2 = 39,060 classifiers in total). In
the runoff election, majority voting is used, followed
by a runoff election where only votes for the top N

classes are considered to break ties. LaViola and Ze-
lenik applied AdaBoost [45] to another all-pairs classi-
fier ensemble, with a binary classifier for every pair of
classes. Each base classifier uses only a single feature;
most are measured on strokes, but output from the Mi-
crosoft handwriting recognizer is included as a feature
[86]. This work was concerned with adapting a writer-
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independent classifier (the Microsoft classifier) to the
handwriting of specific individuals through stroke-based
features.

4.3 Symbol Layout Analysis

Visual syntax refers to the layout and topology of sym-
bols. A variety of formats can be used to represent vi-
sual syntax, the essence of which may be represented
by a symbol layout tree (see Figure 4).

A number of techniques have been used to recover
symbol layout. The first three approaches discussed be-
low use recursive decomposition, based on operator dom-
inance, on the cutting pixel projection profiles, and on
the identification of symbols on the dominant baseline.
Following that, we discuss approaches based on penalty
graph minimization.

Operator-driven decomposition recursively decom-
poses a math expression by using operator dominance
to recursively identify an operator which has most or
all of the remaining symbols as its operands [31]. These
symbols are partitioned into the expected operand loca-
tions [29,31]. Unlike the other approaches described in
this section, operator-driven decomposition constructs
an operator tree (Figure 4b) directly from the symbol
layout, rather than first producing a symbol layout tree.
The earliest example of a simple pen-based math calcu-
lator made use of this method [30]. Lee and Wang [88]
use a similar approach to recover symbol layout, using
operator dominance to group symbols vertically, fol-
lowed by determining horizontal adjacencies between
symbols.

Projection profile cutting recursively decomposes a
typeset math expression using a method similar to X-
Y cutting [108]. Pixel intensity histograms in the ver-
tical and horizontal directions are computed, followed
by splitting at gaps identified in the histograms [111,
112, 152]. The first cut is made in the vertical direc-
tion (roughly speaking, to separate horizontally adja-
cent subexpressions), after which the direction for cut-
ting alternates. An improvement was suggested by Raja
et al., in which connected components are first extracted,
and then regions containing more than one connected
component that cannot be decomposed during cutting
(e.g. for square roots or kerned characters) have the
largest connected component removed, continuing cut-
ting with the remaining connected components [118].
In related X-Y cutting methods, thresholds for cutting
have been chosen using the estimated dominant char-
acter height and width for a page (using the mode of
run lengths in horizontal and vertical projections at the
page level), and then scaling these thresholds linearly

based on the size of the area to be cut relative to the
entire page [128].

Baseline extraction decomposes a math expression
by recursively identifying adjacent symbols from left-to-
right on the main baseline of an expression, and then
partitioning remaining symbols into regions relative to
the baseline symbols [162,163]. Operator dominance in-
formation is used so that symbols need not be precisely
aligned in some cases (e.g. for a symbol following a
binary operators such as +). Baseline extraction has
been used in a number of pen-based math entry sys-
tems [7, 116, 133, 144, 146], though the technique may
be used for symbols taken from document images as
well. Some work has been carried out into using more
sophisticated symbol layout models (e.g. using multiple
points on the bounding box in determining spatial rela-
tionships [144]), as well as using a minimum spanning
tree for the symbol partitioning step [144], as shown in
Figure 11. To handle ambiguous spatial relationships,
fuzzy methods have been used to produce multiple in-
terpretations [169].

Penalty graph minimization is a more global ap-
proach to layout recognition, in which candidate rela-
tionships between symbols are defined before minimiz-
ing a penalty criterion. Eto, Suzuki et al. make use of
Virtual Link Networks to represent penalties for can-
didate symbol identities and spatial relationships (see
Figure 11), and then compute the minimum-spanning
tree of the graph to produce a final interpretation [42].
Spatial relationships in the networks are binary (be-
tween symbol pairs), and of five types: above, below,
inline, superscript, subscript. Candidate spatial rela-
tionships and penalties are defined based on symbol
bounding boxes (normalized relative to the estimated
font height and writing line location), and box cen-
ter points [4,42]. Discrimination of spatial relationships
may be improved through document-specific adapta-
tion for determining ascender/descender/center regions
on writing lines. A recognition rate of 99.57% is re-
ported for a test on valid adjacent symbol-pair rela-
tionships for the Infty dataset (158,308 adjacent symbol
pairs, taken from the ground truth).

Matrix layout requires special processing. The fol-
lowing approaches have been reported. The virtual link
network method was extended to use projections of
symbols inside a matrix, and then solve a resulting
linear system of equations to estimate row and col-
umn positions [69, 70]. Other authors have performed
segmentation of matrix elements using simpler projec-
tions of symbol bounding boxes [144] or region grow-
ing [88, 146] before analyzing elements using a single-
expression technique. Recently there has been work to
allow matrices containing ellipses to be used within pen-
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based systems integrated with computer algebra sys-
tems [89,127,146]. In handwritten expressions, matrices
can be processed by detecting left fence symbols, fol-
lowed by clustering and projection analyses [149,150].

At this point, no one technique for layout analy-
sis completely dominates another, and improving these
methods is an active area of research. It may be worth
exploring methods for combining layout analyzers, in a
manner similar to combination methods used for clas-
sification.

4.4 Mathematical Content Interpretation

Many math recognition systems do not perform anal-
ysis beyond symbol layout, and such systems do not
construct a representation of the mathematical mean-
ing of the expression. For systems designed to evaluate
expressions and/or integrate with Computer Algebra
Systems however, a representation of the logical rela-
tionships between symbols, and a representation of do-
main semantics is necessary. Various encodings can be
used to represent the hierarchy of operators, relations
and operands, which are generally equivalent to some
form of operator tree (Figure 4b). Generally the defini-
tions for operators and relations are assumed for a given
math dialect in recognition systems, although content
dictionaries such as those provided by OpenMath [37]
might be used to encode and lookup the operations as-
sociated with symbols.

Recovering an operator tree from symbol locations
may be understood as accepting sentences from a for-
mal visual language [97], using a parser to analyze sym-
bol layout in order to produce an operator tree. The
earliest approach to recognizing symbol layout, by An-
derson, is of this type: an operator tree is constructed
top-down, and then a string representing the tree struc-
ture is synthesized bottom-up [5]. A number of differ-
ent attributed grammar types have been used, includ-
ing context-free string grammars [43] and graph gram-
mars [58,87,135].

Grammar-based methods commonly represent sym-
bol locations by geometric objects such as bounding
boxes or convex hulls. The placement of symbol cen-
troids reflects the presence of ascenders (h) and descen-
ders (y). Predicates and actions associated with gram-
mar productions make use of the bounding boxes and
centroids to determine spatial relationships. It should
be noted that grammars are a very general formalism,
and variations of layout analysis techniques seen in the
previous section have been employed within the pro-
duction rules of grammars designed to recover the op-
erator tree of an expression. Examples included syntac-
tic recognition using operator-driven decomposition [5],

and baseline extraction [14]. A key issue is the geometric
model used to partition the input and define primitives.
For example, using unrestricted subsets of image pixels
as primitives is far too computationally intensive. In-
stead, primitive regions are represented using geomet-
ric objects such as axis-aligned rectangles, along with
constraints on allowable orderings and adjacencies be-
tween regions. Liang et al. provide a helpful overview,
including examples from math recognition [90]. Differ-
ent parsing algorithms explore the space of legal ex-
pressions in different orders, some more efficiently than
others.

Stochastic context-free grammars allow uncertainty
in symbol recognition, layout and/or content to be ac-
commodated, by returning the maximum-likelihood deriva-
tion for the input image [34] or symbols [103]. These
methods are discussed further in Section 4.6. Some more
recent parsing methods that model uncertainty include
fuzzy-logic based parsing [44,53], and A*-penalty-based
search [122].

As discussed previously, usage of notation differs sig-
nificantly in different dialects of mathematical notation,
and so the space of operator trees and corresponding
grammar productions need to be adapted for different
mathematical domains of discourse. The notion of de-
vising one grammar to cover all of mathematical nota-
tion seems quite impractical, though defining grammars
with some utility for a specific domain (e.g. matrix al-
gebra) is possible.

Methods that permit recognition to be defined at
the level of a grammar are very appealing, in that with
suitable implementations for pattern recognition meth-
ods being available, a language definition may be suffi-
cient for recognizing a dialect of mathematical notation,
including layout and mathematical content. However, it
has been observed that the tight coupling between the
assumed recognition model and grammar formalism can
make it difficult to adapt syntactic pattern recognition
methods. One compromise is to use a modular orga-
nization similar to a compiler, where recognized sym-
bols are combined into tokens and have their layout
analyzed, after which an operator tree is constructed
through restructuring and annotating the symbol lay-
out tree [18, 163]. More advanced techniques might in-
terleave and/or iterate these stages.

4.5 Post-processing: Constraining Outputs

Pattern-recognition systems commonly use post-processing
to correct preliminary recognition results. Many post-
processing operations apply contextual constraints to
results for individual objects and relationships identi-
fied largely in isolation of one another [148]. In doc-
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ument recognition, perhaps the most well-known ex-
ample of post-processing is the use of dictionaries and
n-grams to refine preliminary OCR results obtained for
individual characters [107,115].

Ten years ago, the last IJDAR survey on math recog-
nition [28] identified post-processing as an important di-
rection for future research. Indeed, significant advances
for post-processing of math recognition have been made
in the last ten years. Several methods are similar to
dictionary and n-gram methods used for OCR. Others
incorporate syntactic constraints on two-dimensional
symbol layout or expression syntax; these methods work
with symbol layout trees and operator trees respec-
tively.

4.5.1 Statistical Analysis of Math Notation

Statistical information about math notation is useful
in post-processing. The frequency estimates described
below have been used to re-rank and constrain prelim-
inary symbol recognition results for handwritten math
entry [134]. In addition, they have been used to catego-
rize mathematical documents by Math Subject Classi-
fication categories [154]; so far, this appears to be the
only paper published on this interesting problem. Also,
recognition systems can use information about symbol
frequencies and expression frequencies as prior proba-
bility estimates.

So and Watt [137] conducted an empirical study of
over 19,000 papers stored in the ArXiv e-Print Archive.
This archive at http://arxiv.org provides electronic ver-
sions and LATEX source of papers from scientific, mathe-
matical and computing disciplines. So and Watt’s study
determined the frequencies for expression usage in dif-
ferent mathematical domains, as identified by the Math-
ematical Subject Classification described in Section 3.1.
Documents were categorized using the top-level Math-
ematical Subject Classification provided by the arXiv.
Analyses were made at the symbol layout level after
converting the available LATEX to Presentation MathML.

The statistics produced by So and Watt make a dis-
tinction between identifier symbols and operator sym-
bols. In both cases, but especially for operator sym-
bols, plotting symbols by decreasing frequency shows
an exponential decrease in frequency with rank; this
is similar to the Zipf distribution [172] seen for word
frequencies. Similarly, expressions become significantly
less frequent as they become larger and more struc-
turally complex. Interestingly, the number of distinct
expressions increases with expression size and complex-
ity.

In a later study, Watt focused on engineering math-
ematics, analyzing the LATEX sources for three engineer-

ing mathematics textbooks [154]. In this study, all sym-
bols were analyzed together, producing another Zipf
distribution. N-grams (for n ∈ {2, 3, 4, 5}) were pro-
duced by traversing the symbol layout tree in writing
order. The leaves of the tree, which store the symbols,
provide the starting point. The traversal collects lay-
out information to provide context: there is information
about the spatial relationship between the n-gram sym-
bols and symbols on neighboring baselines (e.g. frac-
tions, super/subscript, containment by square root).

4.5.2 Heuristic Rules and Contextual Constraints

Heuristic rules and manually constructed language mod-
els are receiving use in post-processing. Chan and Ye-
ung [29] describe an error-correcting parsing technique
for converting handwritten symbols into operator trees,
adding heuristic rules to re-segment characters recog-
nized with low confidence, to insert epsilon (empty)
symbols to recover from parse errors (e.g. after detect-
ing unbalanced parentheses), and to replace symbol iden-
tities to make them consistent with the expression gram-
mar (e.g. replacing ‘1’ by ’/’ in ‘y 1 x’, and ‘+’ by ‘t’
in ‘+an’). Garain and Chaudhuri make use of a simple
LATEX grammar to constrain handwritten symbol recog-
nition alternatives [50], while Kanahori et al. present
work in analyzing the mathematical content (opera-
tor tree) for matrices in order to revise symbol layout
analysis [68]. A more recent technique by Fujiyoshi et
al. [47,48], similar to that of Chan and Yeung, defines a
grammar for valid symbol layout trees and then parses
initial recognition results in order to identify invalid
structures. During parsing, syntax errors are visualized
so that users may identify the specific symbols associ-
ated with parse errors (e.g. unbalanced fence symbols).

Contextual constraints can also be incorporated into
the recognition process itself. For example, Kim et al.
[73] modify the penalty metric used in an A* search
for constructing symbol layout trees for handwritten
expressions [122]. The penalty metric considers mea-
sures of consistency of symbol size, style, and repe-
tition, along with symbol n-grams and repeated sub-
scripting.

4.6 Integration of Recognition Modules

Integration of recognition modules has been an impor-
tant new area of development in the last ten years.
Most approaches involve some form of dynamic pro-
gramming. The earliest work in this area is Chou’s in-
fluential paper describing the use of stochastic context-
free string grammars for analysis of typeset images of
mathematical notation [34]. This approach combines
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segmentation, recognition, and layout analysis, and is
highly tolerant of bit-flip noise. Subsequent work in-
cludes extensions by Hull [65], and extension to a more
general HMM-based model for document image decod-
ing [79].

Stochastic context-free grammars associate a proba-
bility with each derivation rule; the derivation rules as-
sociated with each nonterminal have probabilities that
sum to one. The probability of a derivation is computed
as the product of the probabilities of all rule applica-
tions used to derive the input string. Rule probabilities
can be estimated by the author of the grammar, or they
can be derived from a training corpus using the Inside-
Outside algorithm [34]. To facilitate the use of parsing
through dynamic programming, stochastic context-free
grammars are often represented in Chomsky-Normal
Form: all rules are of the form A → BC or A → t.
A modified form of the Cocke-Younger-Kasami (CYK)
parsing algorithm uses dynamic programming to pro-
duce the maximum likelihood parse inO(n3) time, where
n is the number of input tokens.

In Chou’s paper [34], the expression grammar is
augmented to include symbols representing horizontal
and vertical concatenation of adjacent regions in the
input image. In a ‘lexical’ stage that precedes pars-
ing, a template-based character recognizer is applied
to the entire input region, identifying a set of candi-
date symbols based on the Hamming distance between
input regions and a set of templates. This produce a
set of candidate symbols with associated probabilities.
More recently Yamamoto et al. [158] used a stochastic
context-free grammars for online handwritten expres-
sions, which introduce rules to model the likelihood of
written strokes along with rules incorporating probabil-
ities for the expected relative positions of symbols (the
authors term these hidden writing areas).

There are many unexplored possibilities for using
stochastic context free grammars for math recognition.
For example, a variety of segmentation and classifica-
tion methods might be employed within a framework of
stochastic context free grammars. Also, various heuris-
tics could be used to prune or modify rules that are in-
ferred from training data. It is true that sequential im-
plementations of stochastic context free grammars are
computationally intensive, but both probability-estimation
algorithms and parsers may be parallelized [34]. Many
opportunities for parallelization exist in modern CPUs
with multiple cores and Graphical Processing Units.

The related technique of Hidden Markov models
(automata that recognize probabilistic regular languages)
has been used to integrate segmentation and classifi-
cation of handwritten symbols [80, 157] (analogous to
speech recognition [117]). For stochastic regular lan-

guages, the CYK algorithm reduces to the Viterbi al-
gorithm, which may be used to determine the maxi-
mum likelihood path (parse) through a Hidden Markov
Model [34]. Hidden Markov Models form the core of a
general model of document image decoding, in which
the document-generation process is explicitly modeled
as part of the recognition system [79].

More recently, dynamic programming methods have
been used to let later stages of processing constrain
earlier ones in an optimization framework. For exam-
ple, Toyozumi et al. address segmentation of handwrit-
ten symbols drawn online [151]. They produce improve-
ments on the order of 5-7% over a feature-based elas-
tic matching method by using simple, local grammat-
ical rules to consider neighboring strokes and possible
under-segmentation of vertical operators such as frac-
tions, square roots and summations. Shi, Li and Soong
go further, using a dynamic programming framework
to optimize symbol segmentation and recognition [130].
Their system considers a sequence of strokes from online
handwritten input. The space of all possible partitions
of the stroke sequence into symbols (containing at most
L strokes per symbol) is searched to find an optimal
partition through dynamic programming. The criterion
function that is used to evaluate a given stroke partition
uses two components: (1) a bigram model for symbol
adjacencies along particular spatial relationships, and
(2) the probability of the sequence of spatial relation-
ships observed between symbols. As a post-processing
step, a trigram symbol sequence model is evaluated for
re-ranking alternatives. On a test set of over 2,500 ex-
pressions, a symbol accuracy of 96.6% is reported. An
extension employing graph-based discriminative train-
ing is reported by Shi and Soong [131], with similar
results. A method integrating complete symbol layout
trees into the dynamic programming is described in
Awal et al. [11].

4.7 Evaluation of Math Recognition Systems

At present, meaningfully comparing evaluations of math
recognition systems is challenging [12, 83]. This is in
large part because different systems tend to focus on
different mathematical domains, layout conventions, and
stages of the recognition process illustrated in Figure 3
(detection, symbol recognition/extraction, layout anal-
ysis, and interpreting mathematical content). To prop-
erly interpret results, performance metrics need to be
supplemented by a characterization of the scope of the
systems, to support informed comparison of high-accuracy
narrow-scope systems versus systems that process a
broad range of inputs with lower accuracy.
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We discuss the use of benchmark data below, which
is commonly used to address these issues, albeit in a
way that inevitably leads to debates about representa-
tiveness of the data, and/or the relevance of the data for
particular applications. Even in the presence of bench-
mark data, quantitative means for characterizing the
scope of mathematical notation handled by systems is
an important area for future research. It is particularly
difficult to quantify the amount of noise and distor-
tion that a system can handle; perhaps benchmark data
can be modified using document degradation models
for this purpose [72], analyzing results over a space of
degradation parameter settings (e.g. increasing skew in
handwritten expressions, or blurring in images).

The most common class of performance metrics for
evaluation of math recognition systems are recognition
rates, for complete expressions [29,110,163] and individ-
ual symbols [8,29,110,142]. Characterizations of layout
structure accuracy have been measured using a variety
of metrics; most simply, the number of symbols with the
appropriate parent symbol, relationship, and depth in
a symbol layout tree (‘token placement’), and the num-
ber of baselines that contain the correct symbols [163].
Other metrics provide recall measures for layout struc-
tures in a symbol layout tree (e.g. scripting, fractions,
limits, roots, and matrices [29,110]).

One can devise metrics that combine symbol and
layout-level error metrics, which may serve as criterion
functions for machine learning algorithms (to optimize
a complete system). Chan and Yeung [29] propose a
‘global’ recall metric, the number of correctly recog-
nized symbols and structures (subtrees) in an opera-
tor tree, divided by the number of symbols and struc-
tures. Garain and Chaudhuri proposed a related re-
call measure for symbol layout trees, where recall for
symbol classes and placement (i.e. symbols with the
correct parent symbol and relationship in the symbol
layout tree) is computed, but weighting misplacement
errors by the depth of nesting for a symbol in ground-
truth [51]. Recently string edit distances were used to
compare symbol layout trees for recognition results and
ground truth, after the trees are linearized into Euler
strings [124]. This was proposed to overcome the NP-
completeness of computing a full tree edit distance be-
tween layout trees.

Recently it was realized that a bipartite graph could
be used to represent segmentation, classification, and
layout errors simultaneously [166]. The graph repre-
sents all N primitives in one node set, and classification
labels assigned to each primitive in the second node
set (each primitive receives the label of its associated
symbol). N(N −1) spatial relationships are defined be-
tween the unlabeled (parent) and labeled (child) prim-

itives. Given a symbol layout tree, spatial relationships
are inherited and represented explicitly in the bipartite
graph; for example, in x2a , the symbol a is in a subscript
relationship with 2, but also a superscript relationship
with x.15 One can then compute recall for primitive
labels and spatial relationships in the graph. Correct-
ing these labels induces the correct classification, seg-
mentation, and layout for all input primitives (e.g. con-
nected (sub-)components, or strokes). This representa-
tion provides a meaningful, intuitive representation for
an expressions’ elements and their interpretation at the
layout level. The bipartite representation can be gen-
eralized in a straight-forward manner to operator trees
as well (we omit this for space).

4.7.1 Data Sets for Math Recognition Evaluation

Just as in the TREC competitions for information re-
trieval (see Section 3.5), in pattern recognition and ma-
chine learning research, benchmarking data is used to
try and compare systems meaningfully, in a fixed do-
main whose scope of interpretation is defined by exam-
ples in the data set. Ambiguities that arise from hu-
man decisions about relevance of retrieval results now
transform into ambiguities arising from human deci-
sion on how to interpret the location, symbols, layout
and mathematical content of expressions [164]. Ground-
truth data is expensive to create, because it requires (la-
borious) human effort; a semi-automated ground-truth
creation technique for handwritten expressions is de-
scribed in MacLean et al. [93]. Similar to the normal-
izations used in retrieval, care needs to be taken to nor-
malize ground truth and recognizer outputs, so that
equivalent expressions match properly during evalua-
tion.

Currently there is some limited use of available bench-
mark datasets, but we expect their use to increase sig-
nificantly as research in this area intensifies. The fol-
lowing is a list of benchmark data sets that have been
reported in the literature, some of which are publicly
available.

Infty I-III16 [141]: Infty-1 has around 500 pages from English
technical articles on pure mathematics containing over 20,000

typeset expressions. Ground truth was created manually and

provides symbol bounding boxes, identities, and edges of the
symbol layout tree in .csv, XML, and MathML. Infty-II adds

documents from English, French and German publications.
Infty-III provides over 250,000 single alphanumeric charac-
ters and mathematical symbols.

15 the LATEX for this expression makes this interpretation clear

(x̂ {2 a}): this is a Directed Acyclic Graph, not a tree.
16 www.inftyproject.org/en/database.html
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UW-III17 [114]: mathematical content consists of 25 pages,
with approximately 100 typeset equations. Ground truth cre-

ation involved double entry and triple verification. Math ex-

pressions represented in ground truth as LATEX and labeled
bounding boxes for expressions and symbols (in Xfig format).

Waterloo/MathBrush18 [93]: handwritten expressions by 20

writers (4655 expressions total). Ground truth provides op-

erator trees, LATEX, .gif (for typeset target), Microsoft and
SCG ink formats.

MNIST19: 70,000 segmented, size-normalized (28x28) greyscale

handwritten digit images (60k train, 10k test). Ground truth

provides symbol identities.
Brown Dataset20 [86]: 48 handwritten symbols from 11 writ-

ers (10 train, 12 test instances per class) Ground truth: Stroke

data in Unipen format
Chan and Yeung [29] 600 handwritten expressions (11,190

symbols), written by 10 different writers, and drawn from
CRC Standard Mathematical Tables and Formulae [173].

Ashida et al. [8] 1400 pages for symbol recognition data (43,495

typeset expressions), 700 pages for structure analysis (21,472

typeset expressions), taken from Archiv der Mathematik and
Commentarii Mathematici Helvetici. Ground truth created

using automatic recognition followed by manual correction.

Ground truth encodes bounding boxes and labels for expres-
sions and symbols, and expression structure in an extended

MathML format.
Garain and Chaudhuri [51]: 400 pages (297 real data and 103

synthetic data) containing 5,560 typeset expressions. Ground
truth creation used automatic recognition followed by man-

ual correction. Ground truth consists of LATEX and symbol

bounding boxes for isolated expressions, as well as extended
MathML for document pages.

ICDAR 201121 data used for the online handwritten math

recognition contest at the International Conference on Docu-

ment Recognition and Retrieval in 2011 (roughly 1000 hand-
written expressions from multiple writers).

5 Conclusion

Recognition and retrieval of mathematical notation are
challenging, interrelated research areas of great prac-
tical importance. In math retrieval, the key problems
are defining query languages, normalizing the query
and searchable documents, defining methods of index-
ing and matching, and providing relevance feedback.
In math recognition, the key problems are detecting
expressions, detecting and classifying symbols, analyz-
ing symbol layout, and constructing a representation of
meaning. Math notation provides an excellent domain
for studying the issues that arise in recognition and re-
trieval of other types of graphical notations.

We conclude our paper by outlining expected de-
velopments and numerous opportunities for future re-
search in this area. In general terms, we predict that

17 www.science.uva.nl/research/dlia/datasets/uwash3.html
18 www.scg.uwaterloo.ca/mathbrush/corpus
19 http://yann.lecun.com/exdb/mnist
20 http://graphics.cs.brown.edu/research/pcc/

symbolRecognitionDataset.zip
21 http://www.isical.ac.in/∼crohme2011/

future research will enhance the ability of recognition
and retrieval systems to process a broad scope of nota-
tions and dialects, to exhibit robustness to noise, and to
provide flexible, effective user interfaces. We summarize
open problems and future directions in five categories:
query interfaces, indexing and retrieval, relevance feed-
back, performance evaluation, and math recognition.

Future directions in query interfaces include image-
based math retrieval (allowing expression images to be
used as queries) and sketch-based math retrieval (al-
lowing online handwritten expressions to be used as
queries). We predict that sketch-based retrieval will make
prominent use of finger-based rather than stylus-based
drawing, due to the convenience and wide-spread use
of tablets and touch interfaces. Flexible query inter-
faces will combine text, images, sketching, keyboard
and mouse. Improved interfaces will be developed to
allow a user to specify matching constraints; for ex-
ample, hard constraints could be indicated by a box
surrounding strokes and/or connected components.

Future directions in indexing and retrieval include
improved methods for normalization of queries and doc-
uments; flexible normalization approaches will be able
to adapt to the nature of the query and document data,
whether it be handwritten, vector graphics or images.
Indexing and retrieval will include pattern recognition
methods to locate, recognize and annotate mathemati-
cal expressions in typeset and handwritten document
corpora. The strengths and weaknesses of document
representations will be explored, determining when vector-
based, tree-based or combined models are most appro-
priate.

Relevance feedback is an important but as-yet un-
addressed research opportunity for math retrieval. We
expect that there will be improvement in the interfaces
and mechanisms used, and in algorithms for defining
refined queries from user interactions. Machine learn-
ing methods may play an important role in improving
relevance feedback.

Future directions in performance evaluation will in-
clude advances in the technology for creating databases
with ground-truth, and increased availability of datasets
for math recognition and retrieval. There will be ad-
vances in performance metrics for computing errors in
layout, segmentation, parsing, classification, and repre-
sentation of meaning. Performance evaluation needs to
be carried out in reference to tasks a user is trying to
accomplish. Research is needed to obtain a better un-
derstanding of different models of relevance for mathe-
matical information retrieval. Relevance depends on a
number of factors, including the expertise of the user,
the task underlying the user’s information need, and
the type of resource(s) sought.
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In math recognition, future directions and open prob-
lems include the detection of inline expressions, the au-
tomatic detection of mathematics in vector graphics
documents, and the processing of matrix and tabular
structures. We predict refinements of layout analysis,
including development of new techniques and combina-
tion of existing methods via parser combination. More
sophisticated language models will be developed to in-
corporate statistical information about mathematical
notation; this information can be used during recogni-
tion or post-processing. Stochastic language models will
be become increasingly sophisticated; stochastic gram-
mars, as initially proposed by Chou [34] can be ex-
tended using different segmentation and/or parsing ap-
proaches. A challenge is to identify usable notation sets
with invariants that can be easily adapted to dialects;
the goal is to scale this up to the index set used by the
Mathematical Subject Classification (MSC) [121].

In conclusion, the combination of math retrieval and
math recognition technologies provides rich possibilities
for math-aware computer interfaces, and for intelligent
retrieval of mathematical documents.
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