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항상저를믿어주시고응원해주시는사랑하는가족분들깨감사드립니다.
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RÉSUMÉ EN FRANÇAIS

Introduction

Une partition musicale est un type spécial de document permettant de retranscrire
par écrit une chanson, une mélodie ou une musique. La reconnaissance et le traitement
automatique de telles images de documents est appelé la reconnaissance optique de la
musique (Optical Music Recognition ou OMR). Ce sous-domaine de la reconnaissance
de document a été le sujet de travaux de recherche depuis les années 60 avec le travail
de PRUSLIN [Pruslin 66] et a récemment vu un intérêt renouvelé à cause d’avancées en
matière de vision par ordinateur principalement dans le domaine du Deep Learning.

Le processus de reconnaissance d’une partition musicale, en partant d’une image
pour arriver à l’extraction d’informations musicales de haut niveau comme la hauteur et
la durée des notes de musique, est composé de multiples étapes successives. Tradi-
tionnellement, les états de l’art comme celui de FORNÉS et al. [Fornés 14] distinguent
trois étapes principales :

1. le prétraitement des images de partitions musicales ;

2. la localisation et la reconnaissance des symboles musicaux ;

3. la reconstruction de la notation musicale.

Dans ce travail, nous nous intéressons à la détection de symboles musicaux, étape
charnière intervenant avant la reconstruction de la notation musicale, dans le but de
localiser précisément et de reconnaitre la nature ou la classe des symboles. Cette
étape de détection est d’autant plus importante que la reconstruction de la notation
musicale utilise la position relative d’un symbole par rapport à un autre pour en déduire
leur relation. De plus, cette étape de détection de symboles musicaux étant une tâche
principalement graphique, elle a le plus à gagner des dernières avancées de Deep
Learning dans le domaine de la vision par ordinateur.

Le type de partition sur lequel nous allons principalement nous intéresser dans ce
travail sont les partitions imprimées historiques allant du XVIIIe au XXe siècle. Nous
nous intéressons plus particulièrement à ces partitions car elles présentent souvent une

11
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grande complexité dans l’utilisation de la notation musicale moderne avec parfois une
grande densité de symboles dans des espaces très restreints. Ces documents ont aussi
la caractéristique d’avoir été imprimés en utilisant un processus de gravure manuelle
sur plaque de cuivre présentant des défauts de placements uniques à ces documents.
Enfin, les partitions historiques ont souvent des défauts et du bruit dûs à l’âge de la
partition et à la manière de numériser l’image de la partition. Toutes ces caractéristiques
contribuent à des difficultés de segmentation car beaucoup de symboles musicaux se
touchent et présentent des défauts de formes et de bruits. Beaucoup de travaux de
recherche en OMR se sont concentrés sur la reconnaissance de partitions manuscrites
et imprimées par ordinateur mais assez peu sur des partitions historiques imprimées.

C’est pourquoi nous nous proposons d’étudier dans ce manuscrit la détection
de symboles musicaux dans des partitions historiques imprimées denses, bruitées et
complexes. Dans un premier temps, nous étudierons la détection de symboles musicaux
avec des modèles de Deep Learning supervisés de détection. Nous proposerons une
nouvelle architecture de détection basée sur le Spatial Transformer mieux adapté
à certaines situations de détection contrainte et nous comparerons cette nouvelle
approche aux modèles de détection de l’état de l’art du Deep Learning.

L’utilisation de modèle de Deep Learning nécessite une large quantité de données
manuellement annotées et dans le cadre de partitions historiques imprimées, il n’existe
pas de jeu de données pour la détection de symboles antérieur à nos travaux. C’est
pourquoi, dans un premier temps, nous proposons un nouveau jeu de données de
détection de symboles musicaux et, dans un second temps, nous présenterons une nou-
velle méthode de détection de symboles musicaux non supervisée utilisant uniquement
des symboles isolés comme source d’information.

Détection supervisée de symboles musicaux

Dans cette première partie, nous explorons la détection supervisée de symboles
musicaux car cette étape est centrale dans le processus de reconnaissance d’une
partition musicale. Pour cela, nous nous intégrons dans une méthode préexistante de
reconnaissance de partition musicale appelée DMOS [Coüasnon 01] basée sur une
méthode syntaxique permettant de décrire la notation musicale moderne. En utilisant
cette approche hybride de méthode syntaxique et de Deep Learning, nous pouvons
diriger l’utilisation de modèles de Deep Learning pour la détection de symboles en

12
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contexte. L’utilisation du contexte nous permet de focaliser l’utilisation des modèles
de détection dans des régions particulières pour un but précis comme la détection
d’altérations, symboles utilisés dans la notation musicale à gauche des notes musicales
pour modifier leur hauteur de note. Nous utilisons cette tâche de détection d’altérations
comme un cas d’étude pour le développement de notre méthode bien que celle-ci
puisse s’appliquer sur d’autres symboles musicaux.

Pour cette tâche de détection d’altérations, nous avons construit un nouveau jeu
de données de détection d’altération avec l’information de la boîte englobante et de la
classe de chaque altération. Ce jeu de données étant assez restreint, nous proposons
d’utiliser une méthode d’augmentation de données en bougeant aléatoirement la région
présentant le symbole à détecter. Cela a pour effet de changer de manière aléatoire la
position du symbole à détecter dans l’image. Cette méthode d’augmentation de données,
en soi très simple, nous a permis d’améliorer radicalement les résultats de détection,
surtout avec le nouveau modèle de détection que nous présentons maintenant.

Notre nouveau modèle de détection est basé sur le Spatial Transformer [Jaderberg
15]. Le Spatial Transformer est composé de deux parties : un réseau de localisation et
un réseau de classification. L’intention originelle de ce modèle de classification d’image
est d’améliorer les résultats de classification en permettant au modèle d’avoir un mé-
canisme autosupervisé de localisation et d’isolation des zones intéressantes pour la
tâche de classification. Pour notre tâche de détection, nous détournons cette locali-
sation autosupervisée et utilisons une fonction d’apprentissage multitâche permettant
l’apprentissage simultané de la localisation et de la classification. La localisation est
apprise en deux étapes successives permettant à la première localisation de garder
suffisamment d’information contextuelle pour la tâche de classification et la seconde
localisation de produire une boîte englobante serrée autour du symbole à détecter.

Nous comparons notre nouvelle approche à trois différents détecteurs de l’état de
l’art du Deep Learning : le Faster R-CNN, R-FCN et SSD ayant chacun des compromis
différents de précision de détection et de rapidité de calcul. Les résultats détaillés sont
présentés dans le tableau 2.3 et nous montrons que notre nouveau détecteur produit un
mean Average Precision (mAP) de 94,81% tandis que le meilleur détecteur de l’état de
l’art, le R-FCN, produit un mAP de 98,73%. Toutefois, notre détecteur est 40 fois plus
rapide pouvant traiter 500 images à la seconde tandis que le R-FCN ne peut traiter que
12,5 images à la seconde. Une grande part de cette différence est dûe au fait que nous
avons conçu l’architecture du détecteur basé sur le Spatial Transformer par rapport à
notre tâche de détection présentant une petite taille d’image d’entrée. Une comparaison

13



Résumé en français

plus juste aurait été de réduire aussi la taille des architectures de l’état de l’art pour
qu’elle soit plus adaptée à la taille des images d’entrées de notre tâche de détection.

Nous démontrons aussi que l’utilisation d’information contextuelle comme la tête
de note associée au symbole à détecter et l’utilisation de technique d’augmentation de
données nous a permis d’améliorer les résultats de notre nouveau détecteur de 30,8%
de mAP. Ce travail a été publié dans l’article CHOI [Choi 18a].

Par la suite, nous avons aussi appliqué différents détecteurs de l’état de l’art du
Deep Learning comme the Faster R-CNN, R-FCN et SSD sur le jeu de données de
partitions musicales manuscrites MUSCIMA++ [Hajič 17] basé sur le jeu de données
MUSCIMA [Fornés 12] pour démontrer la capacité de ces modèles à détecter des
symboles musicaux dans des régions plus grandes et avec un ensemble plus grand
de symboles musicaux. Nous démontrons aussi que les détecteurs de l’état de l’art du
Deep Learning peuvent aussi être appliqués à des données manuscrites. Notre travail,
qui a été publié dans l’article PACHA et al. [Pacha 18b], montre que nous achevons un
mAP de plus de 80% sur un large ensemble de symboles musicaux. Nous appliquons
ces détecteurs sur des régions suivant les lignes de portées des partitions car la page
entière serait trop grande pour être directement traitée par les détecteurs. Le principal
problème que nous avons rencontré durant ces travaux est lié au déséquilibre des
différentes classes de symboles dû à la notation musicale où des symboles comme les
têtes de notes sont extrêmement fréquents tandis que d’autres symboles comme le
double dièse sont très rares et utilisés uniquement dans des situations très précises.

Détection de symboles non supervisée avec le Isolating-

GAN

L’utilisation de technique de Deep Learning pour la détection de symboles musi-
caux est un processus demandant une grande quantité de données annotées. Ces
annotations sont traditionnellement produites manuellement et sont longues et coû-
teuses à produire. Lorsqu’un petit jeu de données existe, il est possible d’augmenter
artificiellement la taille du jeu de données en utilisant des techniques comme le dé-
placement aléatoire de la région d’intérêt et c’est ce que nous avons fait dans nos
travaux précédents. Mais lorsqu’il n’existe aucunes données préalables, il ne reste que
peu de stratégies pour amorcer un processus de reconnaissance automatique. Une
stratégie communément utilisée dans le domaine de la reconnaissance de document
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est l’utilisation de données synthétiques produites automatiquement. Pour des partitions
musicales, des logiciels de gravure de partitions musicales peuvent être détournés pour
produire une grande quantité d’images de partition contenant des variations de musique,
de notation, de police. Cependant, il est difficile d’adapter ce processus de génération à
la reconnaissance d’un nouveau corpus de données, car certaines caractéristiques de
partitions historiques comme l’utilisation de la notation musicale de l’époque, la gravure
manuelle sur plaque de cuivre et la dégradation à cause du temps ne sont pas pris en
compte par ces logiciels.

C’est pourquoi, nous avons décidé de rechercher une méthodologie plus simple pour
la détection de symboles non supervisée. Au cœur de nos travaux, nous proposons
une nouvelle méthode de détection de symboles musicaux non supervisée appelée
Isolating-GAN utilisant uniquement des symboles isolés et basée sur une combinaison
de méthodes syntaxiques et de modèle génératif de Deep Learning (GAN). Une vue
d’ensemble de notre méthode est présentée dans la figure 4.1 et se définit donc en
trois étapes :

1. l’identification des régions d’intérêt ;

2. l’isolation des symboles ;

3. la détection des symboles isolés.

L’identification des régions d’intérêt Notre méthode reposant sur un système gé-
nératif instable de type GAN, il est vital de réduire la taille des images à générer. Pour
cela, nous utilisons la méthode syntaxique DMOS pour isoler des régions d’intérêt
en utilisant des indices contextuels. Dans notre tâche de détection d’altérations, nous
utilisons les têtes de notes précédemment reconnues pour décider d’une zone carrée
de 4× 4 interlignes située à gauche de la tête de note. Cela étant, notre méthode est
conçu de façon à pouvoir être appliquée à d’autres type de symboles musicaux.

L’isolation des symboles L’idée centrale de notre méthode est de construire un
domaine de représentation simplifiée utilisant uniquement des symboles isolés et
servant d’intermédiaire entre la représentation complexe des partitions historiques
réelles et la tâche de détection. Concrètement, ce domaine de représentation se résume
à des symboles isolés de tailles aléatoires, positionnés de manière aléatoire dans une
image à fond blanc. Nous proposons de réaliser ce transfert entre la représentation
complexe des partitions historiques réelles et le domaine de représentation simplifiée
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de symboles isolés sur fond blanc en utilisant un réseau génératif antagoniste (GAN)
[Goodfellow 14]. Ce modèle de GAN est composé de deux parties : une partie générative
de type auto-encoder utilisant une architecture existante appelé U-Net [Ronneberger 15]
capable de transformer une image en une autre et une partie discriminante permettant
la mise en place d’un apprentissage antagoniste. Ce réseau est entraîné par une
fonction d’apprentissage hybride comprenant la fonction d’apprentissage antagoniste
originelle du GAN et une fonction d’apprentissage de reconstruction d’image appliqué à
la partie générative. Cet apprentissage permet au générateur du GAN de transformer
des images de partitions réelles en images contenant uniquement des symboles isolés
à détecter sur un fond blanc. Ces symboles isolés sont ensuite détectés par un détecteur
préentrainé que nous présentons maintenant.

La détection de symboles isolés En utilisant uniquement les symboles isolés, il est
trivial d’entrainer un détecteur pour réaliser une tâche de détection synthétique dans
ce domaine de représentation simplifiée de symboles isolés sur fond blanc. Une fois
entrainé, nous appliquons ce détecteur sur les images générées de l’étape précédente
pour détecter les positions et la classe des symboles dans les images réelles de
partitions historiques.

Pour évaluer la robustesse de notre méthode, nous montrons l’application de notre
méthode sur deux jeux de données de détection d’altérations dans des partitions
historiques : l’un homogène contenant 70 pages de 5 partitions historiques et 2150
symboles annotés et l’autre plus large et plus hétérogène contenant 1812 pages de
58 partitions avec 818 symboles annotés. La méthode de génération étant instable,
nous proposons un processus d’arrêt de l’entraînement et une méthode de sélection du
meilleur entraînement parmi 10 entraînements identiques en utilisant un petit jeu de
validation de 20 exemples par classe manuellement annotés. Nous obtenons un mAP
de 94,8% sur le premier, petit jeu de donnés et un mAP de 82,5% sur le second jeu
de donnés plus hétérogène. Pour démontrer l’utilité de la partie générative de notre
méthode nous comparons les résultats de notre méthode en faisant un test d’ablation
de la partie générative et montrons que l’utilisation de la partie générative permet
d’améliorer de 30% la précision sur le premier petit jeu de données et de 66% la
précision sur le deuxième jeu de données plus hétérogène.
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Conclusion

Dans ce travail de recherche sur la détection de symboles musicaux dans le cadre
de partitions imprimées historiques denses, complexes et bruitées, nous avons tout
d’abord exploré la tâche de détection de symboles musicaux en utilisant des modèles
de détecteur de l’état de l’art du Deep Learning et avons aussi proposé une nouvelle
architecture de détecteur adaptée pour une tâche de détection de symboles musicaux
dans une zone restreinte. Après cette exploration de modèles de détections supervisés,
nous avons fait le constat du manque crucial de données annotées permettant l’utilisa-
tion direct de modèles supervisés de Deep Learning. C’est pourquoi, nous proposons
notre nouvelle méthode appelée Isolating-GAN de détection de symboles musicaux non
supervisée utilisant uniquement des symboles isolés. Cette méthode utilise une combi-
naison d’une méthode syntaxique et de Deep Learning pour graduellement simplifier la
tâche de détection en trois étapes. Tout d’abord, la méthode syntaxique est chargée
d’identifier des régions d’intérêt en utilisant des éléments contextuels reconnus apriori,
puis notre modèle génératif est en charge de simplifier la représentation graphique
en isolant les symboles à détecter et en effaçant le fond bruité. Enfin, un détecteur
préentrainé en utilisant des symboles isolés préexistants est utilisé pour détecter les
symboles présents dans les images générées à l’étape précédente.

Nous appliquons notre méthode sur deux jeux de données, l’un petit et homogène
et l’autre plus large et hétérogène et obtenons des résultats de détection de 94,8%
de mAP et de 82,5% de mAP respectivement. Cela nous a aussi permis de traiter
de manière automatique le jeux de données large et hétérogène en détectant 38908
symboles dans 1774 pages de partitions historiques imprimées. L’ensemble de nos
expérimentations a nécessité 830 entrainements différents, ce à quoi nous estimons
avoir pris environ 2 mois et demi de temps d’entrainement. Dans de futurs travaux, nous
projetons d’appliquer notre méthode à de nouveaux types de symboles musicaux, tout
en stabilisant le processus d’apprentissage en utilisant des avancées de l’état de l’art
sur les réseaux antagonistes génératifs comme le Wasserstein GAN [Arjovsky 17b].
L’application à d’autres types de documents comme des partitions manuscrites est aussi
envisagée.

Nous pensons que notre nouvelle méthode de détection de symboles non supervisée
est un premier pas dans la construction de méthode de détection entièrement autonome,
pouvant s’adapter à de nouveaux corpus sans effort d’annotations manuelles.
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INTRODUCTION

A document can be defined as a human artifact which purpose is to preserve
and share knowledge. Music score documents is a specialized type of documents
transcribing the act of playing music and aims to capture pitch, rhythm, intensity and
many other aspects of music. The specific case of music scores as a document is very
interesting by its unending goal of trying to capture in writing something as ephemeral
and emotional as music. Music notation, like any documents, has both the purpose of
preserving a music piece as good as possible, capturing as many details as possible,
while being easy to read in real time by musicians during a performance. Moreover,
different musical cultures and traditions expressed different needs for music notations,
as well as changing needs through time because of the evolution of music. As a result,
we can observe widely different music notations, going from early music notation to
the modern music notation in Europe, while Korea, China and India, to only name a
few, developed different music notations to transcribe traditional music. In this work,
we focus on the modern music notation, which is now the most commonly used music
notation throughout the world. However, this music notation has a long history in Europe,
starting from the beginning of the 18th century. The printing of the music scores using
the modern notations could not be done anymore using movable music types because
of the structural complexity of the notation, where the relative placement of symbols
could be much less linear than the early music notations. Thus, a new kind of imprinting
technique was developed where the music score would first be manually engraved on
copper plates, and then be used in printing press to replicate the music score page
on sheets of papers. While composers would write music manually, a large amount of
music scores were printed and are now precious historical documents that are studied
by many musicians and musicologists. Unfortunately, it is often hard to access these
documents because the hard copy is often restricted and the digitalization of the music
scores only gives images for musicians and musicologists to study.

The modern music notation consists of a collection of staves which are five vertically
stacked horizontal lines. These five lines serves as a 2 dimensional axis to describe
both the flow of time, by reading from left to right and the pitch of musical notes, by the
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vertical placement of note heads. Musical notes are laid out on the staves from left to
right at different vertical position and transcribes a music piece or melody.

Optical Music Recognition (OMR) is the automatic process of turning images of
music scores into a machine-readable format, allowing easier use and study of those
historical printed scores. This subfield of document recognition research has been
studied since the 1960s, starting from the work of Pruslin [Pruslin 66] and is still actively
researched. Well-known OMR literature review like Fornés et al. [Fornés 14] and Rebelo
et al. [Rebelo 12] segments the OMR workflow as a succession tasks. This workflow
often starts with various low-level graphical processing that are often common to a lot
of document recognition workflow like binarization and noise removal. Then staff lines
are recognized and optionally removed, symbols are detected However, the task of
recognizing a historical printed score is very challenging because of the combination
of a very complex music notation with high symbol density and degradations due to
the printing method and age of the document. While classical OMR systems always
struggled to recognize historical printed music score documents, the OMR research
has seen a renewed interest recently due to novel computer vision architecture based
on Deep Learning models. The early stages of OMR such as music symbol detections
being inherently a computer vision task, we demonstrate in this work how Deep Learning
models can produce highly accurate and precise music symbol detections. One of the
downside of classical fully supervised Deep Learning models and methods is the needs
for large amount of annotated data to train the models. This need for large amount
of annotated data is problematic, especially in OMR, where no such datasets exists
for historical printed music scores outside of datasets produced during the course of
this work. Therefore, the heart of this work is to propose a new unsupervised method
called Isolating-GAN able to produce highly accurate symbol detection without using
any manual annotations for the training of Deep Learning models and only use a simple
set of isolated music symbols.

To summarize, in chapter 1, we expose the difficulties of correctly recognizing a
historical printed music scores because of the printing techniques and degradations
of old documents. Then we present an overview of OMR and its different processing
steps, with a focus on the step of music symbol detection. Finally, we present a review
of relevant Deep Learning methods that we will use throughout this work, starting from
fully/weakly supervised detectors to generative models like GANs.

Then, we proceed in chapter 2 onto using fully supervised Deep Learning music
symbol detector to accurately detect music symbol for an OMR pipeline. We present
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results on two different datasets and tasks: first, a small and constrained accidental
detection task on a newly constituted dataset using 4 different detectors to give a sense
of speed versus accuracy of the task of detecting music symbols. Secondly, we apply
fully supervised state-of-the-art detectors on the handwritten music score dataset called
MUSCIMA++ and present results on a large set of music symbol classes.

In chapter 3, we discuss the various possibility of using Deep Learning models
without manual annotations. We first discuss the possibilities of using synthetic data
as commonly done in the document recognition field. In our case, we chose to use a
combination of synthetic data based only on isolated symbols and generative methods
such as GANs so that we can train a music symbol detector in an unsupervised fashion
while not relying on a complex synthetic generation method such as music score
typesetting software. The generative capability of our method also implies that our
method will be able to adapt seamlessly to new corpus of documents.

This leads to chapter 4 where we expose the design of our new Isolating-GAN
method for unsupervised music symbol detection. We propose a three steps method
with the general idea of gradually reducing the complexity of the detection task. In
the first step, we reduce the spatial search space using the DMOS syntactical method.
In the second step, we simplify the graphical representation using an image-to-image
translation generative model. This simplification consists of isolating symbols to detect in
a white background and this target representation is synthesized using only a preexisting
dataset of isolated music symbols and injected using a hybrid training objective. This
simplification consists of isolating all symbols to detect while erasing other symbols and
noises to produce a white background. This target representation is synthesized using
only a preexisting dataset of isolated music symbols and injected using a hybrid training
objective. The third and final step is to detect the previously isolated symbols by using a
detector pretrained using a synthetic isolated symbol detection dataset.

Finally, we proceed to show an extensive set of experiments in chapter 5. Because
we have the very challenging task of training an unstable generative model such as a
GAN with no manually annotated ground truth, we started out our experiments with a
simplified task and dataset to tune the common hyperparameters of our method. Then,
we gradually raise the difficulty of the task by detecting different types of symbols, as well
as rarefy the amount of symbols to detect. Then we validate our evaluation methodology
when no ground truth data is present, which is the real use case of our method. Finally,
we evaluate our method using a much larger, more heterogeneous dataset, where
symbols to detect are even less frequent. We demonstrate the effectiveness of our
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generative method by comparing the results with an ablated non-generative version of
our method and shows a massive improvement in precision.

In the end of this manuscript, we discuss in chapter 6 the future work and possible
improvements of our method. We discuss possible strategies to stabilize and improve the
training of our method. We also believe that we can improve our method by taking larger
images as input, a more diverse set of symbols to detect and could even be applied on
handwritten music scores or other structured documents with significant segmentation
problems such as electrical circuit design documents. Finally, we believe that the
work presented in this manuscript could be the first step towards entirely autonomous
structured document recognition systems, where documents could be recognized in
stages, with each stage processed entirely in an unsupervised manner using only
isolated symbols and gradually building a syntactical structure of the document with
each stage reusing and building on the symbols recognized on previous stages.
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CHAPTER 1

STATE-OF-THE-ART

1.1 Introduction

Optical Music Recognition as a subfield of Document and Image Recognition domain
is a very active area of research and has lately seen a significant increase in interest.
This renewed interest is mainly caused by new advances in machine learning techniques
like Deep Learning model that has been shown to produce state-of-the-art results on
OMR tasks like staff lines recognition and removal, music symbol detection or music
notes recognition in historical printed or handwritten music scores.

OMR is a very broad subject and can be studied under many angles depending on
the end user needs. However, we can distinguish two broad kinds of tasks in OMR.
We have OMR end user focused tasks like MIDI transcription (music note extraction)
of a music score or even the full transcription of a music score into a machine format
such as the MusicXML format that can be used in music typesetting software. Such end
user tasks are often very difficult to accomplish in a single step and that is why OMR
researchers has often decomposed the OMR process into smaller subtasks, while not
useful to OMR end users, are useful to construct an entire modular OMR system. Music
score preprocessing, staff lines recognition and removal, music symbol detection and
music notation reconstruction are commonly identified subtasks in OMR systems.

In this work, we focus on improving the subtask of music symbol detection because
it is often the pivotal and most important step of an OMR system. Music symbol are
the primary building blocks of a music score and the ability of correctly parsing and
identifying music symbols almost guaranty a correct interpretation of a music score.
Moreover, by being inherently a computer vision tasks, music symbol detection has
the most to gain from recent advances in computer vision tasks like supervised object
detection. However, one of the consequences of using fully supervised object detection
model is the need for large amount of manually produced ground truth, which is very
impractical in the OMR domain since only a few music symbol detection datasets
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currently exists for training such model and none exists for our actual task of detecting
music symbols in historical printed music scores. That is why we propose to build on
recent advances on generative Deep Learning models like the GAN architecture to
reduce our dependency on manually produced ground truth.

We now present the state-of-the-art in both the OMR and Deep Learning domains
in regard to music symbol detection. In section 1.2, we present enough of the music
notation and history to understand the problem domain of music symbol detection in
historical music scores. We then move on to present in section 1.3 an overview of the
different OMR tasks and state-of-the-art techniques. We also present in more details
the DMOS syntactical method in section 1.4 often used throughout our work to ease
the application of Deep Learning models to OMR tasks. Finally, we review the Deep
Learning existing work we build on for supervised object detection in section 1.5 and
semantic segmentation in section 1.5.2, as well as generative models like GANs in
section 1.6 for reducing the need for manual annotations.

1.2 Music Notation

Music notation is the written visual transcription of music as an audio signal and
is used to capture, save and share how a piece of music should be performed. In
Europe, music notation was mainly developed by religious monks to transcribe sacred
voiced music, starting with the early music notation. During 17th century, the music
notation was transformed to better represent instrumental music like the piano as shown
in fig. 1.2b and produced what is now known as the modern music notation or Common
Western Music Notation (CWMN).

The modern notation is structured around a staff which is a collection of five long
horizontal lines going across the whole page of a music score. A staff is horizontally
divided into bars of regular duration specified by the time signature placed at beginning
of the staff after the clef. These horizontal lines are stacked vertically with a regular
spacing and forms a two-dimensional system where the horizontal axis represents the
flow of time and the vertical axis represents the pitch of a musical note. A musical note
is defined by its duration and pitch and is usually composed of a note head (oval blob
full or empty) and an optional stem, flag, dot or accidental.

For determining the duration of a musical note, first a metronome mark ˇ “ = 120
is used to specify the absolute duration of a quarter note ˇ “ in beat per minute, then
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different symbols are used to specify the relative duration of a note either by multiplying
the duration by two (half note ˘ “), four (whole note ¯ ) and more or dividing the duration by
two (eight note ˇ “( ), four (sixteenth note ˇ “) ) and more. A dot can be placed at the right of
the note head ˇ “‰ to lengthen the duration by one-half and additional dots can be added
to further lengthen the note. Multiple notes with a duration inferior to the quarter note
can be merged to form beamed notes ˇ “ ˇ “== to compact and facilitate the reading. The
same principle is used to represent silences with whole rest <, half rest <, quarter rest > ,
eight rest ? , sixteenth rest @ and more.

The pitch of a note is determined by first specifying a clef like the G clefG which

sets the absolute pitch of one of the line of the staff (second line from the bottom has
the pitch G for the G clef). Modern music notation uses five staff lines to represent the
diatonic scale where the alternating lines and spaces between two consecutive lines
(also called an interline) represent shifts from one pitch to the next. The difference
in pitch between two consecutive lines is called a step while the difference in pitch
between a line and the touching interline is called a half-step. The vertical position of
the note head is then used to specify the pitch which will depends on the clef that was
specified at the beginning of the staff. The pitch of a note can further be modified by
using accidental symbols located at the left of the note head to either increase the pitch
by half a step using a sharp ], decrease the pitch by half a step using a flat [ or cancel a
previous accidental by using a natural \. However, this change is only temporary and
applied only for the current bar. For a durable change, a key signature is used by adding
one or multiple sharps or flats at the right of the clef on the beginning of the staff.

Articulation marks can be placed above or under a note to specify how the musician
should perform the note. For example, a Fermata sign P can be used to indicate
that a note can be played for a longer duration than the written duration. A list of all the
commonly used symbols are shown in fig. 1.1.

In the modern music notation, a voice is a sequence of following notes that should
be played together. Polyphonic instruments have the particularity of being able to play
multiple voices at the same time which will be transcribed by stacking the notes vertically
to represent the fact that these notes should be played simultaneously. Polyphonic
instruments can have one or multiple staves with different keys that tries to better cover
the range of pitches possibly played by the instrument, and a voice can sometime go
from one staff to another.

1. https://en.wikipedia.org/w/index.php?title=List_of_musical_symbols
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Notes
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Eighth note
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Dotted note
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Whole rest
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Sharp
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Double sharp
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time signature

dotted note

stem down noteledger linekey signature

Lines

Staff
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Clefs

G clef

C clef

F clef

Time signatures

Common time

Specific time

Figure 1.1 – Common elements of music notation. Images provided by Wikipedia 1.

While most of the music notation uses simple shapes to graphically represent how a
musical piece should be played, it is the complex spatial organization of the symbols
and their relative relationship that is difficult to process by an OMR system. Moreover, in
this work, we concentrate on the recognition of complex printed historical music scores
like very dense piano music scores as shown in fig. 1.2b or orchestral music scores
that push the boundaries of what the music notation can represent. The complexity
of these scores stems from the use of polyphonic instruments like the piano able to
simultaneously play multiple voices at the same time and, for orchestral scores, the
transcription of multiple instruments all synchronized in time. This density and notation
complexity coupled with the variability resulting from the manual engraving process we
now present makes the recognition of such scores yet an unresolved challenge.

1.2.1 Music Score Engraving

Music engraving started in a manuscript form by monks replicating sacred liturgical
music. With the invention of the printing press, music types were then developed to
produce music scores at a faster pace. In order to replicate a music score, the music
had to be assembled in reverse with many small music types representing all the music
symbols, notes and lyrics like a puzzle. Scores printed with music types have the
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characteristics to produce a very clean and readable music score although it was still
very time consuming and error prone to produce and the assembling of tiny music
types produced wavy staff lines. With the coming of modern classical music in the 18th
century, new techniques like plate engraving emerged. Plates engraving is a technique
where copper plates is first engraved using hand tools as shown in fig. 1.2a. While
this step is very time-consuming, often taking multiple hours for a single page of music
scores, music scores could then be printed at a much faster pace for a much longer time.
Manual copper plate engraving of music scores is generally seen as a form of art, where
the engraver needs very high level of technical skills to be able to replicate in reverse
a music score with maximum readability. However, this manual process eventually
leads to variation in how the music score is transcribe where the engraver compromise
between music notation rules, readability and typesetting complexity. These variations
often lead to an increased difficulty for OMR system to correctly parse music scores,
either in the music symbol detection process with incorrect overlapping and broken
symbols or in the music notation reconstruction process with incorrect or uncommon
music typesetting. At the same time, since copper plate engraving is a technique used
during the 18th, 19th, 20th century, music scores imprinted using copper plate are often
old, noisy and damaged with adds to the difficulties of correctly parsing the score.

Nowadays, music scores can be produced at very high quality using music typeset-
ting software like Sibelius, Finale or MuseScore. Even music composers now uses such
software to compose music, often using MIDI keyboard to directly send musical notes
to the typesetting software. The typesetting software will take care of automatically ar-
ranging music symbols in order to produce a highly readable music score with accurate
spacing. While all the different typesetting software each have their own file format to
represent a music score, two standards have emerged: the Music Encoding Initiative
(MEI) format and the MusicXML format. Moreover, open sourced typesetting software
like MuseScore can also be modified and used as a music score dataset generator,
potentially being able to produce an infinite amount of synthetic data for any of the OMR
tasks. However, the generation of synthetic music scores only solves one part of the
problem and does not take into account artifacts presents in real historical music scores
originating from the engraving process or document degradations.

2. Courtesy of https://musicprintinghistory.org/about-music-engraving/
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(a) Copper plate engraving of music scores 2. (b) First page of the Piano Sonata No.22, Op.54
composed by Ludwig van Beethoven and edited
by Universal Edition in 1918–21.

Figure 1.2 – Examples of music scores production and imprint using copper plate
engraving as typically done in the 18th, 19th and 20th century.

1.3 Optical Music Recognition

Optical Music Recognition is the task of converting a music score document into a
machine-readable format. This task is a well-known problem in the Document Image
Analysis and Recognition domain and has been researched since the 1960s with Pruslin
[Pruslin 66]. We base this state-of-the-art review of OMR on Fornés et al. [Fornés 14]
and Rebelo et al. [Rebelo 12] which are the two most well-known and complete literature
review of the OMR domain. In this section we review the field of OMR with a focus on
symbol detection and classification. We present in section 1.3.1 an overview of the
different components of an OMR workflow. We also present an overview of existing
OMR systems in section 1.3.2 and existing OMR datasets in section 1.3.3 that can be
used for the tasks of classification and detection of music symbols.

1.3.1 Optical Music Recognition Stages

In this work, we concentrate on the recognition of historical printed scores using
the Common Western Music Notation. As explained before, these scores present
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multiple difficulties for OMR systems at different stages of the recognition process. First
of all, modern music notation is a very complex two-dimensional system with music
notation rules changing through time and editors. Secondly, music scores imprinted
with manually engraved copper plate sometimes presents typesetting artifacts due to its
manual process which leads to segmentation problems. Finally, historical music scores
presents noises and defects caused by the age of the document.

Because of the complexity of the task, OMR studies by Fornés et al. [Fornés 14] or
Rebelo et al. [Rebelo 12], illustrated in fig. 1.3, typically present the OMR workflow as
multiple consecutive stages: image preprocessing, staff detection with possible removal,
music symbol segmentation/classification and finally music notation reconstruction.
However, many works reorganize, merge or remove some of these stages as we will
see in section 1.3.1.5.

Digitalized 
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image of a 

music score

Enhancement, noise 
removal, blurring, 
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Figure 1.3 – Typical architecture of an OMR processing system as shown by Rebelo
et al. [Rebelo 12].

1.3.1.1 Preprocessing

Existing work in OMR tends to use common document preprocessing operations.
Binarization is often applied to isolate connected components from the background
which can later be used for the music symbol detection and classification step explained
in section 1.3.1.3. However, OMR pipelines often works on multiple representation of
the image, gray-scale or binarized image, depending on the need of following stages.
For example, the DMOS system [Coüasnon 01] uses a gray-scale image for segment
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detection and a binarized image for connected components extraction. Recent work
like [vdWel 17] omits this step completely to avoid introducing additional defects that
can be caused by a binarization process and directly feed a gray-scale image into an
end-to-end trainable music note recognition model.

Historical music scores often presents defects either caused by time degradation or
a poor scanning process. Time degradation induced noise can sometimes be removed
using noise removal filters but it is often hard to consistently apply such filters manually.
On the other hand, poor scanning process often present the same kind of wave-like
distortion that can be corrected using skew-correcting techniques. This skew-correction
step is often very important in OMR because of the presence of long staff lines going
through the whole width of the page, the recognition of which is critical to correctly
deduce the pitch of musical notes.

1.3.1.2 Staff Lines Detection and Removal

Staff lines detection is a very important step of an OMR system for a multiple of
reasons. First of all, the vertical stacking of staff lines is used to specify the pitch of
music notes while their horizontal direction specify the flow of time. From a graphical
point of view, the vertical distance between two staff lines, also called the interline, is
used as a normalized unit distance that parameterize the size of most other graphical
objects in the score. Therefore, the correct recognition of this size will have a significant
impact on later OMR steps like music symbol recognition presented in section 1.3.1.3
and music notation reconstruction presented in section 1.3.1.4. Another characteristic
of staff lines is the fact that it is a very long horizontal graphical line that join most of
the music symbols in a staff. That is why it is quite common that staff lines detection
algorithms are coupled with staff line removal algorithm.

The OMR literature as explained by Fornés et al. [Fornés 14] groups staff lines
recognition methods into five categories:

Projections, Histograms, Run lengths These methods [Pruslin 66; Fujinaga 04;
Kato 92] are based on the distinctive characteristics of staff lines being thin horizontal
lines and are very fast to compute. However, the simplicity of the methods often does
not account for skewed lines or overlapping symbols.
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Candidate Assemblage and Contour Tracking These methods [Prearu 70; Roach
88; Fornés 06] first try to isolate candidates to be considered for being a staff lines, for
example by skeletonizing the image and isolating thin lines, then joins the candidates
to construct whole staff lines. These methods are known to have a good balanced
between speed and accuracy.

Graph Path Search These methods [Carter 92; Cardoso 09] tries to construct a
graph either based on lines primitives or the image itself. Then, the graph is analyzed to
construct the best interpretation possible of staff lines. These methods are known to
produce the most accurate results by being able to cope with skewed or gaps in staff
lines together with overlapping symbols but are also slow because of the expensive
graph analysis step. In this work, we use a graph-based Kalman filtering method
[dAndecy 94] to detect and remove staves from the original gray-scale image. It’s ability
to process broken or curved lines accurately is very important given that we want to
process dense, noisy and damaged historical printed music scores.

Convolutional Neural Network Recent work like [Calvo-Zaragoza 17] has used Con-
volutional Neural Networks (CNNs) to do pixel-wise classification to locate staff lines.
These methods produce very good results and are shown to outperform other state-
of-the-art classic methods for staff lines detection and removal. Another advantage
of this method is that no preprocessing like binarization is required for the method to
work. However, these methods require pixel-wise ground truth information which are
very costly to produce and expensive hardware to train the CNN model.

No Staff Removal Once staff lines are correctly removed from a binary image of
a music score, later OMR segmentation and recognition steps are much easier to
perform. However, this removal also frequently damages other symbols in the music
score because of the real difficulty of the task, with a lot of overlapping symbols and
gaps and distortions in the staff lines. Damages done during the staff line removal
process often impacts negatively successive OMR recognition steps, which is why some
OMR systems like [Pugin 06] do not remove staff lines before further processing of
the image. This allows for faster processing of the image or a more accurate detection
of music symbols since no degradations can be introduced by the staff removal steps.
However, following steps like music symbol detection which we now presents have to
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be adapted to work with the presence of staff lines.

1.3.1.3 Music Symbol Detection

Music scores are constructed using a lot of relatively simple shapes like lines and
blobs in a complex bi-dimensional structure. This fact has pushed OMR systems to use
simple extraction algorithm like graphical primitive detection or connected components,
and then use complex ad hoc rules to merge or over-segment primitives [Fornés 14].
The classification of music symbols can be done using a variety of techniques like
simple filters, template matching or classifiers like HMM, neural network, K-NN and
SVM as presented by Rebelo et al. [Rebelo 09].

More recently, convolutional-based neural network detectors [Pacha 18b] that merge
the segmentation and classification steps have been applied to a variety of dataset like
the newly annotated handwritten dataset of modern music, the MUSCIMA++ dataset
[Hajič 17] or on mensural music scores by Pacha et al. [Pacha 18a]. Fully convolutional
neural networks have also been used by Hajic et al. [Hajic 18] and Tuggener et al.
[Tuggener 18b] which allows for pixel wise segmentation of music symbols.

1.3.1.4 Music Notation Reconstruction

Finally, the last step of the recognition process is to reconstruct the music notation
and validate the structure produced. Rebelo et al. [Rebelo 12] shows that because of
the strong structure and graphical rules of music notation, it makes sense to model
this organization using a grammar. Most of these methods are used at the end of
the OMR pipeline, to either check the validity and construct the music structure from
previously detected primitives. For example, the work of Modayur et al. [Modayur 93]
uses a constraint based system driven by music notation rules to check the validity of
the previously produced recognition. Graph grammars can also be used to model music
notation as shown by the work of Fahmy et al. [Fahmy 93] and Baumann [Baumann 95]
where graph grammar rules are used like a declarative knowledge base that is used
to construct a symbolic representation of the music scores using previously detected
primitives. However, these types of grammars never reconsider the segmentation done
at a previous stage of the OMR processing pipeline. Throughout our work, we use the
DMOS method described in section 1.4 to model and construct the musical structure
of a music score. The interesting characteristics of this method compared to the other
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grammar method is its ability to drive both the recognition of graphical primitives and
construct the musical structure of a document. This dual characteristics allow us to use
this method both at the beginning of the OMR recognition stage for some automatic
data generation process or at the end of the OMR process to validate the produced
musical structure.

We believe that low-level symbol segmentation problems caused by the density,
noise or preprocessing of a music score (see fig. 1.4) should not be part of the grammar
for an OMR system, as it is too complex to be modeled explicitly. We wish to devise a
method that delegates the segmentation task to a statistical model, in our case a Con-
volutional Neural Network (CNN) designed to do both segmentation and classification.
Furthermore, our method was developed with the goal that it could be applied to any
kind of structured document.

(a) Touching Symbols (b) Broken Symbols

Figure 1.4 – Hard segmentation problems for accidental detection task.

1.3.1.5 Full-Pipeline OMR

The disadvantages of segmenting the OMR process into small modular tasks is the
introduction of errors, especially in the earlier stages, that can prevent later stages to
work correctly. Modern approaches often choose more integrated approaches where
a trainable model will try to learn a task end-to-end. These kinds of approaches have
the advantages of using trainable models able to adapt to many distortion and noises
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without modifying the training method.
The work of Hajic et al. [Hajic 18] uses a U-Net based model that we also present

in section 1.5.2 to train a model that will be able to directly detect music notes in
handwritten music scores as well as predict the duration and pitch of the musical notes.
This approach is enabled by the use of the MUSCIMA++ dataset that we present in
section 1.3.3, which contains graphical annotation of music notes such as shapes and
bounding boxes as well as music structural annotations like music note duration and
pitch. Pacha et al. [Pacha 18a] also take this end-to-end approach using a region-based
convolutional neural network applied to handwritten music scores with mensural notation.
The authors of [vdWel 17] uses a convolutional sequence-to-sequence model to directly
predict the sequence of notes in synthetically generated music scores augmented with
artificial degradation techniques. One of the current limitation of end-to-end approaches
is the difficulty to correctly represent complex musical structure at the end of the
recognition process. For now, most of the end-to-end method like the recent work from
Rıos-Vila et al. [Rıos-Vila 20] can only recognize monophonic scores or mono-voiced
scores that often concentrates on only recognizing the musical notes useful for music
playback of the scores but not sufficient for a complete re-imprinting task.

While there are obvious advantages of end-to-end approaches, like the ability of
the same model to adapt to different kind of data and tasks, the main disadvantages is
the need for large amount of ground truth often annotated manually. This is the main
reason we propose to study weakly-supervised detection method in section 1.6.2 and
in a more general manner generative method in section 1.6. Moreover, in the second
part of this work chapter 4, we propose a novel approach to symbol detection, using a
method able to detect music symbols without using any detection ground truth. Although
our approach is not end-to-end, we believe that creating an OMR process using less
manually annotated data should be the core focus of modern approaches.

We now show present briefly exiting OMR system that tries to integrate all this step
into a single software package so that the task of automatically processing music scores
could be done by users other than OMR experts.

1.3.2 Software

While the end goal of OMR varies with users, a few fully integrated OMR software
exists, with the goal of transcribing an image of a music score into its equivalent in MEI
or MusicXML format in order to be opened, read and adapted using music typesetting
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software. At the time of writing of this manuscript, here is the list of known still developed
OMR software:

— Audiveris: https://audiveris.github.io/audiveris/

— SmartScore: https://www.musitek.com/

— SharpEye: http://www.visiv.co.uk/

— PhotoScore: https://www.neuratron.com/photoscore.htm

— ScanScore: https://scan-score.com/en/

— capella-scan: https://www.capella-software.com/us/index.cfm/products/
capella-scan/info-capella-scan/

— OMeR: https://www.myriad-online.com/en/products/omer.htm

It is, however, difficult to compare the results of such software because of the lack
of a common agreement on how the OMR task should be evaluated and the fact that
most of these software programs are black box commercial software that are expensive
to acquire and difficult to automate. Nonetheless, ongoing work like [Byrd 15] tries
to define the music notation complexity of a music score in order to propose a set of
performance metrics based on a standard dataset of music scores of varying difficulties.
In the scope of our work, we only study the specific subtask of music symbol detection,
for which there are commonly used metrics such as the mean Average Precision metric
generally used in object detection [Everingham 10].

Although we only quickly tested with the open-source Audiveris OMR software as
shown in fig. 1.5, we agree with the general statement of Fornés et al. [Fornés 14] that
OMR software are able to correctly recognize synthetically cleanly generated music
scores but the recognition of handwritten or historical printed music scores or even
synthetic music scores containing scanning or camera artifacts are still a too difficult
task for these systems.

Now that we have presented the available OMR systems, we now present available
OMR datasets used by OMR researchers to further the state-of-the-art in OMR.

1.3.3 Datasets

Multiple datasets exist for different OMR tasks. First of all, the most well-known
handwritten music score dataset is the MUSCIMA dataset made by Fornés et al. [Fornés
12]. While the original goal of the dataset was to evaluate the staff lines recognition
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(a) Historical printed score (b) Audiveris pdf output (c) Audiveris visualization

Figure 1.5 – Example of Audiveris OMR software version 5.1.1 recognizing the first
page of the Piano Sonata No.22, Op.54 shown in fig. 1.2b. Staff lines and measure
bars recognition errors leads to the impossibility to correctly reconstruct the rhythms
information of the score. Lots of symbols are also missing such as accidental symbols.
The manual correction of audiveris recognition should be a very long process akin to
manually typesetting the original music score.

36



1.3. Optical Music Recognition

and removal tasks, it was later augmented by Hajič et al. [Hajič 17] to also include
symbol level annotations in order to evaluate symbol detection tasks and also some
musical relationship annotations for a subset of music notation reconstruction task. The
dataset is fairly large with 1,000 sheets written but the dataset is very homogeneous
since it is the same 20 music pages manually transcribed 50 times by different musician
writers and only present monophonic music scores. The dataset is fully annotated
with every musical primitives and symbols described at the pixel level. This dataset is
widely recognized as one of the most complete dataset for handwritten scores using
the modern music notation and can be used for a wide variety of tasks, from staff line
recognition and removal to symbol detection and classification and also music notation
reconstruction.

Other datasets exist, going from symbol classification dataset such as the Rebelo
dataset [Rebelo 09] with 15,000 printed symbols or the Fornes dataset [Fornés 08]
with 4,100 handwritten symbols to synthetic dataset such as the DeepScore dataset
[Tuggener 18a] with 300,000 annotated images for symbol detection.

Unfortunately, no datasets currently exists for historical printed music score using
the modern music notation, apart from isolated symbol datasets. We believe the lack of
such dataset is the results of the very complex nature of such music scores and this is
why we propose to work on such type of music scores. Moreover, we also propose a
new dataset in the context of this work, a symbol detection dataset 3 containing bounding
boxes and label annotations for three different music symbol classes in historical printed
music scores that we reuse throughout this work.

1.3.4 Conclusion

We have now presented an overview of the state-of-the-art in OMR, starting by the
presentation of the modern music notation that constitute a music score (section 1.2)
and the different problematics that we will face in this work. We have shown that the
recognition of historical printed music scores is a very difficult challenge because of
the complexity of its music notation, manual engraving methods and time degradations
which complicates the segmentation task and music notation reconstruction task. From
this assessment, we have presented the state-of-the-art for the different OMR steps
(section 1.3) from preprocessing, staff line recognition, symbol detection to music
notation reconstruction showing that the crucial step of music symbol detection is

3. https://www-intuidoc.irisa.fr/en/choi_accidentals/
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still one of the most challenging step of the OMR pipeline especially in historical
printed music scores. Finally, after enumerating existing fully integrated OMR system
(section 1.3.2) and existing OMR datasets (section 1.3.3), we have shown the evident
lack of OMR research on historical printed music scores. To complete our OMR state-
of-the-art review, we now review the DMOS syntactical method used throughout this
work to drive our OMR system and construct our hybrid approach to detecting symbols
in historical printed music scores.

1.4 The DMOS Syntactical Method

The DMOS syntactical method was introduced by Coüasnon [Coüasnon 01], and is
a general off-line method for recognizing structured documents. DMOS uses attributed
two-dimensional grammars to define the symbolic and graphical representation of
documents, producing constituent parse trees. The contextual information produced by
the grammar can also be used to restrict the search space of our detector, as explained
in section 2.2.1. Musical scores was the first application of the system by specifying a
grammar to describe the modern musical notation. The grammar could describe fully
polyphonic scores with different voices on a single staff, allowing syntactical checking
of the number of beats in a bar and the vertical alignment coherence of synchronized
notes.

The hierarchical graphical structure produced, for example a simple music note as
illustrated in fig. 1.6, is described by a set of rules that can search through the use of
backtracking and check the coherence of different note elements. An implementation of
this rule using the EPF syntax is shown in listing 1.1. This ability to pinpoint inconsisten-
cies can be used to efficiently produce semi-annotated data by reducing the amount of
manual verification. Although the grammar is tailored to deal with complex polyphonic
orchestral scores, segmentation had to be addressed using dedicated rules, which are
difficult to produce and maintain. This detection of music symbol is the task we are
proposing to resolve using Convolutional Neural Network-based detectors that we now
present in our next section.
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(a) Stem (b) Note head (c) Accidental (d) Alignement

Figure 1.6 – Grammar workflow. Recognized elements are red. Violet squares are
zones where recognizable elements are searched for. The construction of a musical
note starts (a) find a potential stem, (b) two possible locations (top-right and bottom-left)
are searched for a note head, (c) a potential accidental is searched at the left of the
note head, (d) an alignment check is done between the note head and accidental.

1.5 Supervised Detection

The detection of symbols is an essential step of an OMR workflow. In the document
recognition field in general and especially in OMR, we need a very precise localization of
music symbols in order to correctly guess the relative relationship between the symbols
and derive the structure of the music notation.

We therefore propose a summary of state-of-the-art fully supervised techniques
for symbol localization. Since the localization of an object or symbol in an image
can be done at different level of precision, we first present a coarser approach of
detecting object using bounding-boxes based method in section 1.5.1. We then present
in section 1.5.2 a finer but more heavy approach of detecting objects at the pixel level
using semantic segmentation techniques.

1.5.1 Supervised Object Detection

We now review state-of-the-art bounding-boxes based object detectors we use or
build on in the course of this work.

Spatial Transformer Network In the work of Jaderberg et al. [Jaderberg 15], the
authors present a new Spatial Transformer Network (STN) architecture in order to
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Listing 1.1 – EPF grammar example graphically describing a musical note
noteStemDownWithAccidental Note ::=

stem StemSeg &&
AT( aboveRight StemSeg ) && notehead NoteheadCC &&
AT(left in| NoteheadCC ) && accidental NoteheadCC AccidentalCC &&
constructNote StemSeg NoteheadCC AccidentalCC Note.

stem StemSeg ::=
TERM_CMP isStem StemSeg .

notehead NoteheadCC ::=
TERM_CMP isNotehead NoteheadCC .

accidental NoteheadCC AccidentalCC ::=
TERM_CMP isAccidental AccidentalCC &&
isAligned NoteheadCC AccidentalCC .

enhance the classification accuracy of a simple Convolutional Neural Network (CNN)
model. The ST network as shown in fig. 1.7 is composed of two stacked CNN: a
localization network and a classification network. The localization network has the
task to output a 2D affine transformation for a given input image effectively isolating
the symbol to recognize from its background. A Spatial Transformer Layer (STL)
applies this transformation to the input image, that will be then fed to the classification
network. Because the detection mechanism is implicit through the use of a 2D affine
transformation, this architecture has a lot of flexibility to define a detection task, either
unsupervised or in a supervised manner as we proposed in section 2.2.2.

Figure 1.7 – Spatial Transformer architecture as proposed by Jaderberg et al. [Jaderberg
15].
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Faster R-CNN The Faster R-CNN [Ren 15] is one of the pioneer object detection
architectures in Deep Learning and is now widely used in very diverse tasks. The
detection process happens in two steps. First, in a Region Proposal Network (RPN)
stage, a feature extractor (VGG-16 or resnet 101) is used to process input images.
Then, at some intermediate layer of the feature extractor, anchor boxes are used in a
sliding window manner to predict class agnostic box proposals. This RPN is trained
using a multi-loss function taking into account both localization and objectness score
produced by the RPN. Secondly, some of these proposals (usually 300) are cropped
from the feature layer used to predict them, and the rest of the feature extractor is
processed. Unlike the RPN stage, the second stage outputs class-specific bounding
boxes refinement for each of the proposals. Finally, a similar multitask loss is used to
optimize the second stage detection. The Faster R-CNN has presented state-of-the-art
results when first introduced in 2015 on both the Pascal VOC 2007 dataset with 73.2%
of mean Average Precision (mAP) and the Pascal VOC 2012 dataset with 70.4% mAP.

R-FCN The R-FCN detector proposed by Dai et al. [Dai 16] is an adaptation of the
Faster R-CNN architecture designed for even faster detection. While the Faster R-CNN
avoids a lot of computation by sharing a single network for both RPN and full detection
stages, it still needs to process each region proposal until the end of the feature extractor.
That is why the R-FCN architecture proposes to extract region proposals only at the
last layer of the feature extractor and therefore reduces the amount of computation
for each proposal. They also propose a position-sensitive cropping mechanism using
position-sensitive score maps in order to retain the localization information for each
proposed region. R-FCN is much faster than the Faster R-CNN, while maintaining
comparable accuracy.

Single Shot Detector The third object detector we propose to use is the Single Shot
Detector (SSD) [Liu 16]. Unlike the Faster R-CNN and R-FCN that use two stage
predictions, the SSD architecture predicts directly class and bounding boxes of objects
from a single pass of the feature extractor as shown in fig. 1.8. This model is typically
significantly faster than two stage detectors like Faster R-CNN and R-FCN.

Overview Since CNN bounding boxes-based detectors have shown to produce state-
of-the-art results for object detection tasks like the Pascal Visual Object Challenge
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Figure 1.8 – Single Shot Detector as presented by Liu et al. [Liu 16].

(VOC) [Everingham 10], we propose to use such detectors for localizing music symbols
in dense, noisy historical printed music scores. We believe such detectors can be
trained to accurately music symbols despite the noise and density characteristics of
historical music scores. Different detector models have a different speed and accuracy
trade off where the Faster R-CNN and R-FCN have a very high accuracy and slower
processing speed and the SSD model a faster processing speed but a generally lower
detection accuracy.

When more fine-grained detection is needed for the localization of objects, Semantic
Segmentation models can be used to accurately localize an object with its contour
using a pixel-wise classification approach. We now review state-of-the-art Supervised
Semantic Segmentation models.

1.5.2 Supervised Semantic Segmentation

Semantic segmentation is the task of classifying every pixel of an image. After
clustering neighboring pixels of the same classes, we can deduce a very precise
location of objects or symbols in the image. Most of the state-of-the-art approach builds
on the Fully Convolutional Network (FCN) architecture.

Fully Convolutional Network Fully Convolutional Network introduced by Long et al.
[Long 15] proposes to adapt existing convolutional network like AlexNet [Krizhevsky 17],
VGG net [Simonyan 15] and GoogLeNet [Szegedy 15] to output a dense prediction map
of the size of the input image in order to classify every pixel of the input image. Their
final proposal is the Fully Convolutional Network (FCN) architecture that contains skip
connections between the convolutional layer in order to combine the feature hierarchy
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of different layers and refines the spatial precision of the output.

U-Net The U-Net model proposed by Ronneberger et al. [Ronneberger 15] is designed
for task of segmenting biomedical images by labeling each pixel of an image. Starting
from a Fully Convolutional Network (FCN), the U-Net adds a symmetric expanding path
which is able to up-sample each of the feature maps produced by the corresponding
level of the FCN. This additional path forming a U shape is shown in fig. 1.9. The
contracting path (FCN) is therefore able to capture contextual information and build the
relevant feature extractor for the task while the symmetric expanding path is able to
produce a precise localization by directly reusing the FCN extracted features. This work
also emphasizes the use of data augmentation in order to efficiently train a U-Net model
with very few annotated examples.
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 1.9 – U-Net architecture as shown by Ronneberger et al. [Ronneberger 15].

The U-Net architecture has also been successfully applied to document process-
ing tasks [Ares Oliveira 18] like page extraction, baseline extraction, layout analysis,
illustration and photograph extraction. This work emphasizes the use of a generic CNN-
based architecture for different document processing tasks followed by tasks specific
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post-processing like thresholding, morphological operations, connected components
analysis and shape vectorization. Although pixel level annotations are hard to produce,
the authors notes that the generic U-Net model requires a small amount of manual
annotations to be successfully trained thanks to the pretraining of the U-Net architecture
on the ImageNet dataset [Deng 09]. Building on this successful application of the U-Net
architecture on document processing tasks, we also propose to reuse this architecture
in our unsupervised detection method presented in section 4.5.2.

1.5.3 Conclusion

The literature on supervised object detection methods or supervised semantic
segmentation methods have shown the capacity of these methods to be applied on a
wide range of applications, going from natural object recognition, from street signs, cars
and many types of objects in natural scenes but also to the segmentation of medical
images or segmentation of historical documents. We believe such detection models
can be applied for music symbol recognition, significantly boosting the recognition
capacity of any OMR pipeline. That is why we study such application of object detectors
for music symbol recognition in chapter 2. However, one significant downside of
supervised methods is their need for annotated data, often with a costly and slow
manual process. Although many possible strategies can be used to reduce the need for
manually annotated data, the combination of supervised and generative models have
shown to be a very promising path to reduce the use of manual annotations. We review
such generative methods in our next section.

1.6 Generative Methods for Reducing Manual Annota-

tions

The recent advances in supervised computer vision models like CNN have also
driven a significant increase in the demand of annotated data. In our case, the appli-
cation of supervised music symbol detectors first needs for music symbol detection
datasets to exist. To find a solution to this lack of annotated data, domains like weakly-
supervised/unsupervised learning or cross-domain adaptation learning has researched
ways to reduce the need for annotated data while training supervised models. One
of the recent advances of these domains is the combination of generative models
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like Generative Adversarial Networks (GAN) together with fully supervised models
that can successfully reduce the amount of annotations needed and even improve
the accuracy of the supervised model. Therefore, we first review the principle of the
original GAN model in section 1.6.1 and then shows the application of the GAN model
for cross-domain adaption learning in section 1.6.2 and for data generation tasks for
weakly-supervised learning in section 1.6.3. Finally, we review the main caveat of these
approaches which is the instability of training GAN models in section 1.6.4.

1.6.1 Generative Adversarial Network

Generative Adversarial Network (GAN) introduced by Goodfellow et al. [Goodfellow
14] and illustrated in fig. 1.10 is a type of generative model which can be trained using
an adversarial training objective.

Z

Real
or
Fake

G G(z)

X

D

Figure 1.10 – Schema of a Generative Adversarial Network (GAN) as presented by Pan
et al. [Pan 19]. A GAN is composed of a Generator (G) and a Discriminator (D). The
Generator transforms a random noise vector z into G(z) to fool the Discriminator. The
Discriminator has to differentiate between real X samples and generated samples G(z).

This adversarial training puts in competition a generator network and a discriminator
network where the generator needs to fool the discriminator and the discriminator needs
to identify data coming from the generator. This mechanism can then be used to
generate images that are indistinguishable, in principle, from real images. An example
of generated digit images, faces and natural images is shown in fig. 1.11. The input of
the generator is called a latent representation of the generated output as it parameterize
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the generation process. In the original proposal of the GAN model, the values for the
input vector is randomized in order to explore the latent representation space. Although
the original work managed to replicate small images of digits, faces and animals, this
type of adversarial training is known to be very unstable and further modification of
the loss objectives and architecture has been proposed to use GAN for more complex
tasks.

(a) (b)

(c) (d)

Figure 1.11 – (a) Generated digit, (b) faces and (c)-(d) natural images produced by the
original GAN architecture as shown by Goodfellow et al. [Goodfellow 14].

1.6.2 Cross-Domain Adaptation using GAN

One of the most interesting application of the GAN model is the use of its latent
representation as a bridge between two domains of representation. This allows to use
the generator as a translator between two domains, which in turn allows a transfer
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of any other prediction task trained on one representation to be applied on another
representation.

Cycle-GAN The work by Zhu et al. [Zhu 17] proposes to apply a modified version of
the original GAN model for the task of Image-to-Image translation. Traditionally, the task
of Image-to-Image translation needed datasets of aligned pairs of images where each
image of the source domain had a known corresponding image in the target domain.
The use of a GAN model allowed here to realize this task without having aligned pairs of
images. However, instead of having only one generator and discriminator network, the
Cycle-GAN is using two generators and discriminators network where each generator
can produce images of the source and target domain and each discriminator can identify
images of the source and target domain. Additionally, two cycle consistency losses
are used to minimize the difference between an image and its translation to and from
the target domain. This training mechanism allowed to train a generative model able
to transform an image from a source domain to an image resembling images of the
target domain while retaining properties that are common to both the source and target
domain.

Weakly-Supervised Detection Although large scale detection dataset already exists
for popular application domain like object detection in photographic images, the high
cost of creating such large datasets for less popular domain is driving the research for
weakly-supervised detection models. Formally, weakly-supervised object detection is a
task where only images and image-level class annotations are provided for training.

The work of Inoue et al. [Inoue 18] proposes an improved weakly-supervised de-
tection model by using cross-domain adaption of a pretrained detection model. In this
task, we consider both a source domain and a target domain, where the source domain,
for example photographic images, is fully annotated with classes and bounding boxes
annotation at the instance-level. However, the target domain, for example cartoons
or drawings, only contains image-level annotations and its class set is a subset of the
source domain class set. The proposed model is a fully supervised detector model,
pretrained on the source domain, which is then successively fine-tuned using two syn-
thetically generated samples. The first synthetic samples are images of the source
domain which are transferred to the target domain using a Cycle-GAN model. Therefore,
the detector is fine-tuned using synthetically generated images and annotations from the
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source domain. In a second time, the detector is fine-tuned by using a pseudo-labeling
of the target domain images where synthetic bounding boxes are generated by using
a combination of the detector output and image-level annotations. The results using
the Pascal VOC20017 and VOC2012 source dataset (with instance level annotations)
and the Clipart1k target dataset (using only image level annotations) shows that the
proposed method of Domain Transfer + Pseudo-Labeling (DT+PL) is outperforming
other weakly supervised detection approaches and unsupervised domain adaptation
approaches with 46% of mAP against 27.4% of mAP at best for other approaches.

In summary, weakly supervised detection tasks implies that image-level class anno-
tations of the target domain are used to train a weakly supervised model and the use of
a GAN model to cross the boundaries between images of different domains does not
require any annotations.

Unsupervised Word Recognition This cross-domain translation can even be used
in a total unsupervised fashion using synthetic data as shown by the work of Kang
et al. [Kang 20]. The authors show how a classic word recognition architecture such
as a Recurrent Convolutional Neural Network (RCNN) can be trained using a hybrid
loss. The word recognition task is trained using synthetic words where the ground
truth is automatically generated while another adversarial task is learned by using an
additional discriminator so that the convolutional network of the RCNN produces an
identical embedding for synthetic word images and real word images. This approach
has the very interesting advantage of never needing any manually annotated ground
truth for training a word recognition model that can be applied on real images. However,
in order to train such model, a synthetic data generation method has to be manually
crafted such that the convolutional network will be able to learn a common embedding
process for synthetic data and real data. On the IAM dataset, this method produces a
Character Error Rate (CER) of 14.05% and is compared to the upper bound of 6.88%
CER when training directly with real annotations and the lower bound of 26.44% when
training with synthetic annotations only. In general, after experimenting with 5 different
datasets, the method always shows a improvement over only using synthetic dataset for
word recognition.
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1.6.3 Data Generation with Localization using GAN

A very practical use of the GAN architecture is to use them jointly with another
fully supervised method to reduce the need for manually produced annotations. Such
approaches, also called weakly supervised approaches, have been successfully applied
to task like object instance segmentation with the work of Remez et al. [Remez 18].
This work uses as input information produced by a pretrained Faster R-CNN detection
model in order to train a GAN generator network to learn to segment a single object
previously detected. An adversarial training strategy is proposed based on a cut and
paste approach (named Cut&Paste). The generator produces a mask of a previously
detected object by using features extracted by the Faster R-CNN. This mask is then
used to extract the object from its original image and pasted into a background image.
Then, the discriminator has to differentiate between the original images and images
produced using the generator. In this instance, the use of a GAN architecture train with
an adversarial loss allowed to train a segmentation model without using any manually
annotated segmentation data. Instead, the model uses an indirect source of information
which is the output of a previously trained detection model and managed to refine the
localization of detected objects without using additional ground truth information. After
experimenting on the COCO dataset, this Cut&Paste method shows to outperform a
similar weakly supervised instance segmentation approach Simple Does It by 2% on
the mAP metric and approach the upper bound of 70% of mAP produced by a fully
supervised model version of the model trained using the ground truth mask of the COCO
dataset. This method shows an original way of using a GAN-based method to adapt
image of object from one scene to another, but it still needs a fully-supervised detector
as prerequisite of the method.

The work of Yang et al. [Yang 17] is another examples of data generation using a
GAN model. This work proposes a modified version of a GAN model called the Layered
Recursive GAN (LR-GAN) that is able to iteratively generate images of individual object
and finally compose them using a modified version of the Spatial Transformer Layer
previously presented at section 1.5.1. Although, the goal of this model is to generate
realistic images, the use of an explicit localization information could be interesting for
other detection tasks. Unfortunately, the training stability of such model is very difficult
to maintain. This is why we now review the study of GAN models under the lens of
stability.
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1.6.4 Generative Adversarial Network Instability

The main difficulty of using a GAN model identified by its original author Goodfellow
et al. [Goodfellow 14] stems from having no explicit representation of generator output
and having to synchronize the training between the discriminator and generator. When
badly synchronized, the training can lead to a collapse of the generator to a single output.
This instability has been since studied in works like [Arjovsky 17a] which identifies that
one of the probable source of instability of GAN models stems from the characteristics
of the loss function used to train a GAN model. Indeed, the use of a binary cross-
entropy loss can lead to a gradient vanishing issue, for example in situation where
the discriminator accept or reject all images coming from the generator. The authors
further expand its idea by Arjovsky et al. [Arjovsky 17b] where they propose to improve
the stability of the GAN training framework by mainly changing the loss function by
using the Wasserstein distance (also called Earth Mover distance). This alternative loss
function have the property to continue to provide a useful gradient (as opposed to a null
gradient for the original binary cross-entropy loss) even when the discriminator is trained
optimally. This reduces the impact of the training balance between the discriminator and
the generator.

Unfortunately, we did not have the time to integrate this work into our own GAN model
architecture but we believe that using a better loss function such as the Wasserstein
distance could improve the stability of our approach. We discuss in section 6.2 how we
could take advantage of such improvements in future works.

1.6.5 Conclusion

To conclude, we have shown the working principle behind the original GAN model
(section 1.6.1) together with their possible application for reducing the need for manual
annotations by combining them with supervised models. By doing cross-domain adap-
tion learning (section 1.6.2), GAN models are able to bridge different representation
space, allowing the application of a fully supervised model trained on one domain to
another domain without retraining the supervised model. Weakly-supervised models
(section 1.6.3) aims to improve the accuracy and reduce the need for manual annotation
of existing supervised models by feeding artificial samples generated by a GAN model.
Finally, we have presented the main difficulties of these methods which is the instability
of GAN training methodology (section 1.6.4).
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1.7 Conclusion

Following the hybrid nature of our work, we now have presented the state-of-the-art
for both OMR and Deep Learning based object detection methods.

We have shown that OMR is still an active area of research with a great diversity of
tasks and applications such as re-imprinting, music extraction and playback or enhanced
search of music scores. For the particular case of historical printed music scores using
the modern music notation, we have shown that the recognition of such music scores
is a very difficult task, combining a very complex music notation, a manual typesetting
process introducing defaults and unpredictable variations and finally lots of noises and
degradations caused by old documents or a bad scanning process. This kind of music
scores have often been neglected and considered an easy recognition task by the OMR
community, often because of the apparent similarity with modern software produced
music scores. This is shown by the absence of existing historical printed music scores
suitable for machine learning tasks like symbol detection prior to this work.

Since very few works exists on the recognition of historical printed music scores, we
believe that focusing on the problem of music symbol detection is the most effective
way to bootstrap a modular OMR recognition system. For this symbol detection task,
we have presented state-of-the-art Deep Learning detection method that can be seam-
lessly applied to music scores. Since annotated dataset are needed for training such
supervised model and that none such datasets exists for historical printed music scores,
we explore the combination of detection method with generative methods such as GAN
able to reduce the need for manually annotated dataset.

Starting with chapter 2, we present the first step of this work: applying supervised
Deep Learning-based detector to music symbols in noisy and dense historical printed
music scores.
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CHAPTER 2

SUPERVISED MUSIC SYMBOL

DETECTION

2.1 Introduction

In the domain of Optical Music Recognition, the music symbol detection step is
one of the central steps of the full OMR pipeline, following the preprocessing and staff
lines recognition steps and preceding the music notation steps. While not every OMR
approaches perform an explicit music symbol detection step and favor more end-to-end
approaches (section 1.3.1.5), we believe that a self-contained music symbol detection
step is essential for a better modular and flexible OMR system.

With the rise of highly precise and efficient supervised Deep Learning detector, large
improvements can be made to existing OMR system by simply integrating existing Deep
Learning detector for music symbol detection. In this chapter, we show our novel use
of Deep Learning-based detector for music symbol detection, first in a constrained
accidental symbol detection task on historical printed music score in section 2.2. In
this first approach, we integrate this detection task into an existing syntactical method
describing the music notation, making this a hybrid approach with the DMOS syntactical
method driving our Deep Learning detector with a limited amount of annotated data. We
propose a comparative study between multiple state-of-the-art detection model as well
as a new architecture based on the Spatial Transformer exploring an original approach
of the detection task where the localization could be trained implicitly with no explicit
ground truth. With this new detector, we show the effectiveness of data augmentation
techniques as well as the use of contextual information. In the next section 2.3, we also
apply Deep Learning detectors on a more challenging detection task of detecting a wide
variety of music symbols in modern handwritten scores and show the effectiveness of
Deep Learning-based detectors on the task of handwritten music symbol detection.
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2.2 Hybrid Approach to Accidental Detection

The recognition of mid-18th to mid-20th century dense and damaged piano scores
presents unique segmentation problems of touching and broken music symbols as
shown in fig. 1.4 due to their imprinting techniques and time degradation. Segmentation
and classification of music symbols is an early task of the pipeline and should be highly
precise and reliable because a segmentation or classification error could propagate and
ruin the latest stages like music notation reconstruction. The segmentation of music
symbols is the most challenging task because of the lack of previous work/datasets to
test and compare approaches on historical printed music scores. With the introduction of
recent deep learning architectures for object detection, we can now apply an end-to-end
approach to segmentation and classification of music symbols. However, deep learning
architectures generally need a lot of annotated training data, which we do not have for
old printed scores.

In this chapter, we consider the problem of detecting a single accidental symbol with
the a priori knowledge of the position of the associated note head (see fig. 2.1). We
bootstrap this task by introducing a new detection dataset of accidentals and address
this detection challenge using a new Spatial Transformer-based detector that is both
small and fast, and compare this with three state-of-the-art object detectors. Our
objective is to train these detectors with a limited number of annotated samples and
design methods general enough to be easily adapted for other symbols.

(a) (b) (c) (d)

Figure 2.1 – Task definition: detector should predict the position (red box) and class of
an accidental (flat, natural, sharp or no accidental (rejection)) using raw image pixels
and the apriori knowledge of the centroid of the note head (blue cross).

In summary, we propose to resolve this detection task by semi-automatically creating
a new detection dataset in section 2.2.1 using a grammatical description of the music
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notation that contextualize our detection. We then propose to resolve this detection task
using either a contextual bootstrapping approach with a Spatial Transformer-based de-
tector in section 2.2.2 or a multiple RoI object detector approach in section 2.2.3. Finally,
we validate and compare the results of our two detection approaches in section 2.2.5.

2.2.1 Dataset Construction

In order to evaluate the performance of Deep Learning detectors for our music symbol
detection task, we first propose a new small dataset for single accidental detection in
dense and noisy piano scores that is freely available online for the research community 1.

We used three different scores edited in the 19th century from the composers
Friedrich Kuhlau, Felix Mendelssohn and Richard Wagner. The constitution of this
dataset was semi-automated by using the DMOS syntactical system shown in section 1.4
to analyze the layout of the score. Using the recognized structure, we were able to
extract potential locations of accidental by looking to the left of note heads. Connected
components in the location were then classified using a simple CNN based classifier
trained on isolated printed music symbols. This automated process only allowed to
correctly detect symbols that were already isolated and constituted of a single connected
components. Therefore, we manually verified every potential accidental symbol and
manually annotated incorrect detections, obtaining 2,955 examples containing three
accidental classes and a reject class (for when a note has no accidental), see table 2.1.
In fig. 2.1, we show how we position our detection window, with the target note head on
the right side, using four times the size of the space between staff lines as estimated by
DMOS (the interline distance) as the window side length.

Table 2.1 – Dataset produced by the DMOS pipeline driving a simple connected compo-
nent based segmentation, a simple music symbol classifier and a manual check.

Label Quantity

No accidental (Reject) 968
Natural 968
Sharp 777
Flat 242

Total 2,955

1. https://www-intuidoc.irisa.fr/en/choi_accidentals/
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Given the omnipresence of the target note head, we require that the detector localize
the note head if there is no accidental associated with it. This allows us to define
rejection using a concrete symbol detection goal, rather than trying to detect missing
accidentals in background noise.

Bootstrapping Strategies Having a small initial number of training examples, we use
a translation-based data augmentation method, randomly moving the window framing
the accidental (or note head for rejection). We propose four different variations shown in
fig. 2.2. The figure shows how we set boundaries on possible positions for randomly
located windows. The unconstrained model in fig. 2.2a requires the accidental, or note
head for rejection, to always be entirely in the sampling window (blue square in the
figure). We avoid introducing the vertical displacements not present in the original data
using the novertical model in fig. 2.2b, where the window must be vertically centered
around the centroid of the note head. We still allow a small range of 10 pixels of
vertical variation. The note head being a strong visual cue linked to the accidental,
we propose a third generation model called notehead (see fig. 2.2c) where at least
half of the current note head should always be inside the sampling window. Finally,
we combined the novertical and notehead model constraints (the novertical_notehead
model in fig. 2.2d). For each of these bootstrapping strategies, we augment the dataset
in different quantities: 25k, 50k, 100k, 200k, 400k.

(a) unconstrained (b) novertical (c) notehead (d) novertical_notehead

Figure 2.2 – Four randomized sample bootstrapping techniques. The red square shows
possible areas where the blue square, which is the sampling window, can be positioned.
The green zone is always inside the blue sampling zone.

We also use this data augmentation opportunity to balance our dataset and over-
sample less frequent classes like the flat and natural. Our previous use of the centroid
position of the current note head can now be used to distinguish between multiple
accidentals, and help the network to pick the right accidental to localize anywhere in the
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image.

2.2.2 Spatial Transformer-based Detector

We propose a new accidental detector based on the Spatial Transformer (ST) Net-
work previously presented in section 1.5.1. In this architecture, a localization network
learns to localize a region in the input image. The regions is then cropped from input
image and fed to a classification network for a classification task. The original appeal of
this architecture was the fact that an explicit localization was learned implicitly, driven by
the classification task. We first believed that we could take advantage of this original
architecture to avoid using bounding box annotations and train a detector only using
classification label information. However, it turned out that there is a discrepancy be-
tween the classification network, needing a larger than the symbol region to produce a
high quality classification and the localization task defined by a very tight box around
the symbol to detect. Nonetheless, we manage to transform this architecture into a
fully supervised detector using both classification labels and bounding box annotations
to produce high quality music symbol detections. We present a schema of this new
architecture we propose in fig. 2.3. We use only four parameters for affine transforma-
tions instead of the original six by Jaderberg et al. [Jaderberg 15] by zeroing out the
two shearing parameters to produce axis-aligned bounding boxes as is common for
detection tasks. The main modification of the ST architecture is the forwarding of the
affine transformation produced by the initial localization network to the new multi-task
network that produces both classification and a localization correction for a symbol. This
localization correction is added to the initial localization to produce the final detection.
This two steps localization allows both the classification network to see a large region
produced by the first localization and the second localization to produce a very tight box
around the symbol to detect for a high precision detection. Localization and classification
is learned jointly using a weighted multi-task loss eq. (2.1) composed of a mean squared
loss for the localization Lreg and categorical cross-entropy for classification Lcls. To
normalize the localization loss with respect to the classification loss, the localization
loss is scaled up using a weighting coefficient λ.

L(t, tcorr, p) = Lcls(p, p∗) + λ · Lreg(t+ tcorr, t
∗) (2.1)

Here, p and p∗ are respectively predicted class and ground truth class. t, tcorr and
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t∗ are respectively the initial transformation produced by the localization network, the
transformation correction produced by the multi-task network and the ground truth
transformation.
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Figure 2.3 – Accidental detection using a Spatial Transformer (ST). The localization
network takes an 80× 80 image as input, and produces an axis-aligned bounding box
represented by an affine transformation in 4 outputs nodes. The sub-image in the
bounding box, resized to 40× 40 pixels, is then classified by the Multi-task network into
four classes (Sharp, Natural, Flat, or Rejection). The Multi-task network also refines the
localization of the Localization network by producing offset for the affine transformation
theta. We train the whole architecture end-to-end using a weighted multi-task loss
composed of a classification loss and localization loss.

Use Of Contextual Information To this localization and multi-task network, we pro-
pose an improvement in order to use more contextual knowledge available during a
typical OMR workflow. Knowing that the position of the note head is strongly correlated
to the position of the accidental, we provide this coordinate as an input feature using
two additional neurons in the first feed-forward layer of the localization network and
multi-task network. In the same manner, the affine transformation produced by the
localization network is forwarded to the first feed-forward layer of the multi-task network
to provide more contextual information.

We chose the origin to be the upper left corner of the window and normalize the
coordinates using the size of the window, that is the bottom right corner has a coordinate
of (1, 1). In the original training samples, every note head centroid will have the same
coordinate (1, 0.5), because the window is positioned relative to the note head. However,
if we use this contextual approach together with our bootstrapping strategies presented
in section 2.2.1, the position of the note head centroid will move randomly relatively to
the upper left corner of the window. With this contextual information, we hypothesize

58



2.2. Hybrid Approach to Accidental Detection

that the network will be able to correlate the note head centroid information with the
position of the accidental to detect, maybe even discriminate the correct accidental to
detect when multiple accidentals are present in the image.

2.2.3 Multiple RoIs Object Detector Approach

Instead of specializing our detection model to the data we want to process, we show
in this section the use of more complex and general CNN based detectors like the
Faster R-CNN, R-FCN and SSD previously presented in section 1.5.1. These detectors
typically extract multiple Region of Interests (RoIs) from the input image and make
either two steps detection (Faster R-CNN and R-FCN) or single step detection (SSD).
This strategy has the advantage of dramatically improving detection precision at the
expense of adding a lot of computation, as discussed in section 2.2.5.3. We use the
official implementation of [Huang 17] that can be used to train and compare Faster
R-CNN, R-FCN and SSD models. For the Faster R-CNN and R-FCN models, input
images are typically scaled to 600 pixels on the shorter edge while keeping a maximum
width or height of 1,024 pixels. The SSD models only takes fixed size input images of
300× 300 pixels. We propose to reuse our cropping strategy presented in section 2.2.1
for the input of the network. This strategy produces relatively small images of around
130× 130 pixels. However, we note that the up-sampling to the normal input size of the
different object detector models does not deteriorate the image like a down-sampling
strategy and it also allows us to use an unmodified Resnet 101 and MobileNet v1 feature
extractors, without having to change ratio and scales of anchor boxes. Further work
could be done to better adapt these architecture by reducing the expected input size of
the Faster R-CNN and other models, which would in turn reduce the processing time
and the need to pretrained weights.

Faster R-CNN Our objective is to build the most precise music symbol detector
possible in order to minimize errors early in the OMR pipeline. That is why we use
the Resnet 101 feature extractor that produces excellent accuracy while providing
pretrained weights on the Common Objects in Context (COCO) dataset for both Faster
R-CNN and R-FCN models. The COCO dataset is a large object detection dataset
containing around 200K images with 1.5 million object instances and is currently one
of the major dataset used to train and evaluate object detection models. The ability of
using pretrained weights is essential because our dataset of 2,955 examples is far too
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small to train these complex architectures from scratch. By using transfer learning, we
can reduce over-fitting and benefit from the start of powerful feature extractors learned
on the COCO dataset. It is therefore a way for us to reduce the amount of training data
needed to produce an accurate detector.

Using the Faster R-CNN, we also propose to combine this complex object detector
architecture with our previous propositions of bootstrapping and concatenation of contex-
tual information (section 2.2.1). We experiment using the best performing bootstrapping
method, which is novertical as shown in table 2.5, in order to augment the number of
training samples. In combination with the bootstrapping method, which could lead to a
confusion for the object detector of the correct accidental to localize, we concatenate the
(x, y) coordinate information of the center of the note head to the first fully-connected
layer after the crop and resize operation of the selected RoIs. Originally, the coordinates
of the center of the note head are relative to the top left corner of the original image
and scaled relatively. Because of the crop operation of RoIs, we duplicate the note
head centroid position of one dataset example for each RoI and translate and scale the
coordinate relatively to the cropped area. The Faster R-CNN, as well as the R-FCN and
SSD, are trained using the classical multi-loss function, combining a classification loss
Lcls (Softmax) and localization loss Lreg (Smooth L1):

L(ai, I) = Lcls(pi, p∗i ) + λ · [ai is positive] · Lreg(ti, t∗i ) (2.2)

For each anchor ai of image I, we search for the best matching predicted box
ti. If such a box exist, ai is assigned to be positive and enable the localization loss
Lreg. pi and p∗i are respectively the predicted class and the ground truth class, t∗i is
the ground truth bounding box associated with the anchor ai. Here, λ = 2 meaning
that the localization loss has twice as much weight as the classification loss. All other
parameters are left to their default values.

R-FCN R-FCN is very similar to the Faster R-CNN except for optimization in how the
RoIs are computed and extracted from the feature extractor. This led to a significant
speed-up as shown by Huang et al. [Huang 17] and our own results in section 2.2.5.
The loss function is the same as the Faster R-CNN, see eq. (2.2).

Single Shot Detector By doing detection in single step fashion, the Single Shot
Detector is able to produce multiple detection with much faster speed than the Faster
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R-CNN and the R-FCN. We also use a different, more lightweight, feature extractor
known as MobileNet v1. We resize all input images at 300 × 300 pixels as the model
does not accept variable size input. No bootstrapping and contextual information was
used for the R-FCN and SSD detectors. We use the same multi-task loss function
as the Faster R-CNN, but use a weighted sigmoid function for the classification loss.
All parameters are left by default and use α = 1 meaning that both classification and
localization loss has the same weight.

2.2.4 Training Protocol

Contextual Bootstrapping Approach The training of our Spatial Transformer archi-
tecture, shown in fig. 2.3, used in our contextual bootstrapping approach is done in a
single end-to-end approach using a multi-task loss function composed of a categorical
cross-entropy loss for classification and mean-squared error loss for localization. The
normalization of the two losses is done by multiplying the localization loss with a weight
coefficient. After a quick grid search for this weight parameter in {1,5,10,15,20}, the
best results were obtained using a value of 20. The network is trained using the Adam
backpropagation algorithm with a learning rate of 0.0001 and a batch size of 50.

Multiple RoIs Object Detector Approach For training the Faster R-CNN, R-FCN and
SSD models, we mainly reuse the recommended parameters by Huang et al. [Huang 17].
We chose to use pretrained weights on the COCO dataset for all feature extractors
used: Resnet 101 and MobileNet v1. We train the Faster R-CNN and R-FCN with
the Stochastic Gradient Descent (SGD) optimizer configured with a learning rate of
respectively 0.0001 and 0.0003. For the SSD, we use the RMSProp optimizer with a
learning rate of 0.004 and a batch size of 24.

Cross-Validation Our dataset consists only of 2,955 original images with very imbal-
anced classes. We do a 5 fold cross-validation in order to test our different approaches
to produce reliable results. This strategy was implemented by splitting the original
dataset of 2,955 images into 5 folds of ∼593 examples. We iterate 5 times and each
time we choose a different fold to be the testing fold and use the remaining 4 folds
for training. In the context of bootstrapping as seen in section 2.2.1, we make sure
that the data augmentation only operates on the training folds and happens only after
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Table 2.2 – Architecture and Data Usage for Accidental Detectors. Detector type are
Spatial Transformer (ST), Faster R-CNN, R-FCN, and SSD. The table shows whether
detectors use transfer learning, can detect multiple objects, make use of the associated
note head location, or use bootstrapped samples. Version labels (v1, v2, . . . ) are used
to differentiate different experimental conditions for the same detector and are reused in
table 2.3.

Detector Transfer Learn. Mult. Objs Note Head Bootstrap

CNN + ST v1
CNN + ST v2 4

CNN + ST v3 4

CNN + ST v4 4 4

Faster R-CNN v1 4 4

Faster R-CNN v2 4 4 4

Faster R-CNN v3 4 4 4

R-FCN 4 4

SSD 4 4

the cross-validation splitting is done. That way, there are no possibilities that different
bootstrapped images coming from the same original image are present in both training
and test set. Using this cross-validation method, we therefore propose both the mean
and standard deviation for every results presented in the next section.

An overview of all the combination of detectors and training parameters is shown in
table 2.2. We now present the results of the different detection experiments we have
done throughout this work.

2.2.5 Results

Using the cross-validation protocol described in the previous section, we evaluate
our detectors using the mean Average Precision (mAP) metric proposed by the PAS-
CAL VOC Challenge by Everingham et al. [Everingham 10]. This metric allows us to
jointly evaluate classification and localization accuracy and compare the impact of boot-
strapping of our ST-based detector in table 2.5. We also compare with state-of-the-art
detectors in table 2.3. However, we make two small modifications to this metric. The
mAP metric uses an IoU threshold in order to decide if a detection is a True Positive (TP)
or a False Positive (FP). It is common to use 0.5 as the IoU threshold for object detection.
In our context of precise music symbol detection, we propose to add a second threshold
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of 0.75, which is much stricter and more representative of the level of precision we want
to obtain. Also, rejection (i.e., the absence of any detection target) is not considered
in the original mAP metric. That is why we propose to ignore the localization if the
model correctly predict the input image to be a rejection (no accidental). Although, we
define our rejection task to localize the note head, our objective is to give the network
something stable to localize in order to simplify the rejection.

2.2.5.1 Detector Comparison

Using the mAP metric, we show in table 2.3 the performance of our different ap-
proaches. We can clearly see that results are very good with an mAP of ∼99% with
an IoU threshold of 0.5 except for our ST-based detector which only performs at ∼97%.
Using an IoU threshold of 0.75 more clearly distinguish the detectors and place first
the R-FCN with a mAP of 98.7%, then Faster R-CNN followed by the SSD and finally
the ST-based detector. These results show the clear superiority of using multiple RoIs
generated from different part of the images instead of a single RoI from the whole
image.

Table 2.3 – Results comparing the best Spatial Transformer (ST) based detector, Faster
R-CNN, R-FCN and SSD. Results shown are mAP (in %) with an IoU threshold of either
0.5 or 0.75. See table 2.2 for an overview of each detectors.

Detectors mAP with IoU > 0.5 mAP with IoU > 0.75
µ(%) σ(%) µ(%) σ(%)

ST v4 97.25 1.68 94.81 2.99
Faster R-CNN v1 98.73 0.94 98.34 0.73
Faster R-CNN v2 98.85 0.67 98.65 0.59
Faster R-CNN v3 86.91 3.79 84.80 3.86
R-FCN 99.17 0.30 98.73 0.40
SSD 98.93 0.67 97.81 0.92

However, more complex detectors come with additional overhead, as shown in
table 2.4. The Faster R-CNN is about 90 times slower than the ST-based detector, and
takes about 18 times more memory. Given that this detector will be used extremely
frequently by the OMR system (more than a thousand of calls by page of music score),
using a Faster R-CNN will provoke a significant slow-down of the recognition process.
The slow processing time of state-of-the-art detectors are largely explained by the fact
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Table 2.4 – Speed and memory consumption of the ST-based detector, Faster R-CNN,
R-FCN and SSD. Measures were taken on a Nvidia GPU K80.

Detectors Speed (ms/image) Memory (Mb)

ST 2 260
SSD 14 300
R-FCN 80 4,800
Faster R-CNN 180 4,800

that they were designed to process much larger images. Further work could be done to
reduce the size of these architectures in order to reduce the processing time but we did
not have the time to do this very difficult process of downsizing all three Deep Learning
detection networks and tuning again all the hyperparameters of the networks.

2.2.5.2 Impact Of Bootstrapping Techniques And Contextual Information

In the case of the ST-based detector, we found that the augmentation of training data
almost always leads to better localization as shown in table 2.5. Another interesting
observation is that different sampling strategies led to different results. The unconditional
inclusion of the note head in the sampled image does not lead into an improvement,
which seems to correlate with the property of translation invariance found in classical
CNN architecture based on convolution and pooling operation. We also found that
reducing the vertical displacement of the sampled images relatively to the vertical
position of the note head lead to better results than allowing an unconstrained positional
sampling. This seems to confirm our starting hypothesis that introducing variation in a
very stable characteristic of our data does not help the ST-based detector to converge.

In case of the use of the Faster R-CNN, we found that bootstrapping techniques
actually hurt the precision of the detection. To better analyze this result, we divided
the dataset into four categories: single accidental where only one accidental is visible
in the image, multi accidental where multiple accidentals are visible, reject without
accidental where no accidental are visible and finally reject with accidental where an
accidental is visible in the image but should not be detected as it is not associated with
the correct note head. We found that when using bootstrapping the results for both multi
accidental and reject with accidental decreased significantly: 11% decreased for mAP
with IoU > 0.5 and 17% decreased for mAP with IoU > 0.75. Our conclusion is that
the architecture of the Faster R-CNN, designed for multi-object detection with strong
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translation invariance using the anchor boxes mechanism, is not suitable to be used in
combination with bootstrapping for our particular task of contextual detection.

Again, for the ST-based detector, we found that the use of contextual information like
the centroid position of the current note head always helps the detector improve the
detection results. In contrast, this additional information for the Faster R-CNN did not
change anything to the results.

Finally, for the ST-based detector, combining bootstrapping techniques and contex-
tual information lead to an improvement of 9.3% mAP for an IoU threshold of 0.5 and
30.8% mAP for an IoU threshold of 0.75 (line 1 and 6 comparison in table 2.5). In
the contrary, for more complex detectors like the Faster R-CNN, the use of contextual
information or bootstrapping techniques did not improve the already very good results.

Table 2.5 – Mean Average Precision results (in %) with IoU > 0.5 or > 0.75 (5-fold
cross-valid., 2,955 samples) for the Spatial Transformer based detector, fig. 2.3. We
explore the use of: nh which means the note head centroid is provided to the input
of the network, different data quantity, different bootstrapping methods and different
localization loss weight.

Spatial Transformer-based Detector Conditions mAP with IoU 0.5 mAP with IoU 0.75

nh quantity bootstrapping method loss weight µ(%) σ(%) µ(%) σ(%)

4 400k novertical 20 97.3 1.7 94.8 3.0
4 200k novertical 20 96.0 2.4 92.0 2.8
4 100k novertical 20 94.6 3.5 86.1 6.3
4 25k novertical 20 92.9 3.1 68.0 1.5
4 original 20 90.0 4.0 62.5 4.3

original 20 88.0 3.6 64.0 3.7
400k novertical 20 94.3 3.5 86.2 5.9

4 400k novertical_notehead 20 96.0 1.6 92.2 1.1
4 400k unconstrained 20 94.4 2.1 92.4 2.3
4 400k notehead 20 95.7 1.9 88.4 2.5
4 400k novertical 15 96.8 1.6 93.6 2.7
4 400k novertical 10 96.6 1.9 93.8 2.2
4 400k novertical 5 96.4 1.7 91.3 4.1
4 400k novertical 1 95.6 1.9 89.7 3.5

2.2.5.3 Discussion

The results of our experiments, which we have now published in Choi et al. [Choi
17; Choi 19], show the clear superiority of the Faster R-CNN and R-FCN for the task
of detecting an accidental. However, we also propose less powerful models like the
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SSD and ST-based detector for having more efficient and faster inference time for less
accuracy. Also, if we consider using semi-supervised or unsupervised architecture in
order to resolve the detection of music symbols, the Spatial Transformer should be
simpler to integrate as it was designed as an attention model and seamlessly integrates
in any kind of neural network architectures.

Regarding the full OMR task, we only show here how to resolve a small subset of
the pipeline. Future works will be oriented towards two main points: extend detection to
other symbols, further reduce the number needed of training samples and propose a
new corpus of dense and complex orchestral printed scores.

We plan to extend the detection of music symbols in a bottom up fashion, first adding
multiple note heads detection and then gracefully integrate accidentals, followed by
articulation marks, ornaments. . .

More investigation is needed in order to characterize the relation between the
accuracy of the detectors relative to the number of training samples and the size of the
window in which we want to detect a symbol. Our focus on reducing the number of
needed training samples is based on the observation of the fact that manually annotating
data is very slow and costly. Moreover, it has to be done again each time we work in a
new corpus/type of documents.

Even though the situation in OMR recently improved by the introduction of the
MUSCIMA++ dataset which contains localization, class and relationship information
of music symbols in handwritten scores, the dataset is still extremely homogeneous
because the corpus was originally designed for a writer identification task where the
same 20 music score pages were transcribed by 50 different musicians. That’s why we
intend to propose a new corpus of dense and complex orchestral and piano printed
scores. We feel that the OMR community is neglecting printed scores because of recent
software printed music scores with very good impression quality. We feel that the OMR
community is neglecting printed scores because of the association with recent software
printed music scores where readily available fully integrated OMR software systems
(see section 1.3.2) can be used with great results. However, there is still a huge quantity
of music scores printed or engraved from the 18th to the early 20th century. These
scores present a lot of challenges because of their printing techniques, time degradation,
bad scanning qualities and complexity of the baroque, classic or romantic music style.
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2.2.6 Conclusion

A renewed interest is shown toward OMR in the computer vision and pattern recogni-
tion research communities, because many interesting challenges remain to be overcome.
In this work, we concentrated on designing a method that produces an accurate seg-
mentation and classification of the accidental associated with a note head, without a
priori rules concerning segmentation problems. We propose four different detectors:
a Spatial Transformer-based detector, SSD, R-FCN and Faster R-CNN. We show the
trade-off in speed over accuracy in different detectors with the best detector having
98.73% mAP for an IoU threshold of 0.75. The fastest ST-based detector shows very
bad out-of-the-box performance. However, by using contextual information like the
position of the note head and bootstrapping techniques, we improve significantly the
accuracy of the detection by 9.3% mAP for an IoU threshold of 0.5 and by 30.8% mAP
for an IoU threshold of 0.75.

We have now shown the effectiveness of using small and large Deep Learning
detectors on a simple constrained task of a single accidental symbol detection in a small
patch of historical printed music score image. On the other hand, the object detection
literature has shown that large Deep Learning detector architecture can scale to much
larger input images and larger class set of object to detect. This is why we now propose
to apply large Deep Learning detectors such as a Faster R-CNN to a much larger music
symbol detection task using the MUSCIMA++ dataset.

2.3 Large Scale Supervised Music Symbol Detection

Existing state-of-the-art object detectors such as Faster R-CNN or R-FCN were
designed to detect objects in natural scenes and have been shown to work well on
challenging datasets such as COCO [Lin 14] or ImageNet [Deng 09]. In this work, we
propose to apply such detector on the challenging task of detecting a large class set
of music symbols in handwritten scores. But applying them out-of-the-box on sheets
of music can lead to a suboptimal performance, due to the dense nature of music
scores with many tiny objects. Therefore, we now present the MUSCIMA++ dataset
and various preprocessing operations to tailor the detectors used to our specific music
symbol detection task.
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2.3.1 MUSCIMA++ Dataset for Handwritten Symbol Detection

For training a music object detector, we use the MUSCIMA++ dataset [Hajič 17]
based on the CVC-MUSCIMA dataset [Fornés 12]. The CVC-MUSCIMA dataset is
constituted of 1,000 music sheets and was produced by 50 different musicians writing
the same 20 music pages in order to capture a large variability in handwriting. Hajič
et al. [Hajič 17] later augmented this dataset with over 90,000 symbol-level annotations,
made by human annotators across 105 different classes of music symbols. The images
have a high resolution of about 3, 500× 2, 000 pixels, are binarized and optionally come
with staff lines removed. For consistency, all white-on-black images are first inverted
and then converted to RGB, as the evaluated implementations take colored images
as input. Note that the overhead created by this conversion is only minimal, as the
duplicated information gets merged again in the first layer of the CNN.

To efficiently train an object detector on such images, the image size has to be
reduced in order for the entire process to fit in the GPU virtual memory. We propose
to crop the images contextually, by cutting images first vertically and then horizontally,
such that each image contains exactly one staff and has a width-to-height-ratio of
no more than 2:1, with about 15% horizontal overlap to adjacent slices (see fig. 2.4).
Basically, each horizontal slice extends from the bottom of the staff above to the top of
the staff below. This cropping can also be done by automatically detecting staffs and
then applying the same slicing rules leading to image crops that partially overlap both
horizontally and vertically. For splitting the cropped images into a train and test set,
we follow the recommendations from Hajič et al. [Hajič 17] to ensure that the test set
contains scores of all complexities and that there is no overlap of writers between the
training and the test set. We furthermore used 10% of the remaining training set for
validation during the training. In total, we obtained 6,181 samples, that were divided into
a training, validation and test set, containing 4,794, 533 and 854 images respectively.

One limitation of this cropping approach is, that all objects significantly exceeding the
size of cropped regions along the staff lines like big slurs or big system braces, will not
appear in the training and test data, as only annotations that have an intersection-over-
area (IoA) of 0.8 or higher between the object and the cropped region are considered
part of the ground truth.

As music objects, we consider the full vocabulary of all 105 classes contained in
the MUSCIMA++ dataset, containing both primitives such as note heads as well as
compound objects such as key-signatures that consist of one or multiple accidentals.
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Figure 2.4 – Illustration of the sliding window approach, used to crop music scores
into meaningful sub-images (red) with horizontally overlapping areas (orange) between
adjacent crops.

As said before, big symbols and symbols on the edge of the region are automatically
discarded based on their IoA.

2.3.2 Experimental Design

This experiment was done in collaboration with Alexander Pacha from the Vienna
University of Technology. For evaluating our suggested approach, we conducted several
experiments to study the performance of various object detectors and feature extractors,
as well as the effects of staff line removal, transfer-learning and removing classes with
rare symbols. Using the deep learning library TensorFlow 2, we adapted the work from
[Huang 17] to detect music objects by training on the data described in section 2.3.1. The
entire source code, including training protocols and detailed instructions to reproduce
our results, can be found at https://github.com/apacha/MusicObjectDetector-TF.
We considered:

— The three meta-architectures Faster R-CNN, R-FCN, and SSD as object detectors.
Faster R-CNN and R-FCN are both two-stage detectors with a region proposal
network and a region classifier. The difference is that Faster R-CNN uses a sliding
window for classification, whereas R-FCN uses position sensitive score maps and
per-RoI pooling, which is more efficient at the cost of a slightly reduced precision.

2. https://www.tensorflow.org/
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SSD is a generalized region proposal network for one stage detection on multiple
feature maps

— ResNet50, Inception-ResNet-v2, MobileNet-v1 and Inception-v2 as feature extrac-
tors, explicitly excluding custom-made networks that cannot benefit from transfer-
learning

— Images with and without staff lines (based on the images provided along the
CVC-MUSCIMA dataset)

— The full vocabulary of all 105 classes included in the MUSCIMA++ dataset, as well
as a reduced set of only 71 classes, removing 34 classes that appear less than 50
times in the ground truth and are only of minor importance such as uncommon
numerals and letters. Exceptions were only made for the classes double sharp
and the numerals 5, 6, 7 and 8: although they appear less than 50 times in the
dataset, we consider them essential to recover music semantics such as pitch and
time signature.

All the above-mentioned object detectors have a certain set of hyperparameters that
need to be fine-tuned for the particular dataset. For example, Redmon et al. [Redmon
16] shows that using statistical analysis to obtain a sensible number of anchor boxes,
anchor box sizes, and anchor box ratios can improve the results significantly compared
to handpicked priors. When running similar analysis on the cropped images, we obtain
the following characteristics: for a typical input image of 600 pixels width and 300 pixels
height (see fig. 2.5), we found the average square box size is about 37 pixels with a
standard deviation of 48 pixels. Note, that the dataset also contains extreme cases of
small objects like dots with only a few pixels and large objects that spans hundreds
of pixels. The mean ratio from width to height of boxes is 0.7 which means that the
majority of boxes are higher than they are wide. Furthermore, cropped images that are
to be fed to the detector contain 19 symbols on average, with a standard deviation of 11.
Concluding the analysis, we decided to use a grid of 32 × 32 pixels with a stride of 8
pixels and aspect ratios of 0.06, 0.29, 0.48, and 2.2 with the scales 0.25, 0.5, 0.75, 1.0,
1.75, and 4.0 to reflect the wide range of object shapes in the dataset.

2.3.3 Results

Following the evaluation protocols of the Pascal VOC challenge [Everingham 10],
we report the mean average precision (mAP) for each completed training in table 2.6
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Figure 2.5 – Typical sample of a cropped image that serves as input for the music object
detector.

and the detailed average precision per class for the combination that yielded the best
results in table 2.7. Figure 2.6 shows a typical detection within a single image.

Figure 2.6 – Typical detection results with most symbols recognized correctly.
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Table 2.6 – Detailed results for various hyperparameter combinations of the music
object detector. We present the mean Average Precision (mAP) and Weighted mean
Average Precision (WmAP) on the test set of MUSCIMA++ to show the influence of
class imbalance.

Meta-Architecture Feature Extractor Nb of classes Staff lines mAP (%) WmAP (%)

Faster R-CNN Inception-ResNet-v2 105 4 81.56 94.22
Faster R-CNN Inception-ResNet-v2 105 81.23 94.56
Faster R-CNN Inception-ResNet-v2 71 4 85.12† 94.68
Faster R-CNN Inception-ResNet-v2 71 87.80‡ 95.05
Faster R-CNN ResNet50 105 4 76.39 93.07
Faster R-CNN ResNet50 105 78.45 93.10
Faster R-CNN ResNet50 71 4 82.30 93.47
Faster R-CNN ResNet50 71 84.85 93.63

R-FCN Inception-ResNet-v2 105 4 69.75 89.12
R-FCN Inception-ResNet-v2 105 70.88 89.42
R-FCN ResNet50 105 4 75.53 92.59
R-FCN ResNet50 105 74.29 92.33
SSD Inception-v2 105 4 71.52 82.44
SSD Inception-v2 105 70.40 81.75
SSD MobileNet-v1 105 4 62.30 74.97
SSD MobileNet-v1 105 61.56 76.74

Table 2.7 – Detailed precision results per class for the best obtained music object
detector on the reduced set of classes (see table 2.6, line 3† and 4‡).

Class name Total number of instances
Average precision on the test set (%)

with staff lines† without staff lines‡

notehead-full 31,084 99.85 99.64
stem 27,108 98.82 98.71
ledger_line 14,500 97.89 97.40
beam 8,677 93.86 94.57
slur 3,859 90.34 88.54
duration-dot 3,195 95.12 94.21
thin_barline 3,071 99.49 99.64
8th_flag 2,744 93.46 93.37
measure_separator 2,649 43.64 52.09
staccato-dot 2,507 94.23 94.97
sharp 2,420 99.42 99.46
notehead-empty 2,385 99.31 99.11
flat 1,467 96.97 97.98
natural 1,427 96.90 97.61

Continued on next page
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Table 2.7 — Continued from previous page

Class name Total number of instances
Average precision on the test set (%)

with staff lines† without staff lines‡

dynamics_text 1,374 85.25 87.12
8th_rest 1,339 98.86 99.36
tie 1,085 82.39 81.85
quarter_rest 1,060 96.05 96.78
letter_p 1,038 89.70 89.84
letter_f 1,035 93.10 92.77
letter_e 926 82.12 85.29
letter_r 750 51.64 62.25
key_signature 697 79.31 77.80
letter_o 655 94.47 93.82
16th_flag 652 36.62 40.19
letter_s 649 71.89 74.30
grace-notehead-full 576 85.75 85.37
numeral_3 548 98.73 98.04
16th_rest 531 96.17 99.93
letter_t 513 92.10 94.42
other_text 508 83.99 89.30
letter_c 469 89.82 88.57
tuple 459 30.41 77.11
accent 421 99.08 95.75
g-clef 403 100.00 100.00
other-dot 402 94.40 95.19
repeat-dot 359 99.75 100.00
trill 315 100.00 99.74
letter_d 313 93.49 89.36
letter_m 293 74.19 74.43
f-clef 285 100.00 98.21
half_rest 241 95.53 91.16
time_signature 221 96.33 95.02
tenuto 216 88.45 74.79
letter_l 192 78.75 86.00
c-clef 190 97.68 98.68
whole_rest 183 90.73 84.66
letter_P 177 45.83 45.80
tempo_text 174 69.40 78.32
letter_i 171 66.48 81.08

Continued on next page
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Table 2.7 — Continued from previous page

Class name Total number of instances
Average precision on the test set (%)

with staff lines† without staff lines‡

letter_n 164 79.51 80.26
numeral_4 155 99.60 99.47
letter_a 134 90.36 83.81
multiple-note_tremolo 126 81.01 82.42
ornaments 123 85.22 83.90
letter_M 115 65.83 71.47
grace_strikethrough 110 98.14 97.96
letter_u 106 65.98 62.69
repeat 73 84.42 88.87
double_sharp 44 100.00 100.00
numeral_2 40 100.00 92.50
numeral_6 36 100.00 100.00
numeral_8 36 100.00 91.67
numeral_7 24 28.32 62.59
numeral_5 11 26.67 100.00

We find that the best performing detector with regard to precision is the Faster R-
CNN using the Inception-Resnet V2 feature extractor, pretrained on the COCO dataset.
This model produces a mAP of over 80%. The training on a GeForce GTX 1080 Ti takes
approximately one day per configuration before results become stable. Validating ∼ 500
images takes about 2–4 minutes, so inference should take less than half a second per
(cropped) image. When comparing the results of training on images with and without
staff lines, the impact is no longer significant, supporting the claim of Pugin [Pugin 06],
that staff line removal might no longer be necessary. However, readers should also note
that the staff lines in the CVC-MUSCIMA dataset are synthetic and do not experience
the usual distortions that apply to scans or pictures of real music scores.

Other detectors like the R-FCN or SSD produce good results as well, with a mAP of
75% and 71% respectively. Our results, therefore, comply with the findings of Huang
et al. [Huang 17], where in particular the SSD model trades smaller accuracy for higher
processing speed. Using pretrained weights, instead of random initialization and the
RMSProp optimizer as opposed to Stochastic Gradient Descent, improved the results
significantly, sped up convergence and was therefore used throughout the experiments.
Modifying the set of classes by removing underrepresented classes as described in
section 2.3.2, boosted the mAP by up to 6% in some cases. Note, that table 2.7
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is missing six classes, that did not have any instances in the test set because they
exceeded the size of the image crops and were thus discarded during the preprocessing.

2.3.4 Conclusion

In this work that we have published in Pacha, Choi, Coüasnon, Ricquebourg, Zanibbi,
and Eidenberger [Pacha 18b], we show that state-of-the-art deep learning detectors
like Faster R-CNN, R-FCN and SSD can produce accurate detection results on a wide
range of music symbols. After optimizing different hyperparameters, we achieve a mAP
of over 80%, which is a solid baseline.

However, there are still a couple of open issues, that need to be addressed in future
work, like how to process a whole page of a score. In this work, we used a simple
overlapping sliding window approach. This method, although simple to use, has many
well-known downsides like the poor performance of processing empty images or cutting
up large symbols as well as a non-trivial merging step that has to fuse information from
multiple overlapping sections.

Another problem, specific to OMR, is the inherent imbalance of symbol classes:
some symbols like note heads are extremely frequent whereas others like double sharps
are rare and often tied to a specific type of score. Having experimented with state-of-
the-art deep learning object detectors, we found that classes do not interact with each
other: simplifying the task by removing line-shaped classes did not improve the overall
precision. There also seems to be a minimum threshold of about 20 samples per class,
in order to be meaningful during the training. Currently, there is no guarantee, that
the model does not overfit, but with recently published work like the RetinaNet and its
focus loss [Lin 17] the effects of this class-imbalance could be mitigated to improve the
training, especially on hard to detect classes.

Although we used the test set, proposed by the MUSCIMA++ authors, where writers
in the test set do not appear in the training set, we are still not certain whether this
system is truly writer independent or not. One way to confirm this would be to perform a
cross-validation, where each writer in the dataset is evaluated independently.

Finally, we have shown that removing staff lines can be omitted for music object
detection, when using CNNs. Future experiments that apply data-augmentation using
noise models and deformed images, as proposed for the staff removal challenge [Fornés
13], can give even more insights into the robustness of our approach.
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2.4 Conclusion

In this chapter, we have shown that fully supervised Deep Learning-based detector
can be successfully applied to the task of detecting music symbols. We propose in
section 2.2 to use our new, very small and fast Spatial Transformer-based detector
for detecting a single accidental symbol in a small image patch of dense and noisy
historical printed music score. We constrain this detection task using a hybrid approach
of first preprocessing the score reusing the DMOS syntactical method and its music
grammar. While the standard use of the music grammar is the reconstruction of the
music notation structure once all the low-level graphical recognition tasks are done, it
can also be used as a preprocessing engine. By using already recognized contextual
information, it can identify RoIs (Regions of Interests) that can be use to train new
detectors on new class of symbols. We use such mechanism to train the second part of
our hybrid approach and apply our Deep Learning detector for localizing the subset of
symbols we are interested in.

With the success of this first approach and an almost perfect recognition rate
confirmed by state-of-the-art detectors like the Faster R-CNN, we then propose to
apply state-of-the-art detectors in a much more challenging detection task of general
handwritten music symbol detection task. In section 2.3, we propose a baseline for
handwritten music symbol detection using the MUSCIMA++ dataset. Although, we could
not directly apply state-of-the-art detectors to a whole music score page, we show that
competitive results can be obtained by preprocessing the score into small sub-regions.

While the task of detecting music symbols for OMR is far from being a solved problem,
we now have shown that state-of-the-art detectors can be applied to obtain detection
with a sufficient accuracy for the overall OMR process. However, fully supervised
detector models used in this chapter have the need for large fully annotated detection
dataset in order to be trained. Although we have tried in section 2.2.1 to minimize
the size of the dataset used by using bootstrapping method, detection datasets are
generally very slow to produce, where the human annotator has to localize a symbol by
drawing a bounding box and identify the symbol by attaching a label to the symbol. As
an example, the creators of the MUSCIMA++ dataset reported that it took 400 hours to
manually annotate the whole dataset.

We believe that the need for such music symbol detection dataset can not be
annotated manually in the long run because of the lack of time and funds of OMR
researchers. Therefore, it is of the utmost importance to discover new symbol detection
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approaches able to deal with non-annotated corpus of documents. In the coming chapter,
we now review and discuss the existing approaches to unsupervised music symbol
detection such as synthetic data generation as an answer to the lack of annotated data
for supervised music symbol detection.
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CHAPTER 3

LEARNING SYMBOL DETECTION

WITHOUT MANUAL ANNOTATIONS

3.1 Introduction

In the previous chapter, we have demonstrated the application of Deep Learning-
based detectors for the task of music symbol detection. We trained small (ST detector,
SSD) and large (Faster R-CNN, R-FCN) detector models on a constrained detection
task (single accidental in a small image patch) as well as a more general detection
task (large set of music symbol classes in medium size images) and produced highly
accurate detection suitable for an OMR system. While much more work still is needed
for improving the detection of music symbols in larger images (whole page detection)
and different music scores types, we believe we have shown solid baseline results
that demonstrate the interest of using Deep Learning-based detectors that are able to
seamlessly adapt to a new corpus of music scores documents.

However, during our work on accidental detection in dense and noisy historical
printed music scores presented in section 2.2, we faced the major problem of not having
an already available music symbol detection dataset suitable for our task. With our hybrid
approach of using a syntactical method driving our Deep Learning-based detector and
using data augmentation techniques like bootstrapping explained in section 2.2.1, we
managed to reduce the amount of manual annotation to a minimum. Nonetheless, this
approach required the manual annotation of ∼ 10, 000 small image patches by drawing a
bounding box around accidental symbols and affecting a label to each bounding boxes.

For the document recognition community, this lack of annotated dataset is quite a
common challenge faced for each new type of documents we want to process. The
general solution to this problem has often been to use synthetically generated data to
train Deep Learning model by using software such as DocCreator [labri 18]. Then the
recognition process is bootstrapped by applying these pretrained models to the real
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documents.
In this chapter, we review how synthetic data can be used to bootstrap the recognition

of historical printed scores with no previously existing dataset. We first consider how
synthetic music scores can be used to train Deep Learning models in section 3.2 and
discuss the advantages and shortcomings of using whole page synthetic scores. In
section 3.3, we argue for a simpler approach for synthetic data generation that can be
coupled with a generative method in order to do unsupervised music symbol detection.

3.2 Train With Synthetic Data

As mention previously, the lack of annotated dataset is quite a common challenge for
the document recognition community. Existing Deep Learning models are often reused
for a wide variety of task, going from document structure recognition to Handwritten Text
Recognition (HTR). With the growing need for annotated data, the document recognition
community has already constituted several large annotated dataset such as the IAM
database [Marti 02], the RIMES dataset [Grosicki 08] or the READ dataset [Sánchez 16]
that can be used mainly for HTR. However, it is unrealizable to manually constitute
datasets of such magnitude for every type of documents and every kind of document
recognition tasks.

One of the particularity of the document recognition domain is the fact that the heart
of our work is to process automatically human artifacts. Indeed, documents are physical
objects that are produced by humans and therefore often follows some notations or logic
in their creation. For example, a letter will often follow the same structure, handwritten
text will follow the writing convention of its language, mechanical drawing will use a
certain set of standardized graphical components. Paradoxically, rules that define
how a document should be formatted will be broken because of human unintentional
or intentional mistakes or by natural degradation artifacts often present in historical
documents.

Therefore, a lot of research efforts of the document recognition community has been
directed towards understanding the production rules of document we want to recognize
and capturing the possible variability of such rules. With the expert knowledge of how a
document was produced and transformed, it is then possible to automatically produce
synthetic documents that present the same format, content and variability as the original
documents. The advantages of synthetically produced documents is the automatic
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production of associated annotations useful for training Deep Learning models for task
like HTR or document structure recognition. Once a recognition model is trained on
synthetic data, the model can then be applied to the original documents we wanted to
process in the first place. An illustration of the whole process is given in fig. 3.1.
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Figure 3.1 – Training Deep Learning detector with synthetic data and process real data
using the final trained detector.

Following the need for synthetic data generation, we explore in the next section how
synthetic data could be generated in the context of music score documents.

3.2.1 Synthetic Music Score Generation

In the context of printed music score creation, the production of such documents has
been digitized since the advent of personal computers in the 1980s. Multiple high-quality
music typesetting software exists such as Finale, Sibelius or MuseScore as explained
in section 1.2.1. These computer programs propose a graphical user interface with
which the user is able to interact and input music notes and symbols, either using
a computer keyboard and mouse or by using a MIDI keyboard for a more intuitive
process. To produce a digitized music score page, the music typesetting software uses
a combination of drawing primitives like lines and curves to draw staff lines and slurs and
glyphs from music fonts that follows the Standard Music Font Layout (SMuFL) standard
[SMuFL 13]. The software is also able to automatically format the document so that it
can maximize the readability of the score while respecting the complex set of rules of
the music notation.

With the objective of producing synthetic printed music scores for OMR, the use
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of music typesetting software is a self-evident idea to produce potentially an infinite
amount of synthetic data and we explored this idea in Choi et al. [Choi 18b]. However,
given that the focus of such music typesetting software is to produce readable and
beautiful music score document, it is not their explicit goal to imitate existing historical
music score document. This leads to various limitation when trying to use such music
typesetting software for OMR research.

The modern music notation is a loosely defined set of rules, giving lots of freedom
to the engraver for the placement of music symbols. This leads to subtle biases in
the position of music symbols either in historical printed music scores or in digitally
produced music scores. Depending on the typesetting software used, it is possible to
alter the parameters regulating the position of most symbols and therefore potentially
adjust positional biases to match historical printed score. However, this process has
never been studied and is very difficult to carry out without the use of an already existing
real historical printed music score dataset annotated with the position of every symbol.
We believe it is in our interest to propose an unsupervised music symbol detection
method that is robust to such positional biases.

Moreover, music typesetting software produces document to be read by humans and
often produces music score document in the PDF or MusicXML format. For tasks like
music symbol detection or music notation reconstruction, such file formats do not contain
sufficient information such as the label and position of music symbols, or the relations
between symbols. However, the music typesetting software itself is able to produce such
detail information about the music score and the open source MuseScore typesetting
software [Schweer 18] has already proposed some ways of exporting detailed internal
information for use by OMR software and researcher.

Finally, historical printed music scores present artifacts and degradation introduced
by a manual engraving errors, bad preservation through time and scanning process.
All of these transformations impact the final image to process and is often the biggest
source of errors in the OMR process. The document recognition community has studied
extensively artifacts and degradation present in historical document and software such
as DocCreator [labri 18] exists for the purpose of artificially introducing noises and
degradation artifacts in document images. However, it is still a difficult and manual
process of choosing and adapting the correct noise models and degradation artifacts
types that will correspond to the noises and degradations present in historical music
scores. We also believe it is in our interest to propose an unsupervised symbol detection
method robust to any kind of noises and artifacts present in historical printed music
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scores.

3.2.2 Problematic

The second half of the 18th century is often considered as the golden age of
classical music and has produced a vast amount of printed music scores from the most
famous compositors like Mozart, Haydn and Beethoven. We believe that the automatic
processing of such historical scores is very important to further the conservation and
utility of such document for musicologist and music enthusiasts alike. However, the
recognition process of such historical printed scores is a very difficult challenge for OMR
due to the complexity of the modern music notation, their manual production method
(manual engraving) and degradation inflicted by time and scanning process. Moreover,
the absence of existing annotated dataset of dense and noisy historical printed scores
prevents the use of state-of-the-art Deep Learning recognition method for tasks like
music symbol detection.

While the use of music typesetting software is an enticing path for synthetic music
score generation, we have shown that there is a discrepancy between digital music
scores and historical printed scores in the music notation, symbol shape and position
and the document general appearance influenced by the degradation state of the
historical document image. However, the use of synthetic data is not limited to the
previously presented workflow in fig. 3.1. Synthetic data can be used in a weakly-
supervised or unsupervised fashion as previously presented in section 1.6 with a data
augmentation strategy or domain transfer strategy coupled with generative methods.

Following the general focus of our work, we believe that a new unsupervised symbol
detection methodology is needed that can either replace fully supervised method or
at least replace the need for manually annotated data. This method should be able to
automatically adapt to a new corpus of documents and use a simple synthetic generation
strategy to minimize the possible discrepancies between real data and synthetic data.

In the next section of this work, we propose an answer to this very difficult problem
by presenting our new Isolating-GAN method.
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3.3 Isolating-GAN for Unsupervised Symbol Detection

In this work, we propose a new unsupervised music symbol detection method called
Isolating-GAN that is able to learn the task of music symbol detection in historical printed
scores without using any manual annotations. In contrast to using a whole page of
synthetic music score and complex synthetic generation procedure, our method uses
a simpler synthetic data generation procedure needing only a small isolated music
symbols dataset. Our strategy is to gradually simplify the complexity of the detection
task by using the following iterative three steps method that we also illustrate graphically
in fig. 4.1:

1. Identify Region of Interests (RoIs) possibly containing music symbols

2. Simplify the graphical representation by isolating music symbols to detect

3. Detect isolated music symbols

Under the hood, two main ideas form the basis of our method: Section 3.3.1 present
the use of isolated music symbol to form a simple graphical representation for symbol
detection while section 3.3.2 explains how to transform complex, dense and noisy
images of historical printed music scores into a simple graphical representation.

3.3.1 Simple Graphical Representation for Symbol Detection

The fundamental idea behind the design of our method is to create an intermediate
graphical representation as a platform for a trivial detection task. A symbol detection task
is defined by the objective of predicting a bounding box and class label for each symbol
present in an image. Therefore, the simplest detection task that we can artificially create
is to synthetically generate an image only containing the symbols to recognize in a
white empty background. Such images encode all and only the information needed for
detection such as the shape and position of symbols to detect.

Such images can be automatically crafted using only isolated symbols randomly
positioned and scaled in a blank image. However, the remaining problem is to know if
we are able to adapt real images of historical printed scores containing background,
noise and degradations signals to this simple graphical representation while preserving
the shape and positional information required for accurate symbol detection predictions.
In the next section, we present how we tackle this adaptation using a GAN-based
generative method.
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3.3.2 Using GAN for Isolated Symbols Domain Transfer

The use of a generative method is inspired by the previous cross-domain adaptation
work like the Cycle-GAN previously presented in section 1.6.2 that presented a way of
translating images of one representation domain into another representation domain
while keeping essential characteristics common to the two graphical domains.

In our case, we propose to use a GAN-based generative method capable of adapting
images of historical printed music scores into a simpler graphical representation con-
taining only the isolated symbols to recognize and removing the noise and background
information. To simplify, our generative process can be seen as a graphical filter isolating
important music symbols we want to detect. However, this adaptation has to be done
while keeping identical the size and position of the symbols of interests.

Knowing the relatively low limit in the image size that generative method such as
GAN have, we also propose to limit the size of the image patches seen by the generative
model using the DMOS syntactical method previously used in section 2.2.1 and identify
small Regions of Interest (RoIs) with higher probability of containing the symbols we
want to detect.

Once a small image patch of a real historical printed music score has been trans-
formed into our simpler graphical representation containing only isolated music symbols
in a white background, it is then trivial to detect such symbols using an isolated music
symbol detector trained using synthetic data automatically produced using an already
existing isolated music symbol dataset.

3.4 Conclusion

To summarize, the recognition of dense and noisy historical printed music scores
is a very complex task lacking the required manually annotated detection dataset for
applying existing fully-supervised state-of-the-art detector models. While the use of
synthetic music scores as a replacement for manually annotated dataset is tempting,
we believe a simpler synthetic generation method using only isolated music symbols
coupled with a GAN-based generative method can better adapt to new unseen corpus
of music score documents. We believe that this work is the first OMR work focusing
on unsupervised music symbol detection and therefore we preferred simplifying our
synthetic generation strategy to a maximum. We also believe that synthetic music
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scores generated typesetting music software could in the future be used together with
our approach to improve and extend the reach of our work.

At the end of this chapter, we only have introduced the main ideas and concept
underlying our method. In the next chapter, we present in details our new three steps
iterative Isolating-GAN method and in chapter 5 evaluate in various experiments the
detection accuracy and robustness of our method.
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CHAPTER 4

UNSUPERVISED MUSIC SYMBOL

DETECTION USING ISOLATING-GAN

4.1 Introduction

We propose now our novel approach to unsupervised music symbol detection of
historical music scores by only using an isolated music symbol dataset as presented in
section 3.3.

As we have previously discussed in section 3.2, the task of detecting music sym-
bols on an entirely new corpus of music scores document images is very difficult to
bootstrap when no music symbol detection dataset exists. This is the case for printed
historical music scores where a handwritten detection dataset like MUSCIMA++ can
not be used because of the large difference between handwritten symbols and printed
symbols. Moreover, historical printed music scores are also very different from software
generated music scores because of the manual engraving process of copper plates,
see section 1.2.1, and artifacts and noises produced by time degradation as shown in
fig. 1.4. Also, synthetic generation procedures of music scores can be really complex,
has no guaranties of working and are difficult to generalize to a new dataset. In order for
the detection model to correctly work on printed historical music scores, the training data
should match the real documents structures, music notation and document degradation
as closely as possible. Therefore, we need a new symbol detection method able to
adapt to new corpus of unannotated music scores using as little as possible manual
annotations such as an existing isolated symbol dataset.

As a result, we design a new three steps iterative method called Isolating-GAN for
unsupervised music symbol detection illustrated in fig. 4.1:

1. Identifying regions of interests

2. Isolating music symbols
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Step 1
Identifying Region of Interests

Step 2
Isolating Music Symbols

Step 3
Isolated Music Symbol Detection

Figure 4.1 – Our three steps Isolating-GAN method graphically illustrated. The complex-
ity of the detection tasks is gradually reduced by 1. identifying RoIs possibly containing
symbols to detect, 2. isolating music symbols by removing unwanted background infor-
mation and finally 3. detecting symbols using a pretrained detector on existing isolated
symbol dataset.

3. Detecting isolated music symbols

The first strength of our method is its iterative nature which gives us a lot of flexibility
on how we can design our detection task. Using the first two steps, we can reduce
the complexity of the detection task both spatially (section 4.2.2) and graphically (sec-
tion 4.2.2). The other strength and main novelty of our approach is the generative nature
of our second step, which allows us to adapt our detection model to any new corpus of
documents as long as only the shape of the symbol we want to detect is known. Overall,
the usefulness of our method is found in its sole and original use of isolated music
symbols to train a precise music symbol detector without using any detection ground
truth. We now introduce each of our three steps in the next section.

4.2 Objectives

The core proposition of our method is its original use of isolated music symbols to
train a music symbol detector capable of locating symbols in real images of historical
printed music scores. However, before applying our method, the corpus of document on
which we will apply our method needs to be carefully studied so that we can correctly
adapt our method to the data. In section 4.2.1, we present the characteristics of the type
of documents we will be processing so that it can drive the application of our method.
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Then, we introduce in section 4.2.2 how we can use isolated symbols as an intermediary
step for the detection of music symbols in real images of music scores.

4.2.1 Real Data to Annotate

As explained before in section 2.2, we concentrate on the detection of music symbols
in historical printed music scores of the mid-18th to mid-20th century. These documents
present unique segmentation problems because of their music notation density typically
present in orchestral or piano scores. The imprinting techniques of the era, previously
presented in section 1.2.1, and time degradation also creates hard segmentation
problems of touching and broken music symbols as shown in fig. 1.4. The lack of
manually annotated datasets for symbol detection existing prior to this work makes this
kind of document an ideal test bed to focus on unsupervised music symbol detection.

Another characteristics of these documents are the voluminous size of the scanned
images. The causes are mainly the combination of fairly large original documents (A4
or larger) and the need for high resolution images that can capture enough details for
an accurate detection. A good heuristic is that the minimum resolution required for a
scanned image of a music score is to have a minimum height of 20 pixels between two
lines of a staff which often translate approximately to a DPI of 300. Combined with a
document containing 10 or more staves, this will produce scanned images of music
scores with height and width in the magnitude of multiple thousands of pixels.

Finally, the music notation allows the use of a very large set of music symbols in
order to better express the complexity of describing musical sounds. For example, the
Standard Music Font Layout (SMuFL) [SMuFL 13] specify the use of at least 2,600
different glyphs that covers very diverse music notation systems, although each glyph
does not necessarily translate into a musical symbol as some music symbols are con-
structed from smaller primitives. However, the use of the different music symbols are not
equally distributed in a music score, where symbols like note heads are overwhelmingly
frequent while others like the double sharp will be very rarely used. To illustrate this
unbalanced distribution, the MUSCIMA++ dataset [Hajič 17] annotated 91,255 music
symbols distributed in 105 different classes where 23,352 symbols are actually note
heads, i.e. ∼25% of annotated symbols are note heads.

All these characteristics make the detection of music symbols in historical printed
scores a very difficult task, especially when no annotated dataset exists to directly train
a supervised detection model such as a Faster R-CNN. In contrast, we now present an
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iterative method where each step is able to reduce the complexity of the detection task
step by step in order to accurately produce detection annotations without any ground
truth data.

4.2.2 Overview of Unsupervised Detection of Symbols: Isolating-
GAN Method

Our novel approach named Isolating-GAN to unsupervised music symbol detection
can be broken down into three specific steps as shown in fig. 4.2.

Step 1: Identifying Region of Interests As explained in section 4.2.1, images of
music score document can be very large when full pages are scanned at the appropriate
resolutions.

Intuitively, a detection task complexity is directly related to the size of the area we
search into. The larger the search area is, the more difficult it will be to fit the correct
bounding box to the corresponding symbol. This problem is all the more relevant for
generative models, which we use in the second step of our method, where generating
high resolution images has been a notably difficult task as shown for example by Brock
et al. [Brock 18] who only managed to generate 128 × 128 pixels high fidelity natural
images. The size of the search area will also directly impact the virtual memory usage
of the computing device, which will often be limited on GPU devices. Deep Learning
models will typically adapt to larger input images by having deeper networks, which also
increases training complexity, training times and the model memory usage.

Therefore, we propose in section 4.3 to reuse of the DMOS-PI syntactical method
and its music grammar that we previously presented in section 1.4, to identify Region of
Interests (RoIs) and reduce the amount of search areas for music symbols as illustrated
in the step 1 of figs. 4.1 and 4.2. Using this method, we can also progressively build our
detection ground truth for the corpus of music scores document by iteratively focusing
on different set of music symbols and reusing previously detected symbols to improve
the detection of a new set of symbols. For example, if we have already detected note
head symbols, it is easy to know that regions at the left of note head symbols are likely
to present accidental symbols.
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Step 2: Isolating Music Symbols Using Isolating-GAN Once we identified region
likely to contain symbols to detect, we propose to use our new Isolating-GAN model as
an image-to-image transfer mechanism as explained in section 4.5. We train a U-Net
generator of the GAN model to isolate existing music symbols in small input images and
removing unwanted background noise or symbols as illustrated in the step 2 of figs. 4.1
and 4.2. However, this training is very unstable and this is why we show multiple ways
of stabilizing the training process in section 4.5.2.1. The training strategy is designed
by using an existing isolated music symbol dataset that will be used to generate image
patches with isolated symbols on a white background. These generated images serves
two purposes: one is to be the target representation that the GAN is trying to imitate.
The other is to allow for a trivial detection task to be learned by a small and fast detector
model like the SSD model which we now present.

Step 3: Isolated Music Symbol Detection After using the U-Net generator of the
GAN model to transform and isolate existing symbols in real image patches of music
scores, the final step of our method is to detect such isolated symbols using a small
and fast detector such as the SSD model as illustrated in the step 3 of figs. 4.1 and 4.2.
Our choice for this small and fast detector stems from the fact that the detection task is
trivial and done on small image patches. We present how we pretrain the SSD model in
section 4.4 together with the generation methodology using the isolated music symbol
dataset.

The core of our proposition is the use of the Isolating-GAN model as a transfer
function for symbols in real images of music scores into a graphical representation
only containing isolated music symbols and a white background. In order to correctly
evaluate this task in relation to our end-goal task of detecting music symbols in real
music scores documents, we first present our detection method using the SSD model in
section 4.4 which we will later reuse to evaluate the GAN model in section 4.5.3.1.

4.3 Step 1: Identifying Region of Interests

Due to the need to reduce the size of images that the GAN will take as input,
we process the music scores document images with the DMOS syntactical method
[Coüasnon 01] and present now the first step of our method. This method, previously
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Figure 4.2 – Detailed overview of our unsupervised Isolating-GAN method for music
symbol detection presented with three cascading steps: 1. using the DMOS grammar for
identifying RoIs, 2. transferring small image patches of real music scores into a simpler
graphical representation using a U-Net GAN, 3. Detection of isolated music symbol
using pretrained SSD model.

introduced in section 1.4, can be used to specify a music grammar, able to parse music
scores images.

This grammar takes as input graphical terminals such as line-segments and pre-
viously detected symbols and is able to reconstruct the music notation structure of
a score. One of the strength of this method is the ability of the grammar to be used
despite missing terminals with minimal alteration to the grammar itself. When insufficient
information is provided to be able to construct the correct music notation structure, the
grammar can be made to bypass those regions and continue the processing of the
rest of the document. Moreover, zones where not enough information were provided
can also be recorded, together with their position and contextual information in the
document, so that additional detection process can take place. This process, as shown
in fig. 4.3, can be used to reduce both the spatial search space of the music symbol
detection task and the class set of symbols to detect.

We use this mechanism to our advantage to bootstrap our detection task for acci-
dental symbols. We first reuse the capability of the grammar to build music notation
structures such as systems, staves and bars using only a priori information about staff
lines and vertical lines. Once note heads have been detected using a simple black blob
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Figure 4.3 – Grammatical processing of whole pages of historical music scores to find
Regions of Interests with high probability of finding target symbols.

detector, the grammar rule reconstructing music notes can now successfully build a
music note from a vertical bar, the stem, and one or multiple note heads. Once a note
structure has been built, we can contextually identify RoIs focused at the left of each
note heads and search for additional symbols such as accidentals. Moreover, we can ar-
tificially augment this dataset by reusing our bootstrapping method previously explained
in section 2.2.1. After detecting accidentals in those RoIs, we can apply the grammar
a second time using both previously recognized notes and newly detected accidental
symbols to build a more complete note structure containing optional accidental symbols.
More generally, this procedure could be repeated any number of time to build up RoIs
for other kind of music symbols like attack signs, dynamics or ornaments based on the
position of previously recognized symbols.

Using the DMOS grammar, we are therefore able to reduce the spatial search space
for the music symbol detection task. While the search space is considerably reduced
compared to the evaluation of the whole music score page, zones that do not contain
symbols that we want to detect will always be present in the selected set of RoIs. Since
we do not know how the amount of empty RoIs will impact the stability of our method, we
propose a set of experiments in appendix A, section A.1.1 that evaluate the robustness
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of our method in regard to the ratio of empty RoIs and RoIs containing symbols to detect.
With this method, we propose to experiment using a conservative approach on the size
of the input image presented to the GAN due to the well-known unstable nature of the
GAN architecture. We start with small image patches that guaranties us that the GAN
training will manage to converge to competitive results and leave the task of increasing
the input image size to future work.

The primary goal of this method is to design a method for resolving the music symbol
detection task without using any kind of manual annotations for symbol detection and
only using an isolated symbol dataset. While this is true for the training of both the GAN
model and detection model, we found that it is necessary to constitute a very small
validation detection dataset containing manual annotations of both labels and boxes of
a symbol in the context of real historical music scores. The need for this small validation
set is due to the unstable nature of the GAN, producing wildly different results when
using the same data and model architecture. This small validation set is presented in
section 4.5.3.1 where we also explain our strategy to select the best trained model using
an early stopping mechanism.

Following this first step in our data processing pipeline, we now present the use
of an isolated music symbol dataset in order to design an intermediate graphical
representation allowing for trivial symbol detection. We will also present the final step
of our pipeline which is isolated symbol detection trained using an existing isolated
symbol dataset and synthetically generated images of random size and position of
isolated symbols in white background. We first present this detection task because of its
simplicity and the fact that we will use the resulting trained detector in our GAN training
experiment to evaluate the generation quality of the GAN in regard to the end goal of
unsupervised symbol detection.

4.4 Step 3: Isolated Music Symbol Detection

The task of supervised music symbol detection or more generally supervised object
detection requires data demonstrating the use of the symbol in context, e.g. the use of
music symbols in the context of a music score and manually added annotations such
as the bounding boxes and class labels of symbols. To remove the need of such slow
and costly manual annotations, such dataset can also be synthesized automatically as
explained in section 3.2 by using a lot of expert knowledge of the specific application
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domain. However, as discussed previously in section 3.2.1, this process is very complex
for music scores and the resulting detection model has no guaranties to work on real
images of music scores. The basic requirement of any synthetic generation methods of
document images is the use of isolated symbol image dataset and it is the process of
spatially arranging such symbols in a blank page of a document that we name “Synthetic
Generation”. As we explained before in section 3.3, our approach aims to transform this
approach to unsupervised symbol detection by automatically translating real images of
documents into a simpler representation (isolated symbols on white background) and
therefore reducing the need for expert knowledge. We now explain how we design this
simpler graphical representation by first presenting the isolated music symbol dataset.
Since the use of this simpler graphical representation is the pivotal idea that links our
second and third steps of our method, we first present the simpler third step of our
method: isolating symbol detection in section 4.4.3 that we will reuse in our second step
presented in section 4.5.

4.4.1 Isolated Music Symbol Dataset

An isolated symbol dataset is often used for classification tasks and is constituted of
images of symbols together with their corresponding class label. This kind of datasets
already gather multiple types of information, such as the shape of a class of symbol
and the correspondence between a shape and a label. Multiple examples of the
same symbol class are included in order to characterize the variability of a shape
corresponding to a single class.

One of the premises of our work is that we believe that isolated music symbol dataset
are much more common and easily available than detection dataset. For example, the
OMR-Datasets website [Pacha ] count at the time of this writing 11 different symbol
classification datasets (also called isolated symbol datasets throughout this work) but
only three different symbol detection datasets. Although this difference will be reduced
as the field mature and more researcher share their manually constituted datasets, the
lack of annotated dataset is a recurring problem for any new application domains trying
to use supervised detection model.

For this work, we needed an isolated symbol dataset that would strongly resemble
symbols from historical music scores of the mid-18th to the mid-20th century. The
isolated symbol dataset we use for accidental detection, as shown in fig. 4.4, is an iso-
lated symbol dataset manually constituted by the Intuidoc Team at the IRISA laboratory,
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where symbols were extracted from real historical printed music scores and classified
automatically and verified manually. This dataset, publicly available here 1, contains 541
symbol images with 3 different accidental classes and the following table 4.1 show in
details the detailed distribution of symbols.

Figure 4.4 – Isolated music symbol dataset,
used for music symbol classification task.

Natural Flat Sharp Total

206 144 191 541

Table 4.1 – Isolated Symbol Dataset class
distribution.

As explain in our next section, this isolated symbol dataset is used to design a target
representation that the GAN model will be trained to generate. Therefore, contrary to
the task of classification, the isolated symbol dataset priority is not about the number or
diversity of the samples, but samples of high quality and intra-class shape variability
that accurately model the intra-class shape variability of the real dataset. That is why
we did not consider using the Rebelo dataset [Rebelo 09] because of the low resolution
of symbols. Using this isolated music symbol dataset, we are now able to design an
intermediate graphical representation to be use a target representation for the GAN
model.

4.4.2 Synthetic Detection Dataset Generation

Using this isolated music symbol dataset, we can now construct a detection task
in the simplest manner possible. In a blank canvas, we paste isolated music symbols
at a random position after randomly resizing the size of the symbols. We illustrate this
generation in fig. 4.5. With this method, we can avoid almost all the need for expert

1. https://www-intuidoc.irisa.fr/en/choi_accidentals/
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knowledge about music notation which makes this step easier to do and easier to port
to a new application field. Although this step seems like a trivial image generation step,
it is the pivotal phase of the method that bridges the transformation step done by the
Isolating-GAN presented in section 4.5 and the detection step using a SSD that we
show next in section 4.4.3. By generating this artificial detection dataset, we design a
simpler graphical representation that the Isolating-GAN model can learn to generate
while allowing for an accurate detection of the real symbols in generated images.

Figure 4.5 – Synthetic detection dataset generation using only isolated music symbols
on white background. Generated images synthesizes a graphical representation that
allows trivial detection while keeping interesting characteristics from real images of
music scores like the position and shape of symbol to detect.

A number of hyperparameters needs to be defined in order to accurately train this
generation method. A set of classes should be chosen as target classes and defines
which symbols we want to detect in the original images. The remaining hyperparameters,
such as the number of symbols, their size and shape, can only be chosen by using
expert knowledge of the specific application domain. In OMR, we can parameterize the
size of symbols using the vertical distance between two staff lines, i.e. the interline, as
a base distance unit. For example, we can specify that the width of a sharp symbol
should approximately be one times the interline and the height 3 times the interline.
However, this specific knowledge for a sharp and other symbols can vary in printed
scores depending on the typeset used for imprinting.

In section 4.5.1, we explain in more details how this generation step relates to
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our use of the Isolating-GAN and how we are able to isolate music symbols in real
images using this simpler graphical representation. Next, we define how we perform the
final detection step using the small SSD model which we will then use to evaluate the
Isolating-GAN training.

4.4.3 Isolated Symbols Detection using Single-Shot MultiBox De-
tector

Since the design of the intermediate representation makes the detection trivial
because images present isolated music symbols in a white background, we chose to
use a Single-Shot MultiBox Detector model introduced by Liu et al. [Liu 16]. This small
and lite detector model is ideal for our use-case where we need a model with a very fast
inference time for intensive evaluation as used in section 4.5.3.1. Since our task is so
simple, we propose to use both a reduced size of the original SSD model using only the
7 first layers of the original VGG-16 backbone network. We use this reduced detector
for our development experiments shown in section 5.2 for fast training evaluation and
development iterations. For our final evaluation of our method, we use a regular SSD
model using the full VGG-16 backbone network. This bigger detector, although slower
than our reduced version, produces much more accurate detections. The training of our
two SSD model is illustrated in fig. 4.6 and is done using our synthetic detection dataset
previously presented in section 4.4.2.

When we apply our large detector on image patches of real music scores containing
both music symbols and background noises, we show in section 5.3.2 that the detector is
able to correctly detect existing real music symbols. However, we can not directly apply
this trained detector on the real image patches of historical music scores documents
because of the large amount of False Positives generated due to the noisy background,
which is to be expected given that our data does not model background noises and
symbols. To reduce the amount of False Positives, we propose the Isolating-GAN
method as a transfer function from real data containing noisy background information to
synthetic data with clean isolated symbols on white background.
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Figure 4.6 – Training of a Single-Shot Detection (SSD) model with a synthetic detection
dataset of isolated symbols on white background generated as shown previously in
fig. 4.5.

4.5 Step 2: Isolating-GAN using Image-to-Image

Translation

In section 4.3, we presented the input images extracted from real music scores in
which we have to isolate music symbols and in section 4.4.2, we specified the graphical
representation on which we want to run the detection task. We now need to design
a generative model able to transform our input to our output graphical representation
which correspond to the second step of our method illustrated in fig. 4.2. As previously
explained in section 3.3.2, the literature has shown that Generative Adversarial Network
models have the required characteristics for this difficult problem. We now present in
details how we take advantages of the peculiar GAN generative properties in regard to
our music symbol isolation tasks.
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4.5.1 Learning the Intermediate Representation as Isolated Music
Symbol

The introduction of the GAN architecture starting from Goodfellow et al. [Goodfellow
14] made possible the generation of completely artificial data like handwritten digits
using an adversarial methodology. One interesting characteristics of this method is
that the generation of artificial data is conditioned mainly by another target dataset, the
MNIST dataset [LeCun ] in this case. A following work [Chu 17] has further shown that
a modified GAN architecture called Cycle-GAN can transform a set of images belonging
to a specific domain, for example: images of horses, into another representation domain,
like images of zebras, and vice-versa. The main novelty of this work is to be able to do
unpaired image-to-image translation without any paired image information that explicitly
link the representation of an object in multiple domains of representation. Specifically,
the author of [Chu 17] manage to train a model able to transform a horse into a zebra
and vice-versa sharing the same pose and position in the image, without explicitly
presenting a paired instance of a horse and a zebra.

The main proposition of this work is to take advantage of this peculiar capacity
of GAN models to implicitly learn how to translate an instance of an object from one
domain into another. In the case of music symbol detection, our aim is to transform an
input image coming from a real historical music scores, containing noise, degradation
and complex background symbols and signals into a simple clean output image free of
any background signals. However, this output image should keep the shape and exact
position and size of symbols to detect so that a detection performed on the output image
can be automatically transferred onto the input image. In other words, the task of the
GAN is threefold:

1. Keep invariant the position and size of real symbols to detect

2. Modify the shape of real symbols to detect to resemble isolated symbols of the
corresponding class

— Also enhance and repair damaged symbols to resemble isolated symbols

3. Remove background symbols and noise

In order for the GAN model to learn this task, we show in section 4.4.3 how we
design an intermediate graphical representation using only isolated music symbols that
retain the three main characteristics of the GAN task: music symbol shape information,
music symbol position and size information, an empty white background. Using isolated
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music symbols corresponding to the target symbol class that we want to detect, our
objective is for the GAN to learn how to translate real symbols to detect in real music
scores into the corresponding isolated music symbol shape. By pasting isolated music
symbols into a blank canvas, we introduce the notion of symbol position and size relative
to the image patch size.

As we mentioned before in section 4.4.3, symbols present in real images of music
scores present an intra-class variability in their size and shapes. This variability can
have a huge impact on the performance of the GAN training because the sizes of
isolated symbols should be representative of the sizes of symbols in the real images of
music scores so that the GAN can learn to transfer symbols to detect with an identical
size. This is why we introduce randomized variability into the generated sizes of isolated
symbols by using a minimal and maximal height and width parameters. Width and
height for each symbol are then sampled using a uniform distribution between these
two extrema.

In the case of the classical adversarial training, the GAN is not constrained into
respecting the original shape and position of the symbol to detect. This lack of constraint
led to very unstable training and poor results. In order to improve the stability of the
training, we introduce an additional reconstruction loss using only isolated symbol data
described in section 4.5.2.3. By using a white empty background, we also avoid the
difficult generation process of trying to synthesize accurately historical music score
background images, and we force the generator of the GAN to learn to act as a filter
for background symbols and noise of the input real image. We further help the GAN
training to model this rejection task by using positive and negative examples of isolated
music symbols. While positive examples are symbols we want the GAN to isolate
and keep into the generated image, we add negative examples of isolated symbols
belonging to symbol classes we do not want to detect. The annotation of symbols being
positive or negative examples is actually done in the GAN loss functions as described in
section 4.5.2.2.

We now present the architecture of our Isolating-GAN together with the various
enhancements to the training methodology in order to further stabilize the process and
improve the detection results.
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4.5.2 Architecture

The base architecture for our GAN model is the Deep Convolutional Generative Ad-
versarial Network (DCGAN) proposed by Radford et al. [Radford 16]. This architecture
shown in fig. 4.7 is an extension to the original GAN architecture of [Goodfellow 14]
using convolutional and pooling layer instead of the original dense layers. The use
of convolutional layers greatly improve the quality of the features learned during the
adversarial training and directly impact the generation and discrimination quality of the
model. We replace the generator part of the DCGAN model with the U-Net semantic
segmentation model proposed by Ronneberger et al. [Ronneberger 15] to be able to
use images as input data to the generator model. The U-Net model architecture is
similar to an encoder-decoder architecture, where the encoder is a traditional convolu-
tional/pooling feature extractor. The decoder part is a mirrored version of the encoder
where the upscaling is done using transposed 2D convolutions. Features extracted by
the encoder are also concatenated to the corresponding level of generated features in
order to improve the generation quality. We choose to use the VGG16 model proposed
by Simonyan et al. [Simonyan 15] as a backbone network for the U-Net generator which
allows us to reuse pretrained VGG16 weights on the ImageNet dataset, see Deng et al.
[Deng 09], for the encoder part of the U-Net model. A detailed description of the network
generator is shown in table 4.2 and the network discriminator in table 4.3.

pred(0,1,1,0)
label(1,1,1,1)

VGG16 U-Net Generator
Discriminator

Synthetic symbol image

Real images

Generated real
images

GAN minimax loss

Synthetic
symbol image

Generated synthetic
symbol image

Binary cross-entropy loss

Standard image segmentation objective

Figure 4.7 – Isolating-GAN architectural overview for unsupervised music symbol detec-
tion. Main difference from traditional GAN architecture [Goodfellow 14] (see fig. 1.10) is:
1. the VGG U-Net generator, 2. the additional binary cross-entropy loss.
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Table 4.2 – Isolating-GAN generator using a VGG16 as a backbone detailed overview
with layers and number of parameters per layer. The total number of parameters is
25,854,657. Convolutional layer sizes are given with (Height, Width, Channels).

Layer Type Output Shape Parameters Number

block1 conv1 Conv2D (128, 128, 64) 1792
block1 conv2 Conv2D (128, 128, 64) 36928
block2 conv1 Conv2D (64, 64, 128) 73856
block2 conv2 Conv2D (64, 64, 128) 147584
block3 conv1 Conv2D (32, 32, 256) 295168
block3 conv2 Conv2D (32, 32, 256) 590080
block3 conv3 Conv2D (32, 32, 256) 590080
block4 conv1 Conv2D (16, 16, 512) 1180160
block4 conv2 Conv2D (16, 16, 512) 2359808
block4 conv3 Conv2D (16, 16, 512) 2359808
block5 conv1 Conv2D (8, 8, 512) 2359808
block5 conv2 Conv2D (8, 8, 512) 2359808
block5 conv3 Conv2D (8, 8, 512) 2359808
conv trans1 Conv2DTranspose (16, 16, 512) 1049088
conv5 Conv2D (16, 16, 512) 4719104
conv6 Conv2D (16, 16, 512) 2359808
conv trans2 Conv2DTranspose (32, 32, 256) 524544
conv7 Conv2D (32, 32, 256) 1179904
conv8 Conv2D (32, 32, 256) 590080
conv trans3 Conv2DTranspose (64, 64, 128) 131200
conv9 Conv2D (64, 64, 128) 295040
conv10 Conv2D (64, 64, 128) 147584
conv trans4 Conv2DTranspose (128, 128, 64) 32832
conv11 Conv2D (128, 128, 64) 73792
conv12 Conv2D (128, 128, 64) 36928
conv13 Conv2D (128, 128, 1) 65

Table 4.3 – Isolating-GAN discriminator using a VGG16 as a backbone detailed
overview with layers and number of parameters per layer. The total number of parame-
ters is 1,142,017. Convolutional layer sizes are given with (Height, Width, Channels).

Layer Type Output Shape Parameters Number

conv 1 Conv2D (64, 64, 32) 832
conv 2 Conv2D (32, 32, 64) 51264
conv 3 Conv2D (16, 16, 128) 204928
conv 4 Conv2D (16, 16, 256) 819456
dense 1 Dense (1) 65537
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4.5.2.1 Isolating-GAN Training Architecture

In order to train the Isolating-GAN architecture, we build on the original training
algorithm presented by Goodfellow et al. [Goodfellow 14] using both the discriminator
loss and adversarial loss to train respectively the discriminator and the generator.

Discriminator Training with Real Dataset To drive the detection of a specific symbol,
we reuse the synthetic detection dataset presented in section 4.4.2 where we generate
images containing isolated music symbols on white background. In the particular case
of the discriminator loss illustrated in fig. 4.8, we also need to specify for each image
generated a positive or a negative label. In this case, the labels marks the origin of the
image where a positive labels marks automatically generated images using isolated
symbols and negative labels marks images generated by the Isolating-GAN generator.
However, this labeling mechanism can also be used to improve the rejection capability
of the Isolating-GAN as explained in section 4.5.2.2.

Figure 4.8 – Isolating-GAN discriminator training using isolated symbols negative ex-
amples. Here, the discriminator is trained to differentiate images based on their origin.
Synthetic images containing sharps are accepted while real images of music score
transformed by the generator are rejected. Additionally, we also add negative synthetic
examples of symbol class we do not want to detect such as naturals and flats which we
also train the discriminator to reject.
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Adversarial Training with Real Dataset The adversarial loss shown in fig. 4.9 is
used to train the U-Net generator of the GAN. As usual of the adversarial training
algorithm, we only specify positive labels for the adversarial loss in order to push the
generator to only keep symbols of the relevant class while removing everything else.

Figure 4.9 – Classical GAN generator training. Here, the generator is trained using only
real images of music scores. The goal of the generator is to fool the discriminator to
accept the transformed image of a real music music score. Fooling the discriminator is
done by generating blank images containing only isolated sharp symbols. The easiest
way to generate such images is for the generator to isolate existing sharps and removing
everything else.

The adversarial training of the Isolating-GAN is done in two distinct steps in order
to optimize in turns the generator and the discriminator. Therefore, we now propose
the different improvements over the classical GAN training strategy successively for the
discriminator, generator and how to balance the training of the two models.

4.5.2.2 Discriminator Training

The discriminator training illustrated in fig. 4.8 is done by using real images of music
scores transformed by the U-Net generator and isolated symbols detection images.
Both group of images are processed by the discriminator for binary classification which
discriminate the origin of the images, either coming from the U-Net Generator or coming
from the isolated symbol detection dataset. The gradients are computed by using
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a binary cross entropy loss between the output of the discriminator and artificially
generated labels that marks the true origins of each image. The gradients are then
backpropagated and applied in the discriminator only.

Training Data Composition While the composition of the real input images to the
generator is randomized over the whole dataset, we have complete control over of the
distribution of the isolated symbol detection dataset. We found in our experiments that
the constraints in terms of possible minimum and maximum sizes that a specific symbol
class can take is crucial to the performance and stability of the Isolating-GAN training.
Unfortunately, these constraints parameters can not be deduced automatically from the
real dataset since no bounding boxes ground truth exist, but we can derive approximate
parameters using domain specific knowledge as explained previously in section 4.4.2.
These parameters can then be fined tune by grid-search exploration using our minimal
validation set.

Another important parameters of the isolated symbol detection dataset generation
process is the choice of symbol classes to use. Originally, we only used classes of
symbols we wanted to our U-Net generator to detect, i.e. positive examples. However,
isolated symbol dataset usually contains a large set of symbol classes that covers the
entire application domains. For example, our own isolated symbol dataset used in this
works contains 26 different classes of music symbols. Instead of trying to use every
class of symbol possible, we used a more iterative approach where we first observed the
most common mistake the Isolating-GAN was doing. For example, preliminary results for
our accidental detection task showed a clear behavior of the U-Net generator to confuse
the different accidental classes. From this observation, we made an experiment using
other accidental classes as negative examples except the accidental class to detect.
We illustrate this in fig. 4.8 where isolated sharps are marked as positive examples and
isolated flat and natural symbols are marked as negative examples. This mechanism
can be used to explicitly forbid the generator to produce certain shapes and help the
generator to avoid confusing symbols with different classes but similar shapes.

Loss Function Definition Formally, we name our source domain X with image
samples {xi}Mi=1 the domain of real music scores image patches. For the discriminator
loss, images from the source domain are always labeled as negative examples, i.e.
Xlabel = 0. In the other hand, we name our target domain Y = Ypos ∪ Yneg with image
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samples {yjpos}Nj=1 ∈ Ypos containing isolated music symbols of classes we want to detect
and image samples {ykneg}Ok=1 ∈ Yneg containing isolated music symbols of classes we
do not want to detect. We label our target domain images as follows:

Ylabel({yllabel}Pl=1) =

1, if yllabel ∈ Ypos
0, if yllabel ∈ Yneg

(4.1)

Our U-Net generator G goal is to map images from the source domain to the target
domain while our discriminator D goal is to discriminate images based on their origin:
Ypos or Yneg∪G(X). Using the binary cross-entropy loss, we define the usual discriminator
loss:

LD(G,D,X, Y, Ylabel) =E(y,ylabel)∼(Y,Ylabel)[
binary cross entropy loss︷ ︸︸ ︷

ylabel ∗ log(D(y)) + (1− ylabel) ∗ log(1−D(y))]

+ Ex∼X [log(1−D(G(x)))︸ ︷︷ ︸
simplified binary cross entropy since xlabel=0

] (4.2)

4.5.2.3 Generator Training

Adversarial Training with Real Dataset The training of the generator illustrated in
fig. 4.9 is done using the original adversarial loss, by doing a forward pass using
image patches of real music scores through the U-Net generator and the discriminator.
Gradients are computed at the end of the discriminator using a binary cross entropy
loss between the output of the discriminator and synthetically generated positive labels.
Gradients are then backpropagated through the discriminator and the generator but
only applied to the generator. By using only positive labels, we train the generator to
fool the discriminator by generating what the discriminator consider as positive labels,
i.e. isolated music symbol of the class we want to detect.

Reconstruction Training with Isolated Symbols One of the problem with the origi-
nal GAN training losses, in respect to our detection task, is the lack of constraints to
keep the original symbol shape and position in the generated image. As described in the
original GAN work, the generator can easily collapse into systematically generating the
same symbol at the same position while perfectly fooling the discriminator. However, it
is not possible to add additional information about symbol sizes and positions using the
generator input image patches of real music scores since this dataset is not annotated.
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In another hand, we actually have total control and complete information for our isolated
music symbol dataset. We propose to reuse this knowledge to our advantage by adding
a supplementary loss called reconstruction loss and apply it to the isolated music
symbol dataset. The main goal of this new training objective is to explicitly train the
generator to correctly process the specific case of isolated music symbols pasted at
random position and size in a white canvas. This loss is applied only to the generator in
the style of classic auto-encoder network, as shown in fig. 4.10, where input data are
images to process and ground truth are respectively images that the generator should
produce.

In our case, we use symbols from our isolated symbol dataset and generate both
input images and output images using the same method as described in section 4.4.2
with a slight variation. In the case where the input image contains an isolated symbol of
the class we want to detect, we use the exact same image as ground truth. For cases
where the input image contains an isolated symbol of the class we do not want to detect,
we replace the isolated symbol with white pixels. This method allows to both provide an
explicit training objective for the ideal input case of the generator (isolated symbol with
empty background) for which the generator should learn the identity transform and a
few rejection cases using negative examples of symbols that we do not want to detect
for which the generator should learn to suppress. This additional information during
the training process allows us to stabilize even further the training of the Isolating-GAN
while also improving the detection performance.

Formally, we now recall the usual adversarial loss which uses our real music score
image patches X as a source domain:

LAdv(G,D,X) = Ex∼X [log(1−D(G(x)))] (4.3)

And our additional reconstruction loss which is a binary cross-entropy loss applied
between our target domain images Y and target domain ground truth images Y ∗:

LRecons(G, Y, Y ∗) = E(y,y∗)∼(Y,Y ∗)[y∗ ∗ log(G(y)) + (1− y∗) ∗ log(1−G(y))] (4.4)

Where Y ∗ is defined as we explained previously, either y the input image for positive
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Figure 4.10 – Isolating-GAN reconstruction loss using synthetic data. Here, we addi-
tionally train the generator to learn the identity transform of isolated symbols we want
to detect and the removal of isolated symbols we do not want to detect. This training
can be simply realized using our synthetic detection dataset together with a binary
cross-entropy loss as a reconstruction loss for the generator.
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examples and yblank an empty white image for negative examples:

Y ∗({y∗l}Pl=1) =

y, if yllabel ∈ Ypos
yblank, if yllabel ∈ Yneg

(4.5)

4.5.2.4 Tuning Balance Between Different Losses

We can now define our global training objective by joining our discriminator loss
(eq. (4.2)), generator loss (eq. (4.3)) and reconstruction loss (eq. (4.4)) as a two-player
minimax game where we aim to solve:

min
G

max
D

V (D,G) = LD + LAdv + LRecons

= E(y,ylabel)∼(Y,Ylabel)[ylabel ∗ log(D(y)) + (1− ylabel) ∗ log(1−D(y))]

+ Ex∼X [log(1−D(G(x)))]

+ E(y,y∗)∼(Y,Y ∗)[y∗ ∗ log(G(y)) + (1− y∗) ∗ log(1−G(y))] (4.6)

The original GAN paper [Goodfellow 14] mention that in order to avoid a collapse of
the generator, the discriminator should be synchronized to the generator training, i.e.
the generator should not be trained too much. In the original paper, a single parameter
K is used to balance the adversarial and discriminator loss. This parameter controls the
number of batch-wise training iterations the discriminator should do before retraining
the generator using the adversarial loss.

In this work, we apply this concept to our training algorithm where we parameterize
the number of consecutive batch-wise training step for our three discriminator, adversar-
ial and reconstruction losses, which we name respectively DiscNumTrain, AdvNumTrain
and ReconsNumTrain. We also parameterize the number of time a loss can be trained
before retraining another loss, such as GenMaxNumTrain which is the maximum number
of training step allowed for the generator using the adversarial or reconstruction loss
before retraining the discriminator. Finally, we limit the use of the reconstruction loss by
using an additional parameter ReconsTrainFreq which specify the frequency at which
the reconstruction loss is used. We present our whole training algorithm given in Algo-
rithm 1 which show how we use our data and parameters for training the Isolating-GAN
model.

A simpler implementation of this loss would have been to merge the adversarial
and reconstruction loss as a single loss using a weight parameter. The reason for our

110



4.5. Step 2: Isolating-GAN using Image-to-Image Translation

Algorithm 1: Minibatch training of Isolating-GAN.
GenNumTrainCpt← 0
ReconsTrainCpt← 0
for number of batches in X do

Sample minibatch x from X
for AdvNumTrain() steps do

if GenNumTrainCpt() multiple of GenMaxNumTrain then
DUpdate Sample minibatch of images y and labels ylabel from (Y, Ylabel)

for DiscNumTrain() steps do
Update the discriminator with discriminator loss:

∇θd

1
m

m∑
i=1

[yilabel ∗ log(D(yi)) + (1− yilabel) ∗ log(1−D(yi))

+ log(1−D(G(xi)))]

GenNumTrainCpt← GenNumTrainCpt + 1
Update the generator with adversarial loss:

∇θg

1
m

m∑
i=1

log(1−D(G(xi)))

if ReconsTrainCpt() multiple of ReconsTrainFreq then
Sample minibatch (yrecons, y∗recons) from (Y, Y ∗)
for ReconsNumTrain() steps do

if GenNumTrainCpt() multiple of GenMaxNumTrain then
Update discriminator, see DUpdate.

GenNumTrainCpt← GenNumTrainCpt + 1
Update the generator with reconstruction loss:

∇θg

1
m

m∑
i=1

log(y∗recons
i −D(G(yreconsi)))

ReconsTrainCpt← ReconsTrainCpt + 1
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implementation is the organic growth of the model where we gradually added parameters
and improvements in order to improve our results. Simplifying this algorithm is one of
the first planned improvement for our future works.

4.5.3 Evaluation Protocol

We now present our evaluation methodology of the Isolating-GAN model in relation
to our music symbol detection task.

4.5.3.1 Evaluation architecture: U-Net Generator + SSD

Contrary to more classical model in Deep Learning literature, the evaluation task of
a GAN model is not a straightforward task because it is difficult to evaluate directly the
generation quality of the GAN generator as explained by Borji [Borji 19]. However, in
our case, the images produced by the Isolating-GAN generator are not our end goal but
just an intermediary representation for the following detection task.

That is why we propose to evaluate our Isolating-GAN model using a proxy detector
model. For that, we reuse our isolated symbol detector model we shown in section 4.4.3.
Our evaluation architecture is made by connecting the U-Net generator of the GAN
model with the SSD model in order to create an end-to-end detection task going from
real image patches of music scores all the way to producing detection predictions with
boxes and labels. We illustrate this architecture in fig. 4.11.

4.5.3.2 Training Results Analysis

Next, we need to have annotated detection ground truth in order to evaluate our
detection task. However, this need contradicts our approach which is to avoid as much
as possible to use manually annotated data since it is costly and slow to produce. Ideally,
we could train our Isolating-GAN model without using any ground truth information and
directly use it to produce reliable detection prediction. However, we found that it is critical
for the Isolating-GAN model to be tuned correctly using the right hyperparameters in
order to stabilize the training process and improve the detection accuracy. Instead of
trying to optimize the hyperparameters blindly, we propose to use a very small validation
dataset of 10 or 20 examples per symbol class which we will manually annotate. This
manual annotations are produced by splitting images produced by our DMOS parser into
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Figure 4.11 – Isolating-GAN evaluation architecture. By joining the trained generator as
shown in section 4.5.2.1 and detector pretrained on our synthetic detection dataset, we
create a detection model capable of localizing symbols in real historical music score
images. The predictions of the SSD detector can then be evaluated using our manually
constituted small validation dataset.

a training and validation set. The validation set is manually annotated while the training
set is directly used for training the Isolating-GAN model without any manual annotations.
We also use bootstrapping as presented in section 2.2.1 in order to artificially augment
our validation set and improve our estimator. Finally, we use the mean Average Precision
(mAP) detection metric as presented by Everingham et al. [Everingham 10] with an
Intersection over Union (IoU) threshold of 0.75.

The goal of the validation set is to be able to give relatively accurate measure of the
detection performance of the Isolating-GAN + SSD architecture while being as small
as possible. Although it won’t give an exact estimation of the detection performance of
the method, we can at least use this estimation to fine tune our hyperparameters and
choose the best performing Isolating-GAN out of multiple trainings.

GAN models are well-known for their training instability and the mode collapsing
problem has been identified since the first introduction of the model [Goodfellow 14] and
is explained by a saturated discriminator which is able to reject the generator examples
so strongly that no gradients are produced for the generator training. In our work, we
want to evaluate how well our Isolating-GAN is able to transform images from our source
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domain, patch images of real music scores, into our target domain, isolated music
symbol of classes we want to detect, in relation to the detection that will be performed
by our SSD model. But this evaluation can be difficult when we only have access to
a small evaluation dataset and the training is blocked in a mode collapsed state. To
improve our evaluation protocol, we decide to retrain the same Isolating-GAN model
with the same hyperparameters set multiple times using a different random seed each
time. This common practice in machine learning gives us some insight about the basic
stability of the training method. Because of the mode collapsing problem, retraining our
model multiple time is essential to have a smoother estimation of the performance of
the model where we can count the number of mode collapse. Next, we explain how we
use our small validation set to do an early stopping of the training.

4.5.3.3 Early Stopping

Due to the unstable nature of the GAN training, multiple training of the same model
with the same hyperparameters but with different random seeds can actually produce
significantly different results. While the results can vary quite a bit, the best model out of
a set of trained model can performed satisfactorily. However, there is a need to identify
this particular run and particular training epoch that gave the best result. This is why
we use an early stopping mechanism together with a multi-run approach using a small
validation set that we presented previously. The early stopping mechanism enables
us to stop the Isolating-GAN training before overfitting happens. At every epoch, we
compute the mAP metric on our small validation set and if this metric does not improve
after a number of successive epochs, also called the patience parameter, we stop the
training. The last epoch that gave the best results will then be used to produce detection
prediction on the whole dataset.

4.6 Conclusion

We now have presented in details our novel method for unsupervised music symbol
detection in historical printed music scores using only isolated music symbols. By
using isolated symbols to create a simplified intermediate representation, we can use a
three steps method to isolate music symbols in real music scores. The first step is to
use a syntactical method fed with simple primitives and previous detection in order to
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identify RoIs that have a higher probability of containing the music symbols we want to
detect. Secondly, we use our generative Isolating-GAN method to simplify the graphical
representation of the RoIs and isolate target music symbols. While we build on the
existing U-Net GAN model, we propose an original combination of an isolated symbols
dataset and real historical music score dataset to train this model. Moreover, since the
training of this step is particularly unstable, we enhance our GAN model training with an
additional training objective. Our final step is the detection of music symbols previously
isolated in the RoIs, using a simple detector previously trained on our synthetic detection
dataset generated using an existing isolated music symbol dataset.

Using both the Isolating-GAN and a simple detector, we can produce detection
predictions with which we will be able to evaluate our method. Since no ground truth is
available to choose any training hyperparameters of the Isolating-GAN model, we devise
a hyperparameter optimization strategy based on small validation dataset, manually
produced, of few examples per symbol classes and augmented with bootstrapping.
This small validation dataset is then used to compare the impact of different training
hyperparameters and choose near optimal training hyperparameters values. Finally,
since the same set of hyperparameters can produce trained generator models of large
varying detection performance because of the GAN training instability, we can use
this small validation set to elect the best performing Isolating-GAN model at the best
performing epoch between a set of trained Isolating-GAN models using the same set of
hyperparameters. However, this requires a constant monitoring of the Isolating-GAN
model during training.

In the next chapter, we validate our method, first with architectural experiments
in section 5.2 to show the impact of different improvements we made to the GAN
architecture and training strategy. While we validate our architectural experiments on
a small homogeneous dataset for easier and faster development iterations, we also
validate the detection performance of our Isolating-GAN method in section 5.3 on a large
heterogeneous dataset spanning a larger number of music scores of varying styles. In
appendix A, in section A.1, we propose additional experiments that tests on one hand
the impact of symbol distribution in our historical printed music scores RoIs and on the
other hand the sizes range of isolated symbols used to generate our synthetic detection
dataset.
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CHAPTER 5

EXPERIMENTS

5.1 Introduction

Following the presentation of our new Isolating-GAN method in chapter 4 for unsu-
pervised music symbol detection, we now present a large set of experiments using our
small and homogeneous accidental dataset [Choi 18a], evaluating the different archi-
tectural improvements in section 5.2 as explained in section 4.5.2.Then, in section 5.3,
we use a much larger and heterogeneous accidental dataset to demonstrate that our
method can generalize to a much more challenging detection task.

5.2 Architectural Experiments

This section presents our experimental procedure to develop and validate our new
strategy for symbol detection. The task we set out to do is the detection of accidental
symbols in images produced by the first step of our method, explained in section 4.3.
However, this task can be very challenging, especially in an unsupervised setting,
because of the lack of accidental symbols to detect. From what we could gather after
manually annotating accidental symbols, only 10 to 20% of images would contain
symbols to detect and this number is probably overestimated because we chose to
annotate music score pages with high concentration of accidental symbols. Moreover,
this lack of symbols to detect seems to highly impact the stability of our method, the
fewer the symbols are, the more instable our method gets.

To control the complexity of our task and the instability of our method, we used an
iterative development strategy and started with a simple model, reduced dataset and a
simple detection task. We then gradually improve and stabilize the model by modifying
our loss function or by modifying the data used during training. Since our method is
unsupervised, only the data available such as isolated symbols contains the knowledge
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we want the GAN to learn. Therefore, it is of paramount importance how we use that
data to influence the learned knowledge and training stability of the GAN. An overview
of the architectural experiment together with what we consider our contribution to the
original GAN architecture is shown in fig. 5.1. Our main architectural contributions from
the original is the use of an additional image reconstruction training objective able to
stabilize the training of the GAN and improve the detection quality of our method.

The first goal of section 5.2.1 is to validate the capacity of the Isolating-GAN archi-
tecture to correctly transform input image patches of real image scores to isolated music
symbol to detect. That is why, we start by using a very simple experimental setting with
only images containing one class of accidental symbol to detect. We then gradually
stabilize and improve the training method, first by tuning hyperparameters, secondly by
changing the loss function and data used during the training by adding more classes
of accidental symbols and images without symbols to detect. Then, we investigate in
section 5.2.2 how we can partially evaluate our method using a very small validation
dataset together with a pretrained SSD to be able to correctly tune the Isolating-GAN
training without using a fully annotated dataset.

GenNumTrain

Generator

Adversarial Training
with Real Dataset

AdvNumTrain

Reconstruction Training
with Isolated Symbols

ReconsNumTrain

ReconsTrainFreq

Discriminator

Training with Real Dataset
using Generator

Training with Isolated Symbols

With Negative Examples

With Positive Examples

1/nb classes

50%

Discriminator Training
DiscNumTrain

Training Repetition
New Contributions

Training Balance

Real Dataset (no ground truth)

Isolated Symbol Dataset
(with symbol class annotation)

Figure 5.1 – Overview of architectural experiments of the Isolating-GAN method. Stars
indicate what we consider our contributions. Double arrows indicate a notion of balance
and circled arrows repetition.
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5.2.1 Stabilize and Improve Isolating-GAN Training

Our first set of experiment concentrates on the incremental development of our
method, starting from the original GAN architecture and adding successively the sec-
ondary reconstruction loss and the use of negative examples for stabilizing the training.
We also propose a multi-class version of our architecture where we train our Isolating-
GAN to isolate multiple classes of accidentals at the same time.

We first investigate how to balance the different learning rates used by the Isolating-
GAN in section 5.2.1.1. Next, we present the iterative experiments that validate each of
our proposed improvements to the vanilla architecture such as adding a reconstruction
loss in section 5.2.1.2 and using negative samples in section 5.2.1.3. Finally, in sec-
tion 5.2.1.4, we compare a multi-class version of our Isolating-GAN with our previously
trained single-class version of our Isolating-GAN.

5.2.1.1 Balancing Discriminator and Adversarial Loss

Objectives In this section, we present the exploratory search of tuning the learning
rates and training balance between the generator and discriminator of the Isolating-GAN
method driven by isolated music symbols. We propose to first adjust the learning rates
for the adversarial and discriminator losses using an independent search on a range
of learning rate values. We then fine-tune this balance between the discriminator and
generator by modifying the AdvNumTrain and DiscNumTrain parameters which regulate
the number of consecutive time the generator and discriminator are trained using the
same batch of data. The goal of these experiments is to find a set of parameters which
produces a stable GAN training and good generation performance.

Datasets We start our experiments using the vanilla Isolating-GAN model and use
two different datasets to do the adversarial training. The first dataset is the Isolated
and Printed Music Symbol Dataset presented and illustrated in table 4.1. This dataset
is used to automatically produce larger images of size 128 × 128 pixels with a white
background. A single isolated music symbol is distorted using a random size coefficient
and then pasted on the white background. This dataset will be used to inject the
knowledge of what kind of symbols (with its shape and size) should the GAN retain
or remove as explained previously in section 4.5.1. Since this dataset is automatically
generated, we can derive the class and bounding box annotations of each symbols in
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the image which will later be used to pretrain a detector model.
The second dataset used is constituted of image patches of real music scores as

explained in section 4.3 and containing hard segmentation problems like the ones
presented in fig. 1.4. For these preliminary experiments, we artificially control the
classes and distribution of classes used during training. For this section, we restrict this
dataset only to images that contains the accidental symbol which we want to detect. It
is the same dataset as the accidental dataset used for supervised accidental detection
presented in table 2.1 except for the absence of the Reject class. For the experiments
done in this section and for the purpose of further simplifying the detection task, we
restrain the task to single class detection task and take the accidental sharp class as the
class of symbol we want to detect. Later, starting from section 5.2.1.2, we generalize our
approach to two other accidental classes. We also reuse the bootstrapping techniques
as mentioned in section 4.3 to artificially augment this dataset to produce a total of 200k
images.

Training Algorithm The GAN training uses the same algorithm as the original GAN
work [Goodfellow 14] where we alternatively train the discriminator and generator.
We start by using both datasets: automatically produced images containing isolated
symbols and real images of music scores. The real images are then fed to the generator
which transform them and ideally remove background noise and symbols and only
keep the symbol to detect. Both sets of images are then fed to the discriminator and
the discriminator loss is applied to the discriminator only by annotating the images
containing isolated symbols as the True set while images produced by the generator
are annotated as the False set. This step allows us to train the discriminator to search
for symbols resembling isolated symbols on a white background in real images of
music scores. This operation is then repeated DiscNumTrain times. In the second step,
only images of real music scores are used. Images are fed from the generator to the
discriminator and the adversarial loss is applied to the generator only by annotating
this set of images as the True set. This operation is then repeated AdvNumTrain times.
This step allows us to train the generator to fool the discriminator by generating images
containing only isolated symbols on a white background. A more complete description
of this algorithm is done in section 4.5.2.1.
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Evaluation To directly evaluate the generation quality of the Isolating-GAN generator,
we compute the pixel accuracy between the generated image and an artificially gener-
ated image which represent the ideal output of the generator. For example, if the input
image patch extracted from a real music score contains both a symbol to detect and
background noise and symbols, the ideal output of the generator would be an image
where only the symbol to detect remains and everything else was removed and replaced
by a white background. This artificial task allows us to evaluate the background filtering
capability of the U-Net as well as the ability to keep and maintain the shape, size and
position of the symbol we want to detect. In this case, the original pixel accuracy metric
is heavily affected by the balance between black and white pixels in the ground truth
data. That is why, in all our experiments, the pixel accuracy results shown are measures
where the contribution of white and black pixels were balanced.

Although both our dataset constitution and task definition uses manually annotated
ground truth information, the training of the Isolating-GAN is entirely done without any
ground truth information. The ability to measure directly the generation capability of
the GAN greatly helped us during the development of this method, and we believe that
these results are showing very interesting properties of the GAN training behavior.

In order to gather a maximum of information from this pixel accuracy metric during a
training, we propose to compute the minimum, maximum and average pixel accuracy
across all the epochs of a training, except for the first 10 epochs. The maximum pixel ac-
curacy of a training is the value that is classically retained in Deep Learning experiments
and informs us about the best theoretical results that our method can achieve, although
actually identifying the epoch that yield this maximum pixel accuracy value without
using a fully annotated dataset is a difficult task which we discuss in section 4.5.3 and
experiment in section 5.2.2. The average and minimum pixel accuracy of a training is
a quick and synthetic way for us to describe the actual training curve/behavior of the
model and therefore, the training stability of the model. The main interests of these
preliminary experiments is to characterize and evaluate the initial stability of the model
and the allowed range of values hyperparameters could take while still having a stable
trainable model. The fact that we do not take into account the first 10 epochs of training
is to be able to compute a meaningful minimum pixel accuracy value, since all trainings
starts with an initial pixel accuracy of 0% (or in our case 50% since untrained models
very often generate white or black images).

Knowing that our method is unstable and can produce widely varying results for the
same set of hyperparameters, we repeat the training for the same set of hyperparameters
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5 times and compute the average and standard deviation of the 5 runs on our three
metrics: maximum, average and minimum pixel accuracies.

Isolating-GAN-AdvLr/DiscLr Experimental Results These preliminary experiments
focus on the tuning of the learning rates parameters for the GAN adversarial training.
From the original adversarial training, we need to tune both the adversarial learning rate
and discriminator learning rate. The adversarial learning rate sets the speed at which
the generator network will learn while the discriminator learning rate will set the speed
of the discriminator training. Moreover, we fine tune this training balance between the
generator and the discriminator by using two additional parameters: the adversarial
number of training step (AdvNumTrain) and the discriminator number of training step
(DiscNumTrain). These two parameters specify the number of successive training each
network receive for a single batch of data. Although these parameters are not necessary
and we could only try to tune the learning rates, we found that it was easier to use these
additional parameters to fine tune the GAN performance.

First of all, the Isolating-GAN-AdvLr experiment explore the adversarial learning rate
parameter with values between [1× 10−6, 1× 10−2]. Other parameters for this experi-
ment are specified in table 5.1. The exploration is done on a log scale and as shown
in fig. 5.2a, we found a typical bell curve showing that a learning rate of 8× 10−6 gives
the best results. In order to find this optimal value, we explored adversarial learning
rate values in multiple consecutive experiments, by going smaller and smaller. By the
time we found an optimal learning rate of 8× 10−6, later experiments like Isolating-GAN-
DiscLr/AdvNumTrain/DiscNumTrain were already done using an adversarial learning of
1× 10−5. Since the two values were so close, we did not chose to redo all the experi-
ments since it would have been too costly to rerun them for only marginal improvements
in pixel accuracy results. Although we can not generalize the use of this value for
other datasets or task, we show that a shallow grid-search is sufficient to stabilize the
GAN training and produce reasonably good results. The same can be said for the
discriminator learning rate with an optimal value of 2× 10−4. However, the training of
the GAN still show a lot of instability as seen by the minimum pixel accuracy standard
deviation in fig. 5.2b.

One interesting observation of these experiments is that the optimal adversarial
learning rate is much smaller than the optimal discriminator learning rate. This behavior
is coherent with the original GAN work [Goodfellow 14] which observe that the dis-
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Table 5.1 – Parameter values for all Isolating-GAN experiments. Values between square
brackets are the minimal and maximal bounds explored for the parameter.

Experiment AdvLr DiscLr AdvNumTrain DiscNumTrain

Isolating-GAN-AdvLr [1× 10−6, 1× 10−2] 2× 10−4 1 1
Isolating-GAN-DiscLr 1× 10−5 [2× 10−5, 2× 10−3] 1 1
Isolating-GAN-AdvNumTrain 1× 10−5 2× 10−4 [1, 16] 1
Isolating-GAN-DiscNumTrain 1× 10−5 2× 10−4 4 [1, 16]

10−6 10−5 10−4 10−3 10−2
0.0

0.2

0.4

0.6

0.8

1.0

Adversarial Learning Rate

P
ix

el
A

cc
ur

ac
y

Exploration of adversarial lr

maximum
average
minimum

(a) Isolating-GAN-AdvLr

10−4 10−3
0.0

0.2

0.4

0.6

0.8

1.0

Discriminator Learning Rate

Exploration of discriminator lr

maximum
average
minimum

(b) Isolating-GAN-DiscLr

Figure 5.2 – Exploration of the adversarial/discriminator learning rate for the Isolating-
GAN training with best AdvLr at 8× 10−6 and best DiscLr at 2× 10−4. See section 5.2.1.1
for an explanation of the pixel accuracy metric. See table 5.1 on experiment Isolating-
GAN-AdvLr/DiscLr for the value of other parameters. The maximum, average and
minimum values are computed from 5 identical repeated training (see section 5.2.1.1).
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criminator of the GAN should normally be trained optimally at every batch step before
retraining the generator. In practice, we shorten the training of the discriminator for the
training to be computationally tractable in a reasonable time. However, the use of a
much larger discriminator learning rate guaranties us that the discriminator learns and
adapt much faster than the generator.

Isolating-GAN-AdvNumTrain/DiscNumTrain Experimental Results In the follow-
ing experiments Isolating-GAN-AdvNumTrain/DiscNumTrain, we try to fine-tune even
further the balance of training between the generator and the discriminator by explor-
ing respectively the AdvNumTrain and DiscNumTrain parameters. As explained before,
these parameters regulate the number of successive training steps the generator or the
discriminator has. We explore values between [1, 16] and do a complete grid-search for
these two parameters as shown in table 5.2.

Figure 5.3 shows the optimal combination of using either 4 steps for AdvNumTrain
or 1 step for DiscNumTrain. However, these results do not show that a maximum was
reached for the DiscNumTrain parameter. Indeed, we can not explore values below 1
for the DiscNumTrain parameters which represent the number time the discriminator is
trained with a batch of data.

Conclusion In this section, we have shown how we explored values for tuning the
adversarial and discriminator learning rates. During the course of these experiments, we
explored a total of 44 different combinations of parameters such as the discriminator and
adversarial learning rate and the DiscNumTrain and AdvNumTrain parameters. Knowing
that we repeated each training 5 times to evaluate the stability of our method, a total
of 220 trainings had to be done. With each training taking 2 hours, it took around
3 weeks of computation time to complete all experiments. The fine-tuning of these
parameters are essential to be able to train a GAN model with stability and produce
good performance on the generation task. Our best pixel accuracy results at around
96% shows that the GAN learns to do the task of keeping the sharp symbol to detect
while removing background noise and symbols. However, this task was learned by
the GAN model without using a direct formulation of this task in the form of a training
objectives, which in turns allows to learn this task without manually annotated ground
truth. This fact is the main interest of our unsupervised symbol detection method.

In the next section, we show how we can further improve the generation quality of
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Table 5.2 – Grid-search parameters values for AdvNumTrain and DiscNumTrain parame-
ters measuring maximum, average and minimum pixel accuracy during Isolating-GAN
training (see section 5.2.1.1). The GAN was trained 5 times using the same set of
parameters and we show the average and standard deviation pixel accuracy over these
5 training. The AdvNumTrain and DiscNumTrain parameters are used to tune the number
of consecutive time the generator and discriminator are trained during batch training
step.

Parameters Pixel Accuracy: Average ± Std

AdvNumTrain DiscNumTrain Maximum Average Minimum

1 1 0.978± 0.000 0.953± 0.004 0.831± 0.033
1 2 0.972± 0.002 0.920± 0.011 0.647± 0.107
1 4 0.968± 0.004 0.845± 0.018 0.499± 0.000
1 8 0.785± 0.068 0.545± 0.020 0.411± 0.036
1 16 0.844± 0.011 0.555± 0.018 0.379± 0.036
2 1 0.978± 0.001 0.958± 0.004 0.762± 0.115
2 2 0.979± 0.001 0.948± 0.005 0.684± 0.124
2 4 0.973± 0.003 0.875± 0.011 0.499± 0.000
2 8 0.760± 0.176 0.616± 0.115 0.467± 0.037
4 1 0.979± 0.001 0.967± 0.005 0.910± 0.028
4 2 0.976± 0.001 0.959± 0.004 0.774± 0.165
4 4 0.909± 0.141 0.881± 0.127 0.592± 0.074
4 8 0.881± 0.190 0.768± 0.148 0.500± 0.000
4 16 0.663± 0.152 0.548± 0.047 0.450± 0.050
8 1 0.907± 0.148 0.900± 0.145 0.868± 0.133
8 2 0.979± 0.000 0.963± 0.005 0.804± 0.107
8 4 0.979± 0.001 0.963± 0.004 0.810± 0.123
8 8 0.977± 0.001 0.937± 0.017 0.633± 0.153
8 16 0.912± 0.133 0.842± 0.104 0.540± 0.058
16 1 0.981± 0.004 0.905± 0.143 0.858± 0.180
16 2 0.922± 0.119 0.913± 0.115 0.876± 0.101
16 4 0.979± 0.001 0.965± 0.010 0.813± 0.169
16 8 0.981± 0.001 0.958± 0.010 0.674± 0.192
16 16 0.979± 0.003 0.878± 0.059 0.533± 0.119
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Figure 5.3 – Exploration of DiscNumTrain/AdvNumTrain parameters with the best Dis-
cNumTrain at 1 and the best AdvNumTrain at 4. See section 5.2.1.1 for an expla-
nation of the pixel accuracy metric. See table 5.1 on experiment Isolating-GAN-
DiscNumTrain/AdvNumTrain for the value of other parameters.

126



5.2. Architectural Experiments

the Isolating-GAN by using an additional reconstruction loss together with an improved
training algorithm.

5.2.1.2 Improved Generator Training Using Isolated Symbols Reconstruction
Loss

Objectives We now propose to investigate the use of an additional reconstruction
loss in order to further improve the generation quality of the Isolating-GAN. We model
a reconstruction task for the generator using the isolated music symbol dataset since
isolated symbols are the only knowledge we have at hand. The isolated symbols allow
us to give the Isolating-GAN explicit information of the symbols shapes and sizes we
want to detect. As for the training of the discriminator, we automatically generate blank
images which contains a deformed isolated symbol. However, in this case, the class
set of isolated symbols is the three accidental classes: sharp, flat and natural. Since
the GAN model is trained to detect a single symbol class, this reconstruction loss will
model two tasks at the same time. First, if the class of the isolated symbol present in
the image is the symbol class to detect, the generator will have to produce the exact
same image and will have to learn an identity transformation. On the other hand, if the
class of the isolated symbol present in the image is not a symbol class to detect, the
generator will have to remove this symbol from the image and produce a white empty
image. This behavior is illustrated in fig. 4.10.

With the addition of the reconstruction, we also propose to improve the training
algorithm to better balance the training of the discriminator and the generator. In this
experiment, we explore different values for the reconstruction learning rate to better
adjust the contribution of this new loss to the training of the generator.

In contrast to previous preliminary experiments presented in section 5.2.1.1, we
now conduct our following set of experiments with a more realistic modeling of the real
image dataset, introducing images without symbols to detect and experimenting on
more classes of accidentals. As we have explained before, the introduction of images
with no symbols to detect degrades heavily the stability of our GAN training, which in
turns degrades the detection results. However, this gets us closer to a realistic detection
task as the one we propose in section 5.3 and therefore highlights the improved stability
and detection performance of our newly added reconstruction loss. We also show
the results using the mean Average Precision detection metric which allows a better
evaluation of our detection task.

127



Partie , Chapter 5 – Experiments

Datasets In addition to the two datasets used in the previous experiments sec-
tion 5.2.1.1, we build another dataset based on the isolated music symbol dataset.
Although the generation of the isolated symbol detection dataset does not change from
our previous experiment explained in section 5.2.1.1, the synthetic detection dataset
only contained images with symbols to detect. We now better model the distribution of
classes in the dataset constituted of real images produced by our first preprocessing
step section 4.3 by including images without symbols to detect. For all our following
experiments, we propose to use a realistic 1 to 9 ratio between images containing an
accidental symbol and rejection images that does not contain any accidental symbols. In
the 10% of images containing an accidental symbol, the ratio between different acciden-
tal classes follows the real distribution of accidental classes produced by our syntactical
method. We present more extensive evaluations of the impact of the frequency of reject
images in appendix A, in section A.1.1.

For our new reconstruction loss to train the generator, we automatically generate
images in the same manner as for the discriminator training using isolated music
symbols. However, we also add isolated accidental symbols to reject and automatically
produce ground truth images. The ground truth images are either identical to the input
image if there is a simple symbol to detect or are blank images for input images with
symbols to reject. In our case, we use the three accidental classes: sharp, natural and
flat, but we only train the GAN to detect one of the symbol class at a time.

Training Algorithm We modify the original GAN training algorithm to include this
reconstruction loss as presented in fig. 4.10. The goal of this new training algorithm
is to be able to interleave the different training objective and correctly balance the
training of the generator and the discriminator. This algorithm is described in detail in
section 4.5.2.4.

Evaluation To better evaluate the detection task of our method, we propose to use the
evaluation method presented in section 5.2.2. Since the end-goal of our method is to
detect music symbol with a bounding box and a class label, we propose to use a Single-
Shot Detector model pretrained on our automatically generated images containing
Isolated Music Symbol Dataset. Using this setup, we can measure a mean Average
Precision metric with an Intersection over Union over 0.75 (mAP [IoU > 0.75]). Using
this metric, we can now compare our approach to a classic fully-supervised detector
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model. The evaluation architecture is constructed by forwarding produced images by
the generator to the SSD model and then computing the mAP using detection ground
truth annotations. As usual, we use this manually annotated ground truth only for
evaluation in order to develop our method. Moreover, we show in section 5.2.2.1 how
we can minimize the use of this ground truth data while still being able to correctly tune
and improve the Isolating-GAN method. Our evaluation dataset consists of our image
dataset extracted from real music scores but without restraining images to contain a
symbol of the class we want to detect.

We measure the mAP metric at every epoch of the GAN training and report the
maximum mAP attained during a training. For every different reconstruction learning
rate values, we redo the training 10 times and report the average and standard deviation
of the maximum mAP with IoU > 0.75. By reporting the maximum mAP value over
a training, we can select the best configuration for our method and show the best
theoretical upper limit of our method. This evaluation is done using a fully manually
annotated detection ground truth which will not be available during the real application
of our method We will show in the next section 5.2.2.1 how we can mitigate this issue
and evaluate the real performance we can obtain with this method.

Isolating-GAN-ReconsLr Experimental Results In this paragraph, we now show
the results using our additional reconstruction loss for our Isolating-GAN method. We
propose to explore the behavior of the GAN training with 6 different reconstruction loss
learning rates: [1× 10−5, 3× 10−5, 5× 10−5, 7× 10−5, 1× 10−4, 7× 10−4] as shown in
fig. 5.5. Moreover, we show the results for three different class of accidental symbols:
Flat, Natural and Sharp. We compare these results with a baseline experiment shown
in fig. 5.4 where the experimental settings are identical to the Isolating-GAN-ReconsLr
experiment but without the use of the reconstruction loss and without modification of
the training algorithm. Our baseline results shows that our changes for a more realistic
real dataset as input to the generator will effectively prevent the GAN to achieve any
meaningful detection results with almost all runs producing a mAP of 0 except for one
or two training outliers. This collapse is mainly linked to the addition of images with no
symbols to detect, which were not present in the previous experiments. This shows the
necessity of improving the performance and stability of the training of the GAN model.

In contrast, by using our additional reconstruction objective, we can see that both
the natural and sharp class obtain their best results using reconstruction learning rate
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of 5× 10−5 with respectively ∼80% and ∼89% of mAP with IoU > 0.75 while minimizing
the difference between their 1st and 3rd quartiles. The flat class also shows a big
improvement by achieving 64% of mAP average with a very small differences between
their 1st and 3rd quartiles using a reconstruction learning rate of 1× 10−4. Since every
training were repeated 10 times and we tested on 3 accidental classes and 6 different
learning rates, the baseline experiment consisted of 30 training and this experiment
consisted of 180 trainings, totaling to 210 trainings.
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Figure 5.4 – Baseline results without using reconstruction loss. The experimental setting
is identical to previous experiments except for the addition of images without symbols to
detect, which drives most runs to collapse to 0% of mAP except 1 or 2 outliers. See
section 5.2.1.2 for a detailed explanation of the mAP metric.

Conclusion In this experiment, we have shown the behavior of the Isolating-GAN
when using an additional reconstruction loss together with a modified training algorithm
on a new dataset including images without symbols to detect. We first start by showing
that the original GAN architecture collapses on almost all trainings except a few. By
using an additional reconstruction loss together with a modified training algorithm, we
then start to obtain usable results for the task of music symbol detection. Moreover, we
show that using a reconstruction task for the generator actually enables our method to
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Figure 5.5 – Exploration of the reconstruction learning rate for the Isolating-GAN training.
We show the maximum (solid lines), the median (dashed lines) and 1st and 3rd quartiles
(limits of transparent areas) over 10 identical training of the maximum mAP achieved
during a training. Best runs show 64% at 1× 10−4 of learning rate, 80% at 5× 10−5

and 89% at 5× 10−5 of mAP for respectively the Flat, Natural and Sharp class. These
optimum were chosen because of their small differences between the 1st and 3rd
quartiles. See section 5.2.1.2 for a detailed explanation of the mAP metric.
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work. The idea of using negative examples with isolated symbol to be removed by the
generator can also be extended to the training of the discriminator. We show in the next
section how we implement this improvement.

5.2.1.3 Improved Discriminator Training Using Negative Examples of Isolated
Symbols

Objectives The purpose of this experiment is to present the last improvement of our
Isolating-GAN detection performance by using negative examples of isolated music
symbols for the discriminator training. For this experiment, we focus on the discriminator
loss training objective which is used to train the discriminator network. In the original
GAN training algorithm, the discriminator is made to recognize the origin of given
images, which are either produced by the generator or from an existing dataset. In
our case, the discriminator has to differentiate between real image patches of music
scores transformed by the generator or images containing isolated music symbol of the
class we want to detect. With this training objective, we give to the GAN the explicit
information of which kind of symbol should be present in images produced by the
generator. However, since we also have examples of isolated symbols which we do
not want to detect, we can also give this information to the GAN, which in turn should
improve the stability of the training and detection performance of the method. This way,
we also give the GAN the explicit information of which kind of symbol should not be
present in images produced by the generator.

Datasets For this experiment, we build on the previous Isolating-GAN-ReconsLr
experimentation datasets described in section 5.2.1.2.

We modify the automatically produced images with isolated symbols used by the
discriminator by adding two accidental classes. Therefore, images can contain any
of the three accidental classes: flat, natural and sharp while the GAN is trained to
detect only one of the accidental class at a time. When annotating these images for
the discriminator loss, we annotate the images containing isolated symbols we want
to detect as the True set while images containing other isolated symbols and images
produced by the generator are annotated as the False set. The dataset produced from
isolated symbols is balanced by the isolated symbol classes, which means that there
will always be equal amount of symbols of each class.
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Training Algorithm We reuse the training algorithm describe in our previous experi-
ment Isolating-GAN-ReconsLr in section 5.2.1.2.

Evaluation To evaluate our experimentation, we use the same mAP with an IoU >
0.75 metric as presented in section 5.2.1.2. As said earlier, by reporting the maximum
mAP value over a training, we can select the best configuration for our method and
show the best theoretical upper limit of our method. This evaluation is done using a
fully manually annotated detection ground truth which will not be available during the
real application of our method However, we explain how we overcome this limitation by
using a small validation set in section 5.2.2.1.

Isolating-GAN-ReconsLr+Neg Experimental Results In this experiment, we com-
pare the results of using additional negative examples of isolated symbols in the discrimi-
nator loss shown in fig. 5.6 with an ablated experiment using the same hyper-parameters
except for the use of negative examples. The use of negative examples shows an im-
proved maximum mAP of 1.6% for the sharp class, 4.1% for the natural class while the
maximum mAP for the flat class stays constant. However, the results for the flat class
is clearly more stable with an improved minimum mAP of 61.8% compared to 45.3%
previously and a reduced 1st and 3rd quartile variation going from 20.7% difference to
6.4% difference between the 1st and 3rd quartile. This clearly shows that the use of
negative examples helps the GAN to better filter and extract symbols to be detected
by our pretrained SSD. For this experiment, we repeated our trainings 10 times on 3
different accidental classes, totaling to 30 trainings.

Conclusion We have shown that the use of the negative examples of isolated symbols
in the discriminator training help the Isolating-GAN to better filter and extract music
symbols we want to detect. By using a combination of improvement such as an
additional training loss and modified training algorithm, careful tuning and balance
of the training of the generator and discriminator and use of additional information
through an isolated symbol dataset, we obtain competitive detection results using a
totally unsupervised training method for the task of music symbol detection. However,
during these experiments, we use a manually annotated ground truth dataset which was
necessary to evaluate and tune the hyperparameters of our method. Since the goal
of our method is to be used in a completely unsupervised setting, we need to resolve
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Figure 5.6 – Comparison of results obtained using a simple GAN (Baseline), GAN +
Reconstruction Loss (Reconslr) and GAN + Reconstruction Loss + Negative Examples
(ReconsLr+Neg). We show the results for three accidental classes over 10 identical
training of the maximum mAP achieved during a training. The use of an additional
reconstruction loss improves dramatically the results while the use of negative examples
stabilize the Flat class training and slightly improves the Sharp class. See section 5.2.1.3
for a detailed explanation of the mAP metric.
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the problem of evaluating our model when no manual annotations are available. In
our next section, we mitigate this issue by using a small manually annotated validation
dataset which can be used to tune the hyperparameters of our method and select the
best trained GAN out of a pool of trained GANs.

5.2.1.4 Multi-class Isolating-GAN

Objectives Until now, we trained the GAN part of our Isolating-GAN to extract only
one class of accidentals. Although this choice allowed us to simplify our experimental
settings, it has the drawback of having to train multiple times the same GAN model to
extract each classes of accidentals. Moreover, it is not clear if training a single GAN to
extract multiple classes of accidentals would improve or degrade the overall generation
quality of the GAN generator. The purpose of this experiment is to evaluate the benefit
of training the GAN part of our Isolating-GAN to extract multiple classes of accidentals
simultaneously.

Datasets In order to convert our GAN generator from a single class extractor model
to a multiple class extractor model, we only have to modify the data distribution of the
isolated symbol dataset used for training the GAN discriminator. Instead of using only
one class of isolated accidentals, we just modify the data distribution to evenly include
isolated accidentals of multiple classes (Sharp, Natural and Flat).

Experimental Settings For this experiment, we build on our previous single class
experiment explained in section 5.2.1.3. However, the single class experiment had
different values for the learning rate of the reconstruction loss applied to the generator
for the different accidental classes. Therefore, we resolved the differences by using the
learning rate of the best performing accidental, the sharp in our case, and reused the
value of 5× 10−5.

Mono-class vs Multi-class Isolating-GAN Results To evaluate our experimentation,
we first compare the results between our previous mono-class experiment section 5.2.1.3
and our new multi-class experiment results. In this case, we use the AP computed on
the whole training dataset and do not use any early stopping mechanism.

In fig. 5.7 we can see a big improvement for the Flat class which previously gave
weaker results than the other accidental classes in a single class training setting. For
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the multi-class setting, the Flat class now gives comparable results to other accidental
classes and the Natural class results are considerably more stable than in a single class
training setting. The Sharp class shows similar results in the mono-class vs multi-class
settings.

For this Multi-class experiment, we repeated each training 10 times but trained on all
accidentals simultaneously, reducing the number of training to 10.
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Figure 5.7 – Per class AP comparison of the Mono-class Isolating-GAN vs Multi-class
Isolating-GAN. AP computed on the whole training dataset (MaxFull as shown in
fig. 5.8). The boxplots are computed from 10 repeated trainings using the same set
of hyperparameters. In a multi-class setting, the maximum mAP of the Flat class has
improved from 75% to 87% and the Natural class stability has greatly improved with a
mAP standard deviation reduced from 7.5% to 1.1%.

5.2.1.5 Conclusion

In this section, we have presented the key experiments that drove the design of
our Isolating-GAN method. We started the implementation of our method by using
the original GAN architecture as a base architecture and showed that the architecture
could be trained to correctly isolate accidental symbols using appropriate learning rate
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parameters. While the images generated by the original GAN architecture indicated
that our method could indeed isolate real accidental symbols while keeping their sizes
intact, the actual detection performance is not sufficient for an OMR system. Moreover,
the dataset used was not realistic as it only contained images with symbols to detect.
Once we added images without symbols to detect in training of our method, the GAN
training collapses and our method is not able to detect accidental symbols. Therefore,
we propose to improve the original GAN architecture using an additional reconstruction
training objective based on isolated music symbols that improved the detection quality
dramatically. Another additive improvement we have shown is the use of negative
examples both in the generator training and discriminator training that slightly improved
and stabilized the training process.

Finally, we show that our GAN architecture can be trained to isolate multiple classes
of accidentals at the same time by simply changing the isolated symbol data used for the
training of the discriminator, with no changes to the actual GAN architecture. Moreover,
the task of isolating multiple classes of accidentals actually improved significantly the
detection quality of the flat accidental class and stabilized the detection quality of the
natural class, showing that the information learned from one class of accidental symbol
is actually beneficial for the detection of other accidental symbol classes.

The question that remains in order for our Isolating-GAN to be complete is the
inability to evaluate the detection performance of our method, even for fine-tuning
the hyperparameters. In the case of a real usage scenario, no ground truth or test
set will be available to evaluate the detection performance of the model. With the
added observation of the relative instability of our method giving large variation of
detection performance for repeated training with the same hyperparameters, we need
an evaluation strategy that minimize the use of manual annotation while being able to
identify the best performing set of weights between multiple trained models and during
the training process of each model as well. In the next section, we show series of
experiments that present and validate the use of the evaluation strategy we propose to
use in section 4.5.3.

5.2.2 Isolating-GAN Evaluation Strategy

Since we have now presented the experiments validating the architecture and
training methodology of our Isolating-GAN method, we focus this section on our ability
to evaluate our method in spite of the lack of annotated data and instability of our model.
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Our end-goal task is the accurate detection of music symbol in real historical printed
music scores, we previously proposed to use a pretrained SSD model to evaluate our
Isolating-GAN method as explained in section 4.5.3.1. However, to be complete, our
method need to be usable in a scenario where no manually annotated ground truth is
available for the training data used.

Therefore, in section 5.2.2.1, we will see how we can use a very small evaluation
dataset together with an early stopping mechanism to select the best performing model
and therefore correctly tune the hyperparameters of our model. Afterwards, we then
also show the use of this early stopping mechanism applied to the multi-class version of
the Isolating-GAN in section 5.2.2.2.

5.2.2.1 Early Stopping Using Small Validation Set

Objectives Using a SSD model to produce detection results from images generated
by the GAN allows us to evaluate our Isolating-GAN method with the common mean
Average Precision metric for detection. However, we still have the problem of having no
ground truth information to compare our prediction with.

In the case of real usage of our method and given the relative instability of our training
method, the primary evaluation goal is to have the ability to correct and fine-tune the
hyperparameters of our Isolating-GAN, while the precise evaluation of the performance
of the method can be done at a later stage when sufficient ground truth has been
gathered using the results of our method. Therefore, we propose to use a very small
validation dataset which should be sufficient to discriminate the best trained GAN for a
set of different hyperparameters. Because of the instability of our method, we go even
further and use this small validation dataset to discriminate the best trained GAN out of
a pool of trained GAN with identical hyperparameters. In the same manner, because of
the instability of the GAN model during the training itself, we use this small validation
set to choose the best epoch to stop the training using an early stopping mechanism.

We illustrate this mechanism in fig. 5.8 by showing an example of using both a fully
annotated training dataset and a small validation dataset of 10 examples per class
to evaluate the mAP metric during a GAN training. First of all, we can see that the
training is very unstable which makes it critical to stop the GAN training at an epoch
that maximize the performance of the GAN (MaxFull in fig. 5.8) and not after a fix
number of epoch. In order to study our evaluation method, we compute the optimal GAN
performance MaxFull by using a fully annotated training dataset with detection ground
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truth. However, in a real use-case situation, no such ground truth will be available.
Therefore, we compare this optimal performance with a mAP estimated MaxSmall
using a small validation dataset. This estimation will then be used to decide when
the GAN training should be stopped using a simple early stopping mechanism with
a patience parameter. We also report the actual performance of the GAN computed
on the fully annotated training dataset at the epoch which maximized the mAP on the
small validation dataset called EarlyStop in fig. 5.8. This shows us the loss in precision
between using a fully annotated training dataset and a small validation dataset.
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Figure 5.8 – Example of mAP computed using fully annotated training dataset and a
small validation dataset with 10 examples per class during a typically unstable GAN
training. We also show how we report the real GAN performance when using the small
validation dataset by extracting the mAP on the fully annotated training dataset at the
epoch that gave the maximum mAP on the small validation dataset.

Unfortunately, we do not have a definitive answer on the size of this small validation
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set. We believe this size will be dependent of the training dataset used and the manual
annotation capacity of the user. However, we believe that a single user with a few
hours of manual annotations should be largely sufficient to produce this small validation
dataset.

Dataset The following experiment evaluates our Isolating-GAN using the dataset
previously presented in section 5.2.1.3 and using different sizes for the small validation
set. We show the evolution of the real and estimation of the detection performance using
a fully manually annotated training dataset and a small validation dataset of variable
size. We start with a validation size of 10 symbol examples per class, which gives us 40
ground truth examples equally distributed between three accidental classes and a reject
class.

Results Figure 5.9 reports the real mAP computed on the full training dataset at the
epoch that maximize the mAP on the small validation dataset. We show 10 trainings
using the same experimental parameters but with a different random seed for each
different target accidental class to detect. In this case, such a small validation dataset
does not give an enough accurate estimation of the performance of the GAN training.
We can also see a high discrepancy between the maximum mAP achieved by the fully
annotated training dataset and the mAP given by the epoch which maximized the mAP
on the small validation dataset.

The same experiment was done with a slightly larger validation dataset with 20
examples per class shown in fig. 5.10. Although we start to see some improvements on
the estimation using the small validation dataset, the chosen run for the Flat class and
Natural class is still not the best run possible.

Next, we propose to reuse our bootstrapping method as explained in section 2.2.1 to
artificially augment the small validation dataset. We show the results using a base of
10 examples per class fig. 5.11 and 20 examples per class fig. 5.12. As can be seen
in the results, using bootstrapping with 20 examples per class significantly improve
the reliability of the mAP estimation given by the small validation dataset. It especially
improves the early stopping mechanism of the GAN training by identifying an epoch that
maximize the real precision of the GAN on the fully annotated training dataset.

In this section, we show how we can use a small validation dataset of 20 examples
together with an augmentation technique such as bootstrapping to accurately evaluate
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Figure 5.9 – Estimation of the Isolating-GAN mAP using early stopping with a small
validation set of 10 examples per class. 10 examples per class is not sufficient to
correctly estimate the detection performance of the model. There is a large discrepancy
between the mAP computed between the whole ground truth (MaxFull) and the small
validation set of 10 examples (EarlyStop). The chosen run is also not the best trained
run.
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Figure 5.10 – Estimation of the Isolating-GAN mAP using early stopping with a small
validation set of 20 examples per class. Improved mAP estimation compared to a
validation set of 10 examples per class but the chosen run is still not the best trained
model available.
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Figure 5.11 – Estimation of the Isolating-GAN mAP using early stopping with a small
validation set of 10 examples per class augmented with bootstrapping. The mAP
estimation is already much better than fig. 5.9 but the chosen run is still not the best
available run for the flat and natural class.
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Figure 5.12 – Estimation of the Isolating-GAN mAP using early stopping with a small
validation set of 20 examples per class augmented with bootstrapping. In the context of
this dataset, 20 examples per class seems sufficient to correctly estimate the mAP of
trained model and choose the correct (almost) best trained model for all classes.
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our Isolating-GAN method without a fully annotated dataset. Using this method, we are
able to do an early stopping of the GAN training that maximize the real mAP of the GAN
while keeping the manual annotation effort at a minimum. Since we repeated every
training 10 times, tested on 3 different accidental classes and tried 4 different validation
dataset, this experiment took 120 trainings to complete.

5.2.2.2 Multi-class Isolating-GAN Early Stopping Results

Objectives We also show the use of our early stopping mechanism in a multi-class
settings. The objective in this experiment is to show that our early stopping mechanism
and the use of a small validation dataset of 20 examples per class can also be used to
correctly evaluate and fine-tune the multi-class version of our Isolating-GAN method.

Experimental Settings This experiment is identical to the previously presented multi-
class experiment in section 5.2.1.4. For the small validation set, we use the same
validation set of 20 examples per class with bootstrapping as presented in section 5.2.2.1.
One difference in the evaluation protocol from the single class experiment previously
presented in section 5.2.2.1 is that we only have to identify a single model for all three
class of accidentals instead of one model per class. Therefore, instead of maximizing
the Average Precision (AP) of each accidental class independently, we maximize the
overall mean Average Precision (mAP) which is the average of each accidental Average
Precision.

Results The results of the experiment as shown by fig. 5.13 demonstrate that our
evaluation protocol with a minimal validation set of 20 examples per class with boot-
strapping is able to accurately estimate the performance of our model for the Flat class
identifying the best performing training epoch and best performing model out of ten
trained models.

For the other Sharp and Natural class, the early-stopping mechanism is working
correctly since the maximum mAP given by the early-stopping mechanism is similar to
the maximum mAP given using the whole annotated dataset. However, the identification
of the best performing model is not as accurate as the Flat class. We believe this is
the effect of maximizing the mAP instead of maximizing the AP of each accidental
classes. This shows that the model that performs the best across the different classes
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of accidentals as shown by the results on the mAP does not necessarily present the
best results for each accidental classes.

For this multi-class experiment, we repeated each training 10 times and simultane-
ously on all classes of accidentals, reducing the number of trainings to 10.
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Figure 5.13 – Estimation of the Multi-class Isolating-GAN mAP using early stopping with
a small validation set of 20 examples per class with bootstrapping. Our early-stopping
strategy is able to distinguish one of the best performing model relative to the mAP,
however, the model presenting the best mAP results does not necessarily present the
best AP for each class of accidentals.

In the next section, we present our final set of experiments evaluating our method
using the best set of hyperparameters and comparing the results on two different
accidental detection datasets: our small accidental dataset where we controlled the
amount of images without symbols to detect and a large accidental dataset with the real
distribution of images with and without symbols to detect.
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5.3 Overall Isolating-GAN Evaluation

The experiments that we have presented until now have shown in section 5.2 the
development of the Isolating-GAN architecture and our evaluation strategy in regard
to the instability of the method. Because of the unsupervised and unstable nature of
our method, we believe it is important to present the process of designing such method
where the evaluation of each step guides the overall design of the method.

With all the experiments done previously, we can now identify a single set of hyper-
parameters (see section 5.3.1) which will hopefully produce a highly accurate accidental
symbol detector. Before we present the final results of our method, we start this experi-
ment by presenting an ablation study of the method in section 5.3.2 where we remove
the generative transformation capability of our method. This ablation study will allow
us to measure the impact of the second step of image-to-image translation, which
we propose as our main contribution. Subsequently, we compare in section 5.3.3 the
ablated results with the final and complete iteration of our method.

5.3.1 Experimental Settings

In this experiment, we gather the set of hyperparameters that provided us with the
most accurate accidental symbol detector. For this, we use the multi-class version of
the Isolating-GAN as shown in section 5.2.1.4 together with the same learning rates
and batch size settings. As before, we repeat the training of the Isolating-GAN 10 times
and compute the mAP detection metric to evaluate the detection performance of our
method. We use the same process for selecting the best performing training epoch
and the best performing model between the 10 run as before, using the small SSD and
our small validation dataset as presented in section 5.2.2.1. For additional insights, we
also propose to show in detail the precision and recall (in the context of detection as
explained by Everingham et al. [Everingham 10]) as it will allow a better understanding
of the amount of symbols correctly detected and the amount of false positives produced
by the detection model.

However, for this experiment, we propose two main changes in order to better evalu-
ate the method. First, in section 5.3.1.1, we propose to use another larger accidental
detection dataset to evaluate our method against a more challenging dataset. Indeed,
our previously used dataset has been manually modified to reduce the number of
images without symbols to detect. This limitation allowed us to simplify our task and
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progressively tune and stabilize our model training. However, in this final section, we
experiment on a new large accidental detection dataset with the real distribution of sym-
bols in images. Secondly, in section 5.3.1.2, we improve the pretrained isolated symbol
detector by using a larger and more accurate detector architecture and consequently
improve the general detection accuracy of the method.

5.3.1.1 Large Scale IMSLP Dataset

All previous experiments used a small accidental detection dataset [Choi 18a]
which was fully manually annotated. However, as mentioned in section 5.2.1.1, we
artificially modified the balance of images containing accidental symbols to detect and
empty images containing no symbol to detect. This modification was done to ease the
development of our method, since the amount of images without symbols impacted
heavily the stability of our method.

For this experiment, we remove this artificial modification by showing the application
of our method on a more challenging, 100 times larger, accidental detection dataset.
This dataset is constituted of 58 public domain scores gathered from the IMSLP library 1

and each score was chosen to maximize the amount of different music score publishers
from the late 18th century to the 20th century. Scores for piano, quartet and orchestra
were chosen because of their challenging characteristics such as the use of complex
music notation structure, high symbol density and image degradation artifacts caused
by the imprinting technique and time. However, all scores have a reasonably good
image resolution with a minimum of 20 pixels for the height of an interline (correspond to
approximately 300 DPI). The dataset amounts to 1,812 pages of music scores and after
the application of our first processing step of identifying RoIs presented in section 4.3,
we identified a total of 292,463 RoIs which is a 100 times more than our small accidental
detection dataset.

Given the sheer amount of data for this new dataset, it was impossible for a single
annotator to manually annotate the whole dataset. Instead, we propose to annotate
only a subset of the total dataset such as one page out of 21 of the most challenging
music scores. As a result, we have annotated 4,563 RoIs and 818 accidental symbols.
A comparative table between our small and large accidental dataset can be found in
table 5.3.

1. petrucci, IMSLP/Petrucci Music Library: Free Public Domain Sheet Music, July 19, 2017, URL:
http://imslp.org/ (visited on 07/19/2017).
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Table 5.3 – Small and large accidental detection dataset.

Dataset Small Large

Editors 1 43
Scores 5 58
Pages 70 1,812

Region of Interests 2,955 292,463
(limited amount of empty images) (real distribution)

Annotated Page/Region 70/2,955 21/4,563
Annotated Symbols 2,150 818

For the training of our Isolating-GAN method with this large scale dataset, we
also introduced some variations on the synthetic generation process of the isolated
symbol detection dataset. These modifications illustrate how our method can quickly
adapt to a new dataset with little effort. After noticing musical notes being confused
with flat symbol, we added isolated musical note symbol as reject examples in the
isolated symbol detection dataset in the same way we added negative examples in
section 5.2.1.3. Moreover, we noticed lots of detection confusion at the borders of image
patches, where the GAN model would either remove symbols with more than 75% of
their area inside the image or keep symbols with less than 75% of their area in the
image. To help the training of the GAN with images on the border, we also modified a
little our isolated detection dataset synthetic generation to include partial symbols at
the border of the image, where isolated symbols with less than 75% of their area inside
the image are treated as reject examples and symbols with more than 75% of their
area inside the image as positive examples. These modifications were added only to
our new large accidental dataset, while we kept the previously small accidental dataset
unchanged.

5.3.1.2 Improved Isolated Symbol Detector

The evaluation of our method rely on an isolated symbol detector pretrained using
our isolated symbol dataset. The overall detection result depends both on the quality
of the image produced by our Isolating-GAN generator and the detection quality of the
isolated symbol detector. Until now, we have used for our experiments a very small
Single Shot Detector (SSD) which is only able to take as input a small image patch of
128× 128 pixels and uses a small feature extractor network with 7 convolutional layers.
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The motivation for taking such a small and fast detector was to gain speed during the
training of our experiments because the detector needs to run on all annotated images
at every epoch of the training in order to apply our early-stopping strategy.

However, once our Isolating-GAN trained, we propose to evaluate the detection
performance of our method using a more accurate but slower isolated symbol detector.
For this, we propose to reuse the original SSD architecture able to take as input an
image of 300× 300 pixels and uses the original VGG-16 feature extractor network. This
new detector is pretrained using the same isolated symbol detection dataset as the
previous smaller detector. Note that this detector was not used for our early stopping
mechanism presented in section 5.2.2.1.

5.3.2 Ablation Study

Objectives Before presenting the detection results obtained using our Isolating-GAN
method, we propose to first evaluate our method without applying the second step
of image-to-image translation, see section 4.5, by removing the GAN model in our
processing pipeline. Therefore, in this ablation study, we first identify the RoIs using
the first step of our method, see section 4.3, then apply the pretrained isolated symbol
detector which is the third step detecting isolated symbols previously presented in
section 4.4. This process is illustrated in fig. 5.14. In this case, there is a discrepancy
between the images extracted from real music scores using the RoIs that can contain
background symbols, noises and degradation, and the clean images containing only
isolated symbols on a white background of the isolated symbol detection dataset used
to pretrain the isolated symbol detector.

Ablation Study Results We show the ablation study results on both the small and
large accidental detection dataset. Figure 5.15 shows the precision, recall and AP for
the three accidental classes Flat, Natural and Sharp as well as the mAP. We can see
that the recall measure is very good with an average of 96% for the small dataset and
88% for the large dataset. This result shows that the detector is able to correctly detect
accidental symbols when present in the image even when background information,
noises or degradations are present in the image.

On the other hand, the precision results are really low, with very unbalanced results
across the different accidental classes for the small dataset with only 22% of precision
for the flat class with an average precision of 65%. The large dataset has an even
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Step 1
Identifying Region of Interests

Step 3
Isolated Music Symbol Detection

Figure 5.14 – Ablation study processing pipeline. Only the first RoIs identification
step and third isolated symbol detection step is used while the second GAN generator
transformation step is left out. See fig. 4.1 for the original 3 steps processing pipeline.
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Figure 5.15 – Ablation study results on small and large accidental dataset. Recall is
high while precision is very low showing that the isolated symbol detector is able to
detect existing symbols but also incorrectly detect symbols in background.
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lower precision with an extremely low precision of 8% for the Flat class and an average
precision of 26%. These results show that the isolated symbol detector is not able to
correctly differentiate between background information and accidental symbol to detect.
Figure 5.16 shows the amount of correct detections versus the amount of incorrect
detections. For the small dataset, the isolated symbol detector produced 1,190 incorrect
detection, and for the large dataset 2,696 incorrect detections. Even with such small
amount of data, it will be very time-consuming to manually correct these predictions.
Therefore, we can not use the predictions from only the isolated symbol detector for our
OMR processing pipeline.
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Ablation Study True Positive/False Positive Results
on Small/Large Accidental Detection Dataset
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Figure 5.16 – True positive and false positive detection for ablation study on large and
small accidental dataset. The large amount of false positive means the detections can
not be used for OMR.

Even though the isolated symbol detector also produces a confidence score for
each detection prediction, it is hard to find the correct threshold to reject incorrect
detection when no ground truth is available. From this study, we can see that the AP
measure is only slightly affected by the very bad precision results because it also uses
the confidence score to balance the impact of each prediction and is therefore not a
very good metric to evaluate our task. Future work could be done to try and guess this
confidence score threshold using our small validation dataset presented in section 5.2.2.
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5.3.3 Quantitative Results

Small Dataset Results We now present the final results of our Isolating-GAN method.
In fig. 5.17, we show the AP, precision and recall of our Isolating-GAN method using the
small accidental detection dataset. We can see that we obtain significantly better and
consistent results with very compressed box plots and a maximum AP, precision and
recall all at or above 95%. However, we can still see a large variation in the precision of
the Flat class with 28% difference between the minimum and maximum precision. We
can see that our selection mechanism does not select the best run for every class of
symbols but, as noted before in section 5.2.2.2, this behavior stems from the fact that we
optimize our model selection using the mAP, which is the average of the different symbol
class AP. On the other hand, this non-optimal selection is done on very stable runs with
very similar results and our selection mechanism is able to select a run producing an
acceptable precision for the Flat class showing unstable results. The final chosen model
shows an mAP of 94.8%, precision of 95.2% and a recall of 95.3%. We believe these
detection results are more than sufficient for the task of detecting music symbols in an
OMR pipeline. Although this experiment is not exactly comparable with our previous
fully supervised music symbol detection experiment shown in section 2.2.5, we actually
obtain results comparable with fully supervised methods, only 4% of mAP behind the
best performing R-FCN fully supervised model.

Large Dataset Results For the large accidental detection dataset, the results shown
in fig. 5.18 are generally slightly lower with a maximum mAP at 88%. The box plots are
generally larger, especially for the Flat class still showing very unstable results across
the 10 runs. However, this instability is countered using our early-stopping and model
selection mechanism, which is able to select the run that produces the best combination
of precision and recall. The chosen run shows a mAP of 82.5%, a precision of 91.4%
and a recall 83.2%. We believe the general lower results from the large accidental
dataset compared to the small dataset is because of the much lower frequency of
symbols to detect in the dataset as shown in table 5.3.

The table 5.4 shows the complete results for our small and large accidental dataset.

Comparison Ablation Results In fig. 5.19 and fig. 5.20, we compare the results
between our Isolating-GAN method and the ablation experiments. We can see that, by
using our Isolating-GAN, we keep a similar high AP and recall while greatly improving
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Figure 5.17 – Final results of our unsupervised multi-class Isolating-GAN on our small
accidental detection dataset. Our method shows very good AP, precision and recall
results with a median over 90%. Only the stability of the precision for the Flat class is a
little bit weaker with a difference between the minimum and maximum precision of 28%.
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Figure 5.18 – Final results of our unsupervised multi-class Isolating-GAN on our large
accidental detection dataset. Even on this challenging dataset, our Isolating-GAN
maintains a good maximum mAP of 88%. However, the results are much more unstable.
However, this instability is mitigated with our early-stopping and selection mechanism
which is actually able to select the model that produces the best precision across the
three classes.
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Table 5.4 – Detailed final results for the small and large accidental detection dataset. We
show the AP, Precision and Recall results for each accidental classes on 10 repeated
identical trainings. Green trainings gave the best theoretical mAP results while yellow
trainings were chosen using our small validation set. Bold results highlight the best
results out of the 10 trainings (over a row).

Dataset Label Metric #0 #1 #2 #3 #4 #5 #6 #7 #8 #9
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Large Flat AP 30.9 73.7 86.0 44.5 55.6 75.7 51.7 71.7 82.2 76.2
Precision 21.5 88.0 50.2 22.1 21.5 55.5 24.8 62.2 83.0 63.5
Recall 76.9 74.8 90.5 79.6 94.6 89.8 80.3 76.2 83.0 81.6

Natural AP 81.5 91.1 88.0 88.9 91.6 89.2 87.3 87.6 89.5 85.9
Precision 68.5 93.8 82.9 83.5 57.3 80.4 83.4 89.5 91.0 88.4
Recall 84.4 91.9 89.6 90.5 93.1 90.8 88.5 88.8 90.8 87.9

Sharp AP 80.9 82.7 90.3 90.1 93.6 92.1 83.1 80.0 92.6 86.9
Precision 83.9 92.3 85.3 86.5 85.2 89.8 88.2 77.7 91.9 83.7
Recall 82.0 83.0 91.1 90.5 94.1 92.8 83.6 81.0 93.1 87.5

All mAP 64.4 82.5 88.1 74.5 80.3 85.7 74.1 79.8 88.1 83.0
Precision 57.9 91.4 72.8 64.0 54.6 75.2 65.5 76.5 88.6 78.5
Recall 81.1 83.2 90.4 86.9 93.9 91.1 84.1 82.0 89.0 85.7

Small Flat AP 93.9 91.0 92.6 94.2 95.0 92.9 94.2 93.4 94.6 91.9
Precision 95.3 83.6 86.6 92.4 97.1 69.8 94.0 83.8 96.0 91.2
Recall 93.9 95.0 94.3 95.0 95.0 96.8 94.3 96.1 94.6 92.1

Natural AP 94.4 93.9 94.5 96.2 92.9 95.6 95.9 93.6 95.0 94.7
Precision 96.6 95.6 94.9 95.9 95.3 94.5 94.2 93.7 96.4 96.7
Recall 95.2 95.1 95.0 96.5 94.3 96.3 96.7 94.9 95.6 95.6

Sharp AP 97.7 97.3 97.0 97.3 97.9 96.6 97.6 97.3 97.9 97.8
Precision 97.9 97.0 98.2 97.6 98.5 97.0 98.1 98.1 98.1 97.6
Recall 97.7 97.7 97.2 97.5 97.9 97.6 97.6 97.3 97.9 98.1

All mAP 95.3 94.1 94.7 95.9 95.3 95.0 95.9 94.8 95.8 94.8
Precision 96.6 92.1 93.2 95.3 97.0 87.1 95.4 91.9 96.8 95.2
Recall 95.6 95.9 95.5 96.3 95.8 96.9 96.2 96.1 96.1 95.3
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the precision. This translates to a great reduction of the number of false-positives from
10 times for the small accidental detection dataset and 20 times for the large accidental
detection dataset.
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Figure 5.19 – Comparison between our Isolating-GAN model selected using our small
validation set and ablation experiment results on our small accidental detection dataset.
By using our Isolating-GAN, we improve significantly the precision while keeping a
similar AP and a slightly worse Recall. This can be seen concretely by reducing the
amount of False Positive from 1,190 to 79.

5.3.4 Qualitative Results

Well Localized Symbols In the following figs. 5.21 to 5.25, we look in details the
results for the large accidental detection dataset. In fig. 5.21, we show examples of true
positive detection for the three accidental classes and also examples of multi-symbol
detections. We can see that the generator of our Isolating-GAN is able to very cleanly
separate the information between background and the symbol we want to isolate. This
mechanism works even for under-segmented symbols as well as for broken symbols. In
some cases, for the natural class in particular, we observed some generation defects
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Figure 5.20 – Comparison between our Isolating-GAN model selected using our small
validation set and ablation experiment results on our large accidental detection dataset.
By using our Isolating-GAN, we improve significantly the precision while keeping a
similar AP and Recall. This can be seen concretely by reducing the amount of False
Positive from 2,696 to 57.
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where straight lines very close to a natural symbol will be kept and lower the precision
of the isolated symbol detector. From the multi-symbol detections examples, we can
see that our method can actually correctly detect tightly packed symbols with high level
of accuracy. The isolated symbol detector is very accurately detecting isolated symbols,
even damaged symbols, but can be easily troubled by additional background noises.
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Figure 5.21 – Example of true positive detections. Green boxes are ground truth, blue
boxes are detections. We can see that our Isolating-GAN method is able to detect
heavily damaged and broken symbols, symbols touching other symbols and multiple
symbols at the same time.

Symbols On The Edges One thing we have noticed is that symbols on the edge
of the image patch have a significant impact on our metric as shown by table 5.5.
Figure 5.22 shows that almost half of the remaining false positives are in fact caused
by symbols on the edge of the image, for which the ground truth box were removed
because not enough of the symbol area was inside the image patch (less than 75% of
their area inside the image). However, the GAN generator managed to keep part of the
symbol on the edge and the detector produced a detection box for those symbols parts,
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leading to false positive detections. While these detections are considered as false
positive by our metric, we believe these detections are less problematic than the other
false positive detections, because they actually detected a part of a real symbol and
those detections could later be corrected by merging with detections on other windows
at the page level of the score.

Table 5.5 – Large dataset results of the chosen model using our small validation dataset.
We show the detailed results of symbols completely inside the image versus symbols at
the edge of the image. Ground truth boxes of symbols at the edge are either kept or
discarded if their areas are least 75% inside the image. We can see that almost half of
False Positive (FP) are caused by symbol on the edge and one third of missed symbols
are also symbol on the edge of the image.

Symbol Ground truth TP FP Missed

inside the image Kept 515 29 67
on edge of the image Kept 167 5 25
on edge of the image Removed X 23 X

Total 682 57 92

A third of the symbol not found by our detector are also symbols on the edge of the
image, which were kept because 75% of their area were inside the image. The ground
truth boxes for these symbols were then clipped to the side of the image. For most of
these clipped symbols, the generator was not able to correctly isolate the symbol and
consequently the detector was not able to detect the symbol.

Missed Symbols Finally, we show some examples of the remaining detection errors.
The majority of our errors are missed symbols as shown in fig. 5.23 which are often
caused by the GAN generator completely removing the symbol from the image. These
symbols often presents heavy degradations or uncommon shapes. We believe these
kinds of symbols could later be added to the isolated symbol set to further improve the
recall of our method.

Badly Localized Symbols We have a few cases of bad localization as shown in
fig. 5.24, often caused by high density situation where some shapes or combination of
shapes can confuse the GAN generator leading to a badly generated symbols. Moreover,
since our IoU threshold for classifying a detection as a true positive is very high (75%),
the predictions of some symbols with a ground truth slightly less adjusted can be
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(c) Clipped GT with FP (5)

Figure 5.22 – Examples of detection errors caused by symbols on the edge of the
image. Green boxes are Ground Truth (GT), blue boxes are true positive detection, red
boxes are False Positive (FP) detections. Symbols on the edge of the image can cause
problems with almost half of FP detections caused by symbols on the edge of the image.
27% of missed symbols are also symbols clipped on the edge of the image.
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Original Image Generated Image

(b) Natural
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(c) Sharp
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(d) Multi-Symbols

Figure 5.23 – Symbols missed excluding symbols on the edge of the image. Green
boxes are ground truth. The largest set of detections errors are missed symbols with 67
symbols often caused by heavily damaged symbols or symbols with uncommon shapes.
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classified as false positive, even though the quality of these detections is sufficient for
later OMR tasks. Heavily damaged symbols where only half of the symbol is present in
the original image is also source of confusion, because the ground truth box only frame
the remaining parts of the symbol, while the detector tries to frame the original symbol
shape.
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Figure 5.24 – Bad localization errors excluding symbols on the edge of the image.
Green boxes are ground truth, blue boxes are true positive and red boxes are false
positive. Bad localization with insufficient IoU with 19 symbols are often caused by the
background not correctly removed.

Hallucinations Finally, we have some rare cases of hallucination by the GAN gener-
ator as shown in fig. 5.25, trying to produce a symbol out of background symbols or
shapes. These hallucinations are a side effect of our method training objectives, where
we only use the shape of isolated symbols with no additional context to isolate symbols
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in real images. These hallucinations could later be mitigated by adding negative exam-
ples shapes in the isolated symbol detection dataset generation process. Moreover,
later music notation reconstruction step using our grammatical method would be used
to rule out these out-of-place detections.
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Figure 5.25 – Hallucinations and class confusions. Red boxes are false positive. There
are still some rare case of hallucination by the GAN generator where the generator is
trying to synthesize a symbol from the background.

Overall, we have presented in details the qualitative results on the large accidental
dataset. We have shown the high quality of the true positive detection obtaining an IoU
score of over 75%. We have shown for false positive detection and missed symbols,
the significant influence of symbols on edge, representing 28% of all the detection or
missed detection counted as errors by our metric. Knowing that we only annotated 20
pages out of the 1,812 pages constituting the dataset, we used our best trained Isolating-
GAN detector to detect symbols on most of the remaining dataset of 1,774 pages and
detected 38,908 symbols. Out of these 38,908 symbols, we therefore estimate that
approximately 3,000 symbols (7.7% of all detections) are false positives, of which 1,500
symbols (50% of the false positives) are symbols on the edges which would be corrected
by the music grammar at the page level. We also estimate that we missed around 4,624
symbols (11% of the true positive + missed symbols), of which 1,256 symbols (27% of
the missed symbols) would be on the edge and could be later found at the page level. In
order to detect the remaining 3,400 missed symbols, another fully supervised detector
could be trained using the found symbols by our Isolating-GAN while not being affected
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by missed symbols and be able to better detect accidental symbols.

5.4 Conclusion

In this chapter, we have shown an extensive set of experiment demonstrating how
our method was developed and evaluated.

In section 5.2, we have shown the successive experiments that helped us design
our method. Starting from a very simple experimental setting with a single class of
symbol to detect in a small filtered dataset, we have shown how the use of an additional
training objective and the use of additional negative examples improves the training of
our Isolating-GAN. Moreover, because of the flexibility of our method, we propose a
multi-class version of our method, simply by changing the isolated symbol detection
dataset with no change to the model itself.

Because of the unsupervised nature of our method and the inherent instability of our
training, it is essential to be able to use our method in a situation with no ground truth
at hand for evaluation. As a solution, we propose to use a small validation dataset to
evaluate our method during training and enabling an early stopping mechanism. This
small validation dataset can also be used after the training of multiple models, to choose
the best performing model.

Finally, in section 5.3, we compare the use of our method on two different accidental
detection datasets, one small dataset used throughout the chapter and a larger detection
dataset, reflecting a more realistic use case of our method with a much harder detection
task because of the lower frequency of symbols to detect. We compare those results
with an ablated experiment where no GAN generator is used to isolate symbols prior
the detection step. The comparison shows that the use of our Isolating-GAN generator
is having a huge impact in the reduction of the number of false positive, improving the
precision of our method significantly. Overall, we show detection performance of 94.8%
mAP on the small detection dataset, which is very close to the performance of fully
supervised detector presented in chapter 2. Our method produces a still acceptable
detection performance of 82.5% mAP on the significantly harder large detection dataset.
In order to complete this whole set of experiments, a total of 102 different hyperparameter
combinations were explored for which 810 trainings had to be done and took around 2.5
months of pure training time.

After a detailed analysis of the results, we believe we have shown the robustness
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and accuracy of our method while identifying the remaining challenges of our method
which we discuss in the next chapter of this manuscript.
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CHAPTER 6

ISOLATING-GAN USAGE AND FUTURE

WORKS

6.1 Introduction

We have now presented the entirety of the work accomplished during this thesis.
Starting from the study of fully supervised music symbol detectors in chapter 2, we
introduced a new unsupervised music symbol detection method that we called Isolating-
GAN in chapter 4 combining a generative model and a detector model.

In chapter 5, we presented the whole set of experiments that guided our method
design together with an extensive evaluation of our method relative to important hyper-
parameters and symbol detection datasets of varying difficulty. In these experiments, we
demonstrated the high precision of the detections produced by our method and showed
that our method can approach very closely the detection quality of fully supervised
detectors without using any manually annotated ground truth.

Nonetheless, much work is still needed to improve the quality of our method, which
we discuss in the next section

6.2 Improving Isolating-GAN

Improving Training Objectives While our multi-loss objectives for the Isolating-GAN
training combining the classical GAN losses and our image reconstruction loss is
able to train our GAN model, the implementation could be simplified by combining
the adversarial loss and the reconstruction loss into a single loss using a single loss
balancing factor. This would reduce the amount of hyperparameters to tune, reduce
training time and simplify the implementation and hyperparameters tuning of our model.
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Training Instability The most problematic aspect of our method is the instability of
the training, producing models with large variation in the generation quality while being
trained with the exact same hyperparameters. In this work, we mitigate this undesirable
aspect by training multiple models with the same hyperparameters and choosing the
best performing model using a small validation dataset. However, this strategy is very
wasteful in computation effort, multiplying the training time by the number of duplicated
model.

The search for stability of GAN models was already discussed by the literature
and presented in section 1.6.4. GAN architectures like the Wasserstein GAN, aims
to stabilize the training using an improved training objective and some architectural
changes guarantying non-zero gradients and therefore avoiding gradient vanishing
effects. Another approach to improve stability is discussed by Karras et al. [Karras 18]
where the GAN architecture is trained layer by layer while also using statistics of the
minibatch training data to guaranty that the generated data has the same variation as
the real data to mimic. However, it is not clear if the increase in stability of our method
will correlate with improved detection results. The fact is that the actual training objective
of the GAN, which is to transform images extracted from real historical printed music
scores into images containing only isolated symbols on a white background, is not the
same as our symbol isolating task we want the GAN generator to accomplish. The
differences in symbols size and shape between the real historical printed scores and
the isolated symbol dataset leads to irreconcilable differences, and it is yet to be proved
that an actual stable training can be done using an adversarial learning strategy.

Given the unknowns of using yet another GAN architecture, we kept in this work
the use of a classical GAN architecture and propose to explore the use of newer and
possibly stabler GAN model in future works.

Another path to improve the stability of our training method would be to better
regroup our training data and presenting a more uniform corpus of real data during
the GAN training. This uniformity would simplify the image-to-image translation task of
the generator and therefore improve the generation quality and detection quality of our
method. However, this approach have the main drawback of increasing the computation
cost of our method because of the retraining of the GAN for each new corpus of music
scores.
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Larger Symbol Class Set During this work, we exclusively worked on a reduced
accidental class set with three accidental symbol class: Flat, Natural and Sharp. Now
that we have shown that our method can produce highly precise detection on a relatively
small class set of symbols, we believe that our method can be adapted to a much larger
class set of symbols, including note heads, flags, attack signs, rests, clefs. . . To adapt
to new symbol classes, the first step of our method explained in section 4.3 will have
to be adapted but thanks to the flexibility of the grammatical description of the musical
notations, these changes will be simple and straightforward.

We also believe that our method could be use for symbol recognition in handwritten
music scores. However, the variability of each writer would have to be taken into account,
maybe by using isolated symbol examples of the same writers. Moreover, we believe
that any kind of structured documents with segmentation problems such as electrical
circuit design documents could be the target of our method.

Larger Image Size For now, we only have tested our method with a relatively small
image patches of 128× 128 pixels. We started with a small image because of the known
difficulty to train a generative model with large images. However, the literature has now
shown that GAN model can scale to larger images and produce high resolution images.

Future work could be done to improve this aspect of our method coincidentally
reducing the effect of symbols on the edge of images, which we found was a significant
cause for detection errors. Larger images also mean that fewer images can be used to
evaluate a whole page of document, reducing the total time needed to process music
score page.

Another approach to expand the use of our method to a window larger than 128×128
pixels would be to process the entire page of a music score with the trained generator
using a sliding window method before doing the detection stage. This in turn would
resolve the problem of symbols on the edge for the generator, although we would still
have to find a strategy to apply the detector on the entire page of music score. From
preliminary testing, we found out that the generator does generalize well to unseen
background shapes during training and manage to remove most of the music score
background while keeping the relevant symbols to detect. In our specific study of
accidental symbols, we found out that after some preliminary testing that while we
trained our generator on examples of accidentals always attached to a note head, the
generator was able to correctly filter and isolate accidentals used in the key signature.
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However, by using a sliding window method with a stride smaller than the window itself
and adding the intensity of resulting images, we intensified all responses of the generator,
the correct isolating behavior of the generator as well as the incorrect hallucination
behavior of the generator.

6.3 Autonomous Symbol Detection System

Taking a step back, we believe our work is a first step toward designing an entirely
autonomous symbol detection system, where no or very few ground truth examples
are needed to apply our detection framework to a new type of documents. By only
using isolated symbols for the training of the detection model, we are able to bootstrap
the use of data hungry Deep Learning model while maintaining sufficiently accurate
symbol detection results. Even if the detection results are not accurate enough, we
hypothesize that the information gathered using our Isolating-GAN method could be
used in a second stage training using a fully supervised Deep Learning detector of high
precision such as a Faster R-CNN.

Finally, we could entirely automatize the full recognition of a new corpus of music
scores using a syntactical method as the DMOS method, where the parsing of the
music notation could be done in multiple stages, with each stages concentrating on a
few symbol classes and using previously detected symbols. Each stages would produce
relevant RoIs to be used by our Isolating-GAN method together with a few isolated
symbol examples.
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CONCLUSION

We believe the recognition of historical printed music scores is essential to ease the
use and study of such scores by musicians and musicologist. However, the difficulty of
the detection of music symbols and reconstruction of the music notation caused by the
high density of music symbols, the complexity of the music notation and degradations
due to printing methods and age of the document has prevented the use of traditional
OMR method. With the introduction of new Deep Learning-based computer vision
model, we show in this work how such Deep Learning models can be beneficial for the
early graphical recognition OMR step that is music symbol detection.

During this work, we studied the detection of music symbols in the context of Optical
Music Recognition of historical printed music scores. In chapter 1, we gave an overview
of what is a music score, followed by a presentation of the different steps that constitute
an OMR system. We especially focused on thoroughly presenting the task of music
symbol detection since this is the main task we are interested in this work. We then
propose to explore the various Deep Learning model that will help us achieve our music
symbol detection task, presenting both fully supervised detection models such as the
Faster R-CNN as well as generative models that can be used in for training unsupervised
tasks.

Chapter 2 presents the beginning of our work where we present the use of state-of-
the-art Deep Learning detection model as well as a custom original detection model for a
small and focused accidental detection task. For this task, we show that state-of-the-art
detectors can produce very good detection results such as 98.73% of mAP with an IoU
threshold of 75%. Therefore, we broaden the scope of the detection task on applying
state-of-the-art detectors on a much more complicated and difficult handwritten music
score dataset: MUSCIMA++. Even on such a broad and complicated dataset, we also
show that the detection results can be very good at 80% of mAP. However, one of the
main remaining difficulties in a general music symbol detection task is to account for the
imbalance in the frequency of symbol classes to detect.

While we have shown that Deep Learning-based detectors can produce highly
accurate detection of music symbols, we discussed in chapter 3 the impact of manual
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annotations in the process of training such Deep Learning methods. Indeed, the
production of such manual annotations are very costly and slow to produce. In the
document recognition community, this bootstrapping problematic of producing ground
truth has often been solved by generating synthetic data, often involving complex
generation procedures. For music scores, one could use music typesetting software
to produce almost an infinite amount of varying music scores. However, there is no
guaranty that trained music symbol detection model on synthetic scores would be able
to perform as well on real historical printed music scores since a lot of variation that we
can see in historical music scores due to the engraving techniques and age of the score
are not taken into account by typesetting software. Therefore, we propose a hybrid
method of using a small amount of synthetic data generated using only isolated music
symbols on a white background and a generative method able to transform real images
of historical music scores into a simpler graphical representation.

In order to avoid as much as possible the use of costly manual annotations, we
proposed in chapter 4 our new Isolating-GAN method for unsupervised music symbol
detection. Our new method consists of three iterative steps that gradually simplify the
tasks without ever needing manually annotated ground truth for symbol detection:

1. Step 1: Identify Region of Interests

2. Step 2: Isolate music symbols using Isolating-GAN

3. Step 3: Detect isolated music symbols

At the heart of the method, we use isolated music symbols to create a simplified
domain of representation where isolated symbols are printed in a blank image at varying
position and size. This simplified representation allows us to pretrain a fully supervised
detector on this trivial detection task and transform real image of historical scores into
generated images containing only symbols to detect in an empty background. Then,
we also discussed how we can use and evaluate our method in a real use setting. The
goal of our method is to be used in a situation where no annotated data is available
to evaluate our model. Therefore, we design an evaluation method using only a few
manually annotated examples and augmented using a simple bootstrapping technique.

In chapter 5, we demonstrated the effectiveness and robustness of our new method
by presenting an extensive set of experiments evaluating the development of our method
and the accuracy of the method on two music symbol detection datasets of varying
difficulty. The first small accidental dataset, we limited the difficulty of the task by
artificially removing and later limiting images without symbols to detect. While the
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training of our method is done entirely without manually annotated data, the manually
produced ground truth of this small dataset allowed us to develop, evaluate and tune
our method architecture, as well as design an effective way to tune our method with
almost no ground truth. For the second larger accidental dataset, we constituted a
100 times larger dataset and annotated 20 pages of the dataset for evaluation. This
dataset constitutes a much more challenging detection task, since the dataset is larger,
more heterogeneous and we did not restrict the amount of images with no symbols to
detect. In order to synthesize our simplified representation of isolated symbols in a blank
canvas, we use a small isolated symbol dataset of 541 symbols manually annotated
with class label information. With our approach, we obtained a mAP of 94.8% on the
small simplified dataset and a mAP of 82.5% on the large difficult dataset for a detection
task with three accidental classes. We also demonstrated that using the Isolating-GAN
to filter and isolate symbols before the detection operation reduces the number of false
positives from 2,696 to 57 on the large dataset. We bootstrapped the annotations of our
large difficult dataset by applying our method on 1,774 pages of historical music scores
and detecting automatically 3,8908 new accidentals. In order to complete this whole set
of experiments, a total of 102 different hyperparameter combinations were explored for
which 810 trainings had to be done and took around 2.5 months of pure training time.

Finally, in chapter 6, we discussed various improvements of our method that could be
made in the future. Indeed, much work is still needed to improve the training efficiency
and stability of our method. We believe that new GAN models from the literature such
as the Wasserstein GAN could help stabilizing our training methodology. We also plan
to expand our method to a larger class set, larger image sizes but also to other kind of
structured documents such as handwritten music scores or even electrical circuit design
documents in order to reduce the computational cost and generalize the application of
our method.

From our very focused study of the task of detecting music symbols, we believe that
this work is only the first step towards for the exploration of unsupervised detection
methods. Moreover, many fields of application, especially niche types of documents with
less manual annotations efforts, can benefit from the use of our unsupervised detection
method. Finally, entirely autonomous systems could be designed using our method that
can adapt the model to detect entirely new class of symbols using no ground truth and
only isolated symbols. This system could be bootstrapped in successive recognition
stages by a syntactical method such as DMOS which would be able to construct layer
by layer the syntactical structure of the document.
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APPENDIX A

EXPERIMENTS

A.1 Isolating-GAN Robustness Evaluation

We now measure the impact of some of the most important hyper-parameters of
our method. First, we measure the impact on the amount of images in the real dataset
that does not contain any symbol we want to detect. Then, we also show the impact of
the isolated symbols sizes generated using the minimum and maximum size bounds
hyper-parameters.

A.1.1 Impact of Symbol Frequency in Real Dataset

The stability of our GAN model depends not only on the architecture but also on the
data used for training the model. In this section, we study the impact of the amount of
rejection images in the real dataset used as input to the generator on the stability of the
GAN model.

Objectives What we call rejection images are empty images produced by our first
preprocessing step of simplifying the music notation of real music scores explained in
section 4.2.1 by identifying RoIs that has a high probability of containing the type of
symbols we want to detect. This step will obviously always have false-positive examples
with images that do not contain any symbols to detect. Since there are no way to know
in advance of the ratio between the amount of rejection images and images that do
contains symbols to detect, we investigate different ratios where we artificially modified
the amount images that do contain symbols to detect and rejection images. This
experiment is based on the experimental settings of the Isolating-GAN-ReconsLr+Neg
experiment in section 5.2.1.3 and only modify the composition of the real dataset used
as input to the generator.
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Datasets We artificially modify the ratio between images that contains a symbol to
detect and rejection images. We explore five different ratio values of 1%, 5%, 10%, 50%
and 90% of images with symbols to detect while keeping in mind that after manually
annotating a lot of music score pages, we believe that around 10% of images of a real
dataset contains symbols to be detected. Images with accidental symbols that we do not
want to detect were also removed, since we noticed that the GAN model can sometimes
confuse symbols with different accidental classes as the same class. This simplification
is done in order to isolate the sole effect of rejection images on the training of the GAN
model.

Evaluation In order to evaluate our method with different rejection ratios, we use our
early stopping mechanism as presented in section 5.2.2.1 where we use both a small
validation dataset of 20 examples per symbol classes with bootstrapping and the fully
annotated training dataset for evaluation. We report results using a mAP metric with IoU
> 0.75 computed on the fully annotated training dataset but at epoch that maximized
the results on the small validation dataset. The training is repeated using the same
rejection ratio 10 times with a different random seed and present the median, first and
third quartile mAP results. We also show the mAP computed on the full training dataset
of the model that had the best results on the small validation dataset.

Isolating-GAN-RejectRatio Results Figure A.1 shows the results of using different
rejection ratio where we observe different behavior for the three different accidental
classes. The model produces the most stable results for the sharp and natural classes
when at least 5% of all images contains symbols to be detected. For the Flat class, the
model needs at least 25% of all images to contain symbols for the training to be stable.

However, this instability can be overcome using our early-stopping mechanism with
our small validation set by selecting the best performing model out of a pool of 10 trained
model. Using this selection mechanism, we can maintain a good detection performance
of ∼91% of mAP for the Flat class for ratios of 5% and 10%.

In our experimental settings and with the dataset used here, we show that the
detection performance degrades significantly when only 1% of the images contain
symbols to detect. We believe this is due to the discrepancy in its training objective
where the synthetic isolated dataset has systematically an isolated symbol inside the
blank image while the real images seen by the generator has very few images with
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symbols to isolate. This experiment shows that with our experimental settings and our
specific set of datasets, our method is able to cope with this discrepancy when at least
5% of images contains symbols to detect which should be enough considering that we
estimate that around 10% of images of a real dataset will contain symbols to detect. For
this experiment, we repeated each training 10 times, on 3 different accidental classes
and explored 5 different ratio values and resulted in a total of 150 trainings to do.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Ratio of Symbols to Detect

m
A

P
[Io

U
>

0.
75

]

Impact of Rejection on Accidental Detection using Isolating-GAN
Using Small Validation Dataset for Early Stopping

Labels Stats
Flat Median
Natural 1st/3rd Quartiles
Sharp Best trained model chosen using Early Stopping

Figure A.1 – Study of the impact of rejection on the detection of accidental symbols
using Isolating-GAN. We show detection results using 1%, 5%, 10%, 25%, 50% and
90% of symbol to detect out of the total amount of real data, see section A.1.1. Each
experiments are repeated 10 times and we report the median, first and third quartiles of
the real mAP at the best epoch found using our early stopping mechanism. We also
show the mAP of the model chosen by our early stopping mechanism which gave the
best results on the small validation dataset.

A.1.2 Sensibility to Generation Sizes of Isolated Symbols

Objectives One of the standing stone of our method is the use of isolated symbols to
drive both the image translation done by the GAN model and symbol detection done
by the SSD detector. However, isolated symbols can not be used as provided since
they have to be similar to the symbols we want to detect in real historical music scores.
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We also use these isolated symbols in conjunction with simple data augmentation
techniques which are commonly used in deep learning experiments to introduce more
variation to the data and normally improve the performance of the trained model. One
basic modification to be made is the size that a symbol will have since isolated symbols
and real symbols won’t probably be of the same resolution. Since no ground truth exists
for the real music symbols we want to detect, we can only guess the ranges of sizes for
each class of symbols. Fortunately, music symbols follows strict typesetting rules, and
we can often guess the possible range of sizes that a symbol class will have. On the
other hand, a lot of variation in sizes can be present by using different music typefaces
which will have different sizes and width/height ratio for the same symbol class. During
the various experiments made while investigating the use of a GAN model for symbol
detection, we noticed that the GAN model can be very sensitive to the variation in sizes
that isolated symbols can take. Therefore, we propose to evaluate in this section the
robustness of our Isolating-GAN in regard to isolated symbol sizes.

As usual, we base our experiment on the Isolating-GAN-ReconsLr+Neg shown in
section 5.2.1.3 and reuse the same model and datasets except for one modification for
the isolated symbol dataset.

Datasets We use the same dataset setup as our baseline experiment Isolating-GAN-
ReconsLr+Neg except for one modification to the minimum and maximum possible
width and height of isolated symbols. We show in table A.1 the detailed minimum
and maximum width/heights values per class for the baseline and this new experiment.
For each class, we reduce the minimum width/height and augment the maximum
width/height that accidental symbols can take.

Table A.1 – Minimum and maximum width/height settings of isolated symbols for the
Isolating-GAN-ReconsLr+Neg and Isolating-GAN-Sizes experiments. The values are in
pixels and symbols are pasted in canvas of 128×128 pixels.

Experiment
Flat Natural Sharp

height width height width height width

min max min max min max min max min max min max

Isolating-GAN-ReconsLr+Neg (low) 79 112 25 37 98 128 16 36 72 112 27 45
Isolating-GAN-Sizes (high) 64 128 16 56 64 128 8 48 64 128 16 64
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Evaluation As usual, we evaluate our method with our early stopping mechanism
presented in section 5.2.2.1 by computing the mAP metric with IoU > 0.75 computed
on the fully annotated training dataset at the epoch that maximized the results on the
small validation dataset. We repeat the training 10 times with different random seeds
and present box plots of the 10 runs.

Isolating-GAN-Sizes Experimental Results We show the results of this experiment
in fig. A.2 where we can see that using a high variation in symbols sizes results in
slightly worse results. For example, we can see that for the Flat class, the variation in
the first and third quartile is reduced by half by using a lower variation of symbol sizes.
For the Natural and Sharp class, the stability of the results are significantly better by
using a lower variation of symbol sizes.

On the other hands, the maximum mAP obtain by one of the ten trained models
is similar in either high or low variation of symbol sizes experimental settings. This
shows that our Isolating-GAN method can still achieve find the best available detection
performance even with badly adjusted size parameters.

For this experiment, we repeated each training 10 times, on 3 accidental classes
and two set of size parameters for isolated symbols, totaling to 60 trainings.
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Figure A.2 – Study of the impact of isolated symbols sizes. We show detection results
using a larger range of possible sizes for isolated symbols. Each experiments are
repeated 10 times and we report the real mAP at the best epoch found using our early
stopping mechanism.
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Titre : Combinaison de modèles génératifs non supervisés et d’une méthode syntaxique pour
la détection de symboles musicaux avec peu de données annotées

Mot clés : reconnaissance optique de partitions musicales, Deep Learning, détection de sym-

boles, réseau antagoniste génératif, apprentissage non supervisé, reconnaissance de docu-

ments historiques

Résumé : Dans ces travaux, nous étudions la détec-
tion de symboles musicaux dans des partitions his-
toriques imprimées, complexes, denses et bruitées
en utilisant des modèles de détection de Deep Lear-
ning. Nous proposons une étude comparative de plu-
sieurs modèles de détection de l’état de l’art appli-
qués aux symboles musicaux ainsi qu’une nouvelle
architecture basée sur le Spatial Transformer pour
une tâche de détection spécifique et contrainte. Bien
que cette nouvelle architecture nous a permis d’ex-
plorer une approche originale à la détection, nous ob-
tenons 94,81 % de mAP alors que la meilleure mé-
thode de l’état de l’art obtient un mAP de 98,73 %.
L’utilisation de modèles de Deep Learning nécessi-
tant une grande quantité de données annotées, nous
proposons l’Isolating-GAN, une nouvelle méthode de
détection de symboles musicaux non supervisée et

basée sur un réseau antagoniste génératif (GAN). En
utilisant uniquement des exemples de symboles iso-
lés, nous construisons un modèle génératif de type
encodeur-décodeur capable de filtrer et d’isoler des
symboles musicaux de leur contexte bruité et nous
entraînons ce modèle en utilisant une fonction d’ap-
prentissage hybride. Les symboles précédemment
isolés sont par la suite détectés en utilisant un petit
détecteur préentrainé avec des symboles isolés sur
fond blanc. Avec cette approche, nous obtenons un
mAP de 82,5 % dans le cadre d’une tâche de dé-
tection de trois types d’altérations. Nous démontrons
que l’apport de l’Isolating-GAN pour filtrer et isoler
les symboles avant détection permet de réduire le
nombre de faux positifs de 2696 à 57. L’ensemble a
été appliqué sur 1774 pages de partitions anciennes
et a permis de détecter 38908 altérations.

Title: Combination of unsupervised generative models and a syntactical method for music
symbol detection with few annotated data

Keywords: optical music recognition, Deep Learning, symbol detection, generative adversarial

network, unsupervised learning, historical document recognition

Abstract: In this work, we study the detection of mu-
sic symbols in images of complex, historical, dense,
noisy and damaged printed music scores through the
use of Deep Learning detection models. We propose
a comparative study of multiple state-of-the-art detec-
tion models applied to music symbols as well as a
new architecture based on the Spatial Transformer
for a very focused music symbol detection task. Al-
though we explored an original detection approach
with this new architecture, we obtain 94.81% of mAP
while the best state-of-the-art method obtains a mAP
of 98.73%. Since the use of Deep Learning meth-
ods requires a huge amount of annotated data, we
present the Isolating-GAN, a novel unsupervised mu-
sic symbol detection method based on Generative Ad-
versarial Network (GAN). Using only isolated music

symbols and no symbol level detection annotations,
we build an encoder-decoder generative model able
to filter and isolate music symbols from background
noise and shapes and train the model using a hybrid
adversarial and image reconstruction loss. Symbols
isolated by the generative model are then detected
using a small detector pre-trained using isolated sym-
bols in empty white images. With this approach, we
obtain a mAP of 82.5% for a detection task with three
accidental classes. We also demonstrate that using
the Isolating-GAN to filter and isolate symbols before
the detection operation reduces the number of false
positives from 2,696 to 57. The method was applied
on 1,774 pages of historical music scores and was
able to detect 38,908 new accidentals.
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