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Abstract Document recognition and retrieval technolo-
gies complement one another, providing improved ac-

cess to increasingly large document collections. While

recognition and retrieval of textual information is fairly

mature, with wide-spread availability of Optical Char-
acter Recognition (OCR) and text-based search engines,

recognition and retrieval of graphics such as images, fig-

ures, tables, diagrams, and mathematical expressions

are in comparatively early stages of research. This pa-

per surveys the state of the art in recognition and re-
trieval of mathematical expressions, organized around

four key problems in math retrieval (query construc-

tion, normalization, indexing, and relevance feedback),

and four key problems in math recognition (detecting
expressions, detecting and classifying symbols, analyz-

ing symbol layout, and constructing a representation

of meaning). Of special interest is the machine learn-

ing problem of jointly optimizing the component algo-

rithms in a math recognition system, and developing
effective indexing, retrieval and relevance feedback al-

gorithms for math retrieval. Another important open

problem is developing user interfaces that seamlessly

integrate recognition and retrieval. Activity in these
important research areas is increasing, in part because

math notation provides an excellent domain for study-

ing problems common to many document and graphics

recognition and retrieval applications, and also because

mature applications will likely provide substantial ben-
efits for education, research, and mathematical literacy.
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1 Introduction

In practice, the problem of retrieving math notation

is closely tied to the problem of recognizing math nota-

tion. For example, a college student may want to search

textbooks and course notes to find math notation that
has similar structure or semantics to a given expression.

Or, a researcher may wish to find technical papers that

use or define a given function. In both of these exam-

ples, recognition of math notation is needed in order

to support the retrieval of math notation: the system
must be able to recognize math expressions that the

user provides as a query, and the system must be able

to recognize math expressions in the target documents

that are the subject of search. Retrieval of math no-
tation has received increasing research attention in the

past decade (see Section 3), while math recognition has

been a subject of research for over forty years (see Sec-

tion 4). To our knowledge, we provide the first survey of

mathematical information retrieval; in surveying math
recognition, we focus on research that has appeared in

the decade since the survey of Chan and Yeung [28].

The math domain provides an excellent vehicle for
studying pattern recognition and retrieval problems,

and for studying methods of integrating pattern recog-

nition algorithms to improve performance. The four

central pattern recognition problems – segmentation,
classification, parsing, and machine learning (i.e. opti-

mizing recognition model parameters) – all come into

play when recognizing mathematics. The math domain
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(a) Freehand Formula Entry System (b) XPRESS [116] (c) InftyEditor/InftyReader [141]
(FFES) [20, 136]

Fig. 1 Math Entry Systems. FFES is pen-based, XPRESS supports mouse and keyboard entry, and InftyEditor/IntryReader supports
OCR, pen, mouse and keyboard entry.

(a) MathBrush [81] (b) E-chalk [144] (c) MathPad2 [85]

(d) Li, Zeleznik et al. [89]

Fig. 2 Systems for Pen-Based Computer Algebra and Sketching.

offers sufficient complexity to challenge researchers, yet

has characteristics that make the domain tractable: the

semantics of math notation are fairly constrained, and
a typical math expression consists of relatively few sym-

bols.

The input to a math recognition system can take

three forms: vector graphics (such as PDF), strokes (such

as pen strokes on a data tablet), or a document image.
The processing that is needed to extract expressions

and recognize characters depends greatly on the form of

input. For example, a PDF document directly provides

encoded symbols, so there is little need for character
recognition [13, 14]. Figures 1 and 2 illustrate systems

that accept various forms of input: vector graphics is

shown in Figure 1b; strokes are shown in Figures 1a

and 2a,b,c,d; and a document image is shown in Figure

1c.

In the next sections, we discuss key recognition and

retrieval problems as they apply to all three forms of

input. As the need arises, we point out situations in

which differences in input format cause large differences

in processing methods.

1.1 Overview of Math Notation Recognition

Math recognition is used for various purposes. For ex-

ample, a user may write an expression by hand and in-

sert the recognition result (e.g. a LATEX string or image)

into a document. Alternatively, a recognized expression
can be evaluated using a computer algebra system such

as Maple or Mathematica. Another option is to use

the recognized expression as a query, to retrieve doc-

uments containing similar math notation. Recent work

in human-computer interaction further motivates the
development and use of pen-based math entry systems.

Bunt et al. study mathematicians in a research setting,

and find that in order to be useful, CAS systems need to

support annotation, provide multiple levels of formality,
and provide more transparency for the operations that

they apply [23]; they suggest that pen-based systems

for math might be used to address these needs.
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Fig. 3 Key Recognition Problems: Expression Detection, Symbol Extraction or Symbol Recognition, Layout Analysis, and Mathemat-
ical Content Interpretation. Shown at left are the possible input formats, including vector-based document encodings such as PDF
files, pen/finger strokes, and document images. The form of input and output for each problem is shown. Many systems perform
recognition in the order shown, but not all. For example, some systems combine Layout Analysis and Mathematical Content Interpre-
tation, producing an operator tree directly using the expected locations of operator/relation arguments [29,31]. Post-processing stages
used to apply language model constraints (e.g. n-grams) and other refinements are not shown (see Section 4.5).

Math recognition also finds application in tutoring

systems. For example, when middle school and high

school students tested a math tutoring prototype (based
on FFES/DRACULAE), students using pen entry com-

pleted their math tutoring sessions in half the time of

those that typed, with no significant difference between

their pre-to-post test score gains [7].

The following four key problems arise in the recog-

nition of math notation, as illustrated in Figure 3.

1. Expression Detection (Section 4.1). Expressions must

be first identified and segmented. Methods for de-

tecting offset expressions are fairly robust, but the
detection of expressions embedded in text lines re-

mains a challenge.

2. Symbol Extraction or Symbol Recognition (Section

4.2). In vector-based representations, such as PDF,
symbol locations and labels can be recovered, though

some handling of special cases is needed (e.g. root

symbols are often typeset with the upper horizon-

tal bar represented separately from the radical sign,√
[14]). In raster image data and pen strokes, de-

tecting symbol location and identity is challenging.

There are hundreds of alphanumeric and mathemat-

ical symbols used, many so similar in appearance

that some use of context is necessary for disam-
biguation (e.g. O, o, 0 [103]).

3. Layout Analysis (Section 4.3). Analysis of the spa-

tial relationships between symbols is challenging.

Spatial structure is often represented using a tree,

which we term a symbol layout tree (Figure 4a).
Symbol layout trees represent information similar to

LATEX math expressions; they indicate which groups

of horizontally adjacent symbols share a baseline

(writing line), along with subscript, superscript, above,
below, and containment relationships. Symbols may

be merged into tokens, in order to simplify later pro-

cessing (e.g. function names and numeric constants).

4. Mathematical Content Interpretation (Section 4.4).

Symbol layout is interpreted, mapping symbols and

their layout in order to recover the variables, con-
stants, operands and relations represented in an ex-

pression, and their mathematical syntax and seman-

tics. This analysis produces a syntax tree for an

expression known as an operator tree (Figure 4b).

Given definitions for symbols and operations in an
operator tree, the tree may be used to evaluate an

expression, e.g. after mapping the tree to an ex-

pression in a CAS language such as Matlab, Maple,

or Mathematica. However, determining the correct
mapping for symbols and structures can be difficult,

particularly if there is limited context available.

Figure 3 illustrates a series of stages commonly used

in recognition of mathematical notation. The order of

stages can vary [18]. Intermediate results produced by

one stage may provide contextual information to con-
strain analysis in other stages, or to constrain the anal-

( a + b )

SUPER

2

(a) Symbol layout tree. The tree is rooted at left (‘(’).
Horizontally adjacency relationship edges are unlabeled

EXP

ADD

a b

2

(b) Operator tree. The tree represents the addition
of a and b, squared.

Fig. 4 Symbol layout tree and operator tree for (a + b)2
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ysis of other parts of the input. This is discussed further

in Section 4.6.

The first publicly available math-recognition sys-

tems appeared about a decade ago, building on math
recognition research dating back to the late 1960’s [5,

6, 17, 31]. The 1999 applet1 created by Matsakis et. al

recognizes simple handwritten expressions [99]. In 2001,

Chen and Yeung published a paper on the first pen-
based calculator [30]. In 2002, the FFES/DRACULAE

pen-based equation editor2 [135,165] was distributed as

an open-source prototype. Several more recent systems

recognize handwritten [81,133,144] and typeset [46] ex-
pressions. Commercial applications began to appear, in-

cluding MathJournal3, and pen-based entry in the Win-

dows operating system [113]. The Infty math OCR sys-

tem of Suzuki et. al has also been influential [71, 140].

Infty is sophisticated, and supports speech and Braille
output for the visually impaired [140]. Infty supports

both document image and pen-based input.

At present, most commercial systems for OCR do
not recognize mathematical expressions. To address this,

OCR output can be annotated with the results pro-

duced by a math recognition system. For example, the

InftyReader4 application (see Figure 1c) uses the Infty

system to recognize expressions and insert correspond-
ing LATEX strings into the PDF file produced by a com-

mercial OCR system [71].

User interfaces for expression entry and recognition
result visualization are important research topics that

we will discuss only briefly here for reasons of space.

In addition to the papers cited in Figures 1 and 2 and

mentioned already, the interested reader should consult

the following: [84, 118, 133, 169]. Key issues are ease of
input, and visualization of feedback. One repeated ob-

servation of interest is that for pen-based systems, pre-

senting recognition results separately from the user’s

input as a rendered image leads to situations where: 1)
in experiments, participants find themselves unable to

detect errors reported in the structure of their expres-

sion, not because they aren’t shown, but because they

have difficulty perceiving them [165, 169], and 2) users

try to edit the recognized expression image, rather than
the pen-based input [82, 169].

1.2 Overview of Mathematical Information Retrieval

Figure 6 illustrates the information retrieval process.

The user formulates queries through the Query Inter-

1 http://www.ai.mit.edu/projects/natural-log/
2 http://www.cs.rit.edu/∼rlaz/ffes/
3 http://www.xthink.com/
4 http://www.inftyreader.org

a. Math WebSearch Interface [77, 78]. Queries are constructed
via keyboard and templates on the right. Symbol types may also
be constrained (bottom left)

b. Springer LaTeX Search. Results may be filtered by clicking
on a publication year or source document type

c. NIST Digital Library of Mathematical Functions. Shown are
results for a boolean query combining math and keywords [3,102]

Fig. 5 Mathematical Information Retrieval System Interfaces
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Fig. 6 Information Retrieval (adapted from Hiemstra [62]).
Data are shown in boxes, system processes in ovals, user in-
terfaces in double ovals, and user elements with no surrounding
shape. Beginning with an information need and query formula-
tion in the top left, the user enters the query through the Query
Interface. The query is normalized to reduce variation (e.g. text
can be normalized using word stemming and a thesaurus). As
shown on the right, the searchable documents are indexed; the
indexing process also carries out normalization operations. At
bottom, the normalized query and the indexed documents are
matched, to produce the set of retrieved documents. The user
views these through the Result Interface; the user can provide
relevance feedback, or can elect to formulate a new query

face, and views results through the Result Interface. In-

dexing, Normalization and Matching are three system

processes used to process the document collection and
query, and find matches for the query in the collection.

Math recognition can be applied both to the query

(e.g. to recognize a stylus-drawn expression, as in Fig-

ures 1 and 2) and to the searchable documents (e.g.
to recognize math expressions in document images or

PDF files). Prior to indexing, document images can be

annotated with region types (e.g. text, table, figure,

image, math), character information, and recognized
structure and semantics for detected math expressions.

Existing math retrieval systems lack the ability to rec-

ognize stylus-drawn queries. Instead template editors

are provided to assist in generating query strings; an

example is the Math WebSearch prototype (Figure 5a).

The following four key problems arise in the retrieval

of math notation, as illustrated in Figure 6.

1. Query Languages and Query Formulation (Section

3.1). Present-day query languages for mathemati-

cal information retrieval are text-based, influenced

by LATEX, MathML [10] and OpenMath [37, 148].

Challenges in query formulation include determin-
ing what types of queries are useful and feasible,

and providing an effective user interface for query

formulation.

2. Normalization (Section 3.2). In order to reduce vari-
ation, both the query and the searchable documents

are normalized. In text-based retrieval, normaliza-

tion involves word stemming and thesaurus opera-

tions [125]. Similarly, expressions must be reduced

to canonical forms to prevent mismatches between
equivalent expressions with different representations.

For example, normalization of symbol layout trees

imposes a unique ordering on spatial relationships.

As another example, enumeration of variables in op-
erator trees allows variables to be matched without

concern for their specific symbol identities.

3. Indexing and Matching (Section 3.3). Retrieval per-

formance depends heavily on the chosen document

representation, and on the similarity measures used
to compare queries to the index. Vector, image and

stroke data need to be indexed and retrieved using

different methods. At present, we know of no work

concerned specifically with indexing and retrieving
handwritten mathematical documents.

4. Relevance Feedback (Section 3.4). During examina-

tion of a retrieval result, the user can provide rel-

evance feedback, to allow the system to automat-

ically construct a refined query. This is an impor-
tant, but currently unexplored research direction

for math retrieval systems. Relevance feedback has

been studied intensively in text [125] and image-

based retrieval systems [35, 132].

In addition to these four key problems, the evaluation
of a math retrieval system is also difficult. Evaluation

is discussed in Section 3.5.

Mathematical Information Retrieval (MIR) is a rel-
atively new research area, lying at the intersection of

text-based information retrieval [62,125], content-based

image retrieval [35, 38, 132] and Mathematical Knowl-

edge Management (MKM [25]). Mathematical knowl-

edge management is concerned with the representation,
archiving, extraction, and use of mathematical infor-

mation. Systems for mathematical information retrieval

have been developed for a variety of applications:

– Finding equations in a database of technical docu-

ments [8, 100,101] (e.g. Springer LaTeXSearch5)

5 http://www.latexsearch.com/
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– Semantic search for expressions on the internet (e.g.

Math WebSearch6 [77, 78])

– Finding functions in mathematical function libraries

such as the NIST Digital Library of Mathematical

Functions7 and Wolfram Functions Site8. In these
systems, partial definitions may be used to locate

complete equations [75, 78, 106]

– Supporting equation search in online learning tools

(e.g. ActiveMath [91]).
– Searching integral tables [41]

– Supporting proof assistants such as Coq [9]

It is interesting to compare question-answering sys-

tems to information retrieval systems. For textual data,

Salton distinguishes these two types of systems based
on the types of data stored and the form queries take

[125]. Information retrieval systems use stored data con-

sisting of documents; in contrast, question-answering

systems use stored data consisting of facts and gen-

eral knowledge. Queries in information retrieval sys-
tems take the form of keywords and excerpts; queries in

question-answering systems use natural language. Re-

cently, question-answering systems for mathematical in-

formation have been devised [171]. An example is the
well-known Wolfram Alpha web site9. The Wolfram

Alpha knowledge base includes facts on mathematics

and statistics, along with many other topics including

the sciences, technology, finance, culture, and geogra-

phy. Wolfram Alpha provides some processing for nat-
ural language (though keywords may be used), and re-

sponses are returned using a table of relevant facts, fig-

ures and computations. For example, users may request

that the system factor a polynomial.

Investigation of image-based math retrieval has re-

cently begun. Retrieval is based on the similarity of

math notation images, without recognizing their math

content. For example, Marinai et al. propose a method

based on shape contexts for retrieving mathematical
symbols [96], while Yu and Zanibbi propose a retrieval

method in which handwritten queries are matched to

document images using a combination of X-Y cutting

and word shape matching [161,167].

According to the framework of Smeulders et. al [132],

math images are a ‘narrow’ image retrieval domain,

with constrained semantics and very controlled scene

and sensor properties. For example, math images tend
to have stable illumination. However, the math domain

does present challenges: images of math are polysemic,

meaning that a single expression may be interpreted

6 http://search.mathweb.org/index.xhtml
7 http://dlmf.nist.gov/
8 http://functions.wolfram.com/
9 http://www.wolframalpha.com

in multiple related ways. For example, the meaning or

value of an expression varies depending on the vari-

able binding, the type of a variable (e.g. natural, inte-

gral, real, or complex), and the interpretation of opera-

tors and functions (e.g. the function ‘f’ is heavily over-
loaded). It can be difficult to deduce which interpreta-

tion was intended by the author of a math expression.

Some clues may be found elsewhere in the document

(e.g. definitions of symbols and functions), but often
it is necessary to draw on knowledge of the notational

conventions used in a certain branch of mathematics.

Having provided an overview of math recognition

and retrieval, in the next section we summarize math-

ematical notation and issues related to the represen-
tation and interpretation of mathematical expressions.

In the remaining sections we continue our discussion of

math recognition and retrieval in more detail.

2 Mathematical Notation

In this section we provide a brief overview of math-

ematical notation and file formats used to represent

mathematics. Math notation may be understood as a
semi-formal visual language [97]. As with other two-

dimensional notations such as chemical diagrams, mu-

sic notation, and flowcharts, math notation is a graph-

ical language for representing complex interactions be-

tween primitive objects [21]. Defining math notation is
difficult, but some resources for study are available, in-

cluding books on typesetting for mathematics [33, 63,

74, 157], and a history of the origins and evolution of

the notation [24]. For both people and machines, in-
terpreting the notation provides many challenges: the

set of symbols used is very large, and ambiguities and

context-dependencies arise in interpreting symbol iden-

tity, layout, and semantics (see Figure 7).

In math notation, symbols are used to represent con-
stants (e.g. π, e, 0), variables (e.g. a, α), operators, func-

tions and relations (e.g.
∫

, fraction lines, f , cos, <), and

the scope of subexpressions (e.g. grouping using (), [ ],

{}). Unlike primitive arguments or objects in an expres-
sion, operations, functions, relations and subexpression

scopes are also represented implicitly, using the spatial

arrangement of symbols (e.g. the implicit multiplication

in xy). Table 1 summarizes the six spatial relationships

commonly used in isolated expressions. Both subscripts
and superscripts can be placed to the left of the symbol

or subexpression they modify, as in the Table 1 example

for ‘n choose k.’ Most math recognition systems do not

currently accommodate these ‘prefix’ super/subscripts,
because they are rare.

Subexpression scopes are often represented using

grid (or ‘tabular’) layouts, where subexpressions are ar-
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100
∑

i=1

i2 + i + y − x s · t
(a) (b) (c) (d) (e)

Fig. 7 Ambiguous Mathematical Expressions. (a) Which division is performed first? (b) Is a superscripted? (c) What is the scope of

the summation? (d) Is this symbol a 9 or a q? The perceived answer depends on context (from [103]) (e) What do s, t and · represent?

Table 1 Spatial Relationships in Mathematical Notation. Re-
lationships shown are defined for standard symbol layout tree
encodings (e.g. LATEX, Presentation MathML), and used in most
recognition systems (as far back as Anderson’s [5]). Note that for
many expressions shown, mathematical content cannot be deter-
mined unambiguously.

Relation Expression Math. Interpretation

Adjacent xy Multiply x by y

(at right) x × y Multiply x by y

Superscript x3 x × x × x

Subscript x1 Element 1 of list x

x2
1 x1 × x1

∫

+∞

−∞

p(x|ωi) dx

Integrate density function
p over all vectors x for
class ωi

nCk n choose k

Above
Below

x not x

x

y
x divided by y

n
∑

i=1

i Add 1, 2, . . . , n − 1, n

Contains
√

x2y2 xy

Grid Layout: rows, columns contain subexpressions

Grid

[

x 0
0 y

]

2 × 2 diagonal matrix

Nested
Grid

x! =

{

1, if x = 0
x((x − 1)!), if x > 0

Inductive function def.

ranged in rows and columns. An example is shown at

the bottom of Table 1. Grid layouts are also used fre-

quently in derivations. A number of well-known symbol

shorthands are used to represent patterns and repeated
matrix elements; these include ellipses (e.g. x1 . . . xn),

lines, and large symbols such as a large 0 to represent

zeros in the upper-triangular region of a matrix.

Mathematical expressions represent an application
of functions, operators and relations to arguments. As

can be seen in Table 1, multiple mathematical state-

ments may be represented by a single expression; in

other words, mathematical expressions are polysemic.

For example, if x is a list the expression x1 can rep-

resent the first or second element in the list. The defi-

nition and even role of symbols frequently change; for
example, in an arbitrary expression, λ can represent

a variable, a constant or a binding function as in the

Lambda Calculus. Even when the domain is clear, sym-

bol definitions are often ambiguous. Consider P in the
context of Bayesian probability: is P used to represent a

probability mass function or a probability density func-

tion?

Without knowing the precedence and associativity

of operations, the order in which operations are to be

applied and relations tested may be unclear. For ex-

ample, in Table 1, x2
1 is indicated as representing the

square of x1; in another context, this might be repre-

senting a restriction on sequence x2, where the prece-

dence of operations is reversed. The precedence of op-

erators is determined using the following [19]:

Operator range defines legal spatial locations for ar-

guments of an operator or relation (e.g. for ‘+’, or

fractions)

Operator dominance (Chang [31]), defines a partial or-
dering on the application of operators and relation

predicates. An operator/relation which nests com-

pletely within the range of another operator/rela-

tion is said to be dominated. For example, the + in

(x+y)/2 is dominated by the fraction line. Dominat-
ing operators are applied after the operators they

dominate.

Operator associativity orders application when two or

more of the same operator appear in each others’
range. For example, addition is normally left-associative:

x + y + z = (x + y) + z.

Operator precedence orders the application of different

operators when they are within each others’ range.

For example, 2 + x × y = 2 + (x × y).

An unambiguous definition for operator range, domi-

nance, associativity and precedence imposes a unique

evaluation order on an expression. The result may be
represented as an operator tree, with operators and re-

lations at internal nodes, and constants and variables

at the leaves (see Figure 4b).
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(a + b)2
<msup>

<mfenced>

<mi>a</mi>
<mo>+</mo>
<mi>b</mi>

</mfenced>

<mn>2</mn>
</msup>

(a+b)ˆ2

<apply>

<power/>
<apply>

<p lus />
<c i>a</ c i>
<c i>b</ c i>

</apply>

<cn>2</cn>

</apply>

(a) Expression Image (b) Presentation MathML [10] (c) LATEX (d) Content MathML
(Symbol Layout Tree) (Symbol Layout Tree) (Operator Tree)

Fig. 8 Math File Encodings (adapted from [1])

However, some expressions are not intended for eval-
uation. For example, consider the integral shown in Ta-

ble 1. The vector space is continuous, and thus this

integral cannot be computed directly. Doing so would

also not be of interest, as this expression is commonly
used in a constraint that the expression needs to eval-

uate to 1.0.

We now briefly describe file formats used for sym-

bol layout trees and operator trees. Symbol layout trees

represent the placement of symbols on baselines (writ-

ing lines), and the spatial arrangement of the baselines.
File formats for representing symbol layout trees in-

clude Presentation MathML and LATEX, as shown in

Figure 8b and c. Compared to LATEX, Presentation MathML

contains additional tags to identify symbols types; these
are primarily for formatting. Grid layouts are repre-

sented by rows and columns of subexpressions (e.g. us-

ing the array construct in LATEX), with each subexpres-

sion represented by a symbol layout tree or grid. Grids

may occur as subexpressions in symbol layout trees, as
in the factorial function definition in Table 1: the main

baseline of the expression consists of x! = {[sub], where

[sub] represents a grid containing four subexpressions

(two value–condition pairs) used to define the function.

An operator tree, as shown in Figure 4b, represents
the operator and relation syntax for an expression. Op-

erator trees may be encoded in a number of ways, in-

cluding Content MathML and OpenMath [36, 37]. To

evaluate an expression, it is necessary to know the def-

initions for all symbols and operations. As shown in
Figure 8d, tags in Content MathML represent defined

primitives (e.g. <cn>2</cn>), operations (e.g. < plus/>)

and relations. The OpenMath standard provides an en-

coding for formalizing the semantics of symbols and
operations using content dictionaries. Given this infor-

mation, an expression may be evaluated mechanically,

using a Computer Algebra System.

3 Mathematical Information Retrieval

Figure 6 summarizes the process of information retrieval.

In general, users have an information need that they

attempt to satisfy using the retrieval system. Informa-

tion needs take many forms (Table 2), and are seldom
concrete: often, they change as a user interacts with a

retrieval system. Consider image retrieval: Smeulders

et. al point out that often users’ impression of the im-

ages they want are only partially defined, such as when
looking for an image belonging to a class of objects (e.g.

chairs), or not defined at all, as when browsing through

an image collection [132]. A discussion of research on

information needs, including difficulties associated with

their observation and common misconceptions, is pro-
vided by Case [26] Chs. 1 and 4. Research on image

search needs and behaviours is summarized by West-

man [156].

A better understanding of users’ information needs

will further the development of MIR systems. At present,

MIR research has been motivated primarily by develop-

ing new search techniques based on query-by-expression
[75, 171]. Better response to information needs will al-

low MIR to mirror the advances in internet search in-

terfaces over the last two decades [61]. In a study of

MIR usage, Zhao et al. report that participant queries
may be motivated by a specific information need, such

as the need for a definition or derivation [171]. In ad-

dition to information needs, participants expressed re-

source needs, requesting resources with a certain style

and depth of presentation (e.g. tutorials versus research
papers), or requesting resources with a particular func-

tion (e.g. written documents, including slides and web

pages, versus code and data sets).

General-purpose search engines such as Google can

be used to locate mathematical content, but the results

may be weak in relation to the user’s goals, as these sys-

tems use term-based indexing with no model for math-
ematical content. For example, one can try matching

MathML tags, or matching the LATEX strings that oc-

cur in some web pages as annotations for the expres-



9

Table 2 Information Needs for Mathematical Information Re-
trieval, from Kolhase and Kolhase [75], and Zhao et al. [171]

Information Need

1 Specific/similar formulae

· Form/appearance (given by a symbol layout tree)
· Mathematical Content (given by an operator tree)
· Name

2 Theorems, proofs, and counter-examples
3 Examples and visualizations (e.g. graphs/charts)
4 Problem and solution sets (e.g. for instruction)
5 Algorithms
6 Applications (e.g. for the Fourier transform)
7 Answer mathematical questions/conjectures
8 People (by math content in publications)
9 Determine novelty/sequence of mathematical discoveries

sion images they were used to create. It seems likely
that as MIR research advances, users will continue to

use a combination of general-purpose search engines

along with specialized MIR systems for their mathe-

matical information needs, as was observed in Zhao et
al.’s study [171].

In the remainder of this section we address four key

problems in MIR: query formulation and languages for

expression queries, normalization of queries and docu-

ments, document indexing and matching, and query re-
finement and relevance feedback. The final section dis-

cusses evaluation of MIR systems.

3.1 Query Languages and Query Construction

Systems for MIR using standard keyword-based query

languages (see [125], Ch. 2) have existed for quite some
time. Examples include the web pages for searching

Mathematical Reviews10 and Zentralblatt für Mathe-

matik11. Both services have been compiling bibliogra-

phies and disseminating reviews of published work on

mathematics since the first half of the twentieth cen-
tury. Their materials have been manually indexed, us-

ing the Mathematical Subject Classification (MSC) [121].12

In the web interfaces provided by these services, MSC

categories can be used to constrain searches.

To make existing text-based query languages bet-
ter suited to MIR, researchers are extending them with

syntax expressing the appearance and content for math-

ematical expressions (e.g. using LATEX and MathML).

Also, content-based image retrieval (CBIR) methods
[35, 132] can be adapted to allow expression images to

be used directly as queries.

Expressions have been represented in MIR query

languages using Lisp [41], LATEX and LATEX-like string

10 http://www.ams.org/mr-database
11 http://www.zentralblatt-math.org/zmath/en/
12 The MSC is quite detailed; the 2010 revision is 47 pages long.

languages [3, 9, 102], Mathematica (for Wolfram web

sites), MathML [78], and operator tree shorthands [77].

Example queries are shown in Figure 5. Recently, im-

ages of symbols [96] and complete expressions (hand-

written [161,167] and typeset [168]) have been used for
query-by-expression.

To make expression queries more precise, boolean

constraints (AND, OR, NOT) may be used [78, 91],

and cardinality and matching constraints added. Fig-
ure 5c shows an example of a simple boolean constraint

in a query language supporting both expression and

keyword matching. Wildcards to permit matching any

symbol or subtree at a specified point in an expres-

sion have also been used [9, 77, 105]. An example is
shown in Figure 5c, where the wildcard character $

matches any subscript on the integral. Altamimi and

Youssef use an AWK-like syntax [2] and regular expres-

sion patterns to identify matching subexpressions, and
allow equivalence and type constraints to be imposed

on matched entities [3]. Constraints can also be applied

to indicate which document regions to match; an ex-

ample is indicating a preference for theorems, proofs,

and section headings demarcated within the document
collection [102,171].

A variety of query interfaces for MIR have been pro-

posed, a small number of which we summarize here. The

simplest interfaces provide a box in which to type a
query string, such as used in the Springer LATEX search

interface and the NIST Digital Library of Mathemat-

ical Functions (see Figure 5a and c). The MathWeb-

Search interface shown in Figure 5a [78], provides tem-

plates for structures such as fractions and summations;
text representing these operations is inserted into the

query using a mouse click. In the Mathdex system, users

can enter expressions using a graphical equation editor

similar to the editors provided in word-processing pro-
grams [104].

Query expressions constructed using string languages

and template editors tend to contain a small number

of symbols (see Figure 5). Single-symbol query expres-

sions are imprecise, while query expressions containing
a large number of symbols are uncommon, because of

the effort required to express and interpret them [59,67].

The rarity of large query expressions is an example of

the principle of least effort [173] commonly observed for

natural language (see p. 60 of Salton and McGill [125]).
In contrast, large queries are easy to construct when

queries are expression images: a user can easily select

large image regions, so a large number of symbols does

not affect the effort involved in query construction.

Despite the efforts to add expressions into query lan-

guages, their addition may not always add value for

users [75]. Zhao et al. studied a small group of profes-
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sors, graduate students and librarians affiliated with the

Math Department at the National University of Singa-

pore, and found that most of their participants could

not identify a situation where they would want to search

using an expression [171]. Expressions are often named
(e.g. the Pythagorean theorem), may be overly specific

for some information needs, and may be inconvenient

to enter using the methods known to the participants,

which included graphical template editors and string-
based interfaces (image-based querying was not consid-

ered). When asked what their preferred expression en-

try method would be, participants responded that they

would like to use LATEX, due to its familiarity.

Kohlhase and Kohlhase suggest pen-based entry may
be a more natural expression input modality [75]. We

propose that pen-based entry will be most effective when

paired with keyboard and mouse input. There should

also be support for query-by-example, in which queries
are constructed using expression images from the doc-

ument collection. It remains to be seen whether such

an interface would make query-by-expression more ap-

pealing to math experts such as those in Zhao et al.’s

study.
As MIR matures, we expect the ability to browse

expressions and their surrounding text within a single

document or document collection will be useful, par-

ticularly for non-expert users in elementary school and
high school, and in technical disciplines.

3.2 Query and Document Normalization

For information retrieval, normalization is the process
of reducing variation within queries and documents, to

facilitate matches between related or identical entities

with different representations. In textual IR, common

normalization operations include replacing words by

their stems (e.g. ‘information’ → ‘inform’ and ‘retrieval’
→ ‘retriev’ [125]), and the removal of high-frequency,

low-discrimination stop words such as but, to and the.

Often a thesaurus is used to add synonyms for low-

frequency terms to the query.
The normalizations that are performed for math

retrieval depend on the representation (symbol layout

tree vs. operator tree), and on the matching algorithm

used for search. For example, the order in which spatial

relationships are presented is critical in systems that
match symbol layout trees that have been linearized.

Identical expressions will fail to be matched if relation-

ships appear in different orders, as in xˆ2 1 and x 1ˆ2.

Standardized ordering is also needed in operator trees,
as ultimately the tree structure is used in matching.

Analogous to synonyms in text, mathematical con-

cepts often have multiple notational representations.

Consider ‘n choose k’, which may be written as
(

n
k

)

,

nCk, Cn
k , or Ck

n [78]. In terms of expression semantics,

the variability is even more severe: consider the number

of expressions that evaluate to 0. It is not clear when or

to what extent transformation and simplification should
be used to recover such equivalences.

Below is a short list of query and document normal-

izations that have been applied in MIR systems.

– Thesaurus: adding synonyms for symbols to a query

(e.g. adding equivalent function names [102]).

– Canonical orderings: fixing the order for spatial

relationships such as subscripts and superscripts in

symbol layout trees (e.g. expressed in LATEX [102]),
and defining a fixed ordering for children of associa-

tive and commutative operations in operator trees,

such as for sums [109,129].

– Enumerating variables: variables may be enu-
merated (ignoring symbol identities) to permit uni-

fication of query variables with variables in archived

expressions [109].

– Replacing symbols with their types: allows match-

ing symbol types around an operator, rather than
specific symbols [67]. It also allows for a sub-expression

to be matched to an individual symbol of a given

type.

– Simplification: produce smaller representations with
less variation. For example, one may eliminate <apply>

tags (see Figure 8) from Content MathML [160], or

use Computer Algebra Systems to simplify expres-

sions symbolically [41, 102].

3.3 Indexing and Retrieval

Most MIR research assumes that mathematical expres-

sions are represented explicitly in the document collec-

tion, using markup languages such as LATEX, MathML
[10] or OpenMath [37, 139]. These encodings allow ex-

pression appearance or mathematical content to be ex-

tracted directly and then embedded in documents or

evaluated using CAS systems. New languages, formats,
and tools for creating mathematical documents have

also been developed.

The OMDoc format developed by Kohlhase [76] is

XML-based, allowing expressions to be embedded us-

ing MathML and OpenMath. OMDoc was used to rep-
resent documents for Math WebSearch (see Figure 5a),

and ActiveMath, an on-line math tutoring system that

supports query-by-expression [91]. Miller created LATEXML,

a tool for translating LATEX to XHTML and MathML
[102]. This is analogous to the well-known latex2html

converter used to translate LATEX documents to HTML,

embedding mathematical expressions as images (e.g.
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.png files). LATEXML was used in creating the NIST Dig-

ital Library of Mathematical Functions (DLMF) (see

Figure 5c). In contrast, Springer’s LATEX search (Figure

5b) represents documents using the LATEX sources pro-

vided directly by the authors of academic papers and
books. These encodings allow expression data to be rep-

resented explicitly, in a suitable form for indexing and

retrieval prior to archiving a document collection.

Unfortunately, many documents do not represent

mathematical information explicitly. Examples include

document images such as .tiff or .png files, and vector-

based representations such as .pdf files [13, 14]. This
makes it necessary to recover mathematical information

using pattern recognition techniques, and then anno-

tate documents with recognition results prior to index-

ing. Pattern recognition has been used to identify math
symbols and structure in raw document images [8,101]

and .pdf files [14, 71]. Another use of pattern recogni-

tion is to segment documents into region types such as

theorem, proof, and section heading [171]; these region

types can then be used in queries.

A German and Japanese project led by Michler de-

veloped a prototype for annotating documents in digital

mathematics libraries in the early 2000’s [100,101]. Doc-
ument images were recognized using commercial OCR

software (ABBYY FineReader), mathematical expres-

sions were segmented and converted into LATEX using

techniques developed by Okamoto et al. [8], and paper
references were linked to online reviews from Zentral-

blatt für Mathematik and Mathematical Reviews. Ref-

erences were detected using regular-expression match-

ing in OCR results. Archived documents were stored us-

ing the DjVu format, which represents document pages
in three layers: 1. image, 2. OCR and math recognition

results, including associated page coordinates, and 3.

links to reviews for cited papers, with the associated

page coordinates for the citations [101]. DjVu viewers
allowed OCR/math recognition results to be seen in-

place while viewing a document image, and for reviews

of references to be consulted simply by selecting a ref-

erence (e.g. using a mouse click).

During indexing, documents are converted to the

representation used in the document index. In the early

stages of indexing, documents are filtered (e.g. to select
expressions and/or index terms) and normalized in the

same fashion as queries.

3.3.1 Vector-Space Models

In vector-space models, documents are represented by
vectors in Rn, where each dimension corresponds to an

index term [62, 95, 125]. Index terms normally exclude

stop words (very high frequency terms such as ‘the’

that carry little information) as well as highly infre-

quent terms, whose inclusion would have little effect on

retrieval performace, while increasing the dimensional-

ity of the vector space. Salton and McGill discuss index

term selection, the use of synonyms for low frequency
terms, and the construction of term phrases for high

frequency terms (Ch. 3 of [125]). Documents are repre-

sented by the weighted number of occurrences of each

index term (the term frequencies). Commonly, term fre-
quencies are weighted using some variation of inverse

document frequency, to emphasize terms that appear in

fewer documents in the collection, and thereby likely to

be more informative [62, 125]:

ui = freq(i, u) · log
N

docfreq(i)

where freq(i, u) is the frequency (occurrence count) for

term i in document u, docfreq(i) is the number of doc-

uments containing term i, and N is the number of doc-
uments in the collection.

The most common similarity measure used is the

cosine of the angle between two document vectors ui

and vi:

sim(u, v) = cos(u, v) =

∑n

i=1 uivi
√

∑n

i=1 u2
i

√

∑n

i=1 v2
i

This is simply the inner product of the document vec-

tors divided by the product of their magnitudes. If term

vectors are first normalized (length 1.0), then the de-

nominator need not be computed. sim(u, v) has a value
of 1 when the vectors coincide (0◦), and 0 when the vec-

tors are orthogonal (±90◦).

For large document collections, the document in-

dex must be pre-structured to reduce the number of
comparisons made for a query. A common approach

uses clustering, and then compares a query vector with

the centroid of each child cluster at a node (Ch. 6.4

of [125]). The cluster tree is traversed top-down un-

til individual documents are reached, pruning paths in
which similarity is less than a threshold value. This

greatly reduces retrieval time, but carries the risk that

the document(s) most similar to the query will not be

located (see [40] pp. 185-186). Smeulders et al. identify
three methods for hierarchically decomposing a docu-

ment index in image retrieval [132]: partitioning the

feature space, partitioning the data, or distance-based

indexing relative to examples. Spatial data structures

used by these three decomposition approaches, respec-
tively, include k-d trees, R-trees, and M-trees [126].

A number of MIR systems implement vector-space

models using the popular Lucene13 [60] indexing and re-

trieval library, both for indexing entire documents that

13 http://lucene.apache.org
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include expressions [91, 102], and for indexing individ-

ual expressions in LATEX documents [168]. In these ap-

proaches, mathematical symbols are treated as terms,

and the expressions are linearized (‘flattened’) before

conventional text-based indexing is performed. For ex-
ample, consider the LATEX expression for xt−2 = 1,

which is xˆ{t-2} = 1. Below we show the symbol lay-

out tree for the LATEX expression, along with the lin-

earization produced by Miller and Youssef [102]:

x

SUPER

t − 2

= 1

x BeginExpt t minus 2 EndExpt Eq 1

This string is a depth-first linearization of the symbol

layout tree for the expression. Note that the exponent

scope is represented by folding the LATEX superscript

operator into the fence tokens BeginExpt and EndExpt.

For the ActiveMath system, OMDoc is used to encode
the document collection, and OpenMath representa-

tions for expression operator trees are extracted and lin-

earized depth-first in a manner similar to the example

above [91]. Once mathematical expressions have been
converted, documents are indexed using traditional term-

based indexing methods. Lucene may be used to auto-

matically determine the set of index terms for use in

indexing and retrieval.

3.3.2 Tree-Based Indexing and Retrieval

Other methods for indexing and retrieving math ex-

pressions use the hierarchical structure in layout and

operator trees. The hierarchical structure can be used
in its entirety, or as a set of trees representing subtrees

of the expression. Retrieval is performed using subex-

pressions extracted from the query expression.

Matching operator trees may be viewed as a varia-
tion of the unification problem addressed in automated

reasoning systems: given a query expression, identify

indexed expressions whose variables and/or subexpres-

sions may be matched consistently with those of the
query. Graf developed a term indexing method for first-

order logic known as substitution tree indexing [57]. A

substitution tree represents the structure of all indexed

first-order logic terms, with paths from the root to the

leaf defining a sequence of variable substitutions. Sub-
stitution trees can be adapted for indexing operator

trees in a straightforward manner, as illustrated in Fig-

ure 9.

Retrieval in a substitution tree is performed through

a backtracking search over variable bindings (similar

to Prolog [57]). Using different matching functions, we

0

0 → exp(f(z, a, z))

0 → sqrt(f( 1 , 2 , 3 ))

3 → a

1 → z, 2 → y 1 → −1, 2 → k

1 → 1, 2 → z, 3 → n

0 → π

Fig. 9 A Substitution Tree (adapted from Kohlhase and Su-
can [78]). The tree represents all indexed expressions using
paths of substitutions. Substitution variables are represented by
boxed numbers. Five expressions are represented at the leaves
of the tree: exp(f(z, a, z)), sqrt(f(z, y, a)), sqrt(f(−1, k, a)),
sqrt(f(1, z, n)) and π.

may search for exact matches, instances, generaliza-

tions, and variant substitutions. An example of instance-

based matching using Figure 9 is that the query sqrt(X)

returns the three expressions at the leaves of the tree
that contain an outermost sqrt(). An example of match-

ing with generalizations is to ignore specific symbol

identities. In matching with variant substitutions, we

match expressions that are equivalent up to variable
renaming.

Substitution tree retrieval was applied to MIR by

Kohlhase and Sucan [78]. To simplify matching sub-

expressions, Kohlhase and Sucan add all sub-expressions

in the document collection to the substitution tree along

with their parent expression. They claim that this leads
to a manageable increase in the index size, because

many sub-expressions are shared by the larger expres-

sions, and each sub-expression appears only once in the

substitution tree. To facilitate rapid retrieval, all sub-
stitution tree nodes contain references to matched ex-

pressions in the document collection.

Earlier, a related method was used by Einwohner

and Fateman for searching through integral tables, given

an integrand expressed as an operator tree in Lisp (e.g.

(expt (log (cos x)) 1/2)) [41]. Expressions from the
integral tables were indexed using hash tables: after

normalization of the Lisp expressions, the head (first

atom) of each list in the lisp expression is used as the

key for storing the associated sub-expression (sub-tree)

in the table. Retrieval was performed by recursively
looking up each lead atom (key); if the first key re-

turns a non-empty set of expressions, the current key is

expanded to include the next key, and the intersection

of the previous returned and current lists of matches is
taken. This differs from the substitution trees in that

operator trees are matched using a depth-first traversal

of the query operator tree rather than based on com-
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mon substitutions that may not be strictly depth-first,

and symbols are matched exactly.

Hashimoto et al. generate an index using paths from

the root of the tree for Presentation MathML expres-

sions [59]. Expressions are indexed in an inverted file us-

ing two paths: the first (leftmost) and the deepest paths
from the root of the tree to a leaf. Retrieval is performed

based on the longest partial match along the two paths.

The authors also consider producing inverted files us-

ing the nodes at the first depth with more than three
nodes.

Kamali and Tompa propose rewriting trees and com-

puting relevance using a set-based measure [67], in the

context of Content MathML (an operator tree encod-

ing). Intersections between nodes in two operator trees
are defined using syntactic equivalences (possibly in-

volving transformations, e.g. to detect a + b = b + a)

with a noise/mismatch tolerance. A weighting function

ω is used to weight trees by the nodes they contain,

most simply counting nodes in the tree:

simtree =
ω(T1 ∩ T2)

ω(T1) + ω(T2)

This is closely related to the Tanimoto metric for set

similarity ( [40], p. 188). This approach resembles the

graph probing methodology for comparing table struc-
ture recognition algorithms [64, 92].

Miner and Munavalli [104] take a different approach,

in which symbol layout trees expressed in Presentation

MathML are decomposed into a set of n-grams (lin-

earized sub-expressions). In their formulation 1-grams
are single symbols; higher n-grams are defined by the

number of children of a node in the MathML tree (i.e.

there may be more than 5 symbols in a ‘5-gram’). In the

symbol layout tree, weights are assigned to ‘n-grams’

associated with nodes based on their depth in the tree,
structural complexity, and length (the ‘n’ for the asso-

ciated n-gram). A threshold is then used to select nodes

for use in querying: roughly speaking this prefers larger,

and more complex sub-expressions. Expressions are in-
dexed based on the linearized ‘n-grams’, and retrieval

is performed by combining queries issued to a Lucene

implementation.

In image-based MIR, representations for symbol lay-

out trees have been constructed using X-Y cutting to

decompose document pages and expression regions [161].
Recursive binary X-Y cuts decompose each page image,

and subtrees of the X-Y tree up to a maximum depth

and number of components are stored in a single ex-

pression index. Indexed regions are then re-segmented
using a simplified X-Y cutting, to approximate symbol

layout trees for expressions present in the candidate

set. Previously, pixel projection profile methods with

post-processing were used successfully to recover sym-

bol layout trees from expression images by Okamoto

et al. [111, 153]. Retrieval is performed using (stan-

dard) XY-tree structure, and dynamic time warping of

query and candidate image columns similar to the word-
spotting technique of Rath and Manmatha [119,120].

A related approach was developed for visual match-

ing of LATEX-generated expression images [168]. Con-

nected components in the query image are matched
with connected components in archived images using vi-

sual similarity of connected components, again based on

features similar to Rath and Manmatha’s. The match-

ing process also measures similarity in layout between

pairs of connected components.

3.4 Query Reformulation and Relevance Feedback

After query submission the retrieved documents are

presented to the user through an interface. In order to
support reformulation of queries, one interface is nor-

mally used both for constructing queries and evaluating

results, as seen in Figure 5. If a user’s information need

is satisfied by a retrieval result or if the user becomes
frustrated, he or she will stop searching. Otherwise the

user may craft a new query or may refine the existing

query, for example by filtering retrieved documents by

source or publication year (Figure 5b). New queries may

also be created automatically, in response to relevance
feedback.

Users provide relevance feedback by indicating whether

returned documents are relevant or irrelevant to their

information need. These positive and negative examples
can be used to automatically produce a new query. Rel-

evance feedback is provide through the result interface,

using a selection mechanism such as check boxes, or

clicking on relevant/irrelevant objects. For interesting

examples from image retrieval, see [123].
For vector-space models, a new query may be pro-

duced by averaging and re-weighting the vector ele-

ments that define the feature space: increase the weights

for features present in positive examples, and decrease
the weights for features in negative examples. A con-

cise explanation of relevance feedback operations us-

ing re-weighting is given by Salton and McGill [125]

Chs. 4.2.B, 4.3.B and 6.5. Machine-learning methods

have also been investigated. Discriminative methods es-
timate classification boundaries for relevant and irrele-

vant documents, whereas generative methods estimate

probability distributions [35, 172].

Ideally, relevance feedback algorithms learn opti-
mal transformations of the feature space using user-

provided relevance indications [172]. Optimality is de-

fined by the user’s information need, which may change
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as the user interacts with the system [35]. Modifications

produced through relevance feedback may occur in mul-

tiple ways: the set of searched documents may be mod-

ified, the feature representation changed, or the simi-

larity metric modified. For annotated images, the rela-
tionships between text annotations and image features

are often exploited, e.g. producing ‘concept classes’ for

sets of images that have similar annotations [132].

At the time of this writing, the authors are un-

aware of any work on relevance feedback for MIR. In
text-based retrieval, Hearst has noted that despite sig-

nificant improvements for text-based retrieval in lab-

oratory experiments when relevance feedback is used,

modern search interfaces tend not to provide a rele-
vance mechanism (see [61], Ch. 6). Instead, they make

metadata visible for query refinement (e.g. Figure 5b),

or suggest alternate queries. In contrast, for image-

based retrieval systems using query-by-example, rele-

vance feedback is essential for a usable system, and is
an active area of research. Zhou and Huang have sug-

gested two reasons for this [172]: 1) images are more

ambiguous than words, and 2) evaluating the relevance

of text documents may require more effort than evalu-
ating the relevance of images.

For MIR, it may often be faster to discern the rele-

vance of a document based on the appearance of expres-

sions than based on the document text, particularly in

the case where a user is browsing rather than searching
for a specific item as in done in Zhao et al.’s experi-

ment [171]. This distinction between retrieval tasks in-

volving a specific item vs. a class of items or browsing

is important in information retrieval [35, 132]. In ad-

dition to using expressions within queries, returned ex-
pressions may be used for relevance feedback. A revised

query can be generated based on the relevant and non-

relevant expressions’ visual appearance, symbol layout,

mathematical content and associated text. We feel that
this is an important future research direction.

3.5 Evaluation of Math Retrieval Systems

Evaluation of information retrieval systems is difficult

due to variation in the information needs of individual
users, and the impracticality of having participants in

human experiments identify all relevant documents in

large collections (see [125] Ch. 5, [22] and [132]). This

leads to the definition of relevance being inherently sub-

jective.

In practice, it is necessary to either define test sets

for a pre-defined collection, query set, and relevance as-

sessments as done for many of the NIST TREC retrieval

competitions,14 or to perform user-centered evaluations

where searching behavior within real workflows (e.g.

[75,171]) or constructed task scenarios is observed, with

assessments provided by participants regarding the sat-

isfaction of their information needs [22]. For off-line
experiments such as those done for TREC, relevance

assessments are usually binary (relevant/non-relevant)

and produced before an experiment is run. In contrast,

user-centered experiments permit relevance evaluations
to be made using a scale, and allow relevance evalua-

tions to change during iterations of relevance feedback.

Constructed task scenarios paired with pre-defined rele-

vance assessments allow off-line as well as user-centered

metrics to be collected [22]. Hearst provides guidelines
for evaluating retrieval interfaces [61].

The standard metrics for off-line retrieval are recall

(% of relevant documents retrieved) and precision (% of

retrieved documents that are relevant). There is a well-
understood trade-off between the metrics: as more rele-

vant items are located (higher recall), the number of ir-

relevant items returned generally increases (lower preci-

sion), and vice versa. Relevance assessments by human

participants normally consider just the first k elements
returned. This is sometimes called precision-at-k (e.g.

with observations at k = 1, k = 5, and k = 10 [61,132]).

For off-line experiments, precision-at-k may be used to

measure relevance for results users might actually ex-
amine. A variation frequently used in image retrieval is

mean average precision [35]. Here, the precision from

the first to each of returned results up to top k-th re-

sult is computed (for {(1), (1, 2), . . . , (1, 2, . . . , k)}) and

then averaged, producing a bias for relevant results that
have high rank. This set of precision values is averaged

for the query, and the mean of these average precisions

is computed over the query test set.

Systems are often compared visually by plotting pre-
cision against recall (‘precision-recall’ curves). More quan-

titative comparisons have been made using statistical

hypothesis tests, or using AUC (area-under-the-curve)

metrics for precision-recall plots. AUC metrics require

interpolation for missing points [125]. Salton and McGill
demonstrate using the Wilcoxon signed rank test to

compare average precision for different recall value ranges

(≤ 0.1, . . . , ≤ 1.0, see [125] Chapter 5.2.C), and deter-

mine whether the distributions are significantly differ-
ent. The Wilcoxon test is non-parametric, making no

assumption regarding the distribution of recall/preci-

sion values (e.g. they need not be normally distributed,

as for a t-test).

To date published evaluations for MIR systems have
been largely illustrative, and by example. One inter-

esting approach compared retrieval using the Active-

14 Text REtrieval Conference http://trec.nist.gov/
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Math system [91] with retrieval from the ActiveMath

web pages using the Google search engine, as well as a

human-centered evaluation using a ‘talk aloud’ proto-

col, where participants are asked to speak their thoughts

as they completed search tasks involving keywords and/or
small expressions. Marinai et al. [96] provide precision-

recall plots for their method for image-based math sym-

bol retrieval using a bag-of-visual-words produced from

clustered shape contexts [15]. Precision at 0% recall
is presented, with precision values as high as 87% re-

ported. Examination of the precision-recall curves shows

a rapid decrease in precision before recall reaches ap-

proximately 20% (precision falls to roughly 20% in all

conditions presented), but this likely includes many more
elements than would be considered by a user. Their

metrics were produced for almost 400 queries on a very

large dataset of binary symbol images from document

scans (from the Infty dataset [142]). Note that in this
case determining relevance reduces to matching symbol

labels in ground truth.

Yu and Zanibbi use a combination of off-line and

user-centered evaluation for an image-based handwrit-

ten expression retrieval system [161, 167]. Participants
were shown typeset expressions, which they drew using

pen-and-paper. The pages were scanned to produce ex-

pression images for use in retrieval. For simplicity, only

the region containing each test expression was identified
in the ground truth. The system returned a ranked list

of ten regions, each corresponding to the best match on

an individual page. The observed measurements were

(1) maximum ratio of overlap for the target region,

and (2) whether the associated page appeared in the
top k elements for k = {1, 5, 10}. These are essentially

recall-at-k measures, but where a specific expression is

sought after. These metrics are conservative: no credit

is given for anything other than one region on a sin-
gle page. Search was run offline, and participants were

brought back to evaluate the top-10 regions using a

Likert scale (see Figure 10); participants were asked to

evaluate the proportion of the query expression con-

tained in each returned region. For comparison, the
original query images were also used for retrieval, and

performance evaluated on-line by each participant, and

off-line. Retrieval of original images was much more ef-

fective than for handwritten queries; the average max-
imum ground truth region overlap was 43% for hand-

written queries, but 90% for the original images. The

corresponding human similarity evaluations were an av-

erage of 3.15/5 for the handwritten queries, and 4.83/5

for the original images.

Going forward, perhaps the most important direc-

tion in evaluating MIR systems is determining exper-

imental protocols that can be easily replicated, and

that reduce the need for manual identification of rele-

vant documents or document regions, and perhaps cre-

ating a labeled test set similar to those developed for

TREC. For MIR in general, relevance pertains to both

text and expressions, making this a very time-intensive
task, one that is sensitive to the expertise of the in-

tended users. Once a reasonable method for defining or

approximating relevance is determined, existing infor-

mation retrieval metrics are likely sufficient.

4 Recognition of Mathematical Notation

Pattern recognition methods for mathematical notation

may be used in a variety of contexts. Firstly, in Mathe-
matical Information Retrieval, math recognition can be

used to interpret user queries and to annotate document

collections. An important open problem is to develop

robust MIR methods that make effective use of recog-

nition results even when recognition errors are present.
Secondly, math recognition is used to support the inser-

tion of expressions into documents; for example, entry

of LATEX expressions using images, pen, keyboard and

mouse is illustrated in Figure 1. Thirdly, math recogni-
tion is used to recover layout and operator trees from

images, handwritten strokes, or vector-based encodings

(e.g. .pdf files). Finally, math recognition is used to in-

tegrate pen-based math entry into CAS systems (see

Figure 2); in the future, expression images might also
be used as input. This requires recognition of mathe-

matical content, with the resulting operator tree used

to support evaluation and manipulation of the expres-

sion.
Research on the recognition of math notation began

in the 1960’s [5, 6, 31, 98], and a number of surveys are

available [19, 28, 52, 146]. In this paper we do not at-

tempt to summarize the entire history as provided in

these surveys, but rather provide an updated account
of the state of the art, with an emphasis on advances

since the well-known survey by Chan and Yeung [28]

written a decade ago.

Many factors make the recognition of mathemati-
cal notation difficult. There may be noisy input in the

case of images and strokes, and ambiguities arise even

for noise-free input (see Figure 7). Math notation con-

tains many small symbols (dots and diacritical marks)

which can be difficult to distinguish from noise. Sym-
bol segmentation can be difficult, particularly in hand-

written mathematical notation. Symbol recognition is

challenging due to the large character set (Roman let-

ters, Greek letters, operator symbols) with a variety
of typefaces (normal, bold, italic), and a range of font

sizes (subscripts, superscripts, limit expressions). Sev-

eral common symbols have ambiguity in their role; for
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Fig. 10 User Interface for Evaluating Image-Based Query-by-Expression using Handwritten Queries [161]. Each returned region
is ranked on a 1-5 scale, with 1 indicating no match, 3 indicating roughly half the query is matched, and 5 indicating the query is
contained completely within a returned region.

example, a dot can represent a decimal point, a mul-

tiplication operator, a diacritical mark, or noise. Also,

spatial relationships are difficult to identify; for exam-

ple, it is difficult to distinguish between configurations
that represent horizontal adjacency and those that rep-

resent superscripts or subscripts. The lack of redun-

dancy in mathematical notation means that relatively

little information is available for resolving ambiguities.

As shown in Figure 3, we identify four key problems
that every math recognition system must address.

1. Expression detection

2. Symbol extraction or symbol recognition

3. Layout analysis

4. Mathematical content interpretation

These key problems are discussed in Sections 4.1 to 4.4.
Most systems address these problems in sequence, but

alternative control flow can be used to allow analysis

at later stages to constrain or repair decisions made in

earlier stages (Section 4.5), or to integrate and jointly

optimize solutions to two or more of these problems
simultaneously (Section 4.6).

4.1 Expression Detection

The input to a math recognition system can consist

of vector graphics (such as PDF), pen strokes, or a

document image. As discussed below, different chal-
lenges arise in detecting expressions in each of these

input types, and there is an interaction between de-

tecting symbols and expressions. For document images,

some methods apply OCR or perform a coarse classifi-

cation of connected components before segmenting ex-
pressions in documents, while others attempt to locate

expressions using geometry or other methods. For pen-

based entry systems, symbol segmentation and recog-

nition is normally performed as the user writes, in part
because it simplifies the system design, but also because

it avoids requiring the user to check recognition results

over a large set of objects and relationships.

4.1.1 Expression Detection in Vector Graphics

For vector graphics, work has begun on methods for ex-

tracting symbols and recognizing manually segmented
expressions, but not on methods for automatic detec-

tion. Currently vector file formats such as PDF do not

demarcate math regions. This is an important direction

for future work, particularly for Mathematical Informa-

tion Retrieval applications.

4.1.2 Expression Detection in Pen-based Input

For pen-based applications, expressions are often seg-
mented using gestures [85, 144]. For example, the ‘⌋’
gesture is used in the E-chalk system to indicate the

end of an expression, and request its evaluation (see

Figure 2(b)). Typically, a gesture gives a partial or ap-
proximate indication of the extent of an expression. Ad-

ditional clustering or region growing methods can be

applied, based on the properties of recognized symbols.

Matrix elements can be detected using similar meth-

ods [89, 147].

4.1.3 Expression Detection in Document Images

In images, expressions are normally found using prop-
erties of connected components. Before discussing these

methods, we distinguish between displayed expressions

that are offset from text paragraphs and expressions

that are embedded in text lines (Figure 11). Displayed

expressions are easier to detect than embedded expres-
sions, because text lines and displayed expressions tend

to differ significantly in attributes such as height, sep-

aration, character sizes and symbol layout [52, 66].

Kacem et al. detect displayed expressions in images

based on simple visual and layout features of adjacent

connected components [66]. Embedded expressions are
found by coarsely classifying connected components.

Regions are grown around components that are iden-

tified as operators. The region growing is based on the
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Fig. 11 Expression Detection and Layout Analysis. At left, the document image contains a mix of expressions that are displayed

(vertically offset) and expressions that are embedded in textlines (from [66]). Top right: a detected baseline (red) and minimum
spanning tree used to associated non-baseline symbols with symbols on the baseline [144]. Bottom right: a virtual link network, in
which a minimum spanning tree is constructed that minimizes costs based on symbol identity and spatial relationships [42].

expected locations for operands (i.e. operator range and

dominance).

An alternative approach for detecting embedded ex-
pressions first locates text lines, then computes sym-

bol n-grams [52]. Training data provides frequencies for

adjacent symbols, in textlines that are pure text, ver-

sus textlines that contain embedded expressions. A 97%
recognition rate is reported for this technique. In sub-

sequent work, Garain extends this approach by aver-

aging over more general feature values for embedded

and displayed expressions [49]. He obtained recall rates

as high as 95% for embedded expressions, and 97% for
displayed expressions.

Offset expressions can be detected without symbol

classification. Drake and Baird use properties of the

neighbor graph for connected components (a pruned
Delaunay triangulation) to distinguish text lines from

displayed expressions [39]. The reported accuracy for

this method is high (over 99%), but it has not yet been

used for embedded expressions.

4.2 Symbol Extraction or Symbol Recognition

OCR for math is a difficult problem, due to the large

number of classes (see [94]), and problems caused by

touching and over-segmented characters [27,52,99,135].

Berman and Fateman observed that commercial optical
character recognition systems with recognition rates of

99% or higher fell to 10% or less once tried on perfectly

formed characters in mathematical equations: heuristics

that work well on straight text, multi-column printing
and tables fail with math notation because of variations

in font size, multiple baselines, special characters, and

differing n-gram frequencies [16].

Techniques have improved since, and recognition rates

as high as 97.7% have been reported for typeset symbols

in the work of Malon, Uchida and Suzuki [94], where

Support Vector Machines [154] are used to reduce com-
mon class confusions in the Infty OCR system [141] for

608 symbol classes.

Accuracies for online recognition of handwritten math-

ematical symbols have also been reported at rates of
over 95%. In recent years there have been a number

of methods based on Hidden Markov Models (HMMs

[117]) that extend early work by Winkler [158] and Kos-

mala and Rigoll [80]. There is a general trend here,
where HMMs were first used to perform simultaneous

segmentation and recognition for a time series of pen

strokes, but now later stages in processing, particularly

layout and content information, are being incorporated

into training and recognition stages. An open challenge
is to adapt these methods to better handle ‘late ad-

ditions’ to symbols, e.g. when a dot is added to the

top of an ‘i’ after a large expression has been entered.

Developments in HMM-based recognition methods are
discussed further in Section 4.6.

Another group of successful methods employ fea-

tures that approximate handwritten strokes via linear

combinations of basis vectors or parametric curves. Var-

ious techniques for this have been used, including Prin-
cipal Components Analysis [99] and polynomial basis

functions [32, 54, 55]. These features allow recognition

to be performed effectively within a small feature space

(e.g. using the first fifteen principal components [99]),
while allowing regeneration of the original data up to a

chosen level of fidelity, making the interpretation of the

features simple.
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Voting-based methods for classifier combination have

been employed to good effect. The method of Golu-

bitsky and Watt [56] utilizes runoff elections in order

to combine 1-against-1 SVM classifiers for a set of 280

symbols (280*279/2 = 39,060 classifiers in total). Ma-
jority voting is used first, followed by a runoff election

where only votes for the top N classes are considered to

break ties. LaViola and Zelenik applied AdaBoost [45]

to another all-pairs classifier ensemble, with a binary
classifier for every pair of classes. Each base classifier

uses only a single feature; most are measured on strokes,

but output from the Microsoft handwriting recognizer

is included as a feature [86]. This work was concerned

with adapting a writer-independent classifier (the Mi-
crosoft classifier) to the handwriting of specific individ-

uals through stroke-based features.

4.3 Symbol Layout Analysis

Visual syntax refers to the layout and topology of sym-

bols. A variety of formats can be used to represent vi-

sual syntax, the essence of which may be represented

by a symbol layout tree (see Figure 4).
A number of techniques have been used to recover

symbol layout. The first three approaches discussed be-

low use recursive decomposition, based on operator dom-

inance, on cutting pixel projection profiles, and on iden-

tification of symbols on the dominant baseline. Follow-
ing that, we discuss approaches based on penalty graph

minimization.

Operator-driven decomposition recursively decom-

poses a math expression by using operator dominance
to recursively identify an operator which has most or

all of the remaining symbols as its operands [31]. These

symbols are partitioned into the expected operand loca-

tions [29, 31]. Unlike the other approaches described in

this section, operator-driven decomposition constructs
an operator tree (Figure 4b) directly from the symbol

layout, rather than first producing a symbol layout tree.

The earliest example of a simple pen-based math calcu-

lator made use of this method [30]. Lee and Wang [88]
use a similar approach to recover symbol layout, using

operator dominance to group symbols vertically, fol-

lowed by determining horizontal adjacencies between

symbols.

Projection profile cutting recursively decomposes a
typeset math expression using a method similar to X-

Y cutting [108]. Pixel intensity histograms in the ver-

tical and horizontal directions are computed, followed

by splitting at gaps identified in the histograms [111,
112, 153]. The first cut is made in the vertical direc-

tion (roughly speaking, to separate horizontally adja-

cent subexpressions), after which the direction for cut-

ting alternates. An improvement was suggested by Raja

et al., in which connected components are first extracted,

and then regions containing more than one connected

component that cannot be decomposed during cutting

(e.g. for square roots or kerned characters) have the
largest connected component removed, continuing cut-

ting with the remaining connected components [118].

In related X-Y cutting methods, thresholds for cutting

have been chosen using the estimated dominant char-
acter height and width for a page (using the mode of

run lengths in horizontal and vertical projections at the

page level), and then scaling these thresholds linearly

based on the size of the area to be cut relative to the

entire page [128].

Baseline extraction decomposes a math expression

by recursively identifying adjacent symbols from left-to-

right on the main baseline of an expression, and then

partitioning remaining symbols into regions relative to
the baseline symbols [162,163]. Operator dominance in-

formation is used so that symbols need not be precisely

aligned in some cases (e.g. for a symbol following a

binary operators such as +). Baseline extraction has
been used in a number of pen-based math entry sys-

tems [7, 116, 133, 145, 147], though the technique may

be used for symbols taken from document images as

well. Some work has been carried out into using more

sophisticated symbol layout models (e.g. using multiple
points on the bounding box in determining spatial rela-

tionships [145]), as well as using a minimum spanning

tree for the symbol partitioning step [145], as shown in

Figure 11. To handle ambiguous spatial relationships,
fuzzy methods have been used to produce multiple in-

terpretations [170].

Penalty graph minimization is a more global ap-

proach to layout recognition, in which candidate rela-

tionships between symbols are defined before minimiz-
ing a penalty criterion. Eto, Suzuki et al. make use of

Virtual Link Networks to represent penalties for can-

didate symbol identities and spatial relationships (see

Figure 11), and then compute the minimum-spanning
tree of the graph to produce a final interpretation [42].

Spatial relationships in the networks are binary (be-

tween symbol pairs), and of five types: above, below,

inline, superscript, subscript. Candidate spatial rela-

tionships and penalties are defined based on symbol
bounding boxes (normalized relative to the estimated

font height and writing line location), and box cen-

ter points [4,42]. Discrimination of spatial relationships

may be improved through document-specific adapta-
tion for determining ascender/descender/center regions

on writing lines. A recognition rate of 99.57% is re-

ported for a test on valid adjacent symbol-pair rela-
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tionships for the Infty dataset (158,308 adjacent symbol

pairs, taken from the ground truth).

Matrix layout requires special processing. The fol-

lowing approaches have been reported. The virtual link

network method was extended to use projections of
symbols inside a matrix, and then solve a resulting

linear system of equations to estimate row and col-

umn positions [69, 70]. Other authors have performed

segmentation of matrix elements using simpler projec-
tions of symbol bounding boxes [145] or region grow-

ing [88, 147] before analyzing elements using a single-

expression technique. Recently there has been work to

allow matrices containing ellipses to be used within pen-

based systems integrated with computer algebra sys-
tems [89,127,147]. In handwritten expressions, matrices

can be processed by detecting left fence symbols, fol-

lowed by clustering and projection analyses [150,151].

At this point, no one technique for layout analy-
sis completely dominates another, and improving these

methods is an active area of research. It may be worth

exploring methods for combining layout analyzers, in a

manner similar to combination methods used for clas-

sification.

4.4 Mathematical Content Interpretation

Many math recognition systems do not perform anal-

ysis beyond symbol layout, and such systems do not
construct a representation of the mathematical mean-

ing of the expression. For systems designed to evaluate

expressions and/or integrate with Computer Algebra

Systems however, a representation of the logical rela-
tionships between symbols, and a representation of do-

main semantics is necessary. Various encodings can be

used to represent the hierarchy of operators, relations

and operands, which are generally equivalent to some

form of operator tree (Figure 4b). Generally the defini-
tions for operators and relations are assumed for a given

math dialect in recognition systems, although content

dictionaries such as those provided by OpenMath [37]

might be used to encode and lookup the operations as-
sociated with symbols.

Recovering an operator tree from symbol locations

may be understood as accepting sentences from a for-

mal visual language [97], using a parser to analyze sym-

bol layout in order to produce an operator tree. The
earliest approach to recognizing symbol layout, by An-

derson, is of this type: an operator tree is constructed

top-down, and then a string representing the tree struc-

ture is synthesized bottom-up [5]. A number of differ-
ent attributed grammar types have been used, includ-

ing context-free string grammars [43] and graph gram-

mars [58, 87, 137].

Grammar-based methods commonly represent sym-

bol locations by geometric objects such as bounding

boxes or convex hulls. The placement of symbol cen-

troids reflects the presence of ascenders (h) and descen-

ders (y). Predicates and actions associated with gram-
mar productions make use of the bounding boxes and

centroids to determine spatial relationships. It should

be noted that grammars are a very general formalism,

and variations of layout analysis techniques seen in the
previous section have been employed within the pro-

duction rules of grammars designed to recover the op-

erator tree of an expression. Examples included syntac-

tic recognition using operator-driven decomposition [5],

and baseline extraction [14]. A key issue is the geometric
model used to partition the input and define primitives.

For example, using unrestricted subsets of image pixels

as primitives is far too computationally intensive. In-

stead, primitive regions are represented using geomet-
ric objects such as axis-aligned rectangles, along with

constraints on allowable orderings and adjacencies be-

tween regions. Liang et al. provide a helpful overview,

including examples from math recognition [90]. Differ-

ent parsing algorithms explore the space of legal ex-
pressions in different orders, some more efficiently than

others.

Stochastic context-free grammars allow uncertainty

in symbol recognition, layout and/or content to be ac-
commodated, by returning the maximum-likelihood deriva-

tion for the input image [34] or symbols [103]. These

methods are discussed further in Section 4.6. Some more

recent parsing methods that model uncertainty include

fuzzy-logic based parsing [44,53], and A*-penalty-based
search [122].

As discussed previously, usage of notation differs sig-

nificantly in different dialects of mathematical notation,

and so the space of operator trees and corresponding
grammar productions need to be adapted for different

mathematical domains of discourse. The notion of de-

vising one grammar to cover all of mathematical nota-

tion seems quite impractical, though defining grammars

with some utility for a specific domain (e.g. matrix al-
gebra) is possible.

Methods that permit recognition to be defined at

the level of a grammar are very appealing, in that with

suitable implementations for pattern recognition meth-

ods being available, a language definition may be suffi-
cient for recognizing a dialect of mathematical notation,

including layout and mathematical content. However, it

has been observed that the tight coupling between the

assumed recognition model and grammar formalism can
make it difficult to adapt syntactic pattern recognition

methods. One compromise is to use a modular orga-

nization similar to a compiler, where recognized sym-
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bols are combined into tokens and have their layout

analyzed, after which an operator tree is constructed

through restructuring and annotating the symbol lay-

out tree [18, 163]. More advanced techniques might in-

terleave and/or iterate these stages.

4.5 Post-processing: Constraining Outputs

Pattern-recognition systems commonly use post-processing

to correct preliminary recognition results. Many post-

processing operations apply contextual constraints to

results for individual objects and relationships identi-
fied largely in isolation of one another [149]. In doc-

ument recognition, perhaps the most well-known ex-

ample of post-processing is the use of dictionaries and

n-grams to refine preliminary OCR results obtained for
individual characters [107,115].

Ten years ago, the last IJDAR survey on math recog-

nition [28] identified post-processing as an important di-

rection for future research. Indeed, significant advances

for post-processing of math recognition have been made
in the last ten years. Several methods are similar to

dictionary and n-gram methods used for OCR. Others

incorporate syntactic constraints on two-dimensional

symbol layout or expression syntax; these methods work
with symbol layout trees and operator trees respec-

tively.

4.5.1 Statistical Analysis of Math Notation

Statistical information about math notation is useful

in post-processing. The frequency estimates described
below have been used to re-rank and constrain prelim-

inary symbol recognition results for handwritten math

entry [134]. In addition, they have been used to catego-

rize mathematical documents by Math Subject Classi-

fication categories [155]; so far, this appears to be the
only paper published on this interesting problem. Also,

recognition systems can use information about symbol

frequencies and expression frequencies as prior proba-

bility estimates.
So and Watt [138] conducted an empirical study of

over 19,000 papers stored in the ArXiv e-Print Archive.

This archive at http://arxiv.org provides electronic ver-

sions and LATEX source of papers from scientific, mathe-

matical and computing disciplines. So and Watt’s study
determined the frequencies for expression usage in dif-

ferent mathematical domains, as identified by the Math-

ematical Subject Classification described in Section 3.1.

Documents were categorized using the top-level Math-
ematical Subject Classification provided by the ArXiv.

Analyses were made at the symbol layout level after

converting the available LATEX to Presentation MathML.

The statistics produced by So and Watt make a dis-

tinction between identifier symbols and operator sym-

bols. In both cases, but especially for operator sym-

bols, plotting symbols by decreasing frequency shows

an exponential decrease in frequency with rank; this
is similar to the Zipf distribution [173] seen for word

frequencies. Similarly, expressions become significantly

less frequent as they become larger and more struc-

turally complex. Interestingly, the number of distinct

expressions increases with expression size and complex-

ity.

In a later study, Watt focused on engineering math-

ematics, analyzing the LATEX sources for three engineer-
ing mathematics textbooks [155]. In this study, all sym-

bols were analyzed together, producing another Zipf

distribution. N-grams (for n ∈ {2, 3, 4, 5}) were pro-

duced by traversing the symbol layout tree in writing

order. The leaves of the tree, which store the symbols,
provide the starting point. The traversal collects lay-

out information to provide context: there is information

about the spatial relationship between the n-gram sym-

bols and symbols on neighboring baselines (e.g. frac-
tions, super/subscript, containment by square root).

4.5.2 Heuristic Rules and Contextual Constraints

Heuristic rules and manually constructed language mod-

els are receiving use in post-processing. Chan and Ye-
ung [29] describe an error-correcting parsing technique

for converting handwritten symbols into operator trees,

adding heuristic rules to re-segment characters recog-

nized with low confidence, to insert epsilon (empty)

symbols to recover from parse errors (e.g. after detect-
ing unbalanced parentheses), and to replace symbol iden-

tities to make them consistent with the expression gram-

mar (e.g. replacing ‘1’ by ’/’ in ‘y 1 x’, and ‘+’ by ‘t’

in ‘+an’). Garain and Chaudhuri make use of a simple
LATEX grammar to constrain handwritten symbol recog-

nition alternatives [50], while Kanahori et al. present

work in analyzing the mathematical content (opera-

tor tree) for matrices in order to revise symbol layout

analysis [68]. A more recent technique by Fujiyoshi et
al. [47,48], similar to that of Chan and Yeung, defines a

grammar for valid symbol layout trees and then parses

initial recognition results in order to identify invalid

structures. During parsing, syntax errors are visualized
so that users may identify the specific symbols associ-

ated with parse errors (e.g. unbalanced fence symbols).

Contextual constraints can also be incorporated into

the recognition process itself. For example, Kim et al.
[73] modify the penalty metric used in an A* search

for constructing symbol layout trees for handwritten

expressions [122]. The penalty metric considers mea-
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sures of consistency of symbol size, style, and repe-

tition, along with symbol n-grams and repeated sub-

scripting.

4.6 Integration of Recognition Modules

Integration of recognition modules has been an impor-

tant new area of development in the last ten years.

Most approaches involve some form of dynamic pro-

gramming. The earliest work in this area is Chou’s in-
fluential paper describing the use of stochastic context-

free string grammars for analysis of typeset images of

mathematical notation [34]. This approach combines

segmentation, recognition, and layout analysis, and is
highly tolerant of bit-flip noise. Subsequent work in-

cludes extensions by Hull [65], and extension to a more

general HMM-based model for document image decod-

ing [79].

Stochastic context-free grammars associate a proba-
bility with each derivation rule; the derivation rules as-

sociated with each nonterminal have probabilities that

sum to one. The probability of a derivation is computed

as the product of the probabilities of all rule applica-
tions used to derive the input string. Rule probabilities

can be estimated by the author of the grammar, or they

can be derived from a training corpus using the Inside-

Outside algorithm [34]. To facilitate the use of parsing

through dynamic programming, stochastic context-free
grammars are often represented in Chomsky-Normal

Form: all rules are of the form A → BC or A → t.

A modified form of the Cocke-Younger-Kasami (CYK)

parsing algorithm uses dynamic programming to pro-
duce the maximum likelihood parse in O(n3) time, where

n is the number of input tokens.

In Chou’s paper [34], the expression grammar is

augmented to include symbols representing horizontal

and vertical concatenation of adjacent regions in the
input image. In a ‘lexical’ stage that precedes pars-

ing, a template-based character recognizer is applied

to the entire input region, identifying a set of candi-

date symbols based on the Hamming distance between
input regions and a set of templates. This produce a

set of candidate symbols with associated probabilities.

More recently Yamamoto et al. [159] used a stochas-

tic context-free grammar for online handwritten expres-

sions, which introduces rules to model the likelihood of
written strokes along with rules incorporating probabil-

ities for the expected relative positions of symbols (the

authors term these hidden writing areas).

There are many unexplored possibilities for using
stochastic context free grammars for math recognition.

For example, a variety of segmentation and classifica-

tion methods might be employed within a framework of

stochastic context free grammars. Also, various heuris-

tics could be used to prune or modify rules that are in-

ferred from training data. It is true that sequential im-

plementations of stochastic context free grammars are

computationally intensive, but both probability-estimation
algorithms and parsers may be parallelized [34]. Many

opportunities for parallelization exist in modern CPUs

with multiple cores and Graphical Processing Units.

The related technique of Hidden Markov Models

(automata that recognize probabilistic regular languages)

has been used to integrate segmentation and classifi-

cation of handwritten symbols [80, 158] (analogous to
speech recognition [117]). For stochastic regular lan-

guages, the CYK algorithm reduces to the Viterbi al-

gorithm, which may be used to determine the maxi-

mum likelihood path (parse) through a Hidden Markov

Model [34]. Hidden Markov Models form the core of a
general model of document image decoding, in which

the document-generation process is explicitly modeled

as part of the recognition system [79].

More recently, dynamic programming methods have

been used to let later stages of processing constrain

earlier ones in an optimization framework. For exam-

ple, Toyozumi et al. address segmentation of handwrit-

ten symbols drawn online [152]. They produce improve-
ments on the order of 5-7% over a feature-based elas-

tic matching method by using simple, local grammat-

ical rules to consider neighboring strokes and possible

under-segmentation of vertical operators such as frac-
tions, square roots and summations. Shi, Li and Soong

go further, using a dynamic programming framework

to optimize symbol segmentation and recognition [130].

Their system considers a sequence of strokes from online

handwritten input. The space of all possible partitions
of the stroke sequence into symbols (containing at most

L strokes per symbol) is searched to find an optimal

partition through dynamic programming. The criterion

function that is used to evaluate a given stroke partition
uses two components: (1) a bigram model for symbol

adjacencies along particular spatial relationships, and

(2) the probability of the sequence of spatial relation-

ships observed between symbols. As a post-processing

step, a trigram symbol sequence model is evaluated for
re-ranking alternatives. On a test set of over 2,500 ex-

pressions, a symbol accuracy of 96.6% is reported. An

extension employing graph-based discriminative train-

ing is reported by Shi and Soong [131], with similar
results. A method integrating complete symbol layout

trees into the dynamic programming is described in

Awal et al. [11].
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4.7 Evaluation of Math Recognition Systems

At present, meaningfully comparing evaluations of math

recognition systems is challenging [12, 83]. This is in

large part because different systems tend to focus on
different mathematical domains, layout conventions, and

stages of the recognition process illustrated in Figure 3

(detection, symbol recognition/extraction, layout anal-

ysis, and interpreting mathematical content). To prop-

erly interpret results, performance metrics need to be
supplemented by a characterization of the scope of the

systems, to support informed comparison of high-accuracy

narrow-scope systems versus systems that process a

broad range of inputs with lower accuracy.

We discuss the use of benchmark data below, which

is commonly used to address these issues, albeit in a

way that inevitably leads to debates about representa-
tiveness of the data, and/or the relevance of the data for

particular applications. Even in the presence of bench-

mark data, quantitative means for characterizing the

scope of mathematical notation handled by systems is

an important area for future research. It is particularly
difficult to quantify the amount of noise and distor-

tion that a system can handle; perhaps benchmark data

can be modified using document degradation models

for this purpose [72], analyzing results over a space of
degradation parameter settings (e.g. increasing skew in

handwritten expressions, or blurring in images).

The most common class of performance metrics for
evaluation of math recognition systems are recognition

rates, for complete expressions [29,110,163] and individ-

ual symbols [8,29,110,143]. Characterizations of layout

structure accuracy have been measured using a variety

of metrics; most simply, the number of symbols with the
appropriate parent symbol, relationship, and depth in

a symbol layout tree (‘token placement’), and the num-

ber of baselines that contain the correct symbols [163].

Other metrics provide recall measures for layout struc-
tures in a symbol layout tree (e.g. scripting, fractions,

limits, roots, and matrices [29, 110]).

One can devise metrics that combine symbol and
layout-level error metrics, which may serve as criterion

functions for machine learning algorithms (to optimize

a complete system). Chan and Yeung [29] propose a

‘global’ recall metric, the number of correctly recog-

nized symbols and structures (subtrees) in an operator

tree, divided by the number of symbols and structures.

Garain and Chaudhuri proposed a related recall mea-

sure for symbol layout trees, where recall for symbol

classes and placement (i.e. symbols with the correct
parent symbol and relationship in the symbol layout

tree) is computed, but weighting misplacement errors

by the depth of nesting for a symbol in ground truth

[51]. String edit distances are used to compare symbol

layout trees for recognition results and ground truth,

after the trees are linearized into Euler strings [124].

This was proposed to overcome the NP-completeness

of computing a full tree edit distance between layout
trees.

Recently it was proposed that a bipartite graph could

be used to capture segmentation, classification, and lay-

out errors simultaneously [166]. The graph represents
all N primitives in one node set, and the classification

labels assigned to each primitive in the second node

set (each primitive receives the label of its associated

symbol). N(N −1) spatial relationships are defined be-
tween the unlabeled (parent) and labeled (child) prim-

itives. Given a symbol layout tree, spatial relationships

are inherited and represented explicitly in the bipartite

graph; for example, in x2a , the symbol a is in a subscript

relationship with 2, but also a superscript relationship
with x. One can then compute recall for primitive labels

and spatial relationships in the graph. Correcting these

labels induces the correct classification, segmentation,

and layout for all input primitives (e.g. connected sub-
components, or strokes). This representation provides a

meaningful, intuitive representation for an expressions’

elements and their interpretation at the layout level.

The bipartite representation can be generalized in a

straight-forward manner to operator trees as well.

4.7.1 Data Sets for Math Recognition Evaluation

Just as in the TREC competitions for information re-

trieval (see Section 3.5), in pattern recognition and ma-

chine learning research, benchmarking data is used to
make meaningful system comparisons, in a fixed domain

whose scope of interpretation is defined by examples

in the data set. The ambiguities that arise from hu-

man decisions about the relevance of retrieval results
are replaced by ambiguities arising from human deci-

sions about how to interpret the location, symbols, lay-

out and mathematical content of expressions. In both

cases, algorithms are evaluated by their ability to im-

itate those defining ground truth [164]. Ground-truth
data is expensive to create, because it requires laborious

human effort; a semi-automated ground truth creation

technique for handwritten expressions is described in

MacLean et al. [93]. Similar to the normalizations used
in retrieval, care needs to be taken to normalize ground

truth and recognizer outputs, so that equivalent expres-

sions match properly during evaluation.

Currently there is some limited use of available bench-
mark datasets, but we expect their use to increase sig-

nificantly as research in this area intensifies. The fol-

lowing is a list of benchmark data sets that have been
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reported in the literature, some of which are publicly

available.

Infty I-III15 [142]: Infty-1 provides around 500 pages from En-
glish technical articles on pure mathematics containing over
20,000 typeset expressions. Ground truth was created man-
ually and provides symbol bounding boxes, identities, and
edges of the symbol layout tree in .csv, XML, and MathML.
Infty-II adds documents from English, French and German
publications. Infty-III provides over 250,000 single alphanu-
meric characters and mathematical symbols.

UW-III16 [114]: mathematical content consists of 25 pages,
with approximately 100 typeset equations. Ground truth cre-
ation involved double entry and triple verification. Math ex-
pressions are represented in ground truth as LATEX and la-
beled bounding boxes for expressions and symbols (in Xfig
format).

Waterloo/MathBrush17 [93]: handwritten expressions by 20
writers (4655 expressions total). Ground truth provides op-
erator trees, LATEX, .gif (for typeset target), Microsoft and
SCG ink formats.

MNIST18: 70,000 segmented, size-normalized (28x28) greyscale
handwritten digit images (60k train, 10k test). Ground truth
provides symbol identities.

Brown Dataset19 [86]: 48 handwritten symbols from 11 writ-
ers (10 train, 12 test instances per class) Ground truth: Stroke
data in Unipen format

Chan and Yeung [29] 600 handwritten expressions (11,190
symbols), written by 10 different writers, and drawn from
CRC Standard Mathematical Tables and Formulae [174].

Ashida et al. [8] 1400 pages for symbol recognition data (43,495
typeset expressions), 700 pages for structure analysis (21,472
typeset expressions), taken from Archiv der Mathematik and
Commentarii Mathematici Helvetici. Ground truth was cre-
ated using automatic recognition followed by manual correc-
tion. Ground truth encodes bounding boxes and labels for
expressions and symbols, and expression structure in an ex-
tended MathML format.

Garain and Chaudhuri [51]: 400 pages (297 real data and 103
synthetic data) containing 5,560 typeset expressions. Ground
truth creation used automatic recognition followed by man-
ual correction. Ground truth consists of LATEX and symbol
bounding boxes for isolated expressions, as well as extended
MathML for document pages.

ICDAR 201120 data provided for the online handwritten math
recognition contest at the International Conference on Doc-
ument Recognition and Retrieval in 2011 (over 1000 hand-
written expressions from multiple writers).

5 Conclusion

Recognition and retrieval of mathematical notation are
challenging, interrelated research areas of great prac-

tical importance. In math retrieval, the key problems

15 www.inftyproject.org/en/database.html
16 www.science.uva.nl/research/dlia/datasets/uwash3.html
17 www.scg.uwaterloo.ca/mathbrush/corpus
18 http://yann.lecun.com/exdb/mnist
19 http://graphics.cs.brown.edu/research/pcc/

symbolRecognitionDataset.zip
20 http://www.isical.ac.in/∼crohme2011/

are defining query languages, normalizing the query

and searchable documents, defining methods of index-

ing and matching, and providing relevance feedback.

In math recognition, the key problems are detecting

expressions, detecting and classifying symbols, analyz-
ing symbol layout, and constructing a representation of

meaning. Math notation provides an excellent domain

for studying issues that also arise in recognition and

retrieval of other types of graphical notations.

We conclude our paper by outlining expected de-

velopments and numerous opportunities for future re-

search in this area. In general terms, we predict that
future research will enhance the ability of recognition

and retrieval systems to process a broad scope of nota-

tions and dialects, to exhibit robustness to noise, and to

provide flexible, effective user interfaces. We summarize
open problems and future directions in five categories:

query interfaces, indexing and retrieval, relevance feed-

back, performance evaluation, and math recognition.

Future directions in query interfaces include image-

based math retrieval (allowing expression images to be

used as queries) and sketch-based math retrieval (al-

lowing online handwritten expressions to be used as

queries). We predict that sketch-based retrieval will make
prominent use of finger-based rather than stylus-based

drawing, due to the convenience and wide-spread use

of tablets and touch interfaces. Flexible query inter-

faces will combine text, images, sketching, keyboard
and mouse. Improved interfaces will be developed to

allow a user to specify matching constraints; for ex-

ample, hard constraints could be indicated by a box

surrounding strokes and/or connected components.

Future directions in indexing and retrieval include

improved methods for normalization of queries and doc-

uments; flexible normalization approaches will be able

to adapt to the nature of the query and document data,
whether it be handwritten, vector graphics or images.

Indexing and retrieval will include pattern recognition

methods to locate, recognize and annotate mathemati-

cal expressions in typeset and handwritten document
corpora. The strengths and weaknesses of document

representations will be explored, determining when vector-

based, tree-based or combined models are most appro-

priate.

Relevance feedback is an important but as-yet un-

addressed research opportunity for math retrieval. We

expect that there will be improvement in the interfaces
and mechanisms used, and in algorithms for defining

refined queries from user interactions. Machine learn-

ing methods may play an important role in improving

relevance feedback.

Future directions in performance evaluation will in-

clude advances in the technology for creating databases
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with ground truth, and increased availability of datasets

for math recognition and retrieval. There will be ad-

vances in performance metrics for computing errors in

layout, segmentation, parsing, classification, and repre-

sentation of meaning. Performance evaluation needs to
be carried out in reference to tasks a user is trying to

accomplish. Research is needed to obtain a better un-

derstanding of different models of relevance for mathe-

matical information retrieval. Relevance depends on a
number of factors, including the expertise of the user,

the task underlying the user’s information need, and

the type of resource(s) sought.

In math recognition, future directions and open prob-

lems include the detection of inline expressions, the au-
tomatic detection of mathematics in vector graphics

documents, and the processing of matrix and tabular

structures. We predict refinements of layout analysis,

including development of new techniques and combina-

tion of existing methods via parser combination. More
sophisticated language models will be developed to in-

corporate statistical information about mathematical

notation; this information can be used during recogni-

tion or post-processing. Stochastic language models will
be become increasingly sophisticated; stochastic gram-

mars, as initially proposed by Chou [34] can be ex-

tended using different segmentation and/or parsing ap-

proaches. A challenge is to identify usable notation sets

with invariants that can be easily adapted to dialects;
the goal is to scale this up to the index set used by the

Mathematical Subject Classification (MSC) [121].

In conclusion, the combination of math retrieval and

math recognition technologies provides rich possibilities

for math-aware computer interfaces, and for intelligent
search and retrieval tools for math in documents.
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