
A Language for Specifying and Comparing

Table Recognition Strategies

by

Richard Zanibbi

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

December 2004

Copyright c© Richard Zanibbi, 2004

Abstract

Table recognition algorithms may be described by models of table location and struc-

ture, and decisions made relative to these models. These algorithms are usually

defined informally as a sequence of decisions with supporting data observations and

transformations. In this investigation, we formalize these algorithms as strategies in

an imitation game, where the goal of the game is to match table interpretations from

a chosen procedure as closely as possible. The chosen procedure may be a person or

persons producing ‘ground truth,’ or an algorithm.

To describe table recognition strategies we have defined the Recognition Strat-

egy Language (RSL). RSL is a simple functional language for describing strategies

as sequences of abstract decision types whose results are determined by any suit-

able decision method. RSL defines and maintains interpretation trees, a simple data

structure for describing recognition results. For each interpretation in an interpreta-

tion tree, we annotate hypothesis histories which capture the creation, revision, and

rejection of individual hypotheses, such as the logical type and structure of regions.

We present a proof-of-concept using two strategies from the literature. We demon-

strate how RSL allows strategies to be specified at the level of decisions rather than

ii

algorithms, and we compare results of our strategy implementations using new tech-

niques. In particular, we introduce historical recall and precision metrics. Con-

ventional recall and precision characterize hypotheses accepted after a strategy has

finished. Historical recall and precision provide additional information by describing

all generated hypotheses, including any rejected in the final result.

iii

Co-Authorship

Chapter 2 was written in collaboration with my supervisors Dr. Dorothea Blostein and

Dr. James R. Cordy. Chapter 2 previously appeared as a paper in the International

Journal of Document Analysis and Recognition (Volume 7, Number 1, September

2004).

iv

Acknowledgements

This dissertation is the culmination of years of work, much of it being comprised of

tangential research projects, personal interests, and plain wastes of time. I wish to

acknowledge here those who helped insure that this document was actually completed,

rather than forgotten in a dark corner.

First I wish to thank my supervisors, Dr. Dorothea Blostein and Dr. James R.

Cordy, for putting a lot of faith in me and allowing me to make my own mistakes

(of which there were many). The central ideas and approach in this thesis were

significantly refined through their comments and oversight of my work.

I have been lucky enough to get help from friends when I needed it. In no particular

order, these include: Jeremy Bradbury, Chris McAloney, Burton Ma, Harinder Aujla,

James Wasserman, Michael Lantz, Dan Ghica, Dean Jin, Edward Lank, Ken Whelan,

Amber Simpson, Jiro Inoue, and Michelle Crane. Each of these people endured

rambling explanations and complaints about my work, and offered helpful advice and

information anyway. Thanks so much, guys.

Dr. John Handley and Dr. George Nagy have provided me with helpful insights

into pattern recognition and the research profession. In the summer of 2003, Dr.

Nagy reminded me that if I didn’t finish my thesis in a couple years’ time, my daugh-

ter would start school before I stopped. Avoiding that situation has been a great

v

motivator.

I want to thank the members of Queen’s School of Computing support staff that

I’ve dealt with over the last six years: Debby Robertson, Irene Lafleche, Sandra Pryal,

Nancy Barker, Tom Bradshaw, Gary Powley, Richard Linley, and Dave Dove. They

made my time in the School of Computing enjoyable and productive, and saved me

on a few occasions.

I am dedicating this dissertation to Katey, my wife, and Alexandra, our daugh-

ter. Katey has supported me through this whole process, and having her to bounce

research ideas off of has been a great help. Alix is a healthy dose of reality, fun, and

happiness. I love them both very much.

In closing, I’m very happy to report that I managed to finish school before Alix

started.

vi

Statement of Originality

This thesis and the research to which it refers are the product of my own work. Any

ideas or quotations from the work of other people, published or otherwise, are fully

acknowledged in accordance with the standard referencing practices in Computer Sci-

ence. I gratefully acknowledge the helpful guidance and support of my supervisors,

Dr. Dorothea Blostein and Dr. James R. Cordy. The second chapter of this thesis

was written in collaboration with Dr. Blostein and Dr. Cordy, and appeared previ-

ously in the International Journal of Document Analysis and Recognition (Volume 7,

Number 1, September 2004).

vii

Contents

Abstract ii

Co-Authorship iv

Acknowledgements v

Statement of Originality vii

Contents viii

List of Figures xiii

1 Introduction 1

1.1 Table Structure Recognition . 2

1.2 Problem Statement . 7

1.3 Overview of Chapters . 9

2 A Survey of Table Recognition 11

2.1 Introduction . 11

2.2 Table Models . 13

2.2.1 Physical and Logical Structure of Tables 16

viii

2.2.2 A Table Model for Generation: Wang’s Model 18

2.2.3 Table Models for Recognition 19

2.3 Observations . 23

2.4 Transformations . 26

2.5 Inferences . 29

2.5.1 Classifiers, Segmenters, and Parsers 29

2.5.2 Inference Sequencing . 33

2.6 Performance Evaluation . 35

2.6.1 Recall and Precision . 37

2.6.2 Edit Distance and Graph Probing 38

2.6.3 Experimental Design . 39

2.7 Conclusion . 39

3 A Functional Language for Recognition Strategies 41

3.1 Motivation . 41

3.2 Table Recognition as Imitation Games 44

3.3 Interpretation Trees . 49

3.4 RSL Strategies . 51

3.4.1 A Simple Example . 55

3.5 Table Models in RSL . 57

3.5.1 Physical Structure: Region Geometry 58

3.5.2 Logical Structure: Region Types and Relations 59

3.5.3 Hypothesis History . 61

3.6 Inferences in RSL . 62

3.6.1 External Functions . 63

ix

3.6.2 Confidences . 66

3.7 Observations in RSL . 67

3.7.1 Hypothesis Observations . 67

3.7.2 Parameter Observations . 70

3.8 Transformations (Book-Keeping) in RSL 71

3.9 RSL Operations in Detail . 71

3.9.1 Terminology . 72

3.9.2 Region Creation and Classification 74

3.9.3 Region Segmentation . 77

3.9.4 Relations on Regions . 80

3.9.5 Rejecting Region Type and Relation Hypotheses 81

3.9.6 Accepting and Rejecting Interpretations 83

3.9.7 Conditional Application of Strategies to Interpretations 85

3.9.8 Parameter Adaptation . 86

3.9.9 File and Terminal Output . 87

3.10 Representing Multiple Inference Results 88

3.11 Summary . 90

4 Implementation 91

4.1 The RSL Compiler . 91

4.2 The TXL Programming Language . 93

4.3 Translating RSL Programs to TXL 96

4.3.1 RSL Header to TXL Main Function Translation 98

4.3.2 RSL Strategy to TXL Function Translation 100

x

4.3.3 RSL External Function Call to TXL Function

Translation . 104

4.4 Implementing External Functions in TXL 107

4.5 Running Translated Strategies: the RSL

Library . 109

4.6 RSL Data . 111

4.6.1 Interpretation Trees and Log Files 111

4.6.2 Adapted Parameters . 115

4.6.3 Interpretation Graphs . 116

4.7 Recovering Previous Interpretations 119

4.8 Metrics Based on Hypothesis Histories 120

4.9 Visualizing and Creating Interpretations 122

4.9.1 Visualization . 123

4.9.2 Manually Creating Interpretations 124

4.10 Visualizing Table Models . 129

4.11 Summary . 133

5 Specifying and Comparing Strategies 134

5.1 Handley’s Structure Recognition Algorithm 135

5.2 Hu et al.’s Structure Recognition Algorithm 137

5.3 Summary Graphs for RSL Strategies 140

5.4 Ground Truth and Imitation Games 142

5.5 Illustrative Example: A Cell Imitation Game 147

5.5.1 Game Definition . 148

5.5.2 Game Outcome . 150

xi

5.5.3 Analysis Using Hypothesis Histories 151

5.6 Summary . 156

6 Conclusion 159

6.1 Contributions . 160

6.2 Directions for Future Work . 162

6.3 Summary . 166

Bibliography 167

A RSL Operation Summary 184

B RSL Syntax 190

B.1 TXL Grammar Syntax . 190

B.2 RSL Grammar . 191

C Handley’s Structure Recognition Algorithm in RSL 196

D Hu et al.’s Structure Recognition Algorithm in RSL 206

E Table Cell Interpretations 211

xii

List of Figures

1.1 Table from UW-I database, image h01c 4

1.2 Table from UW-I database, image a038 5

1.3 Table from UW-I database, image v00c 6

2.1 The Table Recognition Process . 12

2.2 Table Anatomy . 15

2.3 A Table Describing Document Recognition Journals 18

2.4 Grid Describing the Location of Cells for the Table in Figure 2.3 . . . 19

2.5 Partial HTML Source Code for the Table in Figure 2.3 20

2.6 A Table Describing Available Document Recognition Software. 21

2.7 Types of Structures in Table Models for Recognition 22

2.8 Observations in the Table Recognition Literature 25

2.9 Transformations in the Table Recognition Literature. 27

2.10 Classifiers: Inferences Used to Assign Structure and Relation Types . 30

2.11 Segmenters: Inferences Used to Locate Structures 32

2.12 Parsers: Inferences Used to Relate Structures 34

3.1 Table Recognition as Imitation Games 45

3.2 Interpretation Trees . 50

xiii

3.3 Simple RSL Strategy for Table Structure Recognition 54

3.4 RSL Strategy for Segmenting Words into Columns 58

3.5 An Interpretation Graph . 59

3.6 RSL Text Encoding of Interpretation Graph in Figure 3.5b. 60

3.7 RSL Recognition Process . 64

4.1 Compiling and Running RSL Programs 92

4.2 TXL Program for Translating Region Type Definitions 95

4.3 Creating the Main TXL Function for an RSL Strategy 99

4.4 RSL Strategy Function Translation 101

4.5 Example ‘Wrapped’ External Inference Function 105

4.6 Example TXL External Inference Function from a User Library . . . 108

4.7 Example Log File for Strategy in Figure 3.4 112

4.8 Extensive Interpretation Tree for Log File In Figure 4.7 113

4.9 Interpretation Graph Translation Utilities 123

4.10 Object Layers in Xfig . 125

4.11 Creating Word Characters and Region Types in Xfig 126

4.12 Framing Cells and Rows . 127

4.13 Using Polylines to Define Regions and Relations 128

4.14 Interpretation Graph to ‘dot’ Conversion (graph2dot) 129

4.15 Region and Relation Structure for Table Model in Figure 3.3 131

4.16 Dependency Summary for Strategy in Figure 3.3 132

5.1 Recognized Indexing Structure for Table from UW-I file a038 138

5.2 Region and Relation Structure for Implemented RSL Strategies . . . 143

5.3 Observation Dependencies for Handley RSL Strategy 144

xiv

5.4 Observation Dependencies for Hu et al. RSL Strategy 145

5.5 Cell Imitation Game . 149

5.6 Cell Imitation Results for Handley’s Algorithm 152

5.7 Cell Imitation Results for Hu et al.’s Algorithm 153

5.8 Handley Algorithm RSL Operations Corresponding to Inference Times

in Figure 5.9 . 156

5.9 Intermediate Results of Handley’s Algorithm for table in UW-I a038 158

A.1 Terminology in Operation Summaries 185

E.1 Cell Interpretations for Table in UW-I d05d 211

E.2 Cell Interpretations for Table in UW-I v002 212

E.3 Author and Handley Algorithm Cell Interpretations for Table in UW-I

a038 . 213

E.4 Hu et al. Algorithm Cell Interpretation for Table in UW-I a038 . . . 214

E.5 Author’s Cell Interpretation for Table in UW-I a04g 215

E.6 Handley Algorithm Cell Interpretation for Table in UW-I a04g . . . 216

E.7 Hu et al. Algorithm Cell Interpretation for Table in UW-I a04g . . . 217

E.8 Author Cell Interpretation for UW-I Table a002 218

E.9 Handley Algorithm Cell Interpretation for UW-I Table a002 219

E.10 Hu et al. Algorithm Cell Interpretation for UW-I Table a002 220

xv

Chapter 1

Introduction

Document recognition[42, 44, 79] was one of the earliest application areas of pat-

tern recognition research. It is motivated by the desire to translate documents into

content-based encodings which can then be used in reading machines for the blind, for

compressing and editing existing documents, and for information retrieval tasks (e.g.

indexing, searching, and clustering). Document recognition may be broken down into

a number of subtasks, the best known of which is optical character recognition[92]

(OCR). OCR research is concerned with recovering the content of textual regions.

However, the non-textual (or ‘graphic’) regions of a document often include impor-

tant information. These graphic regions include mathematical notation, machine

drawings, and images. This dissertation is concerned with systems for recognizing

tables, another common type of graphic region.

In this dissertation we address three methodological problems with current sys-

tems for recognizing tables: informal system specifications, the confounding of deci-

sion effects, and the effort required for constructing table recognition systems. We

motivate table recognition and describe some of its associated challenges in Section

1

CHAPTER 1. INTRODUCTION 2

1.1, define the problems to be addressed in Section 1.2, and finally summarize the

organization of this document in Section 1.3.

1.1 Table Structure Recognition

The two main tasks of table recognition are locating and decomposing table regions in

encoded documents. These tasks have been termed table detection and table structure

recognition, respectively[55]. In the literature, table recognition techniques have been

applied to digitized images of document pages, text files, and documents written in

a markup language such as HTML.

The information retrieval applications of table recognition systems are intriguing.

For example, Rus and Subramanian[100] and Yoshida et al.[121] describe techniques

for recognizing tables in documents returned by internet search queries, and then

clustering these tables or their contents based on content type. Table regions and

their contents may be incorporated into sophisticated search queries[93]. One domain

of application is scientific research, where automated or semi-automated tools could

be used to collect experimental data from tables in research papers. The collected

data could then be examined directly by the researcher, or passed on to automated

systems that find patterns such as correlations in data. Another important domain

of application is converting table information to audible text for persons who are

blind[98]. All of these applications rely heavily on the quality of table detection and

structure recognition algorithms, both of which are still maturing.

The specific table recognition problem we will use for illustration in this disserta-

tion is the recognition of table structure from the spatial arrangement of words and

lines in a table region. In a real system these regions would need to be produced by

CHAPTER 1. INTRODUCTION 3

earlier processing. For example, words and lines could be defined by first applying

optical character recognition (OCR), and then locating words and lines in the image

(i.e. segmenting word and line regions within the image).

Even when provided with word and line locations, recognizing table structure

is often non-trivial. At the highest level of abstraction, the three main tasks in

recognizing table structure are as listed below.

High-level Tasks of Table Structure Recognition:

1. Determining cell locations and their constituent regions (e.g.

words)

2. Determining table rows and columns (the cell topology)

3. Determining the indexing structure of the table, defined as the

set of paths through header (labelling) cells to data cells, which

do not label other cells.

As examples of difficulties in performing these three tasks, consider Figures 1.1, 1.2,

and 1.3, which are taken from scanned images compiled in the University of Wash-

ington English/Technical Document Database[89], a standard data set used by the

document recognition community.

For the table in Figure 1.1, it is difficult to determine which columns the header

cells at the top of the table are associated with. The ‘table’ itself appears to be at

least two tables (the largest visible area, and the ‘Target’ and ‘Grand Means’ labelled

columns at the bottom left). This ‘table’ also contains additional annotations, such

as the ‘Number of arcs.’ How should such annotations be incorporated into a model

used to detect and decompose tables?

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Table from UW-I database, image h01c. Among other challenging fea-
tures, this table has ambiguous cell topology and even ambiguous scope.
Which columns are spanned by ‘Face Right’ at the top of the table? Are
the Grand Mean summaries at the bottom left part of the larger table, or
a separate table? How does one characterize the additional annotations
(e.g. ‘Number of arcs’)?

CHAPTER 1. INTRODUCTION 5

Figure 1.2: Table from UW-I database, image a038. This table contains nested col-
umn header cells at the top of the table, which can be difficult to detect
when lines do not separate them and/or spacing is irregular. This table
makes use of footnotes for both header and data cells, which confuses the
row structure (see the row associated with ‘Pryoclastic Flow → May 25’)

The table in Figure 1.2 contains footnotes for both header and data cells. In

addition to being difficult to interpret, in this example the footnotes confuse the

row structure of the table. It requires some effort to determine whether some of

the footnote numbers are associated with the cell above or below themselves. This

table also contains column headers that are nested (e.g. ‘Bulk density’ → ‘Mean

(g/cm3)’). When lines do not separate nested headers as in Figure 1.2, it can be

difficult to determine the indexing structure of these cells, and it may even confuse

cell locations.

There are a number of more fundamental challenges for table recognition. Defining

CHAPTER 1. INTRODUCTION 6

Figure 1.3: Table from UW-I database, image v00c. This table has varying column
and row structure. It is difficult without knowing the subject domain to
determine the indexing structure of the table. Are the column headers
‘wrapped’?

CHAPTER 1. INTRODUCTION 7

‘tables’ is difficult because tables are frequently adapted to suit individual needs, such

as the additional annotations in Figure 1.1. This often makes it difficult to define

what constitutes a ‘correct’ recognition result[51]. Adding to the complexity of the

problem, frequently information about the language or subject matter of a table is

essential for proper interpretation[57]. As an example, consider the columns and

indexing structure of the table shown in Figure 1.3.

1.2 Problem Statement

This dissertation addresses three methodological problems in the current table recog-

nition literature. These are the use of informal system specifications, the confounding

of decision effects, and the difficulty of constructing table recognition systems. We

describe each of these in the following.

Informal System Specifications. Table recognition systems are described

informally in the literature. Models used in decision making are of-

ten only partially described, and must be inferred from the sequence

of described operations, which may also be partial. This makes the

replication and comparison of techniques difficult, and sometimes

impossible. These informal descriptions also make it hard to discern

the decisions made by a table recognition system.

Confounded Decision Effects. Intermediate interpretations are not pre-

served in the table recognition literature. No record of how hypoth-

esized table properties are altered or rejected is maintained. Recog-

nition results are then analyzed only from their final interpretation,

CHAPTER 1. INTRODUCTION 8

making it difficult to determine the effect of individual decisions: the

aggregate effect of a set of decisions cannot be separated into effects

of individual decisions. This makes it difficult to determine which

decision(s) caused a recognition ‘error,’ for example.

Ease of Implementation. Most table recognition systems are imple-

mented as a program in a general-purpose programming language,

though some systems use syntactic methods[2, 26, 36, 96, 107] to

specify recognition behaviour using models of recognition targets (a

model of table structure, for example). The systems built in general-

purpose languages tend to use models that are simpler and more

flexible than those described for syntactic methods: particularly in

situations such as early design and experimentation, this is an advan-

tage. Currently there is no middle ground: methods either require

complete and often complex model definitions, or are loosely defined

as a sequence of operations in a general-purpose programming lan-

guage, in which case a great deal of additional infrastructure must

be constructed. The effort required to build infrastructure for these

systems would be better spent on designing and refining recognition

methods.

The last two problems are related to the first. Formalizing and recording decisions

made by a system would reduce the confounding of decision effects. Difficulties arise

for systems built in general-purpose programming languages because common sub-

systems are not formalized and then constructed in a way that allows reuse.

CHAPTER 1. INTRODUCTION 9

Reuse is one of the largest benefits of syntactic techniques: these systems are

‘programmed’ by specifying only the model. However, one must be in a position

to properly define a useful model, which for complicated tasks may involve detailed

knowledge of how a model is interpreted and applied (e.g. an understanding of search

algorithms used, including any heuristics). This is the benefit of informality: we can

flexibly alter our problem descriptions and solutions as needed independently of other

descriptions and solutions. Problems arise when we then need to unify a set of such

informal problem descriptions and solutions.

In this dissertation we address these three methodological problems by proposing a

middle ground for formalization: a language that specifies table recognition methods

using a fixed set of decision types and a syntax that captures the types of model

components used in decision making. The is the Recognition Strategy Language

(RSL), a simple functional ‘glue’ language for combining arbitrary decision techniques.

The approach taken in RSL was inspired in part by the Tcl language[85], which is

used to combine systems constructed in different languages and architectures. As we

shall see, various parts of the RSL language were designed specifically to address the

problems above.

1.3 Overview of Chapters

In this Section we summarize the organization and content of the chapters in this

dissertation.

In Chapter 2 table recognizers are characterized as algorithms for recovering ta-

ble model instances in data, and recognition operations are divided into three broad

classes: observations that describe data, transformations that manipulate data, and

CHAPTER 1. INTRODUCTION 10

inferences that generate and test hypotheses. A brief summary of evaluation tech-

niques in the literature is also provided.

Chapter 3 characterizes table recognition problems as a simple class of imitation

games, where table recognizers act as strategies in the game. We formalize these

strategies using the Recognition Strategy Language (RSL), a simple functional ‘glue’

language that combines inferencing functions. Among other benefits discussed, RSL

automatically maintains data structures for recognition results.

Chapter 4 describes the implementation of RSL, along with additional analysis

and visualization tools. Much of Chapter 4 is not necessary for understanding the

subsequent chapters in the dissertation, but provides details of interest that may be

consulted as needed.

We demonstrate the usefulness of RSL for specifying and implementing table

recognition systems in Chapter 5, where we describe RSL implementations for two

of the table structure recognition algorithms in the literature, those of Handley[43]

and Hu et al.[53]. We also describe a simple game in which these algorithms imitate

cell locations in tables defined by the author. We analyze the outcome of this game

using two new metrics, historical recall and historical precision, which take rejected

and revised hypotheses into account.

Finally, in Chapter 6 the contributions of the dissertation, open problems, and

directions for extending and generalizing the work are presented.

Chapter 2

A Survey of Table Recognition:

Models, Observations,

Transformations, and Inferences

2.1 Introduction

Many documents contain tables that could be recovered for reuse, compression, edit-

ing, and information retrieval purposes. In table recognition, a definition of table

location and composition (a table model) is used to recover tables from encoded

documents. Hu et al.[55] have termed the two main sub-tasks of table recognition

table detection and table structure recognition. In table detection, instances of a

table model are segmented. In table structure recognition, detected tables are ana-

lyzed and decomposed using the table model. In this chapter we break down table

detection and structure recognition further, describing both as sequences of three ba-

sic operations: observations, transformations, and inferences. Observations include

11

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 12

Table Model

Parameters and Other Data for
Inferences

Table Features
Table Hypotheses

Observations

Inferences

Transformations,
and Observations

Document
Observations

Observations

Figure 2.1: The Table Recognition Process. A table model defines the structures that
a table recognizer searches for. Table recognizers detect and decompose
tables using observations, transformations, and inferences. Inferences gen-
erate and test table location and structure hypotheses. Observations pro-
vide the data used by inferences; these are feature measurements and data
lookups performed on the input document, table model, input parame-
ters, and existing features and hypotheses. Transformations of features
permit additional observations. Input parameters define or constrain the
table model, observations, transformations, and inferences of a table rec-
ognizer.

feature measurements and data lookup, transformations are operations that alter or

restructure data, and inferences generate and test hypotheses (e.g. table locations).

In this survey we present the table recognition literature in terms of the interaction

of table models, observations, transformations, and inferences, as presented in Figure

2.1. Surveys that take other views of the literature are also available[42, 74, 75]. We

use the view presented in Figure 2.1 to assist us in answering important questions

about the decisions made by table recognizers. What decisions are made? What

is assumed when decisions are made? What inferencing techniques make decisions?

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 13

On what data are decisions based? Table models play a crucial role in the decision

making process, as they define which structures are sought after and define or imply

a set of assumptions about table locations and structure. Input parameters define

decision thresholds and tolerances, provide values for table model parameters, and

may include additional information used in decision making.

In the remainder of this chapter we define tables and describe table models used

in recognition (Section 2.2), outline the observations, transformations and inferences

used by different systems for table detection and structure recognition (Sections 2.3,

2.4, and 2.5), address performance evaluation methods used to determine the suffi-

ciency of a table recognizer for a specific recognition task (Section 2.6), and finally

identify open problems and conclude in Section 2.7.

2.2 Table Models

Tables are one of the visualizations people use to search and compare data[71]. More

specifically, they visualize indexing schemes for relations, which may be understood

as a set of n−tuples where n is the number of sets in the relation[31]. The sets of

a relation underlying a table are called domains or dimensions. A relation may be

presented many different ways in a table. Dimensions may be laid out in different row

and column arrangements, repeated, or ordered in various ways. The arrangement of

dimensions in a table affects which data are most easily accessed and compared[20,

41, 71].

The parts of a table are described in Figure 2.2. Dimensions of a relation whose

elements are to be searched and compared in a table have their elements located in

the body; the names and elements of remaining dimensions are placed in the boxhead

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 14

and stub as headers, which are then used to index elements located in the body. The

stubhead may contain a header naming or describing the dimension(s) located in the

stub. Often headers are nested to visually relate dimension names and elements, and

to factor one dimension by another. For example, the dimension ‘school term’ is

factored by ‘year’ in the stub of the table in Figure 2.2; this is indicated by indenting

(nesting) the ‘school term’ elements (e.g. ‘Winter’) below the ‘year’ elements (e.g.

‘1992’). As another example, the header for element ‘Ass3’ is nested below the name of

its associated dimension (‘Assignment’). Regions where individual dimension names

and elements are located are called cells. A group of contiguous cells in the body is

referred to as a block. Cells are separated visually using ruling lines (e.g. the boxhead

and stub separators in Figure 2.2) and whitespace, or tabulation[31]. This results in

the familiar arrangement of cells in rows and columns. If the boxhead, stub, and

stubhead are absent, we are left with a list or matrix of values; these do not have

headers used to index data, which is a defining feature of tables.

In practice individuals often alter or adapt the parts of a table as presented in

Figure 2.2. For example, headers or explanatory text might appear in the body of a

table. In some cases, tables even contain tables within cells, or are compositions of

tables, producing complicated indexing structures[41, 114]. However, the majority of

tables studied in the table recognition literature are described well by Figure 2.2.

Tables also often have associated text, including titles (e.g. Figure 2.6), captions,

data sources (e.g. Figure 2.3), and footnotes or additional text that elaborate on

cells (e.g. Figure 2.6). The text in a document that cites a table sometimes provides

additional information regarding a table’s contents[30]. The focus in table recognition

so far has been on recovering tables themselves; only a small number of papers have

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 15

Nested Row Header

Row Header

Stub

Stub Head
Boxhead

Boxhead Separator

Body

Cell Block

Term
Assignments Examinations

Ass1 Ass2 Ass3 Midterm Final
Final
Grade

1991

 Winter 85 80 75 60 75 75

 Spring 80 65 75 60 70 70

 Fall 80 85 75 55 80 75

1992

 Winter 85 80 70 70 75 75

 Spring 80 80 70 70 75 75

 Fall 75 70 65 60 80 70

Nested Column Header

Stub Separator Column Header

Figure 2.2: Table Anatomy. The example and terms shown here are taken from
Wang[114], where terminology from the Chicago Manual of Style[38] is
used. Though not shown in this figure, tables often have associated text
regions, such as a title, footnotes, or the source for table data.

addressed text associated with a table[30, 87, 93, 111].

In this chapter we will restrict our discussion to tables that present textual data,

as this is the class of tables that have been studied for recognition. This includes

tables encoded in text files (e.g. ASCII), such as the one rendered for presentation

in Figure 2.6. Sources of plain text tables include email messages and automated

reporting systems (e.g. the EDGAR financial reporting system[67]). The remainder

of Section 2.2 addresses the physical and logical structure of tables, HTML encodings

of table structure, and models used in generating and recognizing tables.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 16

2.2.1 Physical and Logical Structure of Tables

As with all entities sought after in document recognition, tables have physical and

logical structure[42, 44, 79]. For tables, physical structure describes where regions

containing parts of tables are located in an image or plain text file (e.g. Figure

2.6), while logical structure defines the types of these regions and how they form a

table. All regions of interest in a table have both physical and logical structure. For

example, the location of a line in a table image is part of the physical structure of a

table, while the type of a region (in this case, ‘line’) is part of the logical structure

of a table. Similarly, the intersection of two lines is defined in logical structure, while

the location of the intersection is defined using geometry (part of physical structure).

We define the most abstract level of logical structure for tables to be the indexing

scheme from headers to cells located in the body of a table. This defines a relation

describing a table, but it may not be minimal (e.g. the table may repeat dimensions

of a relation). Defining the minimal relation underlying a table requires knowledge

about the subject matter domain of the table, such as how dimensions are related,

fixed ranges for particular dimensions, or synonyms for dimension names. This is

information that tables themselves do not provide: their function is to visualize an

indexing scheme for data in a relation, not to interpret the relation in the data domain.

As a result, we consider anything more abstract than the table’s indexing structure

to be part of a table’s subject matter domain rather than part of the logical structure

of the table itself.

For a table encoding, the least abstract level of logical structure describes the type

of the smallest regions of interest. In an image this might be a connected component.

For plain text files, this might be be regions of adjacent non-whitespace character

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 17

(connected components of characters in the text file). For HTML files, this might

be a tagged cell. At this level there is no relational structure, only primitive regions

with types.

Intermediate levels of logical structure describe the composition of smaller regions

into larger ones, and relate regions to one another. For example, a series of connected

components may be joined into a line (relating the connected components), which is

found to intersect with another line (relating the two lines). An important interme-

diate level of logical structure describes cell adjacencies, or topology. Cell topology

is often described using a table grid. Table grids are formed by extending all line

and whitespace cell separators to the edges of a table region (see Figure 2.4). The

grid allows indexing cell locations using a scheme similar to those in spreadsheets, in

which columns and rows are enumerated. Depending on the structure of a table, grid

locations may be empty, or cells may span multiple grid locations as in Figure 2.4.

The physical structure of a table can be encoded in a text or image file, while

logical structure may be encoded using a markup language such as HTML (see Figure

2.5). The tags in the markup language describe data types and relations (i.e. they

define a graph on labelled data). In HTML, tags can be used to define the table grid

(contents and relative positions of cells), types of separator (lines vs. whitespace), and

the location of the body, header (boxhead), and footer areas, and indexing structure.

HTML does not encode the stub location or underlying relation of a table.

In practice, tables encoded in HTML often do not use the indexing, header, or

footer tags, and use tags that are not part of the table tag set (for an example, see

Figure 2.5). Also, the table environment is often used to layout lists and matrices of

data in a grid, with no indexing by headers[58, 116].

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 18

Journal Full Name
Details

Appears Publisher

TPAMI IEEE Transactions on Pattern Analysis and Machine Intelligence monthly IEEE

IJDAR International Journal on Document Analysis and Recognition quarterly Springer-Verlag

PR Pattern Recognition monthly Elsevier

IJPRAI International Journal on Pattern Recognition and Artificial Intelligence eight times/year World Scientific

Source: from a listing of pattern recognition journals provided online at http://www.ph.tn.tudelft.nl/PRInfo/

Figure 2.3: A Table Describing Document Recognition Journals. This fully ruled
table was rendered by an HTML viewer using the source file shown in
Figure 2.5. Note the text below the table indicating the source of the
data presented in the table.

2.2.2 A Table Model for Generation: Wang’s Model

The most complete table model in the literature was designed to support generat-

ing table images from logical structure descriptions by Wang[114]. Wang’s model

separates table structure into three parts: an abstract indexing relation, a topology

defining the placement and ordering of dimensions within the boxhead, stub, or both

regions, and formatting attributes which include fonts, separator types, and layout

constraints. Formatting attributes are associated with logical structures: dimensions

and their elements, table regions (e.g. body or stub), and blocks of cells. In Wang’s

scheme, the table grid and cell topology (cell adjacencies) are defined by a combina-

tion of the topology on dimensions and formatting rules.

Wang’s model is appealing because it is reasonably simple and separates concerns

cleanly, with editing driven by logical structure rather than blocks of cells, as in many

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 19

A1−A2 B1−B2
C1−D1

C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A5 B5 C5 D5

A6 B6 C6 D6

Figure 2.4: Grid Describing the Location of Cells for the Table in Figure 2.3. Table
grids are formed by extending all separators to the border of a table. Here
rows are represented by numbers, and columns by letters. The table in
Figure 2.3 has a ‘Manhattan’ layout, in which all separators meet at right
angles. For non-Manhattan layouts cells may not be rectangle-shaped
(and the table grid more complex as a result). Occasionally cells occupy
more than one location in the table grid: these are called spanning cells.
The topmost cells in Figure 2.3 are all spanning cells, located at grid
locations A1-A2, B1-B2 and C1-D1.

conventional table editing tools (e.g. spreadsheets). In Wang’s scheme what we have

called logical structure is separated into layout, presentation, and logical classes (see

Section 4.1 of Wang’s thesis[114]). Wang’s model does not describe footnotes or

other text associated with a table (e.g. titles or captions). Stub heads are assumed

to be empty, and headers are assumed to be located only in the boxhead and stub of

the table. Wang’s model is also not designed to handle nested tables, in which cell

contents are themselves tables; however, this type of table is fairly unusual.

2.2.3 Table Models for Recognition

In the literature, table models for recognition must support two tasks: the detection

of tables, and the decomposition of table regions into logical structure descriptions.

They tend to be more complex than generative models, because they must define

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 20

<TABLE RULES=ALL BORDER=1 CELLPADDING=5 ALIGN=CENTER>

<THEAD>

<TR>

<TD ROWSPAN=2>Journal</TD>

<TD ROWSPAN=2 ALIGN=CENTER>Full Name</TD>

<TD COLSPAN=2 ALIGN=CENTER>Details</TD>

</TR>

<TR>

<TD>Appears</TD>

<TD>Publisher</TD>

</TR>

</THEAD>

<TBODY>

<TR>

<TD>TPAMI</TD>

<TD>IEEE Transactions on Pattern Analysis

and Machine Intelligence</TD>

<TD>monthly</TD>

<TD>IEEE</TD>

</TR>

...

</TBODY>

</TABLE>

<P ALIGN=CENTER>

Source: from a listing of pattern recognition

journals provided online at

http://www.ph.tn.tudelft.nl/PRInfo/

</P>

Figure 2.5: Partial HTML Source Code for the Table in Figure 2.3. Note how ROWS-
PAN and COLSPAN attributes are used to define cells that span rows and
columns respectively, and that the table boxhead (THEAD) and body
(TBODY) regions are explicitly labelled. The data source for the table is
labelled as a paragraph (P). This type of formatting rather than logical
structure description is common in practice, making automated retrieval
and clustering tasks for HTML tables difficult[39, 58, 116, 121].

and relate additional structures for recovering the components of generative models.

Figure 2.7 presents a number of these additional structures, such as connected com-

ponents and line intersections. The usefulness of a table model for recognition in a

set of documents is determined by the proportion of tables described by the model,

the degree to which the model excludes other types of data (e.g machine drawings),

and how reliably the objects and relations of the model can be inferred. The efficacy

of a model is difficult to assess in advance of doing a performance evaluation (see

Section 2.6). Usually table models are designed informally by trying to describe the

tables in a set of documents (e.g. as was done for Wang’s model[114]).

Only a small number of models for recognition have been described explicitly in

the literature[31, 56, 87]. These models are less complete than Wang’s. More com-

monly the structures, relations, and assumptions of a table model for recognition are

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 21

Table I. Available Document Recognition Software

Source Packages Web Site Note

AABBYY FineReader http://www.abbyy.com Commercial

ScanSoft OmniPage http://www.scansoft.com Commercial

OmniForm

TextBridge

ExperVision TypeReader http://www.expervision.com Commercial:

WebOCR WebOCR on-line

service is free

CharacTell Simple OCR http://www.simpleocr.com Commercial

Musitek SmartScore http://www.musitek.com Commercial Music

Recognition,

Scoring

Michael D. Form-Based http://www.itl.nist.gov/ Free, with source code

Garris (NIST) Handprint iaui/894.03/databases/ Unrestricted Use.

Rec. Sys. defs/nist_ocr.html Large training sets

Donato Malerba Wisdom++ http://www.di.uniba.it/ Free for research

et. al. ~malerba/wisdom++/ and teaching purposes

R. Karpischek Clara OCR http://www.claraocr.org GPL*

et. al.

J. Schulenburg JOCR http://jocr.sourceforge.net GPL*

et. al.

Klaas Freitag Kooka http://www.kde.org/apps/kooka GPL*, Scanning

and OCR interface

*GPL: Freely available under GNU General Public License

Figure 2.6: A Table Describing Available Document Recognition Software. This table
is from an ASCII text file, and is unruled. Note the title and the footnote
below the table; the footnote is referenced using asterisks in the rightmost
column of the table. Together, the title and footnote span all the gaps
between columns. This type of arrangement complicates the detection
of separators in projection profiles (horizontal and vertical histograms of
foreground pixels/characters[6, 18, 43, 47, 61, 66, 70, 100, 111, 124]).

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 22

Primitive Structures

Run lengths[18, 19, 66, 70, 120]
Connected components[1, 48, 50, 63, 66, 70, 103, 120,

124]
Separators

Lines[18, 19, 62, 66, 91]
Whitespace [37, 43, 52, 57, 65, 82, 111, 117, 124]

Intersections
Of separators[4, 5, 18, 66, 100, 109, 112, 119]
Of lines and text[6, 50, 122]

Characters
Provided in text or markup files[31, 39, 52, 63,

82, 93, 110]
From Optical Character Recognition[7, 65, 73,

87, 103, 111]

Text lines[62, 84, 102, 103]
Other Symbols

Arrow heads (to repeat cell values[6])
X’s (to cancel cells[4])

Table-Specific Structures

Table grid[5, 37, 43, 48, 61, 70, 111, 124]
Cells

Multi-line cells[43, 54, 60, 82]
Spanning cells[39, 87, 111]
Cell Topology, usually as rows and columns of

cells[31, 43, 48, 54, 61, 82, 100, 110, 124]

Table regions: boxhead, stub, and body[54, 59, 93,
121]

Captions, titles, sources, footnotes, and other text
associated with tables[30, 87, 93, 111]

Whole Tables (for table detection[17, 39, 52, 62, 64,
65, 70, 82, 100, 109, 116, 118])

Indexing structure
Indexing relation for tables[31, 39, 110, 121]
Entry structure in tables of contents[7, 10, 106,

107]

Figure 2.7: Types of Structures in Table Models for Recognition. For table structure
recognition, the most common outputs are the table grid, cell topology,
and table regions (body, stub, and boxhead). Less commonly, some papers
go further and encode the indexing relation[31, 39, 110, 121] or entry
structure in tables of contents[7, 10, 106, 107]. Multi-line cells contain
mutliple text lines.

determined by the sequence of observations, transformations, and inferences used by

a table recognizer. As an example, from operations that locate column separators

at gaps of a vertical projection, we learn the recognition model has a notion of hori-

zontally adjacent columns, where columns are separated by uninterrupted whitespace

gaps; this implicit model cannot describe the table shown in Figure 2.6. In many

papers the description of operations, and thus the reader’s view of the table model,

is partial.

A table model may be static, where all parameters are fixed before run-time, or

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 23

adaptive, where parameters are altered at run-time based on input data. Figure 2.8

lists a number of static and adaptive parameters of table models. Some adaptive

parameters used in table recognition are fairly sophisticated, including line gram-

mars for tables of contents[7], and regular-expressions describing the types of cells in

a table[87, 100]. In the literature, model parameters have been set both manually

and using machine learning methods[17, 88]. Parameters have included encodings of

domain knowledge such as bigrams[57] and ontologies[110] (graph-based knowledge

encodings); these encodings are used in the analysis of cell content. Thresholds, tol-

erances, domain knowledge encodings, and other parameters constrain a table model,

and consequently affect what may be inferred by a table recognizer. In this way, they

specify a set of assumptions about table location, structure, and content.

As for any other pattern recognition model, there are a number of issues in de-

signing a table model including the ‘curse of dimensionality’ (the required training

sample size growing exponentially as the number of parameters increases) and the

complexity of rule-based systems. Perlovsky has provided a brief and informative

history of these two problems[86].

2.3 Observations

Observations measure and collect the data used for decision making in a table recog-

nizer. As shown in Figure 2.1, observations may be made on any available data; the

input document, table model, input parameters, existing hypotheses, or the current

set of observations. Figure 2.8 lists a number of observations made by table recog-

nition systems. Observations may be categorized by the type of data on which an

observation is made: images and text files (physical structure), descriptions of table

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 24

structure (logical structure), sets of existing observations (descriptive statistics), or

parameters.

For physical structure, observations include geometry, histograms, and textures.

Geometric observations include perimeter, representative points (e.g. centroid), area,

height, width, aspect ratio and angle. They also include distances, angles, and areas

of overlap between two regions. Histograms are often observed when locating text

lines and to define the table grid. Textural features include cross-counts (a transition

count for a line of pixels in a binary image or characters in a text file) and density

(proportion of ‘on’ to ‘off’ pixels in a binary image, or character to blank cells in a

text file). Texture metrics have been used to classify regions[66, 111].

For logical structure, observations made include table structures, edit distance,

cell cohesion measures, graphs, and table syntax. The edit distance[13] from logical

structure description A to logical structure description B is a weighted linear combi-

nation of the number of insertions, deletions, and substitutions required to transform

A to B. In the table recognition literature, edit distance has been used to derive regu-

lar expression ‘types’ for columns[87, 100] and in performance evaluation (see Section

2.6). Cell cohesion measures[59, 110, 116] are used to measure whether cells exhibit

dimension name and element relationships (e.g. in a column of cells[59, 110]), and to

determine the consistency of cell properties in a block of cells[116].

For descriptive statistics, observations include cardinality (counting), probabili-

ties, weighted linear combinations of observations, comparisons, and summary statis-

tics. Variance and standard deviation have been employed to define tolerances and

thresholds[62]. In addition, periodicity (spatial regularities or intervals) has been

used to classify primitive text regions[102] and for detecting regularities in row and

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 25

Physical Structure

Geometry
Height, Width, and Area
Aspect ratio (height:width)
Angle (e.g. of a line)
Skew estimation

From skew of detected lines[69]
From bounding boxes[62]

Docstrum: angle, distance between connected
components[84]

Overlap of regions (e.g. table regions[17])
Region perimeter[50, 100]
Representative point

Centroid[84]
Top-left corner[119]
Text baseline y-position[48]

Distance between points
(e.g. between centroids[84])

Histograms (Projection Profiles)
Projected image pixels[19, 80, 102]
Projected bounding boxes[40, 47, 61]
Boxes projected as symmetric triangles [124]
Boxes projected as ‘M’ shapes of constant area[65]
Weighted projections

(e.g. by vertical position[43, 124])

Texture
Value transition count (cross-counts)[66, 111]
Pixel density[16]
Character density[31]

Parameters

Static or Adaptive
Probability (e.g. for table detection[118])
Thresholds (adaptive examples: [47, 62, 124])
Tolerances (e.g. for use in X-Y cutting[16])
Weights (e.g. for linear combinations[64])

Adaptive
Line grammar (e.g. for table of contents[7])
Regular expressions for cell contents[87, 100]

Encoded Domain Knowledge (Static)
Word bigrams[57]
Ontologies[110]

Logical Structure

Table structures (see Figure 2.7)
Edit distance[13]

Deriving reg. expressions for strings[87, 100]

Cell block cohesion measures[59, 110, 116]
Graphs

Line intersections[112]
Form structure[15]
Table indexing structure[37, 55]

Table Syntax (as grammars; see Figure 2.12)

Descriptive Statistics

Cardinality (counting)
Probability (e.g. computed from a sample)
Weighted Linear Combinations of Observations

‘Columness’ of a region[64]
‘Tableness’ of a region[118]

Comparisons
Difference (e.g. between heights[110])
Derivative (e.g. of histograms[19, 102])
Inner (‘dot’) product and cosine of vectors [103,

116, 121]
Correlation (e.g. of text line spacings[65])
Word uniqueness[116, 121]

Summary Statistics
Range, Mean, Median
Variance/standard deviation[62]
Periodicity

In histograms[102]
In column, row structure[116]
Line/string periodicity[93]

Figure 2.8: Observations in the Table Recognition Literature. Observations are classi-
fied based on whether they are taken from an image or text file containing
a table (physical structure), from a description of table structure and/or
content (logical structure), from a set of existing observations (descriptive
statistics), or from system parameters. Static parameters are set before
execution; adaptive parameters are set at run-time.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 26

column structure (e.g. in HTML[116] and plain text[93]).

Parameters of table recognizers were discussed in Section 2.2. Here we will elab-

orate further on the use of domain knowledge observations in table recognition, as

this is a promising approach in table recognition. Hurst has provided a number

examples in which layout information alone is insufficient for defining table grids,

cell scopes, and cell topology[57]; the analysis of table content relative to a domain

model is required in these examples. To address this, he and Nasukawa[60] proposed

improving cell segmentation by constraining detected text continuations using word

bigrams. The constraints afforded by these bigrams appear to improve cell segmen-

tation and topology analysis[57]. In Section 2.5.2 we describe a system by Tubbs and

Embley using the correspondence of cell contents to relationships and concepts in an

ontology for detecting header nesting and factoring, and in computing cell cohesion

measures[110].

2.4 Transformations

Transformations restructure existing observations to emphasize features of a data set,

to make subsequent observations easier or more reliable. Figure 2.9 lists transforma-

tions used in the table recognition literature. As we did for observations, we classify

transformations by the type of data to which they are applied: physical structure,

logical structure, or to descriptive statistics.

Physical structure transformations include the Hough Transform[45], which is

used to approximate parameters of geometric shapes. The Hough Transform is com-

monly applied to table images in order to support the detection of table lines. Affine

transformations[99] are also commonly used, in particular rotations and shearing

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 27

Physical Structure

Image Binarization (e.g.[43, 102])
Image compression

Run-length encoding[120]
Block adjacency graph[122]

Image resampling
Subsampling[18, 50]
Supersampling[84]
Quadtree[102]

Hough transform[45] (e.g. for locating lines)
Affine transformations: rotation, shearing, transla-

tion and scaling[99], (e.g. used for de-skewing
an image[62])

Interpolation to recover parts of characters inter-
sected by lines[122]

Mathematical Morphology[45]
RLSA (Run-length smoothing algorithm[120])
Dilations and closings

In images[83, 6]
In text files[63]
For joining lines[122]

Thinning[61]
Edge detection[112, 119]

Logical Structure

Merging/splitting of regions
Cells[59]
Tables[100, 121]
Splitting region at detected separators[70]

Graph/tree transformations
To correct structural errors[7]
Join regions into a table region[96]

Filtering
Small regions for noise reduction[68, 83, 103]
Textures, images and half-tones[103]

Insertion of table lines[48, 70]
Produce boxes from line intersections [3, 112]
Sorting and Indexing

Sorting (e.g. boxes by geometric attributes[8])
Indexing (e.g. of cells[37, 61])

Translation
HTML to character matrix[39, 116]
Map strings to regular expressions[87]
Transform tokens of a single class to a uniform

representation ([82, 87])
Encoding recognized form data[15, 122]
Indexing relation of a table[37]

Descriptive Statistics

Histogram smoothing[102]
Histogram thresholding

Figure 2.9: Transformations in the Table Recognition Literature. Transformations
are classified based on whether they are applied to an image or text file
containing a table (physical structure), to a description of table structure
and/or content (logical structure), or to descriptive statistics.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 28

transforms are applied to correct rotation and shearing in scanned images[1, 83, 84].

Other physical structure transformations include the image transformations that

are often referred to as ‘preprocessing’: compression, resampling, binarization, and

mathematical morphology. Resampling is used to provide low resolution versions of

an input image, as researchers have found that this provides a useful alternate view of

the document[50, 102]. Mathematical morphology[45] is concerned with set-theoretic

operations defining how indexed sets (structuring elements) alter elements of other

indexed sets. In the table recognition literature, morphological operations have been

applied to both binary images and to text files[63]. Structuring elements used in table

recognition are usually horizontal and vertical bars, used to close gaps. These types

of structuring elements are used in the run-length smoothing algorithm (RLSA[120]),

to thin objects[61], and to detect corners[112].

Logical structure transformations include tree and graph transformations, which

have been used to merge and split regions (e.g. into tables[96]) and correct errors in

table of contents entries[7]. Other logical structure transformations include filtering

small objects assumed to be noise[68, 83, 103], producing shapes from point lists[3,

112], ordering and indexing objects, and translation to alternate representations (e.g.

from HTML to plain text[39, 116]). Green and Krishnamoorthy[37] have provided

an elegant translation from recognized table structure to a table’s indexing relation

using templates.

We quickly note a pair of transformations modifying descriptive statistics. His-

togram smoothing[102] and thresholding have been used to reduce variance when

trying to locate text lines and separators in projections.

Some of the transformations described in this section produce implicit inferences.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 29

As an example, Handley[42] has pointed out that the morphological operations of the

Run-Length Smoothing Algorithm[120] concurrently classify regions as foreground

or background. Image binarization and noise filtering have the same side-effects.

Many systems quietly assume that the regions output by these algorithms are valid

foreground regions; a set of hypotheses about foreground regions are immediately

accepted as valid.

2.5 Inferences

2.5.1 Classifiers, Segmenters, and Parsers

Inferences decide whether or how a table model can be fit to a document, through

the generation and testing of hypotheses. More specifically, inferences decide whether

physical and logical structures of the table model exist in a document using data ob-

served from the input document, input parameters, table model, transformed obser-

vations, and table hypotheses (as shown in Figure 2.1). As seen in Figures 2.10, 2.11,

and 2.12, a large variety of inferencing techniques have be used in table recognition.

Comparing inferences, even for the same target structure, is often difficult because

different observations or decision techniques are used.

In studying inferences in table recognition, we found the following categorization

of techniques to be useful.

Classifiers: assign structure and relation types in the table model to data.

Segmenters: determine the existence and scope of a type of table model struc-

ture in data.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 30

Decision Tree

Single Dimension
Thresholding (e.g. threshold a ‘columness’ fea-

ture to locate columns[64])
Priority of separators (e.g. table lines by

thickness[37])
Using area to classify noise vs. signal[18, 68,

83, 91]
Character class (e.g. alphabetic, non-

alphabetic, other[82])

Multiple Dimensions
Connected components

Defining[45]
Classifying[48, 61, 62, 66]

Document region classification[62, 66, 115]
C4.5 decision tree induction[94] (for table

detection[82])
Word token sets[107]
Table/non-table classification[116]
Text orientation (vertical vs. horizontal[66])
Chain code line segment type[69]

Neural Network

Optical character recognition[103]
Logo recognition[15]

Nearest Neighbour

k-nn (e.g. for defining clusters[84])
Weighted k-nn (e.g. for table detection[116])

Syntactic

String matching (e.g. HTML cell types[116])
Regular expressions (e.g. assigning types to text

lines[52, 82, 111])
Part of speech tagging (e.g. to classify roles of words

in tables of contents[7])

Statistical

Bayesian Classifier (‘Naive Bayes’)
Table detection[116]
Functional class of text block (e.g. author, title

for table of contents [106])

Bayesian network (e.g. assigning labels to regions in
tables of contents[106])

Probabilistic relaxation[99] (assigning labels to
words in tables of contents[10])

Figure 2.10: Classifiers: Inferences Used to Assign Structure and Relation Types.
Classification techniques used in table recognition include decision tree,
nearest neighbour, neural network, syntactic, and statistical methods.
Decision trees are by far the most common technique.

Parsers: produce graphs on structures according to table syntax, defined in the

table model.

This categorization separates the concepts of typing, locating, and relating structures

(determined by classifiers, segmenters, and parsers, respectively). These inferencing

classes are interdependent, however. The cyclic dependence between classifiers and

segmenters has been well documented[14]. Parsers use classification and segmentation

to define inputs for analysis, and in producing a parse (see Figure 2.12). In the

other direction, parse results can be used to provide context in segmentation and

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 31

classification.

Space does not permit a detailed discussion of the inferencing methods in the

literature. Instead we will briefly outline classifiers, segmenters, and parsers used in

table recognition as summarized in Figures 2.10, 2.11, and 2.12.

Figure 2.10 separates classifiers into decision tree, nearest neighbour, neural net-

work, syntactic, and statistical methods. We take a very general view of classification

in which assigning any type to data is taken to be classification; this includes identi-

fying an image region as being a connected component, for example. Decision trees

are by far the most common classification method used in table recognition. An alter-

nate organization for these classification methods is provided by the types they assign

(which correspond to table model structures and relations). This type of organization

can be seen in Figure 2.7, where classes of structures used in table models are listed.

Figure 2.11 summarizes segmenters, which search data for table model components

using a binary classifier. The binary classifier tests the presence or absence of a

table model component in a data region, while the objective function of the search

controls the scope of segmented regions. As a simple example, consider a connected

component segmenter; a simple classification defines connected components, while the

objective function of the search ensures that only the largest connected components

are actually segmented. Figure 2.11 categorizes segmentation in table recognition by

whether methods cluster or partition data. Clustering has been used to set parameters

adaptively using K-means clustering[124] and to cluster regions hierarchically based

on distance[53]. We include closure on relations as a type of clustering, for example of

a proximity relation[63]. Yoshida et al.[121] have presented a technique for clustering

HTML tables in the world wide web, producing meta-tables.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 32

Clustering

Connected components
Creation (e.g. for adjacent pixels[45], for adjacent word boxes[63])
Clustering connected components[62]

Tables by content[121]
K-means clustering (of projection histogram groups[124])
Hierarchical clustering of regions by distance[52]
Transitive closure (e.g. of a proximity relation [63])

Partitioning

Using breadth first search (e.g. to segment columns[53])
Using best-first search (e.g. to recover body, stub, and boxhead[59])
Table detection

Using dynamic programming[52]
Using best-first search[118]
Using simplex[81] algorithm[17]
Using iterative decreasing step[17]

Recursive Partitioning
X-Y cut[80]: alternating horizontal and vertical partitions at projection histogram

minima[37]
Modified X-Y cuts, using histogram minima and lines[16]
Recursive line partitioning (e.g. by ‘best’ separating line[66], by line separator

priority[37])

Exact Matching
Splitting text columns into rows at blank lines[63, 82]

Figure 2.11: Segmenters: Inferences Used to Locate Structures. Segmenters employ a
binary classifier and a search function to locate table model components.
Target regions matched by the classifier that also satisfy the objective
function of the search are clustered or partitioned within the data set.

Some partitioning segmentations are very simple, such as when rows are seg-

mented at blank lines in text files[63, 82]. Others are more sophisticated, such as

segmenters used in table detection. An important differentiating feature in table de-

tection methods is the type of search used. These have included best first search[118],

dynamic programming[52], the simplex algorithm[17], and Cesarini et al.’s iterative

decreasing step[17]. The most commonly used recursive partitioning methods in table

recognition are variants of the X-Y cut algorithm of Nagy and Seth[80]. Recursive

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 33

partitioning methods actually produce a parse as well as segment regions, as the re-

sult describes a hierarchy of regions which may be used to determine the table grid

and cell topology, for example[37].

Parsers used in the literature are summarized in Figure 2.12. Parsers produce

graphs describing logical structure according to table syntax defined in a grammar.

The grammars used in parsing are part of the table model. Parsers have been used

to apply probabilistic constraints on region types[115], for table detection[27, 96],

to define page grammars for X-Y cut-based analysis[68, 113], and to parse entry

structure in tables of contents[107]. The parsing technique proposed by Takasu et

al.[107] is interesting, because input tokens are initially provided with sets of possible

types assigned by a decision tree which the parser then constrains to produce a valid

interpretation. In the final interpretation, tokens are assigned a single type.

A small number of techniques for automatically inducing grammars from data

have been described in the literature. Takasu et al.[108] have described a method for

inducing a grammar for tables of contents from labelled data. Adaptive methods have

been used to define regular expressions describing the data types of cell contents[87,

100], and a context-free grammar for table of contents entry structure[7].

2.5.2 Inference Sequencing

Table recognizers are frequently required to make inferences based on hypotheses

produced by other inferences. For example, many systems will generate hypotheses of

line locations. Inferring the location of line intersections needs to assume temporarily

that these line hypotheses are valid. At a later point these line hypotheses may be

found to be invalid by another inference. In many cases however, once hypotheses are

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 34

Hidden Markov Models

Maximizing region adjacency probabilities[115]

Attributed Context-Free Grammars

Tables in images (with parse control-flow directives: [26])
Table form box structure[3, 8, 119]
Form structure[27]
Using input tokens with multiple types to parse tables of contents[107]
For tables in HTML files[116]
For page segmentation[68, 113]

Graph Grammars

Table form cell composition[2]
Table structure from word boxes[96]

Figure 2.12: Parsers: Inferences Used to Relate Structures. Parsers produce graphs
describing the logical structure of table model components. Here pars-
ing techniques are categorized by the type of grammar encoding log-
ical structure syntax: Hidden Markov models, attributed context-free
grammars, and graph grammars. In the process of defining relational
structure, parsers both segment and classify data. Consider the simple
production rule A → BC. Applying this rule in a parse clusters type
‘B’ and ‘C’ elements in the specified order to produce a type ‘A’ object.

accepted, they are not reconsidered. Rus and Subramanian have proposed an elegant

graph-based notation for describing this type of architecture without feedback[100].

Tubbs and Embley[110] have proposed an alternate architecture for recognizing

genealogical tables, making use of an ontology describing inheritance. The role of the

ontology may be understood as a parameter of their table model (see Section 2.3).

Input to the system describes cell locations and their text contents. Potentially valid

hypotheses regarding cell topology, entry structure, and properties of cell contents

defined using the ontology (e.g. dimension name and element relationships) are placed

in matrices. An iterative control structure is then used to alter confidence weights

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 35

associated with each hypothesis using an ordered rule set. Iteration stops when a

fixed point is reached for hypothesis weights, or after a fixed number of iterations.

Decision rules then determine which hypotheses to accept, and how these accepted

hypotheses are integrated into an interpretation of entry structure. In this scheme

hypotheses dynamically affect one another through feedback.

Commonly in the literature an ordered sequence of classifiers and segmenters is

used to infer instances of table model structures. As an example, consider a method

in which table cells are segmented, and then columns of cells are segmented. This

process can be considered a simple form of parsing, in which a hierarchy defining the

composition of objects is defined. For the previous example, the composition of the

column is described by the set of segmented cells. X-Y cutting[80] is another example,

where the recursive segmentation of regions produces a tree.

One advantage of explicit table models is that their syntax may be encoded in a

grammar. How the grammar is applied for table detection or structure recognition

can then be controlled using different parsing algorithms, which result in different

operation sequences. This ability to specify search strategy as a table recognizer

parameter is useful both for characterizing and comparing methods.

2.6 Performance Evaluation

After the design of a table recognizer is complete, the designer will have some ques-

tions. How fast is the system? How well does the table model fit tables in the intended

domain (e.g. images of technical articles, or HTML pages on the world wide web)?

How reliable are the inferences made by the system, or put differently, what are the

type and frequency of errors made by the system? In this section we describe the

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 36

methods and metrics used in performance evaluation of table recognition, which are

then used to address the last two questions.

In order to train or evaluate a table recognizer the logical and/or physical structure

of tables in documents must be encoded; this encoding is referred to as ground truth.

It is produced using another table model, which must be able to describe the outputs

of the table recognizer[51]. Ground truth may be produced manually with interactive

tools[55, 95] or by automatically generating document sets with ground truth[72, 90,

117]. Automatic generation permits a degree of experimental control not possible with

a random document sample, but then correspondence to real document sets must be

addressed. Whether real or generated automatically, many tables have ambiguities,

permitting multiple interpretations[52, 55]. An open problem is how, or whether, to

encode ground truth for these documents[51, 73].

In the table recognition literature three methods have been used to separate avail-

able documents with ground truth into training and testing sets: resubstitution, in

which all documents are used in training and testing; the ‘circuit-training’ or leave-

one-out’ method, in which each document is tested exactly once, with remaining

documents used for training each time; or by randomly assigning documents to the

training and testing sets. Resubstitution is seldom used as it produces positively

biased results[45].

Comparing systems in the literature is difficult, because table models are usually

not explicitly defined and differ significantly between systems, there are no available

benchmark data sets with ground truth, and systems are seldom described in enough

detail to permit replication. However, one trend appears to be that table recognizers

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 37

using detailed, narrowly-defined models to recover tables in well-characterized docu-

ment sets appear to perform their intended tasks best (for a good example of this,

see Shamillian et al.[103]). This is explained in part by substantial a priori knowl-

edge permitting strong, well-grounded assumptions to be incorporated into the table

model. This reduces the number of table model parameters necessary, making both

training and understanding the behaviour of the table recognizer simpler.

In the remainder of this section we describe the performance metrics used in table

detection and structure recognition, and mention some experimental design issues.

2.6.1 Recall and Precision

For classification, given a class X and a set of input patterns with associated ground-

truth, recall is the percentage of type X input patterns classified correctly, and pre-

cision is the percentage of input patterns assigned type X correctly. Over the set

of all possible classes, recall and precision are equivalent. For individual classes, the

number of correct class X classifications need not match the number of items correctly

assigned class X. To see this, consider the case where a binary classifier (returning X

or Y) always assigns class X.

For evaluating the segmentation of regions (e.g. for table detection), the splitting

and merging of ground truth regions needs to be taken into account[55, 72]. To

accommodate this, modified recall and precision metrics that make use of the area of

overlap between detected and ground truth regions have been devised[17, 64]. The

area of overlap between regions in recognizer output and regions in ground truth are

then used as weights in modified recall and precision metrics that take merging and

splitting into account.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 38

Precision and recall are sometimes combined into a single ‘F-measure.’ In the table

recognition literature this is non-standard, as both the arithmetic and harmonic mean

of precision and recall have been called an ‘F-measure’[39, 110]. The harmonic mean

of precision (P) and recall (R) is defined as:

H(R, P) =
2RP

R + P

The two metrics have different biases. For example, given the sum of recall and

precision T = R +P , the maximum harmonic mean value is obtained when R = P =

T/2. In contrast, for the arithmetic mean the resulting value depends only on the

sum of recall and precision, and not on their relative sizes.

2.6.2 Edit Distance and Graph Probing

Edit distance (see Section 2.3) has been used to compare detected tables to ground-

truth (taking false positives, false negatives, merges, and splits into account[52]). It

has also been used in table structure recognition to compare graphs describing the

logical structure of tables[76]. Edit distance has some associated problems. The

minimal editing sequence is not necessarily unique. Edit distance can be computa-

tionally intensive to determine. Finally, appropriately setting the weights of editing

operations is difficult: in the literature operation weights are always set to one.

To address these problems a new metric called table agreement has been proposed[55].

Agreement is computed by automatically generating queries about the number, con-

tent, topology, and indexing structure of cells in logical table structure encodings

for recognizer output and ground truth. Queries are verified or contradicted by

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 39

searching the other table encoding; agreement is defined as the percentage of ver-

ified queries. This process of generating and verifying queries from graphs is called

graph probing[76].

2.6.3 Experimental Design

Evaluation in table recognition is still maturing. Performance evaluations are usually

made from final outputs, ignoring individual inferences. As a result, the effects of

individual decisions are often confounded (inseparable) in the evaluation. Wang and

Hu have made a step forward in this regard. They performed an experiment making

use of a fixed classification method (an induced decision tree) while varying the set of

observations used for training the classifier[116]. In their design, the inference method

and observations are clearly separated into independent factors.

A number of other experimental design issues remain in the area. These include a

need for better sampling[73] and comparisons of experimental conditions[77]. A test

worth considering for the robust comparison of conditions is the Analysis of Variance

(ANOVA[46]).

2.7 Conclusion

We have presented the table recognition literature from the viewpoint that table

recognizers may be understood as sequences of decisions (inferences) supported by

observations and transformations of available data. These decisions are made relative

to a table model describing the location and composition of tables in a set of doc-

uments. Figure 2.7 summarizes the structures used in table models for recognition.

CHAPTER 2. A SURVEY OF TABLE RECOGNITION 40

Observations, transformations, and inferences made in the table recognition literature

are summarized in Figures 2.8, 2.9, 2.10, 2.11, and 2.12. In Section 2.6 we describe

performance evaluation methods for determining the sufficiency of a table recognizer

for recovering and/or analyzing tables in a set of documents. We have tried in our

discussion to point out various assumptions inherent or implied in different operations

and sequences of operations in the literature.

As pointed out in Section 2.6, it appears at present that simple, domain-specific

table models have more promise than complex, general models. It may be worth

studying whether combinations of table recognizers with simple models yield im-

provements in performance over the current state-of-the-art for large, heterogeneous

document sets such as technical articles.

Other avenues for future work include extending the proposed table models of

Wang[114] and others, further exploring content-based methods for recognition (in-

cluding cell cohesion metrics and the use of domain knowledge), improving exper-

imental design and evaluation techniques at both the level of individual decisions

and whole systems, defining corpora of ground-truth tables for use in the commu-

nity, and exploring new observations, transformations, and inferences for use in table

recognition.

Chapter 3

A Functional Language for

Recognition Strategies

In this chapter we introduce the Recognition Strategy Language (RSL), a functional

‘glue’ language for combining inference functions to create table recognition systems.

We characterize table recognition problems as simple imitation games in Section 3.2.

We then introduce interpretation trees, which are used to formalize the inference

sequences of RSL specifications (called strategies) in Section 3.3. Various aspects of

RSL are summarized in terms of the table models, observations, transformations, and

inferences expressible within RSL. The operations of RSL are defined in Section 3.9,

and then the chapter closes with a brief summary in Section 3.11.

3.1 Motivation

In Section 2.1 we posed a number of questions related to understanding the decisions

made by a table recognition system. Reordered for the current discussion, these were:

41

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 42

• What decisions are made?

• What inferencing techniques make decisions?

• On what data are decisions based?

• What is assumed when decisions are made?

In the last chapter we addressed these questions generally, to provide a sense of the

current state-of-the-art in table recognition research. We described how decisions

about table location and structure in data (inferences) are supported by observations

and transformations. We listed and summarized a number of the inferencing tech-

niques that have been used, categorized into classifiers, segmenters, and parsers. The

observations and transformations that produce data from which decisions are made

were also summarized. Finally, some of the implicit and explicit assumptions used by

table recognition systems were indicated in the discussion.

In this chapter we turn our attention from table recognition in general to the de-

sign, construction, and comparison of individual table recognition systems. Currently,

there is a substantial amount of effort involved in building a table recognition system;

in general, these systems are built from scratch in a general-purpose programming

language. Significant subsystems must be constructed before analytical functions

(observations, transformations, and inferences) may be built. These subsystems in-

clude the data structures for recognized objects and intermediate observations, the

control flow architecture, and geometric libraries (e.g. to support bounding box and

line intersection analysis). Our experience in building previous document recognition

prototypes is that the time spent on these preliminaries tends to dwarf the time spent

implementing analytical functions when building recognition systems in this manner.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 43

Table recognition system designers would benefit from even small amounts of

tool support, to provide them with more time to design and revise the analytical

parts of their systems. Ideally such tools would also assist them in addressing the

questions above, as these are primary concerns when a designer is creating, analyzing,

debugging, revising, or comparing recognition algorithms.

To address this need, we have designed the Recognition Strategy Language (RSL).

RSL is a simple functional ‘glue’ language for quickly combining and sequencing

inferencing functions. This approach is partly inspired by John Ousterhout’s Tcl

language[85] for rapidly combining components implemented in various languages

and frameworks. Among other differences, Tcl is a procedural, typeless language

(all data is text-typed), while RSL is a functional, typed language with a small set

of types: parameters can be number or string literal-valued, and a small number of

parameterizable structured text record types are used to describe decision results.

Our first implementation of RSL was produced by translating RSL programs into the

functional language TXL[22, 25]; we describe this translation in the next chapter.

RSL implementations automatically maintain sets of hypotheses for the designer,

including histories of hypothesis creation and revision, and of changes caused by indi-

vidual inferencing functions. In addition to saving the designer effort, this solves the

problem of confounded inferences cited in Section 2.6.3: one can always determine the

effects of individual inferences. Statistical confidence values and multiple inferencing

results are also accommodated and managed by RSL.

The syntax of RSL captures the composition of and dependencies between table

model component types. This helps address the problem of implicit table models

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 44

raised in the last chapter. The resulting model descriptions are type and parameter-

based. For example, the RSL syntax can capture that columns are made of cells, and

depend on vertical lines and certain parameters when constructed, but not that only

the leftmost column can be labelled as a table stub. An advantage of having such

loosely defined models is that they can be easily modified without serious concerns

about model consistency. This flexibility is particularly helpful in the early stages

of designing a system. There are of course substantial advantages to having more

explicit models, as discussed in the previous chapter.

RSL is intended for describing the sequential feed-forward architectures common

in the literature, as well as feed-forward architectures that use inferences produc-

ing multiple results. In the remainder of this chapter we describe the game-based

motivation of RSL, the RSL syntax and informal semantics, and the table models,

observations, transformations, and inferences used in RSL programs.

3.2 Table Recognition as Imitation Games

In creating a table recognizer, at some point a designer needs to assess how well

their system interprets tables, in other words, to perform an evaluation. A number of

important questions are then raised. Which set of documents, or parts of documents,

is the system intended for? How should members of this set be sampled to produce

test sets for evaluation? How does one determine the ‘correct set’ of interpretations?

It has been pointed out previously that this last question, which we will call the

‘ground truth’ question, is a hard one; it is difficult, perhaps even impossible for

universally ‘correct’ sets to even be defined[51].

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 45

Alg1

Out1

Alg2

Out2

AlgN

OutN

Input Set

3. Selected Interpretation
Procedure

4. Rank Algorithm Outputs
by Distance to Accepted Interpretations

(Using Selected Distance Metric)

1st Place
(e.g. Alg2)

2nd Place
(e.g. AlgN)

Last Place
(e.g. Alg1)

Accepted
Interpretations

2. Sample Selection
(e.g. Random, Manual)

1. Domain Selection
(e.g. TPAMI Articles)

Figure 3.1: Table Recognition as Imitation Games. A game is defined by four ele-
ments: a domain, a sampling method, an interpretation procedure used
to generate the set of accepted interpretations, and a distance metric used
for ranking recognition results. The goal of the game is to produce the
algorithm whose output most closely matches the set of accepted inter-
pretations, according to the distance metric.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 46

This state of affairs is not that surprising when one considers that as with natural

language, tables are adapted to the individual needs of the persons using them, and

so there is a wide variation in the types, styles, and methods of interpretation for

tables. We end up in a situation where to know whether a table recognition system

interprets an input correctly depends upon who we are asking. We propose that the

best empirical measure of a table recognizer’s performance is one where ‘who we are

asking’ is known, and where results of such evaluations are parameterized by this

person, persons, or algorithm(s). Taking things a step further, if we view evaluation

as part of and not subsequent to recognizer design, then table recognition algorithms

can be seen as strategies for a class of imitation games.

In a table recognition imitation game, designers try to maximize the ‘placing’

of their algorithm against a set of other algorithms by best imitating the output

of a selected interpretation procedure (e.g. that used by a person defining ‘ground

truth’, or a chosen algorithm). In a ‘solitaire’ game examining only a single algorithm,

designers simply try to match the outputs of the interpretation process they are trying

to imitate as closely as possible. This class of games is illustrated for the multiple

algorithm case in Figure 3.1.

A ‘table recognition imitation game’ is specified by four things: a domain defining

the set from which inputs used in the game are taken, a sampling method for drawing

the input set from the domain, an interpretation procedure used to define the set

of accepted interpretations in the game, and a distance metric for comparing the

outputs of algorithms to the accepted interpretation set. Algorithms are ranked by

the similarity of their outputs to the accepted interpretation set as determined by a

distance metric (e.g. some combination of recall and precision).

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 47

Table recognition strategies in the game may use very different table models re-

flecting their different approaches, but for the game to be fair the algorithms must

agree on the types and relations on regions to be compared by the distance metric.

As an example, for table structure recognition these common subsets of the models

might include cells containing words, rows and columns containing cells, and a binary

indexing relation defined on cells. Clearly, it is in the best interest of a participant

in a formal game (such as at a conference) to make their table models include or ac-

commodate this ‘evaluation’ model, in order for their outputs to be properly assessed

by the distance metric.

In designing table recognition algorithms informally, for example without a par-

ticular document set or distance metric in mind, one might say that a designer plays

a series of games of ‘imitation solitaire,’ trying to best imitate their own model(s) of

table location and structure for some set of examples. Some intuitive sense of the

distance between the algorithm outputs and what they think the output ‘should be’

is used to evaluate results. In this situation, the designer both designs the algorithm

and produces the accepted interpretations, and so consciously or not, is trying to

imitate his or her self.

It is also worth noting in this game view that heuristics become acceptable or even

preferable if they produce better results than more general techniques. From this

vantage point, heuristics are tactical assumptions, simplifications intended to reduce

the space of possible model instances while maximizing a score within a particular

game. Whether a heuristic generalizes is only of interest if one wants or needs to

apply the algorithm to another game of a different construction (e.g. a different

domain, interpretation process, or evaluation metric). This may partly explain why

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 48

procedural methods employing heuristics are so common in the literature; designers

appear generally to have a particular imitation game, or class of imitation games in

mind. As pointed out earlier, the ‘general case’ game is hard to even properly define,

so simplifying assumptions of some sort or other seem unavoidable.

The Recognition Strategy Language makes the executable descriptions of these

imitation game strategies more abstract than implementations in a conventional pro-

gramming language. In RSL, strategies are defined in terms of a set of legal ‘moves,’

which are types of decisions. For a given decision type the process used to determine

the decision outcome can be arbitrary; for example, the result of classifying cells as

data or headers could be returned from a neural network, nearest neighbour classi-

fier, grammar-based classifier, or an interface could be used to collect classification

results from a human operator (e.g. a ‘ground truther’). By fixing a set of decision

types in RSL, we can more uniformly and abstractly describe the types and results

of inferences in a strategy.

Decisions in RSL strategies may be compared between strategies and the results of

these decisions recorded for later analyzing and comparing strategies, as we shall see.

The set of decision types in RSL include region classification, region segmentation,

defining binary relations on regions, and rejecting hypotheses. Additional ‘moves’

accept and reject sets of hypotheses (interpretations), and control the application of

other ‘moves’ (a simple conditional construct). RSL operations are described in detail

in Section 3.9, and summarized in Appendix A.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 49

3.3 Interpretation Trees

If as in RSL we formalize the possible decisions about table location or structure, we

can characterize the operations carried out by a table recognition strategy using a

tree. This interpretation tree specifies the sequence of inferences made during recog-

nition, branching whenever alternate interpretations exist, such as when alternate

classifications of a region (e.g. as header or data cell) are considered plausible.

Each node in an interpretation tree represents an interpretation: hypothesized

regions and relations on regions such as cell topology and indexing structure that

have been inferred from the input. Some nodes in an interpretation tree may be

distinguished as accepted nodes, whose associated interpretations are returned as

output. All remaining interpretations are considered to be rejected by the strategy. If

no nodes are marked as accepted when a strategy completes, the strategy is considered

to have rejected the input data.

Interpretation trees may be described in extensive (complete) and normal (re-

duced) form (see Figure 3.2). An extensive hypothesis tree represents all intermediate

interpretations. A normalized hypothesis tree reduces all sequences of nodes in which

no branching occurs to a single node. The normalized tree nodes compactly represent

interpretation states before branching occurs.

Interpretation trees represent a possible-worlds view of recognition outcomes[34],

where at any given time a set of interpretations may be considered plausible, with

each interpretation or ‘world’ comprised of a different set of accepted hypotheses. We

will often refer to the set of plausible interpretations at any one time as the candidate

interpretations.

RSL currently describes recognition strategies that construct interpretation trees

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 50

I3 I4* I5

I0
(input)

I1

Classify Words as Cells

I2

Segment Cells into Rows

Segment Cells into Columns
(3 Interpretations)

I3 I4* I5

I0
(input)

I2

Classify Words as Cells;
Segment Cells into Rows

Segment Cells into Columns
(3 Interpretations)

a. Extensive Form b. Normal Form

Figure 3.2: Interpretation Trees. Nodes represent interpretations, which describe hy-
pothesized regions and relations on regions such as cell topology or index-
ing structure. Edges in the trees edges represent inferencing operations
that decide table model locations and structure. Extensive trees (a) pro-
vide separate nodes for all intermediate interpretations, while trees in
normal form (b) represent non-branching paths in the tree using the final
node in the path, collapsing the inference sequence into a single edge.
The set of nodes at any depth in the tree are called the candidate inter-
pretations at that point in the analysis. The asterisked nodes (I4*) are
accepted interpretations that will be returned as output.

breadth-first. Starting with the input data as the first candidate interpretation, in-

ference functions are applied separately to each candidate interpretation, generating

one or more new candidate interpretations from each (and removing the input in-

terpretations from the set of candidate regions). Note that an inference may have a

result in which there is no effect, leaving the hypotheses of the candidate interpreta-

tion unaltered. At each step in the strategy, an operation is applied to all candidate

interpretations, thereby building the tree breadth-first.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 51

In RSL, accepting an interpretation makes it a leaf in the interpretation tree,

removing that interpretation from further analysis. This reflects a common practice in

the table recognition literature, where once an acceptable interpretation is produced,

analysis stops; most commonly the strategy terminates when a single acceptable

interpretation is produced, as indicated in the previous chapter.

There is of course no reason why a recognition strategy could not build an in-

terpretation tree depth-first, or in some other order, possibly even revisiting nodes

and changing their acceptance state. It is also conceivable to have a strategy that

accepts an intermediate interpretation and then continues to alter the interpretation,

possibly to produce another accepted interpretation. For example, a coarse-to-fine

recognition strategy might propose a set of rows, which is later split producing more

rows, returning both as accepted interpretations. As these are uncommon in the ta-

ble recognition literature, for the time being these possibilities are not expressible in

RSL.

3.4 RSL Strategies

RSL programs, called strategies, describe the sequential application of inference and

supporting functions, transforming a single input graph to one or more output graphs

representing the accepted interpretations produced by a recognition strategy. As men-

tioned in the previous section, the strategies expressible in RSL produce interpretation

trees breadth-first (i.e. in a feed-forward fashion). We felt it was natural to create

RSL as a functional language, representing decision sequences using function compo-

sition. For a concise motivation for using functional programming in computer vision

tasks in general, see Breuel[12].

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 52

Within RSL itself, only two types of data are defined and manipulated: the values

of adaptive parameters, and the interpretation tree. For convenience, we will often

distinguish the sets of candidate and accepted interpretations within the interpreta-

tion tree, as these are the data observed and transformed by inferencing functions in

RSL. At present inferences are permitted to observe only accepted hypotheses when

making decisions. We will discuss this further in Section 3.7.

There are no local variables or constants in RSL. This approach was taken in

order to make the definition and adaptation of recognition parameters easy to locate.

By defining all recognition parameters in one place, designers can determine quickly

what the number, names, and types of strategy parameters are. At present, RSL

parameters may be number or string literal-valued.

All functions within RSL, which we term strategy functions, transform the in-

terpretation tree. Strategy functions describe a sequence of inferencing, parameter

adaption, conditional, strategy function call, and output (‘write’ and ‘print’) state-

ments. To prevent side-effects, all parameter adaptations have only local scope, and

have an effect only within the associated strategy function and any sub-functions.

The signature of all strategy functions is:

(I, P) → I ′

where I and I ′ are interpretation trees, and P is the set of parameters passed from

the original declaration (for the ‘main’ strategy function) or from a calling strategy

function (which may have altered adaptive parameters before the call). To reduce the

verbosity of RSL, parameters of strategy functions are always implicit. An example

of the strategy syntax can be seen in Figure 3.3 (from ‘strategy’ to ‘end strategy’).

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 53

As is common in many programming languages, execution begins with the strategy

function named ‘main’ in an RSL specification.

There is only one conditional construct in RSL strategies, the for interpretations

command. If present, this is the first operation in an RSL strategy function. It is a

conditional test applied to each of the candidate interpretations, to prevent applying

the function to some or all of the candidate interpretations (i.e. a guard). The set

of candidate interpretations is determined using an external function, defined outside

of an RSL strategy. We will see examples of this operation in Chapter 5, where it

is used for a single test and to define the termination point of a recursive strategy

function.

As mentioned earlier, there are no local variables or constants in RSL; further,

there are no commands to directly manipulate the interpretations themselves. Results

of inferencing and other operations are expressed using text records, which the RSL

core library then uses to update the interpretation tree and interpretations appro-

priately. This substantially reduces book-keeping overhead and simplifies expressing

inference functions for a strategy designer.

External functions used in RSL regularly need to observe the contents of cur-

rent interpretations, such as to find out how many cells exist, and so a library of

graph observing functions must be available for use within the external functions of

an RSL strategy. Our experience has been that this library is a bottleneck in the

system: a graph-observing library with only low-level operations makes expressing

and implementing algorithms unnecessarily difficult.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 54

model regions

2 Image Word Ce l l Row Column
end regions

4

model relations

6 % ’ contains ’ r e l a t i o n type de f ined by d e f a u l t .
ad j a c e n t r i g h t ad jacent be low

8 end relations

10 recognition parameters

sMaxRowSeparation 2 % mi l l ime t r e s
12 sMaxColumnSeparation 2 % mi l l ime t r e s

aReso lu t i on 300 % dpi ; d e f a u l t .
14 sMaxI te ra t i ons 1000

end parameters

16

strategy main
18 adapt aReso lu t i on using % get scan r e s o l u t i o n from

ge tScanReso lu t i on () % the input image a t t r i b u t e s .
20 observing

{ Image } regions

22

c las s i fy {Word} regions as { Ce l l } % c l a s s i f y a l l words as c e l l s .
24

relate { Ce l l } regions with { ad j a c e n t r i g h t } using % de f i n e r i g h t adjacency
26 def ineRightAdjacency (sMaxRowSeparation , aReso lu t i on) % between c e l l s

28 segment { Ce l l } regions into {Row} regions using % segment c e l l s in to rows ,
mergeRowsFromCells () % observ ing c e l l s and a d j a c e n t r i g h t

30 observing % edges in i n t e r p r e t a t i o n graphs
{ ad j a c e n t r i g h t } relations

32

relate { Ce l l } regions with { ad jacent be low } using % de f i n e lower adjacency
34 defineLowerAdjacency (sMaxColSeparation , aReso lu t i on) % between c e l l s

36 segment { Ce l l } regions into {Column} regions using % segment c e l l s in to columns ,
mergeColumnsFromCells (sMaxI te ra t i ons) % observ ing c e l l s and ad jacent be low

38 observing % edges in i n t e r p r e t a t i o n graphs
{ ad jacent be low } relations

40

accept interpretations % accept a l l candidate i n t e r p r e t a t i o n s
42 end strategy

Figure 3.3: Simple RSL Strategy for Table Structure Recognition. Comments are
indicated using the ’%’ symbol.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 55

3.4.1 A Simple Example

We now demonstrate how RSL is used to ‘glue’ inferencing functions using the simple

table structure recognition algorithm shown in Figure 3.3. This example contains the

four main components of an RSL strategy: the model region type list (lines 1-3), the

model relation type list (lines 5-8), the list of recognition parameters (lines 10-15),

and the main strategy function (lines 17 to the end). Calls to external functions for

inferences and other operations follow the keyword ‘using’ in RSL (found on lines 19,

26, 29, 34, and 37).

In RSL, hypotheses are represented using directed graphs with attributes; the

model regions list defines the legal set of types that may be associated with a physical

region, represented as nodes of a graph. The model relation type list defines the edge

types (equivalently, edge labels) that may be used to relate nodes. One relation is

pre-defined: the containment, or ‘contains’ relation, which describes how regions are

composed of other regions. For example, a column that contains three cells would

be represented as a single node with associated type attribute ‘column’, the cells as

three nodes with associated type attribute ‘cell,’ and the ‘contains’ relation would

include edges from the column node to each of the cell nodes.

Recognition parameters are static (constant) or adaptive (variable) in RSL. We

enforce a very simple Hungarian naming convention[105] for parameters in RSL, with

static variables beginning with lower case ‘s’ and adaptive variables beginning with

lower case ’a.’ All recognition parameters must be defined in this section, as there are

no local variables or constants in RSL. This helps insure that parameters of a table

recognition system may be easily located and altered.

For this example, the input is a graph containing a node of type ‘image,’ and a

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 56

number of ‘word’ nodes representing the bounding box location of words in the image.

The main function contains seven operations. The first operation (lines 18-21) alters

the adaptive parameter aResolution to obtain the scanning resolution from attributes

of an image represented as a node in the input. Note that this operation makes use

of the external function getScanResolution().

Lines 23-39 use three of the basic inferencing operations in RSL: classifying, seg-

menting, and relating regions. First, all words are classified as cells (line 23). Then

cell regions are related using a relation named adjacent right, to represent whether

a cell has another cell adjacent to the right of itself. The relation is defined using

the external function defineRightAdjacency(), which is passed two parameters (lines

25-26). The first parameter represents a distance in millimeters, and the second is

our adapted parameter representing the scanning resolution in the input image. The

adapted parameter will be used to convert this distance appropriately to a number

of pixels. Cell regions are then segmented into rows, using the previously computed

adjacent right relation (lines 28-31).

We next perform a similar analysis for columns, this time defining a relation

describing the closest cell adjacent below a cell (lines 33-34), followed by another

segmentation, this time segmenting cells into column regions referring to the just-

defined adjacent below relation (lines 36-39). The sMaxIterations parameter specifies

the maximum number of iterations for optimizing the column segmentation.

The final operation in the strategy on line 41 indicates RSL should accept all inter-

pretations produced by the previous operation, in this case the column segmentation.

As we will describe in more detail later, RSL inferencing operations may produce

multiple results. For example, assume that before applying the column segmentation

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 57

operation (lines 36-39) we have one interpretation under consideration, and after ap-

plying the segmentation operation we now have two possible interpretations. accept

interpretations as given on line 41 would accept both of these interpretations.

3.5 Table Models in RSL

RSL table models are unique in that they are used to record the history of hypothesis

creation and revision directly within interpretations (model instances). Both accepted

and rejected interpretations created by an RSL strategy contain their entire construc-

tion history, along with an indication of which hypotheses are accepted at the end

of analysis. Models are families of directed graphs with attributes that describe the

physical location and logical types of regions, the relational containment structure of

regions (the ‘contains’ relation), and additional logical binary relations on regions.

The ‘model regions’ and ‘model relations’ sections of an RSL specification define the

sets of legal region and relation logical types for interpretation graphs.

We note here that the graph-based table models used in RSL resemble that used

by Hu et al.[53, 55]. RSL’s models are more general, encoding relations in addition

to region containment, and using additional node and edge attributes to encode hy-

pothesis histories, but the region structure scheme is identical. We agree with those

authors’ observation that not strictly enforcing the logical labelling of regions relative

to one another is useful: particularly in the design stage when models are first being

developed.

Figures 3.5 and 3.6 demonstrate how physical and logical structure are represented

by interpretation graphs (table model instances) in RSL. In the rest of this document

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 58

strategy main
relate {Word} regions with { below } using

f indLowerAdjacentWords ()

segment {Word} regions into {Column} regions using
segmentVerticalWordGroupsAsColumns ()
observing

{below } relations

reject {Column} c l a s s i f i c a t i o n s using
r e j e c tS ing l eCe l lCo lumns ()

accept interpretations
end strategy

Figure 3.4: RSL Strategy for Segmenting Words into Columns. For brevity, the
model regions, model relations, and recognition parameter sections are
not shown. A table model instance (interpretation) produced by this
strategy is shown as a graph in Figure 3.5 and as a text file graph encod-
ing in Figure 3.6.

we will often refer to interpretations and interpretation graphs interchangeably. In

the remainder of this Section we summarize the representation of physical and logical

structure in RSL table models, and hypothesis histories.

3.5.1 Physical Structure: Region Geometry

The locations of regions in RSL may have two geometric shapes: polylines (defined

by a set of two or more points), and bounding boxes. Within an RSL interpretation,

nodes of an interpretation graph (model instance) represent physical regions that

may be associated with one or more logical types. Where possible, RSL maintains

the physical locations of regions automatically. For example, if we segment words into

a cell, RSL automatically computes the bounding box of the words contained by the

cell and assigns this as an attribute of the new cell region node in the interpretation

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 59

Word 1 Word 2 Word 3

Word 4

Column 2
Image 1

below

Column 1 Column 3

Column 1

Word 1

Image 1

Column 2

Column 3

Word 3

Word 2 Word 4
below

a. Region Structure and Below Relation b. Interpretation Graph

Figure 3.5: An Interpretation Graph Constructed by the Strategy in Figure 3.4. Re-
gions and relations on regions are represented in the interpretation graph
on the right. contains edges are represented as unlabeled, solid arrows on
the right. Rejected contains edges and column regions are shown using
dotted boxes and lines. A textual representation of the graph in (b) is
shown in Figure 3.6. The Image and Word regions are provided as input.

graph.

3.5.2 Logical Structure: Region Types and Relations

Logical structure is defined in RSL by assigning logical types to regions, and through

binary relations defined on regions. Logical types are assigned to regions by inferences

that create or classify regions (the create, replace, and classify operations described

in Section 3.9.2). An existing region which is no longer assigned any of these types

(e.g. after a rejection of region type) is assigned the default ‘REGION’ type by RSL,

indicating that the region has a physical location, but no logical type. Legal region

types are defined in the ‘model regions’ section of an RSL strategy.

As mentioned earlier, the region containment, or ‘contains’ relation is always de-

fined, and is intended to be manipulated only indirectly using region segmentation

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 60

N [Image]

Image1 {BB 0 0 2500 1000, File "tableRegion.tif", Resolution "300",

Input, Active "yes"}

N [Word]

Word1 {BB 200 300 400 400, Input, Active "yes"}

Word2 {BB 500 300 700 400, Input, Active "yes"}

Word3 {BB 800 300 1000 400, Input, Active "yes"}

Word4 {BB 500 700 700 800, Input, Active "yes"}

N [Column]

Column1 {BB 200 300 400 400, Segment "Inf 2: 0.4", Reject "Inf 3: none",

Active "no"}

Column2 {BB 500 300 700 800, Segment "Inf 2: 0.9", Active "yes"}

Column3 {BB 800 300 1000 400, Segment "Inf 2: 0.6", Reject "Inf 3: none",

Active "no"}

N [REGION]

Column1 {BB 200 300 400 400, Reject "Inf 3: none", Active "yes"}

Column3 {BB 800 300 1000 400, Reject "Inf 3: none", Active "yes"}

E [contains]

(Column1, Word1) {Relate "Inf 2: 0.4", Reject "Inf 3: none", Active "no"}

(Column2, Word2) {Relate "Inf 2: 0.9", Active "yes"}

(Column2, Word4) {Relate "Inf 2: 0.9", Active "yes"}

(Column3, Word3) {Relate "Inf 2: 0.6", Reject "Inf 3: none", Active "no"}

E [below]

(Word2, Word4) {Relate "Inf 1: none", Active "yes"}

Figure 3.6: RSL Text Encoding of Interpretation Graph in Figure 3.5b. Logical region
types have the format ‘N [region type]’, and logical relation types have
the format ‘E [relation type]’. Attributes represent physical locations
as bounding boxes (BB), whether a hypothesis is accepted (Active) or
was given as input (Input), and hypothesis histories. Histories follow the
attribute labels Segment, Relate, and Reject, with ‘inference time’ and
confidence values given. The inference times in this interpretation graph
(e.g. ‘Inf 2’ represents ‘time 2’) correspond to the sequence of inferences
shown in Figure 3.4.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 61

operations (see Section 3.9.3). The relate operation may be used to define relations

of other types, for example to represent indexing structure, region adjacency, the

physical proximity of regions (e.g. ‘close’ rows), or any other relationships felt to be

useful by the designer for analysis. Each relation has a type and an associated set of

edges. The set of legal relation types are defined in the ‘model relations’ section of

an RSL strategy.

3.5.3 Hypothesis History

There are a small number of ways to construct hypotheses in RSL. They include

creating a region with a logical type, associating a logical type with a physical region,

adding edges to a logical relation, or rejecting any of the previous hypothesis types.

To solve the problem of confounded inferences in recognition outputs cited in Section

2.6.3, RSL automatically records when individual hypotheses are created, rejected,

and re-instantiated in an interpretation. As an example of re-instantiation, consider

a case where a region is labelled as cell, this hypothesis is then rejected, and then

later the same region is again labelled as a cell.

A hypothesis history is created for each hypothesis in an interpretation graph

using annotations (see Figure 3.6). RSL records time stamps for hypotheses using

the number of strategy inferences previously applied. Currently all inputs to RSL are

treated as givens, a hypothesis set accepted from time ‘0’ (in input), until a strategy

completes. The first inference operation in a strategy is applied at time ‘1,’ and so on.

Note that this ‘time stamp’ is equivalent to the depth of an interpretation within an

interpretation tree. To ease understanding of interpretation graphs, time stamps are

associated with a text label representing the type of inference that created or revised

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 62

a hypothesis.

The annotated hypothesis history in an interpretation graph provides a compact

representation of a single path in an interpretation tree. From an interpretation graph

with an annotated hypothesis history, we can easily determine which hypotheses

existed and were active along a path in the interpretation tree at any ‘inference time’

from the input to the present. In addition, for each hypothesis, associated inferencing

operations and results may be looked up in the interpretation tree output of RSL to

find the operation performed, number of inference results, and the details of each

result. This assists greatly with debugging strategies and analyzing their output. As

an example, it is now possible to determine whether a cell region not present in the

final output existed at an earlier point in an interpretation’s construction.

An interpretation graph represents the set of accepted and rejected hypotheses at

the final ‘inference time’ using a simple binary-valued attribute named ‘Active’ (see

Figure 3.6).

3.6 Inferences in RSL

In RSL, inferences are defined by the type of hypothesis they produce, and the book-

keeping operations required to update the interpretation tree appropriately. For ex-

ample, region classification is distinct from ‘general’ region segmentation, which is dis-

tinct from region merging ; merging and segmentation involve different book-keeping

transformations (see Section 3.9.3). The procedure used for decision making may be

arbitrary. To support this, external inferencing functions are a central part of RSL.

Inferencing functions only need to return inference results of the appropriate type;

it is the language library itself, or RSL Core, which manages the updating of the

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 63

interpretation tree and annotating of interpretations (see Figure 3.7).

RSL inferences are always applied to each candidate interpretation individually.

For example, if there are three candidate interpretations available when a classifica-

tion operation is called, the operation is applied individually to each of the candidate

interpretations, producing one or more interpretations per candidate interpretation

as output. Proceeding in this way, inferences in an RSL strategy produce an inter-

pretation tree breadth-first.

In the remainder of this Section, the roles of external functions and confidences

in RSL Inferences are described in more detail. Descriptions of the inferencing com-

mands of RSL may be found in Sections 3.9.2 to 3.9.6.

3.6.1 External Functions

One of the observations made in Chapter 2 was that a large variety of inferencing

methods have been used in table recognition, and more might be applied to the

problem. As a result, we wished in designing RSL to allow as many decision techniques

as possible. With this goal in mind, we made external functions that return structured

text results a central part of the RSL language. Each inferencing operation in RSL has

an associated structured text format used to describe the results of such an operation.

This approach was inspired partly by the Tcl language[85], where all functions return

a single type (text) to permit results from various applications to be combined. The

structured result formats used for RSL inferences allow decisions from significantly

different techniques to be described concisely and uniformly.

Each candidate interpretation graph and the text of the associated RSL opera-

tion itself are implicit arguments of all external functions in RSL. To illustrate this,

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 64

Figure 3.7: RSL Recognition Process. This graph is adapted from the table recogni-
tion process illustrated in Figure 2.1. In RSL an input document is used
only once, to define the initial interpretation of the interpretation tree.
The RSL Core library transforms the interpretation tree based on in-
ference results, and transforms observations of current interpretations to
enforce observation specifications (see Section 3.7). The RSL Core also
updates recognition parameters based on adaptation results. Observa-
tions and transformations used within external functions are not shown,
because they are not visible within RSL.

consider the following RSL excerpt:

c lass i fy { Block } regions as { Column } regions using
c la s s i fyBlocksAsColumns (sThreshold)

In this example, we can see that the only explicit parameter passed to the external

function classifyBlocksAsColumns() is sThreshold, a static parameter defined in the

recognition parameters section of the strategy (see Figure 3.3 for an example of a

recognition parameters section).

In the current implementation, the TXL function signature for the external func-

tion in the above example might look like:

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 65

function c la s s i fyBlocksAsColumns Threshold [number]
RSL Op [s t ra t egy op] Graph [graph]

where the arguments are a numeric threshold (given by sThreshold in the previous

example), the RSL command (the text of the previous example), and an interpretation

graph.

The purpose of passing the RSL operation text to external functions is to allow

libraries to be written for operating on multiple region and/or relation types. For

example, suppose we define a single external function to segment regions bounded

by lines, called mergeCellsWithSameAdjacentLines(). By passing the RSL operation

text, we can then use this function multiple places, as in the following example:

segment { Ce l l } regions into { Column } regions using
mergeCellsWithSameAdjacentLines ()
observing

{ V e r t i c a l l i n e } regions
{ ad j a c e n t l e f t , a d j a c e n t r i g h t } relations

. . .

segment { Ce l l } regions into { Row } regions using
mergeCellsWithSameAdjacentLines ()
observing

{ Ho r i z o n t a l l i n e } regions
{ adjacent top , adjacent bottom } relations

In the first RSL operation, the external function is used to segment cells bounded by

vertical lines on the left and right into columns, and in the second RSL operation, the

same external function is used to segment cells bounded by horizontal lines above and

below into rows. From the RSL operation text, the external function can determine

the output type and the region and relation types to use in the analysis. When used

this way, the observed types act as additional parameters of the external function.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 66

The same result could be achieved by passing appropriate parameters specifying

lists of model types to external functions, but this is awkward because it substantially

increases the size of the recognition parameter list, and is redundant given the presence

of the relevant types in the command itself. Passing the operation text does not raise

the risk of functions performing unrecorded observations of model types due to the

observation mechanism in RSL, described in the next Section.

3.6.2 Confidences

All inferencing operations may have confidence values such as a statistical frequency

associated with their results. The value ‘none’ is used to indicate when no confidence

was computed. Confidences are stored as attributes in the interpretation graph, so

that they may be used later. An example is shown in Figure 3.6; examining this inter-

pretation, only the segmenting operation from Figure 3.4 at ‘inference time’ 2 made

use of numerical confidences. The remaining inferencing operations did not produce

numerical confidences, and so most results in the annotated hypothesis history have

a confidence value of ‘none.’ In RSL, all inferencing operations that do not make use

of external functions return results with a confidence value of ‘none.’

All hypotheses not provided as input (equivalently, givens) are assigned confi-

dences as a strategy progresses in RSL. An example of where confidences are useful

for table recognition include Hurst and Nasukawa’s algorithm which uses N-grams

to determine the likelihood of word continuations[60]. Within RSL, the continua-

tion confidences could be represented as edges with statistical confidence values in a

relation.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 67

3.7 Observations in RSL

The syntax of RSL captures observations of recognition parameters and the current

interpretations (see Figure 3.7). To keep RSL simple and flexible, observations within

external functions are not captured by RSL. The approach taken in RSL allows more

information to be captured in the implementation of feed-forward table recognition

strategies; as we will see in the coming chapters, the observation framework in RSL

allows us to determine dependencies between different model types, and dependen-

cies of model types on recognition parameters. Determining these dependencies is a

laborious and error-prone procedure if performed manually from source listings.

In the remainder of this section we describe how observations of hypotheses and

recognition parameters are captured within RSL. Observations made by RSL strate-

gies are summarized in Figure 3.7.

3.7.1 Hypothesis Observations

RSL uses observation specifications to indicate which hypothesis types support infer-

ences. These optionally follow external function calls, and partly determine which

region and relation types are present in interpretation graphs when passed to an ex-

ternal function. Observation specifications allow us to capture dependencies between

hypothesis types in the RSL syntax itself.

In RSL, only accepted hypotheses are ever observable by external functions. For

example, if a cell region is rejected, it will not be visible to external functions. Cur-

rently in RSL, rejected hypotheses are always filtered before an interpretation graph

is passed to an external function. This is consistent with common practice in the table

recognition literature, where decisions tend to be made only from what is currently

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 68

true and histories of rejected hypotheses are not maintained.

To reduce the verbosity of RSL, the built-in region structure or containment (‘con-

tains’) relation is always visible; this is reasonable because the types of regions in the

containment relation cannot be determined without explicitly observing region types.

The syntax of the observation specification is very simple; it lists region and

relation types to be made visible to the external function (remembering that the

containment relation is visible by default). The syntax for an observation specification

is:

observing
{ regions } regions
{ relations } relations

where only regions or relations may be specified if needed. Region and relation types

are specified as a comma-separated list.

Here we present again an example RSL operation from the previous section, where

the external function mergeCellsWithSameAdjacentLines() is used to segment cells

bounded by vertical lines into columns:

segment { Ce l l } regions into { Column } regions using
mergeCellsWithSameAdjacentLines ()
observing

{ V e r t i c a l l i n e } regions
{ ad j a c e n t l e f t , a d j a c e n t r i g h t } relations

The observation specification consists of the tail of this example, starting with the

word ‘observing.’ This observation specification requests that vertical line regions and

left and right adjacency relations be visible when interpretation graphs are passed to

mergeCellsWithSameAdjacentVlines. The set of all visible hypothesis types for the

external function are { Cell, Vertical line } regions, and { adjacent left, adjacent right,

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 69

contains } relations. Note that existing column regions are not visible to the external

function in this example.

Cells are visible in the above example because scope types of RSL functions are

always visible to external functions. Scope types are the set of regions or relations

manipulated by an RSL operation. In the previous example, Cell regions are observed

by default because these are to be segmented. More generally for classifications and

segmentations, scope types are the set of regions to be classified or segmented into

new regions. For relation definitions, the region types to be related are visible. For

‘create’ and interpretation acceptance and rejection operations, only the ‘contains’

relation is visible by default. For all remaining operations using an external function,

the specified region or relation types are visible (e.g. for reject operations).

Result type (output type) regions and relations are not observable by default. This

allows us to determine whether hypotheses of the output type are observed when

making a decision. For instance, in the previous example cells are segmented to form

columns, but we know existing column regions are not used in the analysis, because

they are not visible to the external function mergeCellsWithSameAdjacentVlines.

For merge and reject operations where the scope and result types are always the

same, the specified region or relation type is observed by default. These operations

only make sense if the external function is able to observe the specified type. For

example, in order to reject region or relation hypotheses, an external function needs

to be able to observe the region classes or relation hypothesis sets to be pruned.

In order to maximize the transparency of hypothesis observations, we enforce this

observation scheme even when accepting and rejecting hypotheses; in fact, for these

operations only the ‘contains’ relation is visible by default. The designer must state

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 70

explicitly all other model types used to accept or reject an interpretation.

3.7.2 Parameter Observations

Within the RSL specification we can observe which recognition parameters defined

within the RSL specification are used, and for making which inferences. These are

captured directly within the syntax of external function calls.

Pragmatic issues arise when considering what to parameterize within an RSL

specification. For example, it is easy to overlook when a function can be parameterized

further, such as when denominators of simple ratios are left as constants in an external

function (e.g. for X/2). For some recognition techniques, to parameterize all variables

in the algorithms may be difficult, lead to awkward implementations, or may obscure

which parameters are most important.

The set of parameters to make available within an RSL specification depends

on the task for which RSL is being applied; for an RSL strategy to be used in an

experiment where two variables are of interest, it may make sense to parameterize

only enough to control the parameters representing those variables and any other

parameters on which they depend.

The selection of external parameters is of course a common problem in system

design, and is not at all specific to RSL. Selecting appropriate external parameters

for systems seems to be as much an art as a science.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 71

3.8 Transformations (Book-Keeping) in RSL

The RSL Core architecture shown in Figure 3.7 was created to reduce the amount of

book-keeping required from a table recognition strategy designer. It is the RSL Core

and not the designer who maintains the central data structures, the interpretation

tree and adaptive parameters. When an inference result is produced, the RSL Core

constructs the resulting interpretations from the set of candidate interpretations as

appropriate. In the process, the RSL Core annotates the appropriate history infor-

mation onto the region and relation hypotheses of the new candidate interpretations.

If an interpretation is accepted or rejected, it is the RSL Core which annotates the

interpretation tree and marks accepted interpretations for output.

The adapt operation (see Section 3.9.8) returns a description of adapted parameter

values, which the RSL Core then updates. The RSL Core also performs the necessary

filtering of candidate interpretations before they are passed to internal and external

functions to reflect observation specifications (see the previous Section).

In implementing the strategies described in Chapter 5, we found that the de-

sign and implementations were clarified and simplified by the RSL syntax and Core,

allowing more of our attention to be devoted to the analytical parts of the system.

3.9 RSL Operations in Detail

In this section we summarize the complete set of RSL operations, grouped by function.

For simplicity, inferencing operations that act on individual candidate interpretations

are described in the context of being applied to a single interpretation, producing

a single result (e.g. create, classify, and relate). Note also that external functions

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 72

used in the accept interpretations, reject interpretations, for interpretations, and adapt

operations must take a set of candidate interpretations as an argument, rather than

a single interpretation. For a description of how multiple candidate interpretations

and inference results are handled in RSL, see Section 3.10.

For each operation, we provide a brief summary, the syntax of the operation,

format of the returned text result, and a description of how the core data structures

(interpretation tree and adaptive parameters) are affected.

Note that when inference results are redundant, the RSL Core annotates the time

and confidence of the result onto the existing hypothesis (region type or relation

edge). For example, classifying an existing cell as a cell will result in that region’s

logical type hypothesis of type ‘cell’ being annotated with the time and confidence of

this result, leaving the hypothesis otherwise unaffected.

For quick reference, a more concise summary of the RSL operations is provided

in Appendix A.

3.9.1 Terminology

Below we summarize terminology used for the RSL operation definitions in the re-

mainder of this section.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 73

region type(s) identifier(s) representing a region type (or comma-separated
list of region types) that have been specified in the model
regions section of the RSL strategy (see Section 3.4.1)

relation(s) identifier(s) representing a relation type (or comma-
separated list of relation types) that has been specified in
the model relations section of the RSL strategy (see Sec-
tion 3.4.1)

node a node (region) name

nodes a comma separated list of node names (e.g. ‘node1, node2’)

pair an ordered pair of node names

pairs a comma separated list of ordered node name pairs (e.g.
‘(node1,node2), (node1,node3)’)

interpretation name of a candidate interpretation (e.g. I0, I1)

confidence a numerical confidence value or statistic, or the identifier
‘none,’ used to indicate that no confidence value was pro-
duced

point list a list of (x,y) coordinates in Z+2
(non-negative Cartesian

plane)

bounding box a pair of (x,y) coordinates specifying the top left and bottom

right points of a bounding box in Z+2
, where the origin (0,0)

is at the ‘top left’ corner of the plane, so that y coordinates
increase downwards

external function an external inferencing function, as described in Section
3.6.1

parameter list a comma-separated list of zero or more recognition parame-
ter names defined in the recognition parameters section

observation
specification

an observation specification section, as described in Section
3.7

parameter name of a recognition parameter

value number or string literal parameter value

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 74

3.9.2 Region Creation and Classification

create

create is used to add new regions (lines or bounding boxes) of a specified type to

an interpretation graph. An example use of create would be for creating lines in

whitespace gaps of a table, to make physical separators.

Syntax:

create { region type } regions using

external function(parameter list)

observation specification

Returns:

A list of regions with a physical location, region type, and confidence value.

The physical regions are either lines (A) or bounding boxes (B). The text result

is a list of one of the two types of region specification (A or B).

A. [region type] : ((POINTS , point list) , confidence)

B. [region type] : ((BB , bounding box) , confidence)

Effect on Interpretation:

The described regions are added as new nodes of the specified region type to

the interpretation graph. The created regions neither contain nor are contained

by other regions; only a region node is created.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 75

replace

replace adds new region nodes to an interpretation graph just as in the create com-

mand, but also rejects the classification of existing regions of the same type in the

process. Replacing pairs of horizontal lines with a single line at their y-midpoint is

an example of when this operation is useful.

Syntax:

replace { region type } regions using

external function(parameter list)

observation specification

Returns:

A list of elements of either form A or B below. Region nodes to the left of the

region type are the ones to be replaced.

A. replacing nodes [region type] : ((POINTS , point list) , confidence)

B. replacing nodes [region type] : ((BB, bounding box) , confidence)

Effect on Interpretation:

The region type hypotheses of the specified type are rejected for the regions to

be replaced, and the new regions described are added as nodes of the given type

to the interpretation graph.

classify

classify is used to assign types to regions, possibly with associated confidence values.

If multiple classes are returned (e.g. in an ‘n-best’ list), then the first class listed with

the maximum confidence value is associated with the region.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 76

Syntax:

A. classify { set of region type } regions as { region type }

B. classify { set of region type } regions as { set of region type } using

external function(parameter list)

observation specification

Returns:

A list of node names, with their original types used in analysis for classification,

and a list of region types (classes) and confidences representing the classification

result, in the format shown below.

node [region type] : (region type 1 , confidence 1),

(region type 2 , confidence 2), . . .

Effect on Interpretation:

For classify statements of form A above (‘internal’), all existing regions associ-

ated with the specified set of region types are assigned the second region type

in the interpretation graph (with confidence ‘none’).

For classify statements of form B above (‘external’), if a classification result has

a single class, the region is associated with that class. If multiple possibilities

are returned, the leftmost ‘maximum confidence’ class is associated with the

class in the interpretation graph.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 77

3.9.3 Region Segmentation

segment

segment defines new regions from sets of existing regions of the given type. An exam-

ple application of segment would be for segmenting cells into new rows or columns.

Syntax:

A. segment {set of region type} regions into {region type}

B. segment {set of region type} regions into {region type} using

external function(parameter list)

observation specification

Returns:

A list of segments described by the segment region type, region set, and confi-

dence value in the format shown below.

[region type] : ((nodes) , confidence)

Effect on Interpretation:

For segment statements of form A above (‘internal’), all regions associated with

the set of region types become children of a new region of the specified type.

The containment relation is updated to include edges from the new region to

each of the child regions.

For segment statements of form B above (‘external’), new region nodes of the

specified type are defined for segments, and the containment relation (‘contains’)

is updated to include edges from each new region to its set of child regions.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 78

For either form of the segment operation, the location of the segmented region

is defined as the bounding box of its child regions.

resegment

resegment is used to replace the child regions of a region by altering the containment

relation (revising region structure in the process). As an example use of this operation,

one might use resegment to change the child cells of a column, where cells are added

or removed from the column as determined by an external function.

Syntax:

resegment {set of region type} regions into {region type} using

external function(parameter list)

observation specification

Returns:

A list of segments described by the node name of the resegmented region, the

type of this region, the new child region set, and a confidence value in the format

shown below.

node [region type] : ((nodes) , confidence)

Effect on Interpretation:

The children of a region in the containment relation ‘contains’ are updated:

edges are added for new child regions, and edges to child regions that have been

removed are rejected. The location of a resegmented region is updated to be

the bounding box of the set of new child regions in the associated segment.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 79

merge

merge combines two or more regions of a specified type into a new region of the

same type. Once merged, regions are no longer associated with the given type (their

region classification hypotheses of that type are rejected), and the regions become

associated with the new region as children in the containment relation. merge can be

used to describe the cell-merging operations common in bottom-up table recognition

methods.

Syntax:

merge { region type } regions using

external function(parameter list)

observation specification

Returns:

A list of new segments, defined by the given region type, the list of regions of

that type to be merge, and a confidence value in the format shown below.

[region type] : ((nodes) , confidence)

Effect on Interpretation:

New regions of the given type are created for each new segment, and the given

type hypothesis is rejected for the set of child regions listed for each new seg-

ment.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 80

3.9.4 Relations on Regions

relate

relate is used to define relations other than the containment relation (for which the

segmentation operations in the previous section may be used). All relations in RSL

are binary, defined on the set of region nodes in an interpretation graph. Example uses

of relate are defining spatial relations between regions (e.g. to define cell topology),

defining proximity relations (e.g. defining the set of rows that are vertically ‘close’ to

one another), and defining the indexing structure of cells in a table.

Syntax:

relate { region type [, region type] } regions with { relation } using

external function(parameter list)

observation specification

Returns:

The given relation type along with a list of ordered pairs on regions and confi-

dences, as shown below.

[relation] : (pair , confidence) , (pair , confidence) . . .

Effect on Interpretation:

The given relation type is updated to include the specified set of region pairs.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 81

3.9.5 Rejecting Region Type and Relation Hypotheses

reject (region types)

This operation rejects region type hypotheses produced by region creation, classifica-

tion, or segmentation operations. All regions are assigned a base type ‘REGION’ if

they are not associated with any other types in the graph after rejection. Note that

this operation does not affect relation structure in any way. For example, containment

structure is left in tact for regions demoted to having only type ‘REGION’.

Syntax:

A. reject {set of region type} classifications

B. reject {set of region type} classifications using

external function(parameter list)

observation specification

Returns:

The keywords ‘reject types’ are followed by a list of rejection specifications,

in the form below. For each rejection specification, the type of regions to be

rejected, the associated set of regions, and a confidence value for rejection hy-

pothesis are listed.

reject types:

[region type] : (node , confidence) , (node , confidence) , . . .

[region type] : (node , confidence) , (node , confidence) , . . .

. . .

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 82

Effect on Interpretation:

For reject statements of form A above (‘internal’), all region type hypotheses

associated with the specified set of types are rejected with confidence value

‘none.’

For reject statements of form B above (‘external’), the specified region types in

the returned result are rejected, meaning they are set as ‘inactive’ within the

interpretation graph (for an example, see Figure 3.6).

reject (relation edges)

This operation rejects edges of relations produced by the relate operation. Note that

this operation is not intended for revising the containment relation (‘contains’); the

segmentation operations described above are intended for that purpose. A simple

example of when this might be used is when cell adjacency changes because cells

have been merged. We may wish at that point to reject some or all of the existing

edges in our cell adjacency relation, as part of updating the relation to reflect the

current situation (we might afterward use a relate operation to create new edges as

appropriate).

Syntax:

A. reject {set of relations} relations

B. reject {set of relations} relations using

external function(parameter list)

observation specification

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 83

Returns:

The keywords ‘reject relations’ are followed by a list of rejection specifications,

in the form below. For each rejection specification, the type to be rejected along

with the associated set of region pairs and confidence value for rejection of each

are listed.

reject relations:

[relation] : (pair , confidence) , (pair , confidence) . . .

[relation] : (pair , confidence) , (pair , confidence) . . .

. . .

Effect on Interpretation:

For reject statements of form A above (‘internal’), all edges in the specified

relation types are rejected with confidence value ‘none.’ Rejected edges are set

as ‘inactive’ within the interpretation graph (for an example of rejected relation

edges, see Figure 3.6).

For reject statements of form B above (‘external’), all edges of the specified

types in the returned result are rejected.

3.9.6 Accepting and Rejecting Interpretations

accept interpretations

accept interpretations marks interpretations from the set of candidates as accepted,

adding these to the set of output interpretations. Once accepted, an interpretation is

analyzed no further, becoming a leaf of the interpretation tree. Note that an external

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 84

function for this operation must accept the set of candidate interpretations and not

a single interpretation as an argument.

Syntax:

A. accept interpretations

B. accept interpretations using

external function(parameter list)

observation specification

Returns:

After the keywords ‘accept interps,’ a list of accepted interpretations, along

with a confidence value for each.

accept interps:

(interpretation , confidence) , (interpretation , confidence) , . . .

Effect on Candidate Interpretations:

Marks the interpretation as accepted in the interpretation tree, and adds it

to the set of output interpretations. The interpretation becomes a leaf of the

interpretation tree, and is analyzed no further (i.e. it is no longer a candidate

interpretation).

reject interpretations

reject interpretations removes interpretations from the set of candidate interpreta-

tions, removing them from further consideration. This turns the interpretation into

a leaf of the interpretation tree. Note that an external function for this operation

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 85

must accept the set of candidate interpretations and not a single interpretation as an

argument.

Syntax:

A. reject interpretations

B. reject interpretations using

external function(parameter list)

observation specification

Returns:

After the keywords ‘reject interps,’ a list of rejected interpretations, along with

a confidence value for each, in the format shown below.

reject interps:

(interpretation , confidence) , (interpretation , confidence) , . . .

Effect on Candidate Interpretations:

Removes the interpretation from the set of candidate interpretations, turning

it into a leaf of the interpretation tree.

3.9.7 Conditional Application of Strategies to Interpretations

for interpretations

for interpretations is the only form of conditional statement in RSL. If present, it

appears as the first statement in a strategy function. for interpretations uses an

external test function to determine which of the candidate interpretations to apply a

strategy to. Candidate interpretations for which the external test fails are left as-is.

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 86

Examples of this statement are provided in the next chapter, and in the Appendices.

Note that an external function for this operation must accept the set of candidate

interpretations and not a single interpretation as an argument.

Syntax:

for interpretations using

external function(parameter list)

observation specification

Returns:

After the keywords ‘skip interps,’ a list of interpretations with confidence values,

in the format shown below.

skip interps:

(interpretation , confidence) , (interpretation , confidence) , . . .

Effect on Candidate Interpretations:

Candidate interpretations in the returned ‘skip list’ do not have the associated

strategy applied to them. Note that ‘skipped’ interpretations remain in the set

of candidate interpretations unaltered.

3.9.8 Parameter Adaptation

adapt

adapt updates the values of adaptive parameters using an external function (static

parameters may not be altered; see Section 3.4.1). The new value of an adapted

parameter exists only in the current and nested strategy function scopes (to avoid

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 87

side-effects). adapt might be used to set a decision threshold based on runtime data,

e.g. to define histogram cutting values from observed bounding box projections as

done in [124]. Note that an external function for this operation must accept the set

of candidate interpretations and not a single interpretation as an argument.

Syntax:

adapt { adaptive parameter list } using

external function(parameter list)

observation specification

Returns:

A list of parameter names and values, in the format shown below.

parameter value parameter value . . .

Effect on Adaptive Parameters:

If a valid result (i.e. parameters exist, and types are correct), adaptive parame-

ters are updated in the current scope. Static parameters are constant, and may

not be altered by this operation.

3.9.9 File and Terminal Output

write

write is used to create text file output for runtime data. It takes two arguments, one

describing which data to write, and a file name provided as a string literal. The types

of data that may be written are:

• aparams: adaptive parameter names and values

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 88

• tree: the normalized interpretation tree structure

• current : the set of candidate interpretations

• accepted : the set of accepted interpretations

Syntax:

A. write aparams “file name”

B. write tree “file name”

C. write current “file name”

D. write accepted “file name”

print

print is identical to the write operation except that output is sent to the terminal

(standard error stream).

Syntax:

A. print aparams

B. print tree

C. print current

D. print accepted

3.10 Representing Multiple Inference Results

As mentioned previously, all RSL inferences and parameter adaptations are applied

to each candidate interpretation. Sometimes an external inferencing function might

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 89

indicate that there is more than one possible result worth considering due to some

ambiguity. Consider an example where an external function for segmenting words

into text lines returns three results for a single candidate interpretation as in the

following:

[Interp 1]

[Textline] : ((Word1, Word2, ...) , 0.8)

[Textline] : ((Word57, Word58, ...) , 0.9)

[Interp 2]

[Textline] : ((Word1, Word2, ... , Word57, Word58, ...) , 0.7)

[Interp 3]

The different results are numbered (‘Interp 1,’ ‘Interp 2,’ ‘Interp 3’). The first result

contains two text lines, the second result contains one text line, while the third result

contains no text lines (adding nothing to the candidate interpretation under this

result). The number at the end of each word list is a confidence value for the result

(see Sections 3.6.2 and 3.9).

Multiple results from an inference result in branching within the interpretation

tree generated by an RSL strategy. When inference results transforming candidate

interpretations are applied by the RSL Core (see Figure 3.7), each candidate inter-

pretation becomes the parent of one or more new candidate interpretations. As in

the previous example, it is possible for one of the returned results to have no effect,

producing a child identical to the input candidate interpretation.

This mechanism for supporting multiple interpretations can obviously lead to a

combinatorial explosion if not used judiciously, though one can reject unlikely inter-

pretations to avoid this. As pointed out in Chapter 2, most table recognition systems

CHAPTER 3. A LANGUAGE FOR RECOGNITION STRATEGIES 90

in the literature produce only single results for each inference, resulting in an inter-

pretation ‘tree’ which is actually a single path: a sequential string of interpretations.

3.11 Summary

In this chapter we described an imitation game-based view of table recognition which

motivated the construction of a small, typed functional ‘glue’ language to describe the

inferencing ‘moves’ of strategies in this game. In comparison with ‘imitation game’

strategy implementations in general-purpose programming languages, the Recogni-

tion Strategy Language (RSL) reduces the amount of book-keeping required from a

table recognition strategy designer, automatically records histories of hypothesis cre-

ation and revision, and has a syntax that captures the composition and dependencies

between model types, and between model types and recognition parameters. RSL is

well suited to describing the common feed-forward algorithms in the table recognition

literature.

In the next chapter we describe our implementation of RSL, and a number of other

tools for visualization and analysis. We will also make use of hypothesis histories to

define two new metrics: historical recall and historical precision.

Chapter 4

Implementation

In the previous chapter we introduced and defined the Recognition Strategy Language

(RSL) for implementing table recognition strategies. In this chapter we describe our

initial implementation of the Recognition Strategy Language (RSL) using the TXL

programming language (Sections 4.1-4.6). We also present a number of utilities used

in this project, including tools for visualizing interpretation graphs (Section 4.9) and

table models (Section 4.10), manipulating the final ‘time’ in an interpretation graph

(Section 4.7), collecting new metrics from hypothesis histories (Section 4.8), and for

manually creating interpretation graphs (Section 4.9.2).

4.1 The RSL Compiler

As shown in Figure 4.1, an RSL strategy is made executable by translating the strat-

egy to a TXL[22, 25] program using the RSL Compiler, and then either compil-

ing or interpreting the TXL program. This style of implementation is a form of

source transformation, and is precisely the type of task for which TXL was originally

91

CHAPTER 4. IMPLEMENTATION 92

User RSL Program
(Strategy.rsl)

RSL Compiler

User Library
(MyFunctions.Txl)

TXL Program
(Strategy.Txl)

RSL Library Includes
(RSLHeader.Txl)

Input Graph
(input.g)

TXL Interpreter
Executable Strategy

(Strategy.x)

TXL Compiler

Accepted Interpretations
(accepted_interps.txt)

Log File
(inference.log)

Figure 4.1: Compiling and Running RSL Programs. The output log file contains the
results of all internal and external operations, and the interpretation tree
constructed by a strategy may be recovered from this file.

designed[25, 24]. The translation from RSL to TXL is performed by another TXL

program; we use TXL as both the target and transformation language.

In Figure 4.1, a user provides an RSL program (Strategy.rsl) and a library con-

taining the external functions called from the RSL program (MyFunctions.Txl). The

RSL Compiler translates the strategy into a TXL program (Strategy.Txl) that in-

cludes the user library and a header file for the RSL Library (RSLHeader.Txl). Once

translated to TXL, the strategy may be run with an input graph in one of two ways:

using the TXL Interpreter, or by compiling the TXL Program to produce an exe-

cutable strategy Strategy.x, and then passing the input to Strategy.x. The output

CHAPTER 4. IMPLEMENTATION 93

of running a strategy on an input is two files: one containing accepted interpreta-

tions (accepted interps.txt), and another containing a record of all operation results

(inference.log).

Our preliminary implementation of the RSL Compiler is a shell script that trans-

lates an RSL strategy into a TXL program, in two steps:

1. The passed strategy file (Strategy.rsl) is translated into a partial TXL

program (Partial.Txl) using another TXL program, ConvertRSL.Txl

2. ‘include’ statements for the user (MyFunctions.Txl) and RSL li-

braries (RSLHeader.Txl) are placed at the top of Partial.Txl. This

produces the final TXL program (Strategy.Txl).

The RSL Compiler is a small program written in the GNU Bourne Again Shell script-

ing language (bash[97]). ConvertRSL.Txl is a TXL program of approximately 1300

lines in length, including blank lines and comments. ConvertRSL.Txl uses grammars

for RSL and TXL that together are approximately 1000 lines (again, including blank

lines and comments). Note that only subsets of these grammars are used in the

translation.

In the next section we introduce TXL. The RSL to TXL translation produced by

ConvertRSL.Txl is described in detail in Section 4.3, and the implementation of user

libraries in TXL is covered in Section 4.4.

4.2 The TXL Programming Language

TXL is a special-purpose first-order functional programming language originally de-

signed for rapid prototyping of programming language dialects[25]. TXL has been

CHAPTER 4. IMPLEMENTATION 94

applied to a wide variety of tasks, including software engineering, source code transfor-

mation, VLSI layout, natural language understanding, database migration, network

protocol security, and recognizing mathematical expression structure[9, 123]. Per-

haps most notably, TXL formed the core of a ‘year 2000’ conversion process that was

applied to billions of lines of source code in an industrial setting[29].

TXL programs first parse input text using a context-free grammar, restructure the

parse tree using transformation functions, and then linearize the result and return the

transformed text. TXL grammars are ordered, which makes it possible to describe

the syntax of multiple formats (e.g. RSL and TXL) within a single grammar, using

‘pivot’ non-terminals that contain statements from both languages. Within such a

non-terminal, rules of the input language (e.g. RSL) are placed first, so that they are

applied when TXL parses the input text. An example of a ‘pivot’ non-terminal is the

region definition non-terminal in Figure 4.2.

TXL transformation functions use a pattern-and-replacement syntax (this-means-

that [22]): the pattern follows the keyword replace, and the replacement follows the

keyword by. In Figure 4.2, the function translateRegionDefinition matches an RSL

model regions section, replacing it with a TXL export statement for the global vari-

able Regions. In TXL the construct statement defines variables, while deconstruct

statements decompose the tree rooted at a variable into component parts (terminals

and non-terminals). [repeat X] is TXL syntax for a sequence of 0 or more X. The

complete syntax of TXL is defined in the TXL Programming Language manual[23].

A brief summary of the TXL grammar syntax is provided in Appendix B. In this

chapter we will define additional TXL syntax as needed.

We chose to implement RSL in TXL for a number of reasons. First, it is a

CHAPTER 4. IMPLEMENTATION 95

RSL Region Type Definition TXL Region Type Definition

model regions
Image Word Line
Ce l l Column Row

end regions

export Regions [repeat id]
’ Image ’Word ’ Line
’ Ce l l ’ Column ’Row

% a . ‘ de f ine ’ i n d i c a t e s non−t e rmina l d e f i n i t i o n ; l i t e r a l s
2 % are quoted with a s i n g l e quote (‘)

% b . [repea t X] : 0 or more [X] nonterminals
4 % c . [id] : an i d e n t i f i e r

define mode l r eg ions
6 ’model ’ regions

[repeat i d]
8 ’end ’ regions

end define

10

define quoted id
12 % ’ ’ r ep r e s en t s one s i n g l e quote

[i d] | ’ ’ [i d]
14 end define

16 define TXL region export
’export ’Regions ’ [’ repeat ’ i d ’]

18 [repeat quoted id]
end define

20

define r e g i o n d e f i n i t i o n
22 [mode l r eg ions] | [TXL region export]

end define

24

function t r an s l a t eReg i onDe f i n i t i on
26 replace [r e g i o n d e f i n i t i o n]

ModelRegions [mode l r eg ions]
28

deconstruct ModelRegions
30 ’model ’ regions

RegionTypes [repeat i d]
32 ’end ’ regions

34 construct TXLCommand [TXL region export]
’export ’Regions ’ [’ repeat ’ i d ’]

36 RegionTypes [q u o t e I d e n t i f i e r s]

38 by

TXLCommand
40 end function

Figure 4.2: TXL Program for Translating Region Type Definitions. translateRegion-
Definitions converts an RSL Region Type Definition to its TXL equiva-
lent, as shown in the above example. The only function application in this
example is at line 36, where [quoteIdentifiers] is applied to the list of re-
gion name identifiers RegionTypes to prevent region names from matching
TXL keywords. Elsewhere square brackets contain types, except where
quoted as a literal (lines 17 and 35).

CHAPTER 4. IMPLEMENTATION 96

functional language, matching RSL’s functional paradigm (see Section 3.4). Further,

the core data structures of RSL are stored as structured text, functions in RSL return

structured text results, and the RSL Core library must frequently manipulate these

text encodings. TXL is well suited to performing all of these tasks.

TXL grammars and functions allow many programming tasks to be described at

a very high level of abstraction; there are built-in operators to retrieve all subtrees

of a non-terminal type, and parsing and searching are primitive operations of the

language. TXL has a pure functional value semantics, passing all data by value, and

so there are performance trade-offs in using TXL versus a language employing data

pointers such as C/C++. We were primarily concerned with creating a complete RSL

implementation as quickly and simply as possible, and so we chose to trade execution

time for implementation time.

4.3 Translating RSL Programs to TXL

In this Section we summarize the process for translating an RSL strategy to a TXL

program using the TXL program ConvertRSL.Txl. The process of converting an RSL

strategy to a TXL program is reasonably straightforward due to the small size and

simplicity of RSL. The overall process can be summarized as in the following.

1. The RSL strategy is parsed using the grammar provided in Appendix B

2. The RSL strategy header is translated to create the main function of the TXL

program, from which execution begins (see Figure 4.3)

3. The RSL strategy functions are translated to TXL functions. All strategy

functions have the prefix ‘Str ’ added to their name in the TXL program (see

CHAPTER 4. IMPLEMENTATION 97

Figure 4.4)

4. All external function calls are converted into TXL functions. This is a template-

based conversion, where the user’s external functions are ‘wrapped’ in a TXL

function that calls the user’s function as well as functions from the RSL Core

library. The ‘wrapping’ functions have the same name as the external function,

with the additional prefix ‘inf ’ (see Figure 4.5)

5. The transformed parse tree is linearized and returned as a partial TXL program.

The program is partial because headers must be added to include user and RSL

functions called in the program (this is done by the RSL Compiler, described

in Section 4.1)

We describe and provide examples for each of these steps in the remainder of this

Section.

Though RSL is a functional language, we use the global variable operations of TXL

in our implementation. We do this for two reasons. First, TXL limits the number of

construct, deconstruct, and conditional tests (where) in each function to a fixed

number. Keeping some of the data in global variables reduces the number of these

statements required in each function, in particular by keeping static parameters in a

global symbol table. Second, without the use of global variables some book-keeping

tasks would require data to be passed throughout the entire program, to be altered in

only a few places. Examples include counts for the number of inferences performed,

and the number of nodes (regions) created by RSL.

Perhaps most importantly, the set of accepted interpretations and the log file

containing function results were stored in global variables for the reasons indicated

CHAPTER 4. IMPLEMENTATION 98

above. A pure functional implementation of RSL is of course still possible, but would

be much more difficult within TXL.

A number of the examples in this Section will make use of source listings with

numbered lines. To concisely describe corresponding lines in translations we use the

following reference notation: RSL(1,10-12) represents lines 1 and 10-12 of the RSL

strategy in a Figure (similarly for a TXL listing in the same Figure), and RSL(5-

7):TXL(6-8) indicates that lines 5-7 of the RSL listing correspond to lines 6-8 of

the translated TXL source.

4.3.1 RSL Header to TXL Main Function Translation

The RSL to TXL translations begins by translating the RSL header to the TXL

‘main’ function as demonstrated in Figure 4.3. Please see the preceding Section for a

description of the line referencing conventions used here (e.g. RSL(1-4)). We organize

our description by the RSL program sections and supporting TXL code.

model regions: RSL(1-4):TXL(6-7)

Figure 4.2 demonstrates this translation.

model relations: RSL(6-8):TXL(9-10)

This translation is nearly identical to that for model regions.

recognition parameters: RSL(10-13):TXL(13-19)

adaptive and static parameter lists are defined at TXL(13-17). In

this example there is just one adaptive parameter aScanResolution

and one static parameter sNumber, which is exported as a global

variable at TXL(19).

CHAPTER 4. IMPLEMENTATION 99

RSL Header TXL Main Function

model regions

2 Image Word Line
Ce l l Column Row

4 end regions

6 model relations

above below indexes
8 end relations

10 recognition parameters

sNumber 5
12 aScanResolut ion 300

end parameters

14

strategy main
16 . . .

end strategy

18

strategy subStrategy
20 . . .

end strategy

function main
2 replace [program]

G[graph]
4

% Export reg ion and r e l a t i o n types
6 export Regions [repeat i d]

Image Word Line Ce l l Column Row
8

export Relations [repeat i d]
10 above below indexes conta ins

12 % Create adapt ive , s t a t i c params
construct AParamList [p a r ame t e r l i s t]

14 aScanResolut ion 300

16 construct SParamList [p a r ame t e r l i s t]
sNumber 5

18

export SParamList [p a r ame t e r l i s t]
20

% I n t i a l i z e adap t i ve params , cand ida tes
22 construct InterpGraphs [repeat i n t e rp graph]

I0 A: G[l ab e l I npu t s] [a c t i v a t eA l l]
24

construct I n i t i a lC o r e [co re data]
26 AParamList InterpGraphs

28 % Export empty l i s t s f o r accepted
% in t e rp s and l o g f i l e

30 export Accepted [repeat i n t e rp graph]
export LogFi le [repeat l o g en t r y]

32

by

34 I n i t i a lC o r e [r s l d e f i n eCoun t e r s]
[Str main] % main s t r a t e g y fn

36 % wri te output to f i l e s
[r s l w r i t eA c c e p t e d I n t e r p r e t a t i o n s]

38 [r s l w r i t eLog]
end function

Figure 4.3: Creating the Main TXL Function for an RSL Strategy

CHAPTER 4. IMPLEMENTATION 100

RSL main strategy: RSL(15-17):TXL(35)

the main strategy is later translated as the TXL function Str main,

which we will describe in the next Section. At TXL(35), the main

strategy is applied to the initial adaptive parameter list and input

graph (stored in the variable InitialCore).

supporting TXL code: TXL(22-31,34,37-38)

In lines TXL(22-26) the core data structures are initialized; these are

represented by the variable InitialCore, and consists of the adaptive

parameters and initial interpretation tree (the passed graph). In

lines TXL(30-31), the set of accepted interpretations and log file are

initialized as empty lists, and then exported as global variables.

At the end of the translated TXL main function two RSL library

functions are called which write out accepted interpretations and

log entries as text files (to accepted interps.txt and inferences.log,

respectively).

4.3.2 RSL Strategy to TXL Function Translation

In Figure 4.4, we present the translation of two RSL strategy functions to TXL

functions. As in the last section, we will organize our summary of the translation by

RSL sections and supporting TXL code sections.

strategy main ... end strategy: RSL(1,25,27-29):TXL(1,48,50-52)

strategy function names are altered in their translation to TXL, ap-

pending the prefix ‘Str ’ (RSL(1,27):TXL(1,50)). The delimiters for

CHAPTER 4. IMPLEMENTATION 101

RSL Main Strategy TXL Translation of Main Strategy

strategy main
2 for interpretations using

applyOnlyToInterps (sNumber)
4 observing

{Word} regions

6
adapt aScanResolut ion using

8 getScanResolut ion ()
observing

10 {Image } regions

12 c las s i f y {Word} regions as { Ce l l }

14 subStrategy

16 relate { Ce l l } regions with { i ndexe s } using

determineIndexStructure (aLanguage)
18 observing

{Word, Cel l ,Row, Column} regions

20 { l e f t , r i ght , above , below } relations

22 accept interpretations

24 print ” Strategy complete . ”
end strategy

26
strategy subStrategy

28 . . .
end strategy

function Str main
2 % P con ta i n s a d a p t i v e parameters

replace [c o r e data]
4 P[pa r ame t e r l i s t]

Candidates [repeat i n t e rp graph]
6

import sNumber [number] % s t a t i c import
8

% Def ine the RSL commands here as v a r i a b l e s
10 construct Op 0 [s t ra t egy op]

for interpretations using

12 applyOnlyToInterps (sNumber)
. . .

14 construct Op 6 [s t ra t egy op]
print ” Strategy complete . ”

16
% F i l t e r i n t e r p r e t a t i o n s (‘ f o r i n t e r p . ’ op)

18 construct Se l e c t ed I nt e r p s [repeat i n t e rp graph]
Candidates [for applyOnlyToInterps sNumber Op 0]

20
construct LeaveInterps [repeat i n t e rp graph]

22 Candidates [f i l t e r I n t e r p s Se l e c t e d I n te r p s]

24 where not

Se l e c t ed I nt e r ps [isEmpty]
26

construct Fi l t e r edCore [co r e data]
28 P Se l e c t ed I nt e r p s

30 % Apply remaining o p e r a t i on s (adapt . . . p r i n t)
construct Result [co r e data]

32 F i l t e r edCore [ap getScanResolut ion Op 1]
[r s l l a b e lR e g i o n s ’ word ’ c e l l]

34 [S t r s ub s t r a t e gy]
[in f de t e rmine IndexSt ruc ture ” eng l i s h ”

36 Op 4]
[r s l a c c e p t I n t e r p r e t a t i o n s]

38 [message ” Strategy complete . ”]

40 deconstruct Result
PNew[pa r ame t e r l i s t]

42 NewInterps [repeat i n t e rp graph]

44 by

% Return ∗ o r i g i n a l ∗ adapt params ,
46 % new cand id a t e i n t e r p r e t a t i o n s

P LeaveInterps [. NewInterps]
48 end function

50 function St r subSt ra t egy
. . .

52 end function

Figure 4.4: RSL Strategy Function Translation

CHAPTER 4. IMPLEMENTATION 102

strategies (strategy...end strategy) are simply exchanged for TXL

function delimiters (function...end function).

for interpretations: RSL(2-5):TXL(7,18-28)

interpretations to apply the main strategy to are determined by

the external function applyOnlyToInterps at RSL(3). This function

has been wrapped into a TXL function for applyOnlyToInterps at

TXL(19). TXL(18-22) constructs the sets of candidate interpreta-

tions to transform or leave intact. The TXL function will not be

applied, leaving data matched by the pattern unaltered if the set of

candidates to transform is empty, as tested by the where not condi-

tion at TXL(24-25). If candidates remain, a variable containing the

adaptive parameters and set of candidates to transform is created

(TXL(27-28)).

At TXL(7), the static parameter sNumber passed to applyOnlyToIn-

terps is imported; as mentioned earlier, static parameters are stored

as global variables in this implementation.

RSL Operation Variables: RSL(2-24):TXL(10-15)

RSL operations are encoded directly within the TXL function using

variables. for interpretations operations, if present, are named

Op 0, and any additional operations in the strategy are numbered

from 1 (e.g. Op 0, Op 1, etc.). These are used by external functions

and the RSL library. We abbreviate this list using an ellipsis at

TXL(13).

Main Strategy Operations: RSL(7-24):TXL(31-38)

CHAPTER 4. IMPLEMENTATION 103

the operations after the for operation in the main RSL strategy are

applied as a sequence of function applications applied to the adaptive

parameters and candidate interpretations (represented by Filtered-

Core). Note the translation of the call to subStrategy (RSL(14)) at

TXL(34). As described in the next Section, different RSL operation

types have different translated names in TXL. rsl prefixes indicate

built-in RSL library functions, ap prefixes indicate adaptive param-

eter operations, Str indicate function calls to other translated strate-

gies, and inf indicates a call to an inferencing function. Some oper-

ations are translated directly to TXL operations, such as the print

statement at RSL(24) being translated directly to a TXL message

statement at TXL(38).

Parameters are translated depending on their type. For parameters

of built-in (rsl) functions and adaptive parameters, the parameter

values are passed directly (for adaptive parameters this acts merely

as a placeholder; see the next subsection). Static parameters passed

to external functions are translated by name, with values being im-

ported from global variables at run time as described above. Trans-

lated RSL operations with external functions are always passed the

text of the RSL operation itself (e.g. TXL(19,32,35-36)).

TXL Pattern and Replacement: TXL(3-5,40-47)

additional code is made to specify the TXL function pattern (the

adaptive parameter list and candidate interpretations at TXL(3-5)),

and to deconstruct the result of executing the strategy to make it

CHAPTER 4. IMPLEMENTATION 104

possible to return the original parameter list, to avoid side-effects

(TXL(40-47))

4.3.3 RSL External Function Call to TXL Function

Translation

Figure 4.5 presents a TXL function inf determineIndexStructure which wraps a

user’s external inference function determineIndexStructure. This function is called

in Figure 4.4 at TXL(35). While the function shown in Figure 4.5 wraps a specific

function for an RSL relate operation, the bulk of the code is in fact a template used

to wrap all external function calls in the translated TXL program; only very minor

variations are required for operations that use the whole candidate set in their analysis

(accept interpretations, reject interpretations, for interpretations, adapt).

Making reference to sections of Figure 4.5, the main components of a ‘wrapping’

function in a TXL-translated strategy are:

signature: line 1

a wrapped function always has at least one parameter: the text of the

original RSL strategy operation (RSL Op). Additional parameters

are automatically named P1,P2,... and assigned a type based on the

type of the passed parameter in the original RSL specification. Type

inconsistencies for parameters are caught at compile or interpretation

time.

parameter initialization: lines 9-15

CHAPTER 4. IMPLEMENTATION 105

function i n f de t e rmine IndexSt ruc ture P1 [s t r i n g l i t] RSL Op [s t ra t egy op]
2 replace [c o r e data]

C[co r e data]
4

deconstruct C
6 P[pa r ame t e r l i s t] G[repeat i n t e rp graph]

8 % Get parameter names from RSL opera t i on
deconstruct ∗ [l i s t param name] RSL Op

10 PassedParams [l i s t param name]

12 % Lookup adap t i v e parameter va lue s in parameter l i s t
% ∗∗ ‘ ‘ i n d i c a t e s an empty s t r i n g l i t e r a l (””)

14 construct P1 p [s t r i n g l i t]
[r s l ob s e r v eAdap t i v eS t r i n g l i tVa l u e PassedParams 1 P]

16

% Apply scope type s and obse rva t i on s p e c i f i c a t i o n
18 % to candidate i n t e r p r e t a t i o n s

construct F i l t e r e d I n t e r p s [repeat i n t e rp graph]
20 G[r s l obse rveGraphs RSL Op]

22 % Apply e x t e rna l f unc t i on to each f i l t e r e d candidate
% ∗∗ ‘ ’ i n d i c a t e s an empty l i s t o f i n t e r p r e s u l t

24 % ∗∗ ‘ each ’ i n d i c a t e s to app ly de termineIndexStruc ture to
% each candidate i n t e r p r e t a t i o n in F i l t e r e d I n t e r p s

26 construct NewInterps [repeat i n t e r p r e s u l t]
[determineIndexStructure P1 p RSL Op each F i l t e r e d I n t e r p s]

28

% Create l o g entry , and append to the l o g
30 construct Resu l t [repeat i n f e r e n c e r e s u l t]

[r s l i n c r ement In f e r enceCount]
32 [r s l c r e a t e R e s u l t RSL Op F i l t e r ed Inpu t s NewInterps]

[r s l appendIn ferenceToLog]
34

% Type−check r e s u l t s us ing the RSL opera t i on
36 assert

Resu l t [r s l i s V a l i d RSL Op]
38

by
40 % Have RSL Core l i b r a r y app ly the r e s u l t

C[rs l updateCoreData Resu l t]
42 end function

Figure 4.5: Example ‘Wrapped’ External Inference Function. This function takes
two parameters, the first a string literal placeholder for an adaptive pa-
rameter, the second being the text of an RSL operation making use of
this function. After results have been collected and appended to the log
file, the result is checked (line 36) and then applied to the current set of
adaptive parameters and candidate interpretations (line 41). [list X] is
a comma-separated list of 0 or more X objects.

CHAPTER 4. IMPLEMENTATION 106

as mentioned in the previous section, static parameters have their

values passed within a TXL translation of an RSL strategy function.

For adaptive parameters, the original values of the parameters in

the original RSL strategy are passed but ignored; as shown here

in lines 9-15, the adaptive parameter list P is consulted to obtain

current values of adaptive parameters; it is this value that will be

passed to the external function (e.g. line 27, where P1 p is passed

for parameter P1).

observing candidate interpretations: lines 19-20

the visibility of model types is controlled based on scope types and

the observation specification in the RSL operation text (RSL Op.

See Section 3.7 for more on observation specifications). Types which

are not visible are removed from all candidate interpretations using

the RSL Core library function rsl observeGraphs.

applying user’s external function: lines 26-27

in this example the user’s external function determineIndexStructure

is applied to each visible-type-filtered candidate interpretation indi-

vidually, producing a list of results. Note that for external functions

defining operations such as accept that make use of the set of all

candidate interpretations, only a single result is returned.

creating result entry in log: lines 31-33

RSL Core library functions are called to create an inference log from

the list of results produced by the external function. rsl appendInferenceToLog

CHAPTER 4. IMPLEMENTATION 107

appends the log entry to the log, defined as a global variable (see Sec-

tion 4.3)

type-checking result lines 36-37

here the result is checked by the RSL Core library, using the passed

RSL operation text. In essence, the result entries are checked for

grammatical structure, and to insure types correspond to types in

the RSL operation. At present this function is not implemented; the

grammatical form of results is enforced, but individual types are not.

Currently we check results manually.

update adaptive parameters and candidates: line 37

the rsl updateCoreData function and its related subfunctions are per-

haps the largest component of the RSL Library; this function takes

any structured text decision result, and updates the adaptive param-

eter list and candidate interpretation set appropriately.

4.4 Implementing External Functions in TXL

RSL was designed to allow arbitrary decision techniques to produce the results

for inferences in an RSL strategy. We illustrate external functions using just one

example in this Section, the user library function determineIndexStructure referred

to previously in Figure 4.4 RSL(17) and Figure 4.5 line 27. Much of the code in Figure

4.6 is repeated in various inference functions, and in practice we defined a macro to

quickly produce a template containing much of what is shown in this example.

CHAPTER 4. IMPLEMENTATION 108

function dete rmine IndexStruc ture Language [s t r i n g l i t]
2 RSL Op [s t r a t e gy op] C[in te rp graph]

replace [repeat i n t e r p r e s u l t]
4 R[repeat i n t e r p r e s u l t]

6 deconstruct C
SIn fo [i n t e r p n od e i n f o] G[graph]

8

deconstruct RSL Op
10 relate { ScopeRegion [id] } regions with { Relation [i d] }

Ext [e x t e r n a l c a l l]
12 observing

{ ObservedRegions [l i s t i d] } regions

14 { ObservedRelat ions [l i s t i d] } relations

16 % code f o r d e c i s i on process omit ted . . .

18 % Contruct l i s t o f r e s u l t in format de s c r i b ed
% in Chapter 3 f o r r e l a t e opera t ions ; note

20 % mu l t i p l e i n t e r p s ([In terp 1] . . . [In terp N])
% are permi t t ed here .

22 construct I n t e rpRe su l t s [repeat r e l a t e r e s u l t]
. . .

24

% Pass r e s u l t back as o r i g i n a l candidate name
26 % and l i s t o f r e s u l t s .

construct Result [i n t e r p r e s u l t]
28 SIn fo

In t e rpRe su l t s
30

by

32 % Append r e s u l t s f o r t h i s candidate
% to the l i s t o f a l l r e s u l t s

34 R [. Result]
end function

Figure 4.6: Example TXL External Inference Function from a User Library

User functions in this RSL implementation are all TXL functions taking a list of

user-defined parameters, the RSL operation text itself (RSL Op), and an interpre-

tation graph C; the last two arguments must be present for all external functions.

Note that the set of all candidate interpretations must be the final argument for user

functions to define operations working on the set of candidate interpretations (e.g.

accept). The result of an external inferencing function is the appropriate structured

text format described in Section 3.9. For this example, this will be a relate-format

result.

CHAPTER 4. IMPLEMENTATION 109

As mentioned, the decision procedure may be arbitrary, perhaps using some of the

model type names bound in the deconstruct of the RSL operation at lines 10-14.

We indicate this with an ellipsis at line 16. For a relate operation multiple results

may be returned; this is reflected in the decision result being a list (InterpResults).

At lines 27-29, we prepend the identifier for the passed candidate interpretation to

the inference result, to preserve this information in the log file.

A function such as determineIndexStructure is applied iteratively over the list of

candidate interpretations (see Figure 4.5 line 27). As a result, the final Result record

is appended to a list of results for other candidate interpretations. The result is then

returned to the calling ‘wrap’ function, which updates RSL data as described in the

previous Section.

4.5 Running Translated Strategies: the RSL

Library

Once an RSL strategy has been translated to a TXL program and the external func-

tions called from the strategy have been defined in a user library, the program may

be compiled or interpreted using the RSL library, which implements all of the func-

tionality of RSL. In this Section we briefly summarize the main components of the

library and their sizes in lines of code (again including blank lines and comments). In

the current implementation, this entire RSL library consists of approximately 12,000

lines of TXL code. This may be broken down into three main components:

Geometry library: (1700 lines) geometric functions for maintaining re-

gion structure, constructing bounding boxes, and many convenience

CHAPTER 4. IMPLEMENTATION 110

functions for external inferences (e.g. to get the left side of a bound-

ing box)

Graph library (5400 lines): defines operations for defining and manip-

ulating interpretation graphs.

RSL Core library: (see Figure 3.7, 5000 lines) most of the rsl prefixed

functions earlier in this chapter are part of the RSL Core, which

interprets results from internal and external functions and then up-

dates the interpretation tree and adaptive parameters appropriately.

The largest subsystem is the updateCoreData function and its sub-

functions, which takes any valid text result and then updates the

interpretation tree or adaptive parameters appropriately. Definitely

the most complex part of the library implementation.

Note that the code would be significantly shorter if TXL supported higher-order

functions; significant parts of the code are near duplicates. For example, a roughly

100 line binary search algorithm had to be defined uniquely for every type that would

use it (e.g. to use it with 5 types, 500 lines are required). Currently the possibility

of higher order functions in TXL is being explored[22].

A designer programming external functions for RSL strategies makes frequent use

of the Geometry and Graph libraries; our experience has been that their expressive

power is one of the largest bottlenecks in implementing external functions, and much

of the time spent on the implementation was spent on extending these libraries, which

started out containing only very primitive operations.

In the next Section we describe data manipulated by the RSL Core library.

CHAPTER 4. IMPLEMENTATION 111

4.6 RSL Data

Reflecting TXL’s text transformation paradigm, the central data structures of RSL

are stored in ASCII text files using a structured text format. For the initial imple-

mentation we decided against using the Extensible Markup Language (XML[11]) in

order for the data be human-readable. TXL has built-in support for XML, and in

the future an XML encoding of the central data structures may be worth considering

in order to take advantage of the many publicly available tools for XML data.

In the remainder of this Section we describe the encoding formats for interpreta-

tion trees, parameter adaptation results, and interpretation graphs used in RSL.

4.6.1 Interpretation Trees and Log Files

RSL strategies build interpretation trees breadth-first; once a candidate interpre-

tation is altered by an inference, it is never observed again. To simplify the im-

plementation, a single set of interpretation graphs are updated and annotated with

hypothesis histories (see Sections 3.5.3 and 4.6.3) by the RSL Core library (see Fig-

ure 3.7). The results of all decisions passed to the RSL Core library, including all

inferences, are recorded in a log file. The interpretation tree generated by an RSL

strategy may be reconstructed from this log file after execution of the strategy. An

example of a log file containing inferences is shown in Figure 4.7.

Candidate interpretations associated with a single result from an inferencing op-

eration are altered in the set of candidate interpretations in-place. When multiple

results are returned from an inferencing operation for a candidate interpretation, the

interpretation is copied to produce the appropriate number of result interpretations

CHAPTER 4. IMPLEMENTATION 112

Inference 1 : (I0)
relate {Word} regions with { below } using

findLowerAdjacentWords ()
[Interp 1]

[below] : ((Word2 , Word4) , none)

Inference 2 : (I0)
segment {Word} regions into {Column} regions using

segmentVerticalWordGroupsAsColumns ()
observing

{below } relations
[Interp 1]

[Column] : ((Word1) , 0 . 4)
[Column] : ((Word2 , Word4) , 0 . 9)
[Column] : ((Word3) , 0 . 6)

[Interp 2]
[Column] : ((Word1 , Word2 , Word3 , Word4))

Inference 3 : (I1)
reject {Column} c l a s s i f i c a t i o n s using

r e j e c tS ing l eCe l lCo lumns ()
[Interp 1]

[Column] : (Column1 , none) , (Column3 , none)

Inference 4 : (I2)
reject {Column} c l a s s i f i c a t i o n s using

r e j e c tS ing l eCe l lCo lumns ()
[Interp 1]

Inference 5 : (ALL)
accept interpretations

[Interp 1]
accept i n t e rp s : (I1 , none) , (I2 , none)

Figure 4.7: Example Log File for Strategy in Figure 3.4. The input for this example
is the set of Word regions shown in Figure 3.5a. Inference 3 produces
the interpretation shown in Figures 3.5b and 3.6. The segment operation
(Inference 2) produces a second result in which all words in the input are
assigned to one column. Note that the interpretation identifiers (I0, I1, I2)
correspond to branches in an extensive interpretation tree, or node names
of a normalized interpretation tree (see Section 3.3). The interpretation
tree described by this file is shown in Figure 4.8.

CHAPTER 4. IMPLEMENTATION 113

I1’* I2’*

I0

I0’

 1

I1

2:Int1

I2

 2:Int2

 3 4

Figure 4.8: Extensive Interpretation Tree for Log File in Figure 4.7. Interpretation
identifiers have been primed here (I1’, I2’) to distinguish interpretations
after inference results have been applied. Numbers on edges correspond
to the sequence of inference results in the log file. The result of the fifth
operation accepting all candidate interpretations is indicated by asterisks
on the leaf node interpretation identifiers. Note that for the second infer-
ence there are two distinct results; here we have indicated the first result
with edge label ‘2:Int1,’ and the second with edge label ‘2:Int2.’

and then removed, with each copy assigned an identifier indicating that a new branch

has been added to the interpretation tree. Each result for the original candidate in-

terpretation is then applied to one of these copies. Interpretations named in results

from accept interpretations and reject interpretations operations are removed from

the set of candidate interpretations.

As seen in Figure 4.7, inference results are recorded in the log with entries in the

following format:

Inference inference time : (candidate interpretation)

RSL inference operation

CHAPTER 4. IMPLEMENTATION 114

[Interp 1]

inference result

. . .

[Interp N]

inference result

inference time is the simply the number of inferences that have been made in the

course of a strategy; the first inference of a strategy is applied at time ‘1.’ The

candidate interpretation which the result is associated with is indicated by Inumber

(e.g. I0, I1, I2), representing the branch of an interpretation tree that the candidate

interpretation is from. Each inference result is presented under a numbered heading

(e.g. Interp 1). Note that an inference result may be empty as for Inference 4 in

Figure 4.7. An empty inference result indicates that no hypotheses were generated

for that outcome. In this case, the input candidate interpretation is left unmodified

in the set of candidate interpretations.

Figure 4.7 shows a possible log file generated by the strategy shown in Figure 3.4.

In this strategy, a below relation is defined, a segmentation of words into columns

based on this relation is performed, columns containing a single word are rejected,

and then all candidate interpretations are accepted and returned as output. In Figure

4.7, the segmentation operation produces two possibilities: one in which three columns

are detected, and a second in which one column is detected. The log file contains the

full text of all inference operations, the candidate interpretations to which they were

applied, and all inference results. The interpretation tree represented in Figure 4.7 is

shown in Figure 4.8.

CHAPTER 4. IMPLEMENTATION 115

Operations that use or manipulate all candidate interpretations (accept interpre-

tations, reject interpretations, adapt, for interpretations) return only a single result.

An example for the accept operation is shown in Figure 4.7.

4.6.2 Adapted Parameters

In addition to inferences, the result of all parameter adaptations are recorded in the

log file. Consider the following log entry describing an adapt operation that observes

Word regions in order to alter the number-valued aNumericThreshold, and the string

literal-valued aLanguage. Suppose that aNumericThreshold is used to define a vertical

proximity threshold for cells, while aLanguage is used to capture the detected language

of the input table.

Parameter Transform [adapt number] : (Last Inf : [inference time])
adapt aNumericThreshold, aLanguage using

updateThresholdAndLanguage()
observing

{Word} regions
aNumericThreshold 2.5
aLanguage “french”

adapt number is simply a count of the number of adapt operations executed by a

strategy. inference time is the number of previously executed inferences at the time

the adapt operation is applied. As with the inference entries, the full text of the RSL

command is included in the log entry. Here the external function requested the RSL

Core to update aNumericThreshold to 2.5 (e.g. a distance in millimetres), and the

aLanguage parameter to “french”.

CHAPTER 4. IMPLEMENTATION 116

4.6.3 Interpretation Graphs

An example of the text encoding for interpretation graphs is shown in Figure 3.6. The

table models represented in RSL interpretation graphs are summarized in Section

3.5. RSL Core library operations for filtering logical types to enforce observation

specifications is covered in Section 3.7, and previously in this Section we summarized

how candidate interpretations are updated. In this section we provide additional

details of the interpretation graph encoding.

At the outermost level of the encoding, region (node) and relation (edge) types

are represented in the formats N [RegionType] and E [RelationType], respectively.

Below each region type header is the list of regions that have been associated with

the type, including any rejected classifications. Similarly, pairs of physical regions

appear below appropriate relation type headings, again including any edges that may

have been rejected during analysis.

Region type entries and edges in the graph have a list of comma-separated at-

tributes, each of which consist of an identifier followed by a list of numbers or string

literals. All region type entries contain an attribute to describe the physical location

(geometry) of a region; this is described either by a bounding box (BB), or list of

points (POINTS). The RSL Core library insures that a region’s location attribute is

fixed for all associated region type entries when updating an interpretation graph. For

example, if a region with associated types block and column was resegmented, chang-

ing the bounding box of the region, then the location attribute would be updated for

the region type entry under block, and the region type entry under column.

Both region types entries and edges have an Active attribute with value “yes” or

CHAPTER 4. IMPLEMENTATION 117

“no” to indicate whether a hypothesis is accepted in the final state of the interpre-

tation, and attributes that describe the hypothesis history of an interpretation (see

Section 3.5.3). Attribute identifiers used to represent the hypothesis history are the

following:

Input provided in the input graph

Create for create and replace operations

Class for classify operations

Segment for segment and merge operations

Resegment for resegment operations

Relate for all operations that create relation edges (relate, segment,

resegment, merge)

Reject for operations that reject region types and relation edges (re-

ject, replace, merge, and resegment operations)

Some operations are represented by multiple labels in the graph. For example,

a merge operation applied to cells will be represented by a Segment label for the

new region, Relate labels for edges from the new region to the merged cells in the

containment relation (‘contains’), and Reject labels for the cell region type entries of

the merged cells.

All input region types and relation edges are labelled with the attribute Input,

while region types and relation edges generated by a strategy’s execution are an-

notated using the appropriate history attributes above. To reduce the size of the

representation, a hypothesis history identifier appears at most once for each region

type entry or edge, followed by a list of string literals describing the inference time

and confidence associated with each inference. The format of these string literals is

CHAPTER 4. IMPLEMENTATION 118

simply:

“Inf inference time: confidence”

As mentioned earlier, inference time indicates when an inference is made, using the

count of inferences made, and confidence is a numerical confidence value associated

with the inference, or ‘none,’ if no confidence value was produced.

The hypothesis history attributes summarize the construction of an interpreta-

tion, corresponding to a path in the interpretation tree. This summary is partial.

To obtain the complete details of the construction history requires examining the

interpretation tree, whose representation in a log file was described previously in this

Section. Though partial, the annotated hypothesis history provides enough informa-

tion to quickly determine when an individual hypothesis (region type or relation edge)

was created, rejected, or revised, and by what type of operation. From the history

attributes we can also determine which hypotheses were active at each inference time

in an interpretation, as we will see in the next Section.

External functions may annotate interpretation graphs with additional attributes,

but these annotations will have only local scope. The RSL Core library updates

candidate interpretations based only on inference result descriptions (see Figure 3.7),

which do not describe these additional attributes. As an example, in an external

function that must determine which lines bound cells, a strategy designer might add

an attribute to cell region type entries that list the names of line regions adjacent to

each cell. While useful within the external function, this information would not be

added to the interpretation tree when the result of the external function was applied

by the RSL Core library.

CHAPTER 4. IMPLEMENTATION 119

4.7 Recovering Previous Interpretations

Hypothesis histories permit us to revert an interpretation graph to a previous state

quite simply. To revert an interpretation graph G to a time N (where time 0 is the

input graph), we can use the function reverseClockToInference(), defined below.

reverseClockToInference(G,N)

1. Remove all hypothesis history values (of the form “Inf inference time:

confidence”) in G that have an inference time greater than N.

2. Remove all region type entries and relation edges in G with only empty-

valued hypothesis history attributes, except for those with the attribute

Input. These were generated after time N.

3. Update the Active attribute for each region type entry and relation edge

in G to indicate whether it was accepted at time N. For each region type

and edge, if the the last recorded operation performed is of type Reject,

then set Active to “no.” Otherwise, set Active to “yes.”

4. Remove all empty relations and region type sections from G

5. Return G

With some additional filtering, reverseClockToInference() can be used to return the

state of the graph at each time that a particular region or relation type was altered.

For example, we can scan the hypothesis histories of all cell regions to obtain the

set of inference times at which cells were defined or altered. We can then return the

graphs at each of these times. We could also filter the graphs again so that they

contained only cell regions.

CHAPTER 4. IMPLEMENTATION 120

4.8 Metrics Based on Hypothesis Histories

Using the hypothesis histories and the reverseClockToInference() function described

in the previous Section, we are now able to observe some new and useful metrics

for the table recognition literature. In the following discussion, we consider the case

where we wish to compare an interpretation S generated by a strategy to an accepted

(‘valid’) interpretation A for a single input file F (e.g. a single table image). These

metrics could be used for defining the distance metric in a table recognition imitation

game (see Section 3.2).

For a given hypothesis type H (e.g. the set of word regions contained by a cell

region), we can now use the hypothesis history in S to observe the following:

Hypothesis Sets:

AF: set of accepted H hypotheses at the final inference time in A

SF: set of accepted H hypotheses at the final inference time in S

SH: set of H hypotheses accepted at any inference time in S

(history of all H generated in S)

Metrics:

Recall:
|AF∩SF |

|AF | Historical Recall:
|AF∩SH |

|AF |

Precision:
|AF∩SF |

|SF |
Historical Precision:

|AF∩SH |
|SH |

Here |AF ∩SF | represents the number of ‘correct’ H hypotheses at the final inference

time in S, and |AF ∩ SH| represents number of ‘correct’ H hypotheses generated at

any inference time in the history described in S. We have included conventional recall

and precision metrics here for comparison.

CHAPTER 4. IMPLEMENTATION 121

With the ability to record rejected hypotheses in our interpretation graphs, we

can now observe historical recall and precision metrics. These are simply recall and

precision metrics for the set of all unique hypotheses that existed at some time in an

interpretation graph, as opposed to the recall and precision of just the final set of

accepted hypotheses.

The metrics of course depend upon how we define H. In this investigation we will

compare only regions. In order to compare regions meaningfully, a common frame of

reference is required. There are two possible frames of reference: physical structure,

and logical structure. For physical structure, we can compare based on geometry in

the input space (e.g. using bounding boxes). For logical structure, we can compare

the sets of input regions known to be contained by regions of a logical type. In

Chapter 5 we will use the metrics above to compare regions based on the words that

they contain; words will be part of the input to strategies, providing a common frame

of reference.

Historical recall and precision could be adapted to use weights for partial matches

as has been done for conventional recall and precision (see Section 2.6.1). In this

investigation we will be using only the basic forms of historical and ‘conventional’

recall and precision as defined above, without weights.

Historical recall, and historical precision provide new information for ‘error analy-

sis,’ when a strategy designer determines the type, number, and cause of mismatches

between accepted interpretations and those interpretations generated by a strategy.

These metrics were not considered previously in the literature, perhaps because sys-

tems were not constructed in a way allowing them to be easily observed.

CHAPTER 4. IMPLEMENTATION 122

4.9 Visualizing and Creating Interpretations

Figure 4.9 presents utilities for translating interpretation graphs to GraphViz[35]

(graph2dot) and Xfig[101] (graph2fig) formats for visualization, and for translating

Xfig files to interpretation graphs (fig2graph). We have used TXL for each translation,

as these are all structured text encodings. We can illustrate logical structure using

GraphViz, which produces graphs with nodes and edges as in Figure 4.14, or logical

and physical structure using Xfig, where regions are placed overtop of a table image

as seen in Figure 4.10. We describe the procedure for creating interpretations using

Xfig in Section 4.9.2.

Each translation makes use of a simple text specification file, describing attributes

for regions and relations. For the GraphViz (dot) translation, these include node

shape and colour, and colour and line style (e.g. solid, dotted) for edges. In the spec-

ification files for the Xfig translations, additional layer attributes are defined. These

attributes determine the Xfig layers within which a region or relation type is embed-

ded. When an Xfig file is viewed, layers may be easily removed from view or added by

manipulating a list of checkboxes in the Xfig interface (see Figure 4.10). When trans-

lating Xfig files to interpretation graphs, the layer attribute is used to assign types

to objects provided in the input. For a given table model we currently use a single

specification file for all Xfig translations (graph2fig, fig2graph, and frameCompounds).

CHAPTER 4. IMPLEMENTATION 123

Figure 4.9: Interpretation Graph Translation Utilities. graph2fig and graph2dot
translate interpretation graphs to Xfig and dot (GraphViz) formats re-
spectively. frameCompounds and fig2graph are used for manually con-
structing interpretations. All translations use an attribute specification
file.

4.9.1 Visualization

GraphViz provides a number of graph layout algorithms. In this document we use

the dot program, which lays out nodes hierarchically based on edge structure. A

specification file as described above is used by the graph2dot utility which translates an

interpretation graph to a ‘dot’ graph file. The ‘dot’ graph file can then be translated

to an image format by dot (e.g. to an encapsulated postscript file). The translation of

the interpretation graph is straightforward: region type entries are mapped to nodes

of the graph, and relation edges are mapped to edges of the graph, each with the

attributes specified in the dot attribute file.

A similar translation program (graph2fig) is used to translate interpretation graphs

to Xfig files. The translation procedure is similar to that for dot, with region type

entries mapped to boxes or lines, and relation edges mapped to arrows between box

and line centers. There are additional attributes in the Xfig specification file that

indicate layers for regions and relations (see Figure 4.10). Xfig is a vector drawing

CHAPTER 4. IMPLEMENTATION 124

environment in which the region and relation objects can be moved, deleted, and

edited as needed. We have found being able to manipulate the interpretation visually

and view different image layers to be very helpful in interpreting strategy results,

particularly when debugging.

4.9.2 Manually Creating Interpretations

In this section we briefly describe the process for manually creating interpretations

using Xfig, frameCompounds and fig2graph. The approach taken here was informed

by time spent using the Illuminator[95] tool for creating document interpretations.

We chose to use Xfig because it is more widely used and has more editing tools than

the Illuminator environment.

The primitive regions in the table model are drawn as boxes or lines, as shown

for words and lines in Figure 4.10b. Words may be combined hierarchically into

other region types using the Xfig grouping operation (producing Xfig ‘compounds’).

All objects in Xfig have an associated comment that may be edited using a pop-up

menu. We use these comments to define the characters in word regions and the types

of region groupings (see Figure 4.11). Xfig visualization of groupings is quite subtle, as

only control points are shown. The program frameCompounds creates bounding boxes

for compound regions to make them easier to see (see Figure 4.12). frameCompounds

may be used multiple times if necessary.

Because Xfig’s region grouping operation is hierarchical, regions may belong to

only one parent compound (i.e. region containment is defined by a tree). This makes

CHAPTER 4. IMPLEMENTATION 125

(a) Image layer

(b) Image and primitive regions (words and lines)

Figure 4.10: Object Layers in Xfig. In (a) only the image layer is visible, while
in (b) both the image layer and a second layer containing manually
placed word boxes and lines are visible. In both screenshots the checkbox
list controlling visible layers in the upper-right hand corner has been
magnified.

CHAPTER 4. IMPLEMENTATION 126

Figure 4.11: Creating Word Characters and Region Types in Xfig. On the left we
show a word region drawn as a box having its characters entered man-
ually. On the right, we show a cell region containing two words being
labelled with its type. The cell region is shown with a dotted line. Within
Xfig, only the small control points at the corners of the compound are
visible.

it impossible to group cells into rows and then group cells into columns, for example.

To overcome this, we created a method for defining groups by drawing polylines and

then determining which regions are intersected by the corner and end points (the

‘mouse-clicked points’) in the line. If multiple regions are intersected by a point, we

assume that the smallest area intersected by the point is the selection target. As an

example, consider again Figure 4.12 where we have used the grouping operation to

define rows of cells. To define a column of cells, we draw a polyline in the appropriate

layer, insuring that we intersect cells in the column with points in the line, as shown

in Figure 4.13a. We can then use the fig2graph utility, which will create the columns

within an interpretation graph. The result of running fig2graph on 4.13a is shown in

Figure 4.13b (produced by running graph2fig on the fig2graph output).

Relations are defined in a similar manner: regions intersected by the corner and

end points of a polyline are used to represent edges of a relation type. In Figure 4.13a

CHAPTER 4. IMPLEMENTATION 127

Figure 4.12: Framing Cells and Rows. Suppose that cells and rows are defined from
the word regions shown in Figure 4.10b by hierarchically grouping re-
gions and then labelling them in the manner shown in Figure 4.11b. The
resulting file is passed to frameCompounds, which visualizes the bound-
ing boxes of these regions as shown above. In this example three cells
are defined in the boxhead, and four rows. For convenience, we assume
that words not in cell compounds are also cells.

we draw lines to define the indexing relation on cells of the table from headers to data.

In Figure 4.13b we can see arrows representing the defined indexing structure. The

Xfig specification files have an additional attribute available for relations, to allow

hierarchical relationships to be defined using a single line. Lines with this attribute

define a set of edges, with a single parent (the region intersected by the first point)

and a set of children (all regions intersected by remaining points). The cell indexing

relation has this attribute in the specification file used to generate Figure 4.13b,

producing the hierarchical relations from headers to data cells within columns.

fig2graph automatically defines the region containment relation (‘contains’) from

the defined compounds and line intersections defining region types. This is illustrated

CHAPTER 4. IMPLEMENTATION 128

(a) Lines for creating columns (light) and indexing relation edges (dark)

(b) fig2graph Column and index edge output. Here cells containing
multiple words, columns, and indexing relation edges are shown;
all other region and relation types are embedded in hidden layers.

Figure 4.13: Using Polylines to Define Regions and Relations. fig2graph allows re-
gions and relations be defined from regions intersected by corners of a
polyline.

CHAPTER 4. IMPLEMENTATION 129

cell_n2

Nb at%

48.8 33 37.9

column_n48

48.8 33 37.9

cell_n2

(a) Region structure (contains rela-
tion)

(b) Indexing structure (indexing re-
lation)

Figure 4.14: Interpretation Graph to ‘dot’ Conversion (graph2dot). Here the region
(a) and indexing (b) structure for the middle column in Figure 4.13 are
shown.

for the middle column of Figure 4.13b in Figure 4.14a. Also shown in Figure 4.14b is

the indexing structure for the same column. Both of the graphs in Figure 4.14 were

produced by GraphViz (dot). The dot encoding was created by applying graph2dot

to the interpretation graph generated by fig2graph.

4.10 Visualizing Table Models

The RSL syntax is designed to capture table models used in strategies. In this section

we describe a pair of simple methods for summarizing table models using graphs

which may be visualized. The first is for summarizing region and relation structure

in a table model, and the second is for describing additional dependencies between

regions, relations, and recognition parameters in a table model.

We can produce graphs summarizing region and relation structure from the scope

and result types of RSL inferencing operations (see Section 3.5.3). Currently we

CHAPTER 4. IMPLEMENTATION 130

produce a summary using the function getModelStructure(), defined below. getMod-

elStructure() takes an RSL program R as input and returns a labelled graph S:

getModelStructure(R)

1. Let S be an empty graph

2. Add all region types in R as nodes to S

3. For each inference operation I in R

Update S based on the inference type of I:

(a) segment, resegment: add edges to S from each scope type (child

regions) to each result type (type of segment)

(b) relate : if there are two scope types, then define an edge from the

first type to the second in S, labelled by the relation type. If there

is one scope type, then define a self-edge labelled by the relation

type.

(c) classify: define an edge from each scope type (regions to be clas-

sified) to each result type (set of classes) in S with label ‘class’

(d) merge: define a self edge for the scope type in S

(e) Other Types: do nothing

4. Return S

Figure 4.15 visualizes the output of getModelStructure() for the RSL program shown

in Figure 3.3.

CHAPTER 4. IMPLEMENTATION 131

Word

Cell adjacent_right adjacent_below

Row Column

Figure 4.15: Region and Relation Structure Summary for Table Model in Figure 3.3.
In this table model, Row and Column regions contain Cell regions. The
dashed line indicates that Word regions may also be classified as Cell
regions. The thinner edges indicate the spatial relations defined on Cell
regions, adjacent right, and adjacent below.

Note that the summary produced by getModelStructure() is missing some informa-

tion; it describes only the types of regions contained by each region type, the relation

types and the region types on which relations are defined, and classification relation-

ships between region types. A complete analysis would involve additional steps. For

example, it may be that in an RSL program word regions are segmented into row

regions, then all row regions are rejected, and later cell regions are segmented into

row regions. In the region syntax summary produced by getModelStructure(), there

would be edges from row to cell and row to word, but word and row regions never

actually co-exist in row regions for this example strategy.

The RSL observation specifications and recognition parameters used in external

functions provide additional information which can also be described using graphs.

We use getModelDependencies() to produce this summary, D:

getModelDependencies(R)

1. Let D be an empty graph

2. Add all region types, relation types, and recognition parameters in R as

nodes to D

CHAPTER 4. IMPLEMENTATION 132

sMaxRowSeparation

adjacent_right

aResolution

adjacent_below

Row

sMaxColSeparation

Column

sMaxIterations

Figure 4.16: Dependency Summary for Strategy in Figure 3.3. Parameters such as
aResolution appear without surrounding boxes, relation types appear in
rounded boxes, and region types appear in rectangles.

3. For each inference operation I in R

Update D based on the inference type of I:

(a) classify, segment, resegment, relate, create, replace, merge, reject:

add edges to D from each region and relation type in the ob-

servation specification and any parameters passed to an external

function to the result type(s) of the function

(b) Other Types: do nothing

4. For each adaptation operation A in R

Add edges to D from each observed region type, observed relation type,

and parameter passed to an external function, to each adapted param-

eter altered by the operation

5. Return D

Figure 5.3 visualizes the graph constructed by getModelDependencies() for the strat-

egy in Figure 3.3.

CHAPTER 4. IMPLEMENTATION 133

4.11 Summary

This chapter outlined an implementation of the Recognition Strategy Language (RSL)

in which RSL source code is translated to programs in the TXL programming lan-

guage. We described the RSL compiler, the RSL to TXL translation procedure, and

the data and libraries that implement the functionality of RSL. Tools for visualizing

interpretations and table models, manipulating the last ‘inference time’ of an inter-

pretation, and for manually creating interpretations were also described. Finally,

using the available histories in interpretation graphs, we defined two new recognition

metrics in Section 4.8: historical recall, and historical precision.

In the next chapter we describe implementing and comparing two table structure

recognition strategies from the literature. The metrics and tools described in this

chapter will be used in the next chapter.

Chapter 5

Specifying and Comparing

Strategies

In this chapter we describe the implementation of two table structure recognition al-

gorithms using RSL specifications, and then demonstrate comparisons of RSL output

through a simple table cell recognition ‘game’. The recognition algorithms imple-

mented are those of Handley[43] and Hu et al.[54, 55]. We chose these algorithms

because they are feed-forward recognition strategies (and are thus expressible in RSL)

and are described in sufficient detail in the literature to be reproduced from their writ-

ten descriptions. Both analyze table structure from a list of word regions (and in the

case of Handley’s algorithm, lines as well).

These structure recognition strategies both produce a single interpretation at ter-

mination, and while it would not be difficult to alter either strategy to produce

multiple interpretations within RSL, we leave this for the future. As given, these

systems are already fairly complex, as can be seen in the dependency graphs for our

RSL specifications shown in Figures 5.3 and 5.4.

134

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 135

In Sections 5.1 and 5.2 we describe the RSL implementations of the Handley and

Hu et al. algorithms, respectively. In Section 5.3 we describe graph-based summaries

of table model structure and observation dependencies in RSL strategies. Next, we

elaborate on using games to characterize table recognition in Section 5.4, and then

describe a simple cell recognition game used to compare the outputs of the two algo-

rithms in Section 5.5.1. We take advantage of the hypothesis histories maintained by

the RSL language to observe some new and useful metrics, historical recall and his-

torical precision, and to directly trace hypotheses back to the inferences that created

them.

In our discussion we assume that tables passed to the table structure recognition

algorithms have been properly segmented; that is, that the region containing the table

has been properly identified. We also assume that all lines passed to the algorithms

are part of the segmented table region.

5.1 Handley’s Structure Recognition Algorithm

Handley’s algorithm[43] may be understood as a geometry-based cell topology recog-

nition technique that combines top-down and bottom-up methods. The central opera-

tions of the strategy are defining regions using minima in bounding box histograms (a

‘top-down’ technique), and merging operations that combine cells, rows, and columns

‘bottom-up’. Lines are an important aspect of Handley’s algorithm: regions are

never merged across lines, underlines are detected and filtered, and fully-ruled tables

in which all cells are bounded by lines are handled by special processing. Our RSL

specification for Handley’s algorithm is provided in Appendix C. The external func-

tions called from the specification have been implemented using approximately 5000

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 136

lines of TXL source code (including comments and newlines).

Our implementation of Handley’s algorithm differs from the original in some minor

ways, which we will describe here. One simplification is that we assume lines provided

in the input are part of the table region as either an underline or ruling line; the

original algorithm does not make this assumption. Also, the expansion of regions

to bounding lines is a common action in the Handley algorithm. We have replaced

this with an equivalent representation using relations to represent the line adjacencies

of regions (using the relations adjacent left, adjacent right, etc.). These relations are

easier to express in RSL; currently there is no operation to directly revise the bounding

box of an existing region.

Handley’s algorithm is defined as a sequence of rules organized into sixteen steps.

These steps appear in the main strategy function, below the recognition param-

eters section of the strategy. The sixteen steps are applied, and then generated

interpretations are accepted. As indicated earlier, Handley’s algorithm produces sin-

gle interpretations.

In the recognition parameters section of the RSL strategy in Appendix C, we

have tried to name parameters based on their function, and present them in the order

that they are first used. In some cases such as for sColumnMinGap, we have taken a

recurring literal value used in similar analysis contexts and represented it as a single

parameter.

Handley’s algorithm may be broken down into four main stages:

1. Steps 1-2: Initialization and line analysis (including underline detection)

2. Step 3: Analysis for fully ruled tables, where all cells are surrounded by lines.

If a fully ruled table is detected, the body of fullyRuledAnalysis is applied, the

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 137

table region is classified as a fully ruled table, cells sharing line boundaries are

merged, and then the resulting cells and separators are returned.

3. Steps 4-9: Cell, column, and row structure are refined.

4. Steps 10-12: Cells in the boxhead of the table are merged according to a number

of heuristics intended to reflect popular table styles.

5. Steps 13-16: Row structure is refined, and the positions of column and row

separators are make explicit through the use of ‘invisible’ separators. A ‘fully-

ruled’ table is returned, in which all rows and columns are separated by input

lines or ‘invisible lines.’

One of the most frequently used strategy functions in the Handley RSL strategy

is analyzeLineAdjacency. This is used to define line-cell adjacencies. Each time ana-

lyzeLineAdjacency is called, the current set of line-cell spatial relations are rejected,

and then redefined based on current line and cell positions.

In the function fullyRuledAnalysis used to detect fully-ruled tables, we see an

application of the for interpretations operation. In this case it acts as a guard, to

insure that only tables that are fully ruled have fullyRuledAnalysis applied to them.

5.2 Hu et al.’s Structure Recognition Algorithm

Hu, Kashi, Lopresti, and Wilfong[54, 55] proposed an algorithm for recognizing

the cell topology and indexing structure of tables in ASCII text files. An example of

recognized indexing structure is shown in Figure 5.1. The algorithm is unique in the

literature in that it applies a hierarchical clustering algorithm[32] to the horizontal

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 138

Figure 5.1: Recognized Indexing Structure for Table from UW-I file a038. Here the
column indexing structure is indicated by arrows, while the cells in the
leftmost column are assumed to be row headers (for legibility we have
omitted the boxes for rows here). Note that the column headers in the
bottom of the boxhead label all the cells in the column intersected by the
indexing arrow, and not any individual cell that may happen to be inter-
sected. The separated header cell in the rightmost column is an artifact
of the projection-based textline location method used in our implementa-
tion. Originally the Hu et al. algorithm was intended to operate in text
files.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 139

spans of words to locate columns in a table region. The algorithm also makes use of

the content of words, i.e. their contained text characters. Our RSL specification for

Hu et al.’s algorithm is provided in Appendix D. The external functions called from

the specification were implemented in 3000 lines of TXL code (including comments

and blank lines).

As this algorithm was originally designed to work with ASCII text, we needed to

make some alterations to allow it to work with lists of words described by bounding

boxes. The most essential addition is the strategy function createTextlines in the

RSL specification for this algorithm. Textline regions are first approximated using

a horizontal projection of word bounding boxes onto the Y-axis. The parameter

sThreshold is used to filter projection intervals with fewer than sThreshold boxes

associated with themselves. Pairs of overlapping projected intervals are merged if

both have a given percentage of their vertical span overlapped by the other region

(specified by sOverlap). Words are assigned to one of the remaining intervals which

intersects their Y-center point, defining the textline with which a word is associated.

Naturally, in an ASCII file, correct textlines come with the data.

Other changes included redefining parameters to represent distances in space

where formerly they were numbers of rows or columns in an ASCII file. For ex-

ample, sMaxBoxheadHeight (the maximum number of text lines in a boxhead) was

formerly ‘5 lines,’ and is now a distance in millimetres.

The main steps in this algorithm are represented by the names of strategies called

from within in the main strategy function. These steps are:

1. Create text lines (as described above)

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 140

2. Determine column structure, using hierarchical clustering of word regions fol-

lowed by cuts of the cluster tree, which defines the columns of the table. We

have implemented the clustering using a simple recursive strategy function build-

ClusterTree: the for interpretations operation is used in this function to define

the base case, when the cluster tree is complete.

3. The boxhead is located by assigning lexical types (alphabetic/ non-alphabetic)

to words and textlines, and then checking consistencies between lexical types.

4. The indexing structure from column headers to columns is defined.

5. Row structure is determined by merging textlines based on the dominant lexical

type (alphabetic/non-alphabetic) of words and columns, the column location of

words within textlines, and the vertical distance to adjacent textlines.

6. Cells are then defined by words shared between rows and columns, and are each

assigned to the appropriate row and column.

5.3 Summary Graphs for RSL Strategies

The RSL syntax was designed to capture table model structure and observations

between logical types directly within the operation syntax. The basic operation scope

and result types capture region and relation structure, while dependencies arising from

observations made for inferences are described by observation specifications (Section

3.7 describes observation specifications).

The region and relation structure of the table models for the Handley and Hu et

al. strategies are shown in Figure 5.2, as defined by the inferencing operations in the

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 141

RSL specifications. The algorithm getModelStructure for generating the structure

graph is defined in Section 4.10. Presented in the graphs are all the region types of

the models represented as boxes, and relations on regions are represented by labelled

edges (e.g. adjacent left for Handley’s algorithm, and indexes for Hu et al.’s). Region

classifications are indicated using dashed lines: for example, an hline (horizontal line)

may be classified as an underline in Handley’s strategy, but not the reverse.

The graphs in Figure 5.2 describe the types of regions that may be classified,

segmented, and related to one another. However, these graphs do not capture the

dependencies that exist between a region or relation type and the region and relation

types observed when inferences concerning the type are made. Additionally, we wish

to know how parameters passed to external functions affect logical types directly or

indirectly.

This type of observation dependency graph is shown for Handley’s algorithm in

Figure 5.3, and Hu et al.’s algorithm in Figure 5.4. The algorithm for constructing

observation dependency graphs, getModelDependencies, is defined in Section 4.10.

Note that dependencies are defined by incoming edges: a logical type (region type

or relation) depends on parameters, relations and region types from which incoming

edges originate. By tracing dependency edges, we can determine what parameters

and model types may have indirect effects on a type.

These graphs provide useful but informal summaries. They are essentially primi-

tive static analyses[33] of an RSL strategy. For example, the current region and rela-

tion structure graphs can describe the types a region may contain, but not whether

a region may contain both types simultaneously. More sophisticated summaries and

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 142

analyses would be desirable. As an initial starting point, these informal graphs pro-

vide a useful high-level view of RSL strategies.

5.4 Ground Truth and Imitation Games

In Section 3.2 we characterized table recognition problems as a simple class of imita-

tion games where algorithms try to best imitate a set of accepted table interpretations

generated using some known procedure. In this Section we further discuss a potential

role for games in defining table recognition.

Consider the following two problem definitions for table structure recognition.

The first is intended to represent a view employing the notion of ground truth, while

the second expresses the game-based view proposed in this dissertation.

1. Problem(G): assume the existence of a (possibly infinite) set of pairs

G = {(t1, {i11, ..., i1n
}), (t2, {i21, ..., i2n

}), ...}, where each pair (t, i)

describes a table and the corresponding set of correct interpretations

for that table. The problem of table structure recognition is to define

a recognition function r that maps each t ∈ {t1, t2, ...tn} to the

corresponding set of interpretations i in G. We refer to G as ground

truth.

and

2. Problem(P,S,D,I): let P be a population of tables P = {t1, t2, ...}

and P
s
the set of all subsets of P generated by a sampling method S.

Further, let A = {(t1, {a11, ..., a1
n
}, (t2, {a21, ..., a2

n
}), ...} be the set

of accepted interpretations produced by a known procedure I. The

C
H

A
P

T
E

R
5
.

S
P

E
C

IF
Y

IN
G

A
N

D
C

O
M

P
A

R
IN

G
S
T

R
A
T

E
G

IE
S

143

Cell close_to

Header_Cell

Line

Hline Vline

Table_Frame Fully_Ruled_Table

adj_top adj_bottom

Underline

adj_left adj_right

Invisible_Hline

adj_top adj_bottom

Invisible_Vline

adj_left adj_right

Word Row Column Block

(a) Handley’s Algorithm

Textline

WordInconsistent_LineConsistent_Line Core_LinePartial_Line

Cluster Alpha_WordNonAlpha_Word

Column

Alpha_Column NonAlpha_Column Stub

Column_Header

indexes

indexes

Cell

Row_Header

Boxhead

Row Final_Column Final_Row

(b) Hu et al.’s Algorithm

Figure 5.2: Region and Relation Structure for Implemented RSL Strategies. Solid lines indicate region membership,
dashed lines indicate classification relationships, and dotted lines represent relations on regions.

C
H

A
P

T
E

R
5
.

S
P

E
C

IF
Y

IN
G

A
N

D
C

O
M

P
A

R
IN

G
S
T

R
A
T

E
G

IE
S

144

Cell

Column Row

close_to

Fully_Ruled_Table Table_Frame

Word

Underline

Vline

Block

Invisible_Vline

Header_Cell

Hline

Invisible_Hline

adjacent_left adjacent_right

adjacent_top adjacent_bottom

sMaxUnderlineLength
sUnderlineWordMaxSeparation

sRowMinGap
sMaxMultiLineSeparation
sMinNumberSandwhichRows
sMinNumberRowsForStyle1

sCloseTo

sColumnHistogramThreshold
sVerProjectTopRange
sVerProjectTopWeight

sVerProjectDefaultWeight

sHlineMinAspectRatio

sScanResolution

sLeft sRight

sTop sBottom

sMinWordsInHorProj
sSecondHorProjectThreshold

sColumnMinGap

sNumberColsInSpanHeader sHlineMinGap

sVlineMinGap

sLinearCombinationX
sLinearCombinationY

Figure 5.3: Observation Dependencies for Handley RSL Strategy. Dependencies are indicated by incoming edges.
Relations are represented by boxes with rounded corners, and parameters appear without boxes.

C
H

A
P

T
E

R
5
.

S
P

E
C

IF
Y

IN
G

A
N

D
C

O
M

P
A

R
IN

G
S
T

R
A
T

E
G

IE
S

145

Word

Textline

indexes Core_LinePartial_Line Final_Column

Final_Row

sThresholdsOverlap

Column

sAlphasG

sScanResolution

Boxhead

Row

Column_Header

Alpha_Word

Alpha_Column NonAlpha_Column

Consistent_LineInconsistent_Line

NonAlpha_Word

sMaxBoxheadHeight

Cell

sMinColumnSeparation

sMaxRowLineSeparation

Row_Header

Figure 5.4: Observation Dependencies for Hu et al. RSL Strategy. Dependencies are indicated by incoming edges.
Relations are represented by boxes with rounded corners, and parameters appear without boxes.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 146

problem of table structure recognition is to define the recognition

function r that minimizes a distance metric D measured between

R = {(t1, {r11, ..., r1n
}), (t2, {r21, ..., r2n

}), ...}, the recognized table

structures produced by r, and the corresponding interpretations for

each t1...tn in A.

where in practice I is nearly always one or more persons.

The first problem definition supposes that correct interpretations for table struc-

ture actually exist1, and that the goal for table structure recognition research is to

eventually reveal G, thereby solving the problem. However, recent developments in

the literature[51, 73] seem to indicate that for table recognition at least, G may not

exist. Tables are a part of language; they are used like language, with dialects, per-

sonalizations, shorthands, and evolution into new forms and functions, guided by the

needs of individuals. With that being the case, the probability of finding G seems

unlikely indeed.

Further, the view expressed in the first problem definition makes evaluation and

comparing recognition strategies extremely difficult. If evaluation is defined by the

correspondence of a recognition function r’s output to G, and G is unknown, then any

evaluation or comparison of methods is made relative to a personalized and partial

view of the assumed entity G. All evaluations and comparisons become approxi-

mate, relative to an unknown ideal. This is an endemic problem within document

recognition[55, 72, 90], and more broadly within computer vision[49].

We propose that the second problem definition which describes the construction

1This analysis is inspired by Stewart Shapiro’s history of the philosophy of mathematics[104].
Among other issues, Shapiro describes a long-standing argument about whether numbers actually
exist or not.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 147

of parameterized ‘games’ is more amenable to experimental investigation and theoret-

ical analysis, and does not suffer from the ontological ambiguities of the first problem

statement. This second definition also sheds some light on why the comparison of

results within the literature is so difficult: many, perhaps even most systems utilize

different assumptions (e.g. about the nature of G), effectively leading them to ‘play

different games’ (address different problems). The second problem statement trades a

general view of ‘table correctness’ for a less general problem definition dependent upon

parameters of a game (specifically the population P , sampling method S, interpreta-

tion procedure I, and distance metric D). The ability to control the game parameters

and explicitly fix the source of ‘truth’ (in our view, imitation targets) is invaluable

for the empirical and theoretical study of specific table recognition problems.

It appears difficult to define a single process for the ‘correct’ automated inter-

pretation of table structure. However, we feel that the discovery of interesting and

useful properties of the table recognition problem or recognition techniques would be

better supported by the fixed context of evaluation and interpretation provided by

the game-view of table recognition, as expressed in the second problem statement

above.

5.5 Illustrative Example: A Cell Imitation Game

To demonstrate the comparison of interpretations generated by RSL strategies, we

pose a simple imitation game where strategies must imitate cell locations in tables as

defined by the author. We define the game in the next Section, and then summarize

the outcome of the game in Section 5.5.2. Finally, we analyze results using hypothesis

histories, interpretation trees, and historical recall and precision in Section 5.5.3.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 148

5.5.1 Game Definition

Figure 5.5 presents the simple game that we will use to illustrate comparing interpre-

tations from RSL output. The four components (P, S, I, D) of this imitation game

are:

1. Domain Selection (P): the domain is images of technical articles provided

in the University of Washington English/Technical Document (UW-I)[89].

2. Sample Selection (S): the author chooses one ‘simple’ table and then four

challenging cases (as pointed out by Hu et al.[51]) from the UW-I Database.

3. Selected Interpretation Procedure (I): the author first manually defines

the locations of lines and words in each table image, which will be the input

passed to the two recognition algorithms. The author then constructs a single

‘preferred’ cell interpretation for each of the five input tables using the tools

described in Section 4.9.2, defining cells as sets of the defined word regions.

These cell interpretations may be found in Appendix E.

4. Distance Metric (D): algorithms are compared by the number of times they

match the author most closely (i.e. the winning algorithm must be closer at

least three times).

Cells were compared by the set of word regions that they contained (words

regions are provided as input to the algorithms; see above) and we used exact

matching for our metrics. For each input table, the harmonic mean of cell recall

and precision was used as the distance metric D (see Section 2.6.1).

Please note that this game is only for illustration, and is not really a comparative

analysis of the two algorithms in any general sense.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 149

Handley’s
Algorithm

Handley Output
(5 Interpretations)

Hu et. al.’s
Algorithm

Hu et. al. Output
(5 Interpretations)

Input Set (5 Tables)
UW-I: d05d, v002, a038, a04g, a002

3. Selected Interpretation Procedure:
Author’s Preferred Interpretation

for Each Table

4. Rank Algorithm Outputs by:
Harmonic Mean of Recall and Precision

for Cell Regions

Ranking: by Number of Closest Imitations
("Best 3 out of 5")

? ?

Accepted Interpretations
(Author’s 5 Interpretations)

2. Sample Selection:
Manual Selection by Author

1. Domain Selection:
UW-I Database

Figure 5.5: Cell Imitation Game. This modification of Figure 3.1 illustrates the cell
imitation game described in Section 5.5.1. In this particular game, the
author has selected five tables from the UW-I[89] database, and then
defined a single ‘preferred’ interpretation for each.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 150

5.5.2 Game Outcome

The cells produced by the author and both of the recognition algorithms may be found

in Appendix E. Summaries of relevant metrics, including the harmonic mean of recall

and precision used to decide the outcome for each table are provided in Figures 5.6

and 5.7. The winner in this instance was Handley’s algorithm, as it matched tables

d05d, v002, and a002 more closely. Hu et al.’s algorithm was the better imitator for

the remaining two tables (a038 and a04g).

For table a002, the Hu algorithm matched none of the cells defined by the author,

and thus had ‘0’ values in all metrics for that table. Looking at the author and Hu

et al. results for table a002 in the Appendix, we see that the Hu et al. split all of the

author’s defined cells, and so matches none of the author’s cells. Many of the cells

returned by the algorithm are entirely reasonable, corresponding to a ‘finer-grained’

cell definition. Using another person to define the accepted interpretations for cells

(i.e. changing the procedure I to imitate) may have altered the game outcome.

Here are additional descriptive statistics for harmonic mean of recall and precision

values observed in the game:

Handley Hu et al.

(%) (%)

Harmonic Means

Range 5.8 - 100 0 - 86.5

Mean 50.8 63.8

Median 25.0 79.1

Standard Deviation 45.5 36.1

Had the game been defined differently, so that the highest mean or median value for

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 151

harmonic means was used as the distance metric, the algorithm of Hu et al. would

have ‘won’. For this sample, the performance of the Handley algorithm varied far

more, as can be seen by simply visually comparing the bar charts in Figures 5.6 and

5.7.

5.5.3 Analysis Using Hypothesis Histories

In this section we will analyze the results of the Handley algorithm, making use

of historical recall and precision (defined in Section 4.8), the hypothesis histories

annotated in the interpretations output by RSL strategies, and the interpretation

trees produced by RSL.

In the context of our cell imitation game, historical precision describes the per-

centage of generated cell hypotheses that match a cell in the author’s interpretation.

It differs from ‘conventional’ (or final) precision because a strategy may reject one or

more of these generated cells.

Note that for the Hu et al. algorithm cell hypotheses are never rejected, as cells

are only ever created in that strategy, within strategy functions indexAnalysis and

bodyCellCreation. Header cells are defined first, by cutting words within text lines

in the detected boxhead of the table (see the strategy function indexAnalysis in

Appendix D). Later body cells are defined from the intersections of words within

detected columns and rows in the strategy function bodyCellCreation. Because cell

hypotheses are never revised or rejected, the final and ‘historical’ cell hypothesis sets

are the same. As a result, the historical and final recall and precision values are

identical for the Hu et al. algorithm (see Figure 5.7).

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 152

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table

R
ec

al
l (

%
)

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table	

P
re

ci
si

on
 (

%
)

Recall (%) Precision (%)

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table	

H
is

to
ric

al
 R

ec
al

l (
%

)

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table

H
is

to
ric

al
 P

re
ci

si
on

 (
%

)

Historical Recall (%) Historical Precision (%)

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table	

H
ar

m
on

ic
 M

ea
n

(R
ec

al
l,P

re
ci

si
on

)

Harmonic Mean of Recall and Precision (%)

Figure 5.6: Cell Imitation Results for Handley’s Algorithm.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 153

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table

R
ec

al
l (

%
)

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table
P

re
ci

si
on

 (
%

)

Recall (%) Precision (%)

d05d v002 a038 a04g a002
0

10

20

30

40

50

60

70

80

90

100

UW−I Table

H
ar

m
on

ic
 M

ea
n

(R
ec

al
l,

P
re

ci
si

on
)

Harmonic Mean of Recall and Precision (%)

Figure 5.7: Cell Imitation Results for Hu et al.’s Algorithm. Hu et al.’s algorithm
only generates cells; none are ever rejected. As a result, the ‘historical’
and final cell hypothesis sets are the same, leading to identical ‘historical’
and final recall and precision values.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 154

In contrast, the Handley algorithm is based around creating and revising cell

hypotheses frequently, so historical recall and precision differ from final recall and

precision, as can be seen in Figure 5.6. For the first two tables in the bar charts

(d05d and v002) historical and final recall are identical, because all of the author’s

cells were located during the strategy’s progress, and all were returned. For these

same two tables, we see that the precision of the final hypothesis set was perfect

(all returned cells matched one of the author’s), but that the historical precision was

lower; in fact, for the second table (v002), only 27.2% of the cell hypotheses generated

were ‘valid’ cells. The algorithm successfully pruned all of the ‘invalid’ cells before

returning the final result.

Historical precision is defined relative to the set of all generated cells. Depending

on how hypotheses are rejected in the final result, the final precision may be higher

or lower than the historical value. Unless all generated hypotheses match imitation

targets, ideally an algorithm has a higher final than historical precision.

Historical recall on the other hand, is different: it is never smaller than final recall.

Ideally, as for the first two tables, all cells matching the author’s cells are returned.

Otherwise, the difference between historical recall and final recall is the percentage of

imitation targets that have been rejected falsely. We will now consider one such case,

for the third table (a038), where almost 70% of the author’s cells were proposed and

then rejected by the algorithm.

Historical recall and precision are of course only descriptive statistics: they can

tell us how many cells were incorrectly rejected, but not why or where. This is where

the annotated hypothesis histories of interpretations produced by RSL strategies be-

come useful (see Section 3.5.3). We can use the time stamps associated with each cell

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 155

region in the output to determine which of the RSL inferencing operations created,

revised, and rejected cell regions. If we additionally make use of the interpretation

‘time-reversal’ function described in Section 4.7, we can recover the state of the inter-

pretation graph at each of the relevant times, and then compute final and historical

recall and precision metrics at each of these times. The result of performing these

operations for the interpretation graph produced by the Handley algorithm for table

a038 is shown in Figure 5.9. The list of operations from the RSL strategy correspond-

ing to the inference times in Figure 5.9 are shown in Figure 5.8.

In Figure 5.9 we can see that the historical and ‘conventional’ recall for cells agree

until inference time 35, when cells with the same assigned row and column positions

are merged, and the recall value then drops substantially (by 50%). At inference time

47, things improve when cells that span rows at the top of the table are merged (by

1.9%: from the interpretation tree in the RSL log we can see that this represents

exactly one new cell, the ‘Total pore space (percent)’ cell at the top of the rightmost

column). The recall then only decreases from this operation. At inference time 51, the

row header ‘Pryoclastic flow,’ is merged with cells below itself. Finally at inference

time 83, cell locations are revised based on row and column separators defined in

step15 and at the beginning of step16, reducing the recall further.

In contrast, historical and final precision are fairly constant through the relevant

inference times in Figure 5.9. The final precision is slightly lower than the historical

precision. If fewer incorrect cells had been returned (i.e. more incorrect cell hypothe-

ses had been rejected), the final precision would have been higher. For a designer

the lesson here is that for this table and possibly ones like it for this game, a great

number of incorrect cells are being generated over the course of the strategy (i.e. low

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 156

Time Function RSL Operation
0 (Input)
1 steps1and2 classify {word} regions as {cell}

16 step5 merge {cell} regions using mergeClosure(sCloseTo) ...

35 step9 merge {cell} regions using mergeCellsAtSameGridPosition() ...

47 step11 merge {cell} regions using mergeSpanningCells(.....) ...

51 step11 merge {cell} regions using mergeSandwhichedCells(...) ...

83 step16 merge {cell} regions using mergeRegionsSharingLineBounds() ...

Figure 5.8: Handley Algorithm RSL Operations Corresponding to Inference Times in
Figure 5.9

historical precision) and returned in the final result (i.e. low final precision).

This provides a simple demonstration of how historical recall, historical precision,

hypothesis histories and the interpretation tree may be used to diagnose and char-

acterize intermediate decision making by a strategy. This is very useful both for

analyzing recognition results, as we have demonstrated above, and when debugging

a strategy. To observe the effect of an inference, one only ever need consult the RSL

log containing the interpretation tree (which includes all decision results), and the

inference times provided in the hypothesis histories recorded for interpretation graphs

provide an index into the log.

5.6 Summary

In this chapter we described RSL implementations of two table structure recognition

systems. The RSL specifications for these systems are included in Appendices C and

D. We demonstrated how table model structure and dependencies between logical

types are captured directly by the RSL syntax, and may be used to generate graphs

for analysis.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 157

We then provided a comparison of the implemented RSL strategies using a simple

cell recognition game, in which the two implemented algorithms’ cell interpretations

were compared to the author’s interpretations. We made use of the hypothesis his-

tories in interpretations generated by RSL in order to observe historical recall and

historical precision metrics. Paired with conventional recall and precision metrics,

historical recall and precision determine the quantity of valid hypotheses that a strat-

egy has ‘thrown away,’ and the overall accuracy of hypotheses generated. We also

described how hypothesis histories can be used along with interpretation trees to

locate inference results. This is particularly helpful when debugging RSL strategies.

We conclude in the next chapter, where we summarize the contributions of the

dissertation and indicate future avenues of research both for the RSL language and

other related areas of investigation, including human decision making.

CHAPTER 5. SPECIFYING AND COMPARING STRATEGIES 158

0 1 16 35 47 51 83
0

10

20

30

40

50

60

70

80

90

100

Inference Time

P
er

ce
nt

ag
e

(%
)

Recall
Precision
HR
HP

Figure 5.9: Intermediate Results of Handley’s Algorithm for table in UW-I a038. ‘HR’
represents historical recall, and ‘HP’ historical precision. The lines are
drawn for illustration; the inference times represented are only those with
explicit numbers labelled on the X-axis. The operation corresponding to
each inference time may be determined by consulting the RSL log, which
contains an interpretation tree annotated with inference times. Once the
text of the operation is found in the log file, it can be located within the
RSL strategy. The operations corresponding to the inference times shown
here are listed in Figure 5.8.

Chapter 6

Conclusion

Let us briefly review the preceding chapters. In Chapter 2 we surveyed table recog-

nition in terms of decision making in recognition systems (see Figure 2.1). We then

characterized table recognition problems in Chapter 3 as games where table recogniz-

ers imitate interpretations produced by a selected procedure (see Figure 3.1). In the

same chapter we introduced the Recognition Strategy Language (RSL), which was

inspired by this game-view where different strategies employ a fixed set of decision

types in a well-defined context of evaluation. The language allows arbitrary decision

functions to return structured text results that the language automatically records

and then applies to data structures describing recognition results (see Figure 3.7).

In Chapter 4 we demonstrated an implementation of RSL in which RSL strate-

gies are translated to TXL[22] programs. Tools for visualization and analysis were

also described in Chapter 4, along with historical recall and precision metrics for

characterizing the set of all generated hypotheses of a given type, including any that

have been revised or rejected. In Chapter 5, the RSL-based implementations of two

table structure recognition algorithms were described, and a simple game comparing

159

CHAPTER 6. CONCLUSION 160

cell recognition in these algorithms was discussed, making use of historical recall and

precision metrics.

In the remainder of this chapter we present the contributions of this dissertation

(Section 6.1) and directions for future work (Section 6.2), and then close with a brief

summary of the dissertation (Section 6.3).

6.1 Contributions

We have examined three methodological problems in this dissertation: the informality

of most table recognition system specifications, the confounding of decision effects,

and the necessary effort for constructing informally specified systems (see Section 1.2

for detailed descriptions of these problems). Contributions arising from our efforts

are summarized below, organized by the problem that each contribution was intended

to address.

Informal System Specifications

The RSL language was created to address the problem of informal strategy

specifications in the table recognition literature (see Chapter 3). As demon-

strated in Chapter 5, the informal specifications of ‘feed-forward’ systems can

be re-specified in RSL, which formalizes the following:

• Decision Types and Sequencing. A fixed set of decision types are de-

fined in RSL (see Section 3.9). Decision types provide a common language

for describing strategies independently of the techniques used to make de-

cisions. ‘Feed-forward’ decision processes are represented uniformly using

the underlying function composition model of RSL strategies.

CHAPTER 6. CONCLUSION 161

• Table Models. Region types and relations between region types in a

table model are captured by the syntax of RSL inferencing functions (see

Section 3.5).

• Observation Specifications. Observation specifications control the vis-

ibility of hypothesis types for external decision functions in RSL. Exter-

nal decision functions can only observe the scope types of an operation

and those explicitly requested in an observation specification. Observation

specifications are a new concept in the literature.

Confounded Decision Effects

• Saving Intermediate Results. We introduced interpretation trees (see

Section 3.3) and hypothesis histories (see Section 3.5.3) to capture the

effects of all decisions, including rejections and revisions of hypotheses.

Previously in the literature interpretations were transformed in-place, los-

ing the intermediate states recorded by interpretation trees and hypothesis

histories. By recording all decision results and organizing them by the or-

der in which they occur, the problem of confounded decision effects is

resolved.

• Historical Recall and Precision. We introduced new metrics to take

advantage of the additional information stored in hypothesis histories: his-

torical recall, and historical precision (see Section 4.8). For a given hypoth-

esis type, these characterize the ratio of imitation targets generated to imi-

tation targets at any point in the course of a strategy’s progress (historical

CHAPTER 6. CONCLUSION 162

recall), and the ratio of imitation targets generated to generated hypothe-

ses (historical precision). The use of these metrics is demonstrated in

Chapter 5.

Ease of Implementation

• RSL Core library. The underlying model of RSL (see Figure 3.7) allows

strategy designers to construct recognition systems using an RSL specifi-

cation and a set of decision functions returning text results which can be

easily re-sequenced and reused within the RSL specification itself. Over-

head is substantially reduced by the RSL Core library, which takes results

returned by decision functions, records them, and then automatically up-

dates recognition result data structures appropriately. This more abstract

approach saves considerable effort for a strategy designer who would oth-

erwise be constructing the strategy in a general-purpose programming lan-

guage.

6.2 Directions for Future Work

The RSL language as described in this dissertation represents only a very specific

class of recognition strategies: those that construct interpretation trees breadth first,

using only the current set of interpretations and the accepted hypotheses within each

to support decisions. Also, while RSL was developed to formalize table recognition

techniques, the language might be extended to work in other problem domains.

In the list below we describe these and future directions for RSL, along with

CHAPTER 6. CONCLUSION 163

additional avenues of future research involving the study of ‘recognition games,’ col-

lecting empirical data from human decision making, and using RSL to specify manual

interpretation processes (for ‘ground truth’ creation).

• Other Problem Domains: RSL might be applied to problems involving one

and three-dimensional data, such as speech recognition and segmenting objects

in volumes (e.g. bones in CT scans). In the shorter term, RSL might be applied

to other problems involving two-dimensional data (e.g. computer vision tasks

for images).

• Additional Control Flow Models: RSL strategies construct interpretation

trees breadth-first. It is probably of interest to extend RSL for describing other

(depth-first, best-first) interpretation tree construction methods. One challenge

here is preserving the brevity of the language. TXL[22] offers a possible avenue

in this regard. TXL uses keywords and special characters to specify different

search behaviours for matching the patterns of functions, and for other language

operations involving search.

• Observation Specifications: inferencing operations are only permitted to ob-

serve accepted hypotheses in RSL, and only for candidate interpretations (the

current leaves of an interpretation tree). It may be interesting to compare

strategies in this observation scheme to others that use less or an entirely un-

constrained views of hypotheses recorded in an interpretation tree. RSL might

be extended to describe and capture details for each of these cases.

• Accepting/Rejecting Hypotheses: currently RSL cannot refine accepted

interpretations (these are removed from the set to be further transformed), or

CHAPTER 6. CONCLUSION 164

revise the acceptance state of interpretations within an interpretation tree. It

is probably worth altering RSL to permit these actions. As all decisions are

recorded in RSL, these operations would still be transparent. One can imagine

scenarios where more information may be available after an interpretation has

already been accepted or rejected by a strategy, making it preferable to revise

the acceptance state of the interpretation.

• Geometric Models: more sophisticated, or multiple geometric models might

be used in RSL. As a simple example, regions might be represented by polygons

and lines, rather than bounding boxes and lines.

• Evaluation as Basic RSL Operation: evaluation operations should be added

to the RSL language, as a user-customizable built-in operation. As mentioned

in Chapter 3, we view evaluation as part of the problem definition for table

recognition (which lead to our game characterization). RSL might provide one

or more built-in functions that take a user evaluation function, and apply it to

specified interpretations in an interpretation tree. Results could be summarized

as text and/or returned in visualization formats (e.g. dot, gnuplot[28]).

• Language Implementation: RSL could be implemented in a variety of other

languages to allow external functions to be written in those languages. Al-

ternatively, perhaps an implementation could be designed to capture output

from functions written in multiple languages. A general architecture for such

an implementation would mean that individual decision functions could be im-

plemented in whichever language a strategy designer would prefer (similar to

Tcl[85]).

CHAPTER 6. CONCLUSION 165

• ‘Recognition Games’ and Game Theory: the class of imitation games

described in Chapter 3 are extremely simple, and all games are ‘scored’ using

the final interpretations of the selected interpretation procedure to imitate.

What would a game where imitation is measured by similarity of strategies

to the selected interpretation process itself look like? What if strategies were

permitted at certain points to make binary queries of the structure of other

players’ interpretations, or of the interpretations to imitate themselves (e.g.

query: ‘Do you have a cell containing these input words?’, response: ‘No.’)?

Are such games interesting or useful? From these more interesting games can

game theory[21, 78] provide helpful insights into strategy design and the table

recognition problem?

• Studying Human Decision Procedures: could we learn more about table

recognition by capturing human decision processes in interpretation trees or

some similar formalization? For example, given a user interface for defining

interpretations, could things be learned from recording decisions (operations

performed, including any alterations or ‘undos’)1 and then formalizing these

using a language such as RSL? The psychology and expert systems literatures

probably have information to offer in this regard (the author is mostly unfamiliar

with both).

• Constructing Interpretations Manually: RSL could be used for flexibly

defining ‘ground-truth’ protocols, in which a person or persons define a set of

accepted interpretations used in table recognition imitation games. External

1Previously in a personal communication to the author, Dr. George Nagy proposed the idea of
searching user interaction data for useful information.

CHAPTER 6. CONCLUSION 166

functions of the RSL strategy would return text summaries for interface oper-

ations. Observation specifications might be used to control which parts of an

interpretation are visible to persons constructing interpretations at each step.

6.3 Summary

Current systems for locating and analyzing tables in encoded documents are usually

described informally, making the understanding, replication, and comparison of meth-

ods difficult. Informality leads to the additional problems of inseparability of decision

effects, and increased effort in implementation. In this dissertation we proposed the

Recognition Strategy Language as a means to address these problems. RSL provides

an intermediate level of formalization, relative to strictly formalized syntax-based

methods and the more flexible but informally defined operation sequences common

in the literature.

Bibliography

[1] A.A. Abu-Tarif. Table processing and understanding. Master’s thesis, Rensse-

laer Polytechnic Institute, 1998.

[2] A. Amano and N. Asada. Complex table form analysis using graph grammar. In

Lecture Notes in Computer Science, volume 2423, pages 283–386, Berlin, 2002.

Springer-Verlag.

[3] A. Amano, N. Asada, T. Motoyama, T. Sumiyoshi, and K. Suzuki. Table form

document synthesis by grammar-based structure analysis. In Proc. Sixth Int’l

Conf. Document Analysis and Recognition, pages 533–537, Seattle, WA, 2001.

[4] J.F. Arias, A. Chhabra, and V. Misra. Efficient interpretation of tabular doc-

uments. In Proc. Thirteenth Int’l Conf. Pattern Recognition, pages 681–685,

Vienna, Austria, 1996.

[5] J.F. Arias, A. Chhabra, and V. Misra. Interpreting and representing tabular

documents. In Proc. Conf. Computer Vision and Pattern Recognition, pages

600–605, San Francisco, CA, 1996.

167

BIBLIOGRAPHY 168

[6] S. Balasubramanian, S. Chandran, J. Arias, and R. Kasturi. Information ex-

traction from tabular drawings. In Proc. Document Recognition I (IS&T/SPIE

Electronic Imaging), volume 2181, pages 152–163, San Jose, CA, 1994.

[7] A. Beläıd. Recognition of table of contents for electronic library consulting.

Int’l J. Document Analysis and Recognition, 4(1):35–45, 2001.

[8] L. Bing, J. Zao, and X. Hong. New method for logical structure extraction

of form document image. In Proc. Document Recognition and Retrieval VI

(IS&T/SPIE Electronic Imaging), volume 3651, pages 183–193, San Jose, CA,

1999.

[9] D. Blostein, J.R. Cordy, and R. Zanibbi. Applying compiler techniques to

diagram recognition. In Proc. Sixteenth Int’l Conf. Pattern Recognition, pages

123–126, Québec City, Canada, 2002.

[10] F.L. Bourgeois, H. Emptoz, and S.S. Bensafi. Document understanding using

probabilistic relaxation: Application on tables of contents of periodicals. In

Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 508–512,

Seattle, WA, 2001.

[11] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, and

J. Cowan. Extensible Markup Language (XML) 1.1. Available online at

http://www.w3.org/TR/2004/REC-xml11-20040204, February 2004.

[12] T.M. Breuel. Functional programming for computer vision. In Proceedings of

the SPIE - The International Society for Optical Engineering, volume 1659,

pages 216–27, 1992.

BIBLIOGRAPHY 169

[13] H. Bunke. Structural and syntactic pattern recognition. In C. H. Chen, L. F.

Pau, and P.S.P. Wang, editors, Handbook of Pattern Recognition and Computer

Vision, pages 163–209. World Scientific, Singapore, 1993.

[14] R.G. Casey and E. Lecolinet. A survey of methods and strategies in char-

acter segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence,

18(7):690–706, 1996.

[15] F. Cesarini, M. Gori, S. Marinai, and G. Soda. INFORMys: A flexible invoice-

like form-reader system. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, 20(7):730–745, 1998.

[16] F. Cesarini, M. Gori, S. Marinai, and G. Soda. Structured document segmen-

tation and representation by the modified X-Y tree. In Proc. Fifth Int’l Conf.

Document Analysis and Recognition, pages 563–566, Bangalore, India, 1999.

[17] F. Cesarini, S. Marinai, L. Sarti, and G. Soga. Trainable table location in

document images. In Proc. Sixteenth Int’l Conf. Pattern Recognition, volume 3,

pages 236–240, Québec City, Canada, 2002.

[18] S. Chandran and R. Kasturi. Structural recognition of tabulated data. In

Proc. Second Int’l Conf. Document Analysis and Recognition, pages 516–519,

Tsukuba Science City, Japan, 1993.

[19] A.K. Chhabra, V. Misra, and J. Arias. Detection of horizontal lines in noisy

run length encoded images: the FAST method. In Lecture Notes in Computer

Science, volume 1072, pages 35–48. Springer-Verlag, Berlin, 1996.

BIBLIOGRAPHY 170

[20] R.A. Coll, J.H. Coll, and G. Thakur. Graphs and tables: a four-factor experi-

ment. Comm. ACM, 37(4):76–86, 1994.

[21] A.M. Colman. Game theory and experimental games: The study of strategic

interaction. Pergamon Press, Oxford, England, 1982.

[22] J.R. Cordy. TXL - a language for programming language tools and applications.

In Proc. LDTA 2004, ACM 4th International Workshop on Language Descrip-

tions, Tools, and Applications, pages 1–27, Barcelona, Spain, April 2004.

[23] J.R. Cordy, I. Charmichael, and R. Halliday. The TXL Programming Language

- Version 10.3. Kingston, Ontario, Canada, 2003.

[24] J.R. Cordy, T.R. Dean, A.J. Malton, and K.A. Schneider. Source transforma-

tion in software engineering using the TXL transformation system. Journal of

Information and Software Technology, 44(13):827–837, October 2002.

[25] J.R. Cordy, C.D. Halpern, and E. Promislow. TXL: A rapid prototyping system

for programming language dialects. Computer Languages, 16(1):97–107, Jan

1991.

[26] B. Coüasnon. DMOS: A generic document recognition method, application

to an automatic generator of musical scores, mathematical formulae and table

recognition systems. In Proc. Sixth Int’l Conf. Document Analysis and Recog-

nition, pages 215–220, Seattle, WA, 2001.

[27] B. Coüasnon and L. Pasquer. A real-world evaluation of a generic document

recognition method applied to a military form of the 19th century. In Proc. Sixth

BIBLIOGRAPHY 171

Int’l Conf. Document Analysis and Recognition, pages 779–783, Seattle,WA,

2001.

[28] D. Crawford. GNUPLOT: an interactive plotting program. Available online at:

http://www.gnuplot.info/docs/gnuplot.html, 1998.

[29] T.R. Dean, J.R. Cordy, K.A. Schneider, and A.J. Malton. Experience using

design recovery techniques to transform legacy systems. In Proc. ICSM 2001 -

IEEE International Conference on Software Maintenance, pages 622–631, Flo-

rence, Italy, November 2001.

[30] S. Douglas and M. Hurst. Layout and language: Lists and tables in technical

documents. In Proc. ACL SIGPARSE Workshop on Punctuation in Computa-

tional Linguistics, pages 19–24, Santa Cruz, CA, 1996.

[31] S. Douglas, M. Hurst, and D. Quinn. Using natural language processing for

identifying and interpreting tables in plain text. In Proc. Fourth Ann. Symp.

Document Analysis and Information Retrieval, pages 535–546, Las Vegas, NV,

1995.

[32] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, New

York, 2nd edition, 2001.

[33] M.D. Ernst. Static and dynamic analysis: synergy and duality. In Proc. ICSE

Workshop on Dynamic Analysis (WODA), Portland, Oregon, USA, May 2003.

[34] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, MA, 1995.

BIBLIOGRAPHY 172

[35] E.R. Gansner and S.C. North. An open graph visualization system and its

applications to software engineering. Software - Practice and Experience,

30(11):1203–1233, 2000.

[36] E. Green and M. Krishnamoorthy. Model-based analysis of printed tables. In

Proc. Third Int’l Conf. Document Analysis and Recognition, Montreal, Canada,

1995.

[37] E. Green and M. Krishnamoorthy. Model-based analysis of printed tables. In

Lecture Notes in Computer Science, volume 1072, pages 80–91. Springer-Verlag,

Berlin, 1996.

[38] J. Grossman, editor. Chicago Manual of Style, chapter 12 (Tables). University

of Chicago Press, 14th edition, 1993.

[39] S. Tsai H. Chen and J. Tsai. Mining tables from large scale HTML texts. In

Proc. Eighteenth Int’l Conf. Computational Linguistics, Saarbrucken, Germany,

2000.

[40] J. Ha, R.M. Haralick, and I.T. Phillips. Recursive X-Y cut using bounding

boxes of connected components. In Proc. Third Int’l Conf. Document Analysis

and Recognition, pages 952–955, Montreal, Canada, 1995.

[41] R. Hall. Handbook of Tabular Presentation. The Ronald Press Company, New

York, 1943.

[42] J.C. Handley. Electronic Imaging Technology, chapter 8 (Document Recogni-

tion). IS&T/SPIE Optical Engineering Press, Bellingham, WA, 1999.

BIBLIOGRAPHY 173

[43] J.C. Handley. Table analysis for multi-line cell identification. In Proc. Document

Recognition and Retrieval VIII (IS&T/SPIE Electronic Imaging), volume 4307,

pages 34–43, San Jose, CA, 2001.

[44] R.M. Haralick. Document image understanding: Geometric and logical lay-

out. In Proc. Conf. Computer Vision and Pattern Recognition, pages 385–390,

Seattle, WA, 1994.

[45] R.M. Haralick and L.G. Shapiro. Computer and Robot Vision (2 vols). Addison-

Wesley, Reading, MA, 1992.

[46] K. Hinkelmann and O. Kempthorne. Design and Analysis of Experiments:

Introduction to Experimental Design, volume 1. John Wiley and Sons Inc.,

New York, 1994.

[47] Y. Hirayama. A block segmentation method for document images with compli-

cated column structures. In Proc. Second Int’l Conf. Document Analysis and

Recognition, pages 91–94, Tsukuba Science City, Japan, 1993.

[48] Y. Hirayama. A method for table structure analysis using DP matching. In

Proc. Third Int’l Conf. Document Analysis and Recognition, pages 583–586,

Montreal, Canada, 1995.

[49] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn, H. Bunke, D.B. Goldgof,

K. Bowyer, D. Eggert, A. Fitzgibbon, and Robert B. Fisher. An experimen-

tal comparison of range image segmentation algorithms. IEEE Trans. Pattern

Analysis and Machine Intelligence, 18(7):673–689, 1996.

BIBLIOGRAPHY 174

[50] O. Hori and D.S. Doermann. Robust table-form structure analysis based on box-

driven reasoning. In Proc. Third Int’l Conf. Document Analysis and Recognition,

pages 218–221, Montreal, Canada, 1995.

[51] J. Hu, R. Kashi, D. Lopresti, G. Nagy, and G. Wilfong. Why table ground-

truthing is hard. In Proc. Sixth Int’l Conf. Document Analysis and Recognition,

pages 129–133, Seattle, WA, 2001.

[52] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Medium-independent table detec-

tion. In Proc. Document Recognition and Retrieval VII (IS&T/SPIE Electronic

Imaging), volume 3967, pages 291–302, San Jose, CA, 2000.

[53] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Experiments in table recogni-

tion. In Proc. Workshop on Document Layout Interpretation and Applications,

Seattle, WA, 2001.

[54] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure recognition and

its evaluation. In Proc. Document Recognition and Retrieval VIII (IS&T/SPIE

Electronic Imaging), volume 4307, pages 44–55, San Jose, CA, 2001.

[55] J. Hu, R.S. Kashi, D. Lopresti, and G.T. Wilfong. Evaluating the performance

of table processing algorithms. Int’l J. Document Analysis and Recognition,

4(3):140–153, 2002.

[56] M. Hurst. Layout and language: Beyond simple text for information interaction

- modelling the table. In Proc. Second Int’l Conf. Multimodal Interfaces, Hong

Kong, 1999.

BIBLIOGRAPHY 175

[57] M. Hurst. Layout and language: An efficient algorithm for detecting text blocks

based on spatial and linguistic evidence. In Proc. Document Recognition and

Retrieval VIII (IS&T/SPIE Electronic Imaging), volume 4307, pages 56–67,

San Jose, CA, 2001.

[58] M. Hurst. Layout and language: Challenges for table understanding on the

web. In Proc. First Int’l Workshop on Web Document Analysis, pages 27–30,

Seattle, WA, 2001.

[59] M. Hurst and S. Douglas. Layout and language: Preliminary investigations

in recognizing the structure of tables. In Proc. Fourth Int’l Conf. Document

Analysis and Recognition, pages 1043–1047, Ulm, Germany, 1997.

[60] M. Hurst and T. Nasukawa. Layout and language: Integrating spatial and

linguistic knowledge for layout understanding tasks. In Proc. Eighteenth Int’l

Conf. Computational Linguistics, Saarbrucken, Germany, 2000.

[61] K. Itonori. Table structure recognition based on textblock arrangement and

ruled line position. In Proc. Second Int’l Conf. Document Analysis and Recog-

nition, pages 765–768, Tsukuba Science City, Japan, 1993.

[62] A.K. Jain and B. Yu. Document representation and its application to page

decomposition. IEEE Trans. Pattern Analysis and Machine Intelligence,

20(3):294–308, 1998.

[63] T.G. Kieninger. Table structure recognition based on robust block segmen-

tation. In Proc. Document Recognition V (IS&T/SPIE Electronic Imaging),

volume 3305, pages 22–32, San Jose, CA, 1998.

BIBLIOGRAPHY 176

[64] T.G. Kieninger and A. Dengel. Applying the T-RECS table recognition system

to the business letter domain. In Proc. Sixth Int’l Conf. Document Analysis

and Recognition, pages 518–522, Seattle, WA, 2001.

[65] B. Klein, S. Gökkus, T. Kieninger, and A. Dengel. Three approaches to “in-

dustrial” table spotting. In Proc. Sixth Int’l Conf. Document Analysis and

Recognition, pages 513–517, Seattle, WA, 2001.

[66] H. Kojima and T. Akiyama. Table recognition for automated document en-

try system. In High-Speed Inspection Architectures, Barcoding, and Character

Recognition (Proc. SPIE), volume 1384, pages 285–292, Boston, MA, 1990.

[67] W. Kornfeld and J. Wattecamps. Automatically locating, extracting and an-

alyzing tabular data. In Proc. Twenty-first Int’l ACM SIGIR Conf. Research

and Development in Information Retrieval, pages 347–348, Melbourne, Aus-

tralia, 1998.

[68] S. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan. Syntactic segmen-

tation and labelling of digitized pages from technical journals. IEEE Trans.

Pattern Analysis and Machine Intelligence, 15(7):737–747, 1993.

[69] S.W. Lam, L. Javanbakht, and S.N. Srihari. Anatomy of a form reader. In

Proc. Second Int’l Conf. Document Analysis and Recognition, pages 506–509,

Tsukuba Science City, Japan, 1993.

[70] A. Laurentini and P. Viada. Identifying and understanding tabular material in

compound documents. In Proc. Eleventh Int’l Conf. Pattern Recognition, pages

405–409, The Hague, Netherlands, 1992.

BIBLIOGRAPHY 177

[71] S. Lewandowksy and I. Spence. The perception of statistical graphs. Sociological

Methods and Research, 18(2 & 3):200–242, 1989.

[72] J. Liang. Document Structure Analysis and Performance Evaluation. PhD

thesis, University of WA, 1999.

[73] D. Lopresti. Exploiting WWW resources in experimental document analysis

research. In Lecture Notes in Computer Science, volume 2423, pages 532–543,

Berlin, 2002. Springer-Verlag.

[74] D. Lopresti and G. Nagy. Automated table processing: An (opinionated) survey.

In Proc. Third Int’l Workshop on Graphics Recognition, pages 109–134, Jaipur,

India, 1999.

[75] D. Lopresti and G. Nagy. A tabular survey of automated table processing.

In Lecture Notes in Computer Science, volume 1941, pages 93–120. Springer-

Verlag, Berlin, 2000.

[76] D. Lopresti and G. Wilfong. Evaluating document analysis results via graph

probing. In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages

116–120, Seattle,WA, 2001.

[77] S. Mao and T. Kanungo. Empirical performance evaluation methodology and

its application to page segmentation algorithms. IEEE Trans. Pattern Analysis

and Machine Intelligence, 23(3):242–256, 2001.

[78] P. Morris. Introduction to Game Theory. Springer-Verlag, New York, 1994.

[79] G. Nagy. Twenty years of document image analysis in PAMI. IEEE Trans.

Pattern Analysis and Machine Intelligence, 22(1):38–62, 2000.

BIBLIOGRAPHY 178

[80] G. Nagy and S. Seth. Hierarchical representation of optically scanned docu-

ments. In Proc. Seventh Int’l Conf. Pattern Recognition, pages 347–349, Mon-

treal, Canada, 1984.

[81] J.A. Nelder and R. Mead. A simplex method for function minimization. Com-

puter Journal, (7):308–313, 1965.

[82] H.T. Ng, C.Y. Lim, and J.L.T. Koo. Learning to recognize tables in free text.

In Proc. Thirty-Seventh Ann. Meet. Assn. Computational Linguistics, pages

443–450, College Park, MD, 1999.

[83] L. O’Gorman. Image and document processing techniques for the RightPages

electronic library system. In Proc. Eleventh Int’l Conf. Pattern Recognition,

pages 260–263, The Hague, Netherlands, 1992.

[84] L. O’Gorman. The document spectrum for page layout analysis. IEEE Trans.

Pattern Analysis and Machine Intelligence, 15(11):1162–1173, 1993.

[85] J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, MA, 1994.

[86] L.I. Perlovsky. Conundrum of combinatorial complexity. IEEE Trans. Pattern

Analysis and Machine Intelligence, 20(6):666–670, 1998.

[87] C. Peterman, C.H. Chang, and H. Alam. A system for table understanding.

In Proc. Document Image Understanding Technology, pages 55–62, Annapolis,

MD, 1997.

[88] M. Petrou. Learning in pattern recognition. In Lecture Notes in Computer

Science, volume 1715, pages 1–12. Springer-Verlag, Berlin, 1999.

BIBLIOGRAPHY 179

[89] I. Phillips, S. Chen, and R. Haralick. CD-ROM document database standard.

In Proc. Second Int’l Conf. Document Analysis and Recognition, pages 478–483,

Tsukuba Science City, Japan, 1993.

[90] I. Phillips and A.K. Chhabra. Empirical performance evaluation of graphics

recognition systems. IEEE Trans. Pattern Analysis and Machine Intelligence,

21(9):849–870, 1999.

[91] A. Pizano. Extracting line features from images of business forms and tables.

In Proc. Eleventh Int’l Conf. Pattern Recognition, pages 399–403, The Hague,

Netherlands, 1992.

[92] R. Plamandon and S.N. Srihari. On-line and off-line handwriting recognition: A

comprehensive survey. IEEE Trans. Pattern Analysis and Machine Intelligence,

22(1):63–84, 2000.

[93] P. Pyreddy and W.B. Croft. Tintin: A system for retrieval in text tables. In

Proc. Second Int’l Conf. Digital Libraries, pages 193–200, Austin, TX, 1997.

[94] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Francisco, CA, 1993.

[95] RAF Technology, Redmond, WA. Illuminator User’s Manual, 1995.

[96] M.A. Rahgozar and R. Cooperman. A graph-based table recognition system.

In Proc. Document Recognition III (IS&T/SPIE Electronic Imaging), volume

2660, pages 192–203, San Jose, CA, 1996.

[97] C. Ramey and B. Fox. GNU Bash Reference Manual. Network Theory Ltd.,

Bristol, UK, 2002.

BIBLIOGRAPHY 180

[98] I. Redeke. Hierarchical interpretation of business charts for blind computer

users using uml. In Proc. Fourth Int’l IAPR Workshop on Graphics Recognition,

pages 440–454, Kingston, Canada, 2001.

[99] A. Rosenfeld and A.C. Kak. Digital Picture Processing (2 vols). Academic

Press, Orlando, FL, 1982.

[100] D. Rus and D. Subramanian. Customizing information capture and access.

ACM Trans. Information Systems, 15(1):67–101, 1997.

[101] T. Sato and B.V. Smith. Xfig user manual version 3.2.4. Available online at

http://www.xfig.org/userman, December 2002.

[102] L. Seong-Whan and R. Dae-Seok. Parameter-free geometric document layout

analysis. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11):1240–

1256, 2001.

[103] J.H. Shamillian, H.S. Baird, and T.L. Wood. A retargetable table reader. In

Proc. Fourth Int’l Conf. Document Analysis and Recognition, pages 158–163,

Ulm, Germany, 1997.

[104] S. Shapiro. Thinking About Mathematics. Oxford University Press, Oxford,

England, 2000.

[105] C. Simonyi. Meta-Programming: A Software Production Method. PhD thesis,

Stanford University, USA, 1976.

[106] S. Souafi-Bensafi, M. Parizeau, F. Lebourgeois, and H. Emptoz. Bayesian net-

works classifiers applied to documents. In Proc. Sixth Int’l Conf. Document

Analysis and Recognition, pages 508–511, Seattle, WA, 2001.

BIBLIOGRAPHY 181

[107] A. Takasu, S. Satoh, and E. Katsura. A document understanding method for

database construction of an electronic library. In Proc. Twelfth Int’l Conf.

Pattern Recognition, pages 463–466, Jerusalem, Israel, 1994.

[108] A. Takasu, S. Satoh, and E. Katsura. A rule learning method for academic

document image processing. In Proc. Third Int’l Conf. Document Analysis and

Recognition, pages 239–242, Montreal, Canada, 1995.

[109] W. Tersteegen and C. Wenzel. Scantab: Table recognition by reference tables.

In Proc. Third Workshop on Document Analysis Systems, Nagano, Japan, 1998.

[110] K.M. Tubbs and D.W. Embley. Recognizing records from the extracted cells of

microfilm tables. In Proc. ACM Symp. Document Engineering, pages 149–156,

McLean, VA, 2002.

[111] S. Tupaj, Z. Shi, C.H. Chang, and H. Alam. Extracting tabular information

from text files. URL: http://citeseer.nj.nec.com/tupaj96extracting.html, 1996.

[112] E. Turolla, A. Belaid, and A. Belaid. Form item extraction based on line

searching. In Lecture Notes in Computer Science, volume 1072, pages 69–79,

Berlin, 1996. Springer-Verlag.

[113] M. Viswanathan, E. Green, and M.S. Krishnamoorthy. Document recogni-

tion: An attribute grammar approach. In Proc. Document Recognition III

(IS&T/SPIE Electronic Imaging), volume 2660, pages 101–111, San Jose, CA,

1996.

[114] X. Wang. Tabular Abstraction, Editing and Formatting. PhD thesis, University

of Waterloo, Canada, 1996.

BIBLIOGRAPHY 182

[115] Y. Wang, R. Haralick, and I.T. Phillips. Zone content classification and its

performance evaluation. In Proc. Sixth Int’l Conf. Document Analysis and

Recognition, pages 540–544, Seattle,WA, 2001.

[116] Y. Wang and J. Hu. Detecting tables in HTML documents. In Lecture Notes in

Computer Science, volume 2423, pages 249–260, Berlin, 2002. Springer-Verlag.

[117] Y. Wang, I.T. Phillips, and R. Haralick. Automatic table ground truth gen-

eration and a background-analysis-based table structure extraction method.

In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 528–532,

Seattle,WA, 2001.

[118] Y. Wang, T. Phillips, and R.M. Haralick. Table detection via probability opti-

mization. In Lecture Notes in Computer Science, volume 2423, pages 272–282,

Berlin, 2002. Springer-Verlag.

[119] T. Watanabe, Q. Luo, and N. Sugie. Layout recognition of multi-kinds of

table-form documents. IEEE Trans. Pattern Analysis and Machine Intelligence,

17(4):432–445, 1995.

[120] K.Y. Wong, R.G. Casey, and F.M. Wahl. Document analysis system. IBM

Journal of Research and Development, 26(6):647–656, 1982.

[121] M. Yoshida, K. Torisawa, and J. Tsujii. A method to integrate tables of the

world wide web. In Proc. First Int’l Workshop on Web Document Analysis,

pages 31–34, Seattle, WA, 2001.

[122] B. Yu and A.K. Jain. A generic system for form dropout. IEEE Trans. Pattern

Analysis and Machine Intelligence, 18(11):1127–1134, 1996.

BIBLIOGRAPHY 183

[123] R. Zanibbi, D. Blostein, and J.R. Cordy. Recognizing mathematical expres-

sions using tree transformation. IEEE Trans. Pattern Analysis and Machine

Intelligence, 24(11):1455–1467, 2002.

[124] K. Zuyev. Table image segmentation. In Proc. Fourth Int’l Conf. Document

Analysis and Recognition, pages 705–708, Ulm, Germany, 1997.

Appendix A

RSL Operation Summary

We briefly summarize the RSL operation set in this section. More detailed descrip-
tions are provided separately in Section 3.9. With the exception of the operations ac-
cept interpretations, reject interpretations, for interpretations, write, and print, RSL
operations are applied independently to each candidate interpretation (see Section
3.3). Terms used in the operation summaries are described in Figure A.1.

Region Creation and Classification

create { region type } regions using
external function(parameter list)
observation specification

Create regions of the specified type as determined by an external function.
Region locations are specified by bounding boxes.

replace { region type } regions using
external function(parameter list)
observation specification

Create new regions to replace existing regions of the specified type. ‘Replaced’ regions
have their region type classification rejected.

classify { set of region type } regions as { region type }

Classify all regions in the specified set of region types as the specified region type.

classify { set of region type } regions as { set of region type } using
external function(parameter list)
observation specification

184

APPENDIX A. RSL OPERATION SUMMARY 185

region type(s) identifier(s) representing a region type (or comma-separated
list of region types) that have been specified in the model
regions section of the RSL Strategy

relation(s) identifier(s) representing a relation type (or comma-separated
list of relation types) that has been specified in the model
relations section of the RSL Strategy

node a node (region) name

nodes a comma separated list of node names (e.g. ‘node1, node2’)

pair an ordered pair of node names

pairs a comma separated list of ordered node name pairs (e.g.
‘(node1,node2), (node1,node3)’)

interpretation name of a candidate interpretation (e.g. I0, I1)

confidence a numerical confidence value or statistic, or the identifier
‘none,’ used to indicate that no confidence value was pro-
duced

external function an external inferencing function, as described in Section 3.6.1

parameter list a comma-separated list of zero or more recognition parameter
names defined in the recognition parameters section of
the header

observation specification an observation specification section, as described in Section
3.7

Figure A.1: Terminology in Operation Summaries

APPENDIX A. RSL OPERATION SUMMARY 186

Regions associated with a set of region types are classified as one or none of the
second set of region types, as determined by an external function. If assigned multi-
ple “possible” classes, the “maximum confidence” result is used for a region.

Region Segmentation

segment { set of region type } regions into { region type }

Create new regions of the specified type from existing regions associated with a set
of region types.

segment { set of region type } regions into { region type } using
external function(parameter list)
observation specification

Create new regions of the specified type from existing regions associated with a set
of region types as determined by an external function.

resegment { set of region type } regions into { region type } using
external function(parameter list)
observation specification

Revise existing regions of the specified region type to contain regions associated with
the a set of region types as determined by an external function.

merge { region type } regions using
external function(parameter list)
observation specification

Create new regions of the specified type by combining two or more existing regions
of the same type. ‘Merged’ regions have their region type classification rejected.

Relations on Regions

relate { region type [, region type] } regions with { relation } using
external function(parameter list)
observation specification

Define edges of the specified relation from regions of one or two region types, as
determined by an external function.

APPENDIX A. RSL OPERATION SUMMARY 187

Rejecting Region Type and Relation Hypotheses

reject { set of region type } classifications

All region classifications in the given set of region types are rejected.

reject { set of region type } classifications using
external function(parameter list)
observation specification

An external function is used to determine which region classifications in the given
set of region types are to be rejected.

reject { set of relations } relations

All edges in the passed set of relations are rejected.

reject { set of relations } relations using
external function(parameter list)
observation specification

An external function is used to determine which edges in the given set of relations
are to be rejected.

Accepting and Rejecting Interpretations

accept interpretations

All candidate interpretations are added to the set of accepted interpretations and
removed from the set of candidate interpretations.

accept interpretations using
external function(parameter list)
observation specification

An external function is used to determine which candidate interpretations are to be
removed from the set of candidate interpretations and added to the set of accepted
interpretations.

reject interpretations

All candidate interpretations are rejected, and removed from the set of candidate
interpretations.

APPENDIX A. RSL OPERATION SUMMARY 188

reject interpretations using
external function(parameter list)
observation specification

An external function is used to determine which candidate interpretations are to
be rejected and removed from the set of candidate interpretations.

Conditional Application of Strategies

for interpretations using
external function(parameter list)
observation specification

Apply a strategy function only to candidate interpretations that meet a condition
specified in an external function; candidates for which the condition fails are left
as-is. If used, a ‘for’ statement is the first statement of a strategy function.

Parameter Adaptation

adapt { adaptive parameter list } using
external function(parameter list)
observation specification

Alter the value of one or more adaptive parameters as determine by an external
function. Adapted parameter values replace the parameter value in the current and
nested scopes (i.e. no side effects are permitted)

File Output

The following commands write the current adaptive parameters (aparams), normalized
interpretation tree structure (tree), candidate interpretations (current), or accepted inter-
pretations (accepted) to a file.

write aparams “file name”

write tree “file name”

write current “file name”

write accepted “file name”

APPENDIX A. RSL OPERATION SUMMARY 189

Terminal Output

The following commands print the current adaptive parameters (aparams), normalized in-
terpretation tree structure (tree), candidate interpretations (current), or accepted interpre-
tations (accepted) to the standard error stream.

print aparams

print tree

print current

print accepted

Appendix B

RSL Syntax

In this appendix we present a context-free grammar for RSL using the TXL gram-
mar syntax. We summarize the TXL grammar syntax below. The complete syntax
for TXL grammars and the TXL programming language are provided in the TXL
Programming Language Manual[23].

B.1 TXL Grammar Syntax

Nonterminals

Nonterminal A is referred to using square brackets, as [A]

Rule Definition

The rule ‘A → b A’ with terminal b is represented as:

define A
’b [A]

end define

Tokens and Comments

tokens . . . end tokens defines additional input token types (non-terminals)
keys . . . end keys defines keywords
comments . . . end com-
ments

defines comment symbols or sequences

Non-terminal Modifiers

[repeat X] zero or more X non-terminals
[list X] comma-separated list of zero or more X non-terminals
X+ 1 or more X non-terminals
X* 0 or more X non-terminals
opt X 0 or more X non-terminals

190

APPENDIX B. RSL SYNTAX 191

Built-in Nonterminal Types

[id] identifier
[number] floating-point number
[stringlit] string literal (e.g. “This is a literal”)
[empty] ε in traditional context-free grammar specifications

B.2 RSL Grammar

Please note that both TXL and RSL keywords are shown in bold in this listing.

%%%
% Terminal (token) d e f i n i t i o n s , keywords , comments in RSL
%%%
tokens

% Adaptive , s t a t i c parameters .
aparam ”a [\A] [\ a\ i \d\u] ∗ [’] ∗ ”
sparam ”s [\A] [\ a\ i \d\u] ∗ [’] ∗ ”

end tokens

keys
’model ’ recognition ’ parameters ’ strategy ’end
’ for ’ accept ’ reject ’ c lass i fy ’ segment ’ resegment ’ c lass i fy
’merge ’ create ’ replace ’ relate ’ print ’ write

end keys

comments
’%

end comments

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RSL types
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
define s cope type s

[b a s i c t y p e l i s t]
end define

define b a s i c t y p e l i s t
’ { [l i s t id +] ’}

end define

define ba s i c t yp e
’ { [id] ’ }

end define

%%%

APPENDIX B. RSL SYNTAX 192

% Parameters
%%%
define pa rame t e r l i s t

[repeat parameter de f]
end define

define parameter de f
[param name] [param value]

end define

define param value
[number]

| [s t r i n g l i t]
| ’− [number] % ∗ f o r read ing ne ga t i v e numbers

end define

%%%
% Header
%%%
define header

[mode l reg ions]
[mode l r e l a t i on s]
[r e cogn i t i on paramete r s]

end define

define model reg ions
’model ’ regions

[repeat id]
’end ’ regions

end define

define mode l r e l a t i on s
’model ’ relations

[repeat id]
’end ’ relations

end define

define r e cogn i t i on paramete r s
’ recognition ’ parameters

[p a r ame t e r l i s t]
’end ’ parameters

end define

%%%
% S t r a t e g i e s
%%%
define strategy

’ strategy [id]

APPENDIX B. RSL SYNTAX 193

[opt f o r op]
[repeat s t ra t egy op +]

’end ’ strategy
end define

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Condi t iona l s ta tement
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
define f o r op

’ for ’ interpretations
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define s t ra t egy op
[i n f e r e n c e o p e r a t i o n]

| [parameter t rans form]
| [s trategy name]
| [p r in t s ta t ement]
| [wr i t e s ta t ement]

end define

%%%
% Infe rence Operat ions
%%%
define i n f e r e n c e o p e r a t i o n

[c r ea t e op] | [r e p l a c e op] | [c l a s s o p] | [segment op]
| [resegment op] | [merge op] | [r e l a t e o p] | [r e j e c t c l a s s]
| [r e j e c t r e l a t i o n] | [a c c ep t i n t e rp] | [r e j e c t i n t e r p]

end define

define c r ea t e op
’ create [b a s i c t yp e] ’ regions

[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]
end define

define r ep l a c e op
’ replace [s cope type s] ’ regions

[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]
end define

define c l a s s o p
’ c lass i fy [s cope type s] ’ regions ’ as [b a s i c t yp e]

| ’ c lass i fy [s cope type s] ’ regions ’ as [b a s i c t y p e l i s t]
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define segment op
’segment [s cope type s] ’ regions ’ into [b a s i c t yp e] ’ regions

APPENDIX B. RSL SYNTAX 194

| ’segment [s cope type s] ’ regions ’ into [b a s i c t yp e] ’ regions
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define resegment op
’resegment [s cope type s] ’ regions ’ into [b a s i c t yp e] ’ regions

[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]
end define

define merge op
’merge [s cope type s] ’ regions

[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]
end define

define r e l a t e o p
’ relate [s cope type s] ’ regions ’ with [b a s i c t yp e]

| ’ relate [s cope type s] ’ regions ’ with [b a s i c t yp e]
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define r e j e c t c l a s s
’ reject [s cope type s] ’ c l a s s i f i c a t i o n s

| ’ reject [s cope type s] ’ c l a s s i f i c a t i o n s
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define r e j e c t r e l a t i o n
’ reject [s cope type s] ’ relations

| ’ reject [s cope type s] ’ relations
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define a c c ep t i n t e rp
’ accept ’ interpretations

| ’ accept ’ interpretations
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

define r e j e c t i n t e r p
’ reject ’ interpretations

| ’ reject ’ interpretations
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Externa l f un c t i on s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
define e x t e r n a l c a l l

APPENDIX B. RSL SYNTAX 195

’using [funct ion name] ’ ([l i s t param name] ’)
end define

define funct ion name
[id]

end define

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Observat ion s p e c i f i c a t i o n s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
define i n t e rp ob s e r va t i on

’observing [opt r e g i on ob s e r v e] [opt edge observe]
| [empty]

end define

define r e g i on ob s e r v e
[b a s i c t y p e l i s t] ’ regions

end define

define edge observe
[b a s i c t y p e l i s t] ’ relations

end define

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Parameter transform (’ adapt ’)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
define parameter t rans form

’adapt [l i s t param name]
[e x t e r n a l c a l l] [i n t e rp ob s e r va t i on]

end define

%%%
% Output opera t i ons
%%%
define pr in t s ta t ement

’ print [s t r i n g l i t] | ’ print ’ aparams | ’ print ’ t r e e
| ’ print ’ cu r r en t | ’ print ’ accepted

end define

define wr i t e s ta t ement
’ write ’ aparams [s t r i n g l i t] | ’ write ’ t r e e [s t r i n g l i t]

| ’ write ’ cu r r en t [s t r i n g l i t] | ’ write ’ accepted [s t r i n g l i t]
| ’ write ’ r e s u l t s [s t r i n g l i t]

end define

Appendix C

Handley’s Structure Recognition
Algorithm in RSL

The RSL strategy shown below has been used to implement Handley’s table structure
recognition algorithm[43]. This strategy is discussed in detail in Chapter 5.

RSL Strategy Listing

%%%
%
% NewHandley . r s l
% − Implementation o f John Handley ’ s Table S t ruc ture Recognit ion
% Algorithm (from Document Recognit ion and Re t r i e va l VIII , 2001)
%
%%%
% Revis ion History
% v 1 . 0 . 0 Created by : Richard Zanibbi , Oct 02 2004 16 :14 :27
%%%

model regions

% input types
Image Word Line

% l i n e types
Hline Under l ine I n v i s i b l e H l i n e
Vl ine I n v i s i b l e V l i n e

% Word and Ce l l group types
Ce l l Header Cel l Block

% Ce l l group types
Row Column

% Table reg ion types
Ful ly Ruled Table Table Frame

end regions

model relations

196

APPENDIX C. HANDLEY ALGORITHM IN RSL 197

% NOTE: ’ contains ’ i s im p l i c i t l y observed in a l l RSL opera t ions ;
% i t i s the reg ion s t ru c t u r e r e l a t i o n type .
conta ins

% Defining ” h o r i z o n t a l l y c l o s e ” Ce l l s
c l o s e t o

% Adjacencies between l i n e s and Ce l l s
a d j a c e n t l e f t a d j a c e n t r i g h t ad jacent top adjacent bottom

end relations

recognition parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Str ing parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sLe f t ” l e f t ”
sRight ” r i gh t ”
sTop ” top ”
sBottom ”bottom”

sCloseTo ” c l o s e t o ” % a r e l a t i o n type name .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Numerical parameters (l i s t e d
% by s t r a t e g y in which they f i r s t
% appear)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sScanResolut ion 300 % dpi

% Steps 1 and 2
sHlineMinAspectRatio 3
sNumberFullyRuledCols 2
sMaxUnderlineLength 10 % mm
sUnderlineWordMaxSeparation 1 2 . 8 % mm

% Step 4
sMinWordsInHorProj 2

% Step 5
sLinearCombinationX 2
sLinearCombinationY 1

% Step 6
sVerProjectTopRange 6 . 4
sVerProjectTopWeight 1
sVerProjectDefaultWeight 2
sColumnMinGap 1 . 5
sColumnHistogramThreshold 2

% Step 10
sNumberColsInSpanHeader 2

% Step 11
sRowMinGap 1 . 5
sMinNumberRowsForStyle1 3
sMaxMultiLineSeparation 5

% Step 12
sMaxNumberSandwhichRows 3

% Step 13

APPENDIX C. HANDLEY ALGORITHM IN RSL 198

sSecondHorProjectThreshold 1

% Step 15
sVlineMinGap 4 . 5 %mm
sHlineMinGap 1 . 5 %mm

end parameters

strategy main
steps1and2
step3
print ” Steps 1−3 complete . ”

step4
step5
step6
step7
step8
step9
step10
step11
step12
step13
step14
step15
step16
print ” Steps 4−16 complete . ”

% Accept a l l curren t i n t e r p r e t a t i o n s at end .
accept interpretations

end strategy

strategy steps1and2
% Label a l l Words as Ce l l s .
c las s i fy { Word } regions as { Ce l l }

% Create i n i t i a l t a b l e frame as BB of Ce l l s .
create { Table Frame } regions using

createRegionFromBB ()
observing

{ Ce l l } regions

% C l a s s i f y a l l l i n e s as ho r i z on t a l or v e r t i c a l .
c las s i fy { Line } regions as { Hline , Vl ine } using

c l a s s L i n eD i r e c t i o n (sHlineMinAspectRatio)

% Label Under l ines (in ho r i z on t a l l i n e l i s t)
c las s i fy { Hline } regions as { Under l ine } using

c l a s s i f yU nd e r l i n e s (sMaxUnderlineLength , sUnderlineWordMaxSeparation ,
sScanResolut ion)

observing

{ Word } regions

% Remove Under l ines from the l i s t o f ho r i z on t a l l i n e s .
reject { Hline } c l a s s i f i c a t i o n s using

removeUnder l ines ()
observing

{ Under l ine } regions

end strategy

strategy step3
% Determine the ad jacent l i n e s o f the Ce l l s .

APPENDIX C. HANDLEY ALGORITHM IN RSL 199

analyzeLineAdjacency

% Analys is f o r f u l l y ru l ed t a b l e s (only)
f u l l yRu l edAna l y s i s

end strategy

strategy analyzeLineAdjacency
% Reject the e x i s t i n g s e t o f l i n e adjacency r e l a t i o n s .
reject { ad j a c e n t l e f t , ad j a c en t r i gh t , ad jacent top ,

adjacent bottom } relations

% Then f i nd ad jacent l i n e s c l o s e s t to each s i d e o f a Cel l ’ s
% bounding box .
relate { Vline , Ce l l } regions with { a d j a c e n t l e f t } using

i n f e rCe l lBound ingL ines (sLe f t)

relate { Vline , Ce l l } regions with { ad j a c e n t r i g h t } using

i n f e rCe l lBound ingL ines (sRight)

relate { Hline , Ce l l } regions with { ad jacent top } using

i n f e rCe l lBound ingL ines (sTop)

relate { Hline , Ce l l } regions with { adjacent bottom } using

i n f e rCe l lBound ingL ines (sBottom)
end strategy

strategy f u l l yRu l edAna l y s i s
% Only apply t h i s s t r a t e g y i f a l l Ce l l s are ad jacent to a l i n e
% in a l l f our d i r e c t i on s , and there are sNumberFul lyRuledCols
% de t e c t e d (Note : I ’ ve done t h i s us ing the number o f v e r t i c a l
% l i n e s and the number o f v e r t i c a l l i n e s bounding Ce l l s) .
for interpretations using

sk ipNonFul lyRuledInterps (sNumberFullyRuledCols)
observing

{ Cel l , Vline , Hl ine } regions

{ ad j a c e n t l e f t , ad j a c en t r i gh t , ad jacent top ,
adjacent bottom } relations

% Merge Ce l l s wi th the same bounding l i n e s .
merge { Ce l l } regions using

mergeRegionsSharingLineBounds ()
observing

{ Vline , Word } regions

{ ad j a c e n t l e f t , ad j a c en t r i gh t , ad jacent top ,
adjacent bottom } relations

% Define a ” f u l l y ru l ed ” t a b l e reg ion using the bounding box
% of a l l Ce l l s , and v e r t i c a l and ho r i z on t a l t a b l e l i n e s .
create { Ful ly Ruled Table } regions using

createRegionFromBB ()
observing

{ Vline , Hline , Ce l l } regions

% Accept the r e s u l t i n g i n t e r p r e t a t i o n (t h i s a l s o removes the
% in t e r p r e t a t i o n s from the l i s t o f curren t i n t e r p r e t a t i o n s)
accept interpretations

end strategy

strategy step4
% Produce a f i r s t e s t imate o f Row l o c a t i o n s using a ho r i z t ona l
% pro j e c t i on o f Word and ho r i z on t a l l i n e bounding boxes .

APPENDIX C. HANDLEY ALGORITHM IN RSL 200

create { Row } regions using

i n i t i a lRowPro j e c t i on (sMinWordsInHorProj)
observing

{ Word , Hline , Table Frame } regions

end strategy

strategy step5
% Define Ce l l s as be ing ” c l o s e t o ” one another i f they
% are h o r i z o n t a l l y ad jacent and wi th in sColumnMinGap mm
% of one another in the X d i r e c t i o n (see J . Handley ’ s paper
% fo r a de s c r i p t i on o f the adjacency metr ic)
relate { Ce l l } regions with { c l o s e t o } using

r e l a t e C l o s e C e l l s (sColumnMinGap , sLinearCombinationX ,
sLinearCombinationY , sScanResolu t ion)

observing

{ Ce l l } regions

{ ad j a c e n t l e f t , a d j a c e n t r i g h t } relations

% Al l Ce l l s t h a t are h o r i z o n t a l l y ” c l o s e t o ” one another
% are merged in to new Ce l l s . We never merge across l i n e s ,
% so we observe v e r t i c a l l i n e s and adjacency r e l a t i o n s here .
merge { Ce l l } regions using

mergeClosure (sCloseTo)
observing

{ Vline } regions

{ ad j a c e n t l e f t , ad j a c en t r i gh t , c l o s e t o } relations

end strategy

strategy step6
% Produce an i n i t i a l e s t imate o f Column l o c a t i o n s using
% a weighted v e r t i c a l bounding box p ro j e c t i on o f Ce l l s
% and v e r t i c a l l i n e s .
create { Column } regions using

i n i t i a lCo lumnPro j e c t i on (sVerProjectTopRange ,
sVerProjectTopWeight ,
sVerProjectDefaultWeight ,
sColumnHistogramThreshold , sScanResolu t ion)

observing

{ Cel l , Vline , Table Frame } regions

% Merge Columns t ha t are wi th in sColumnMinGap o f one another
% in the X d i r e c t i o n .
merge { Column } regions using

mergeHorCloseRegions (sColumnMinGap , sScanResolut ion)
observing

{ Vline } regions

end strategy

strategy step7
% Define ” Blocks ” o f Ce l l s to use in a modi f ied p ro j e c t i on .
% These w i l l be used to he lp improve our Column es t imate .
segment { Ce l l } regions into { Block } regions using

mergeXCentersInBB()
observing

{ Column } regions

% Reject the o ld Columns .
reject { Column } c l a s s i f i c a t i o n s

% Perform another weighted pro jec t ion , t h i s time using Ce l l s ,
% v e r t i c a l l i n e s , and the new Blocks .

APPENDIX C. HANDLEY ALGORITHM IN RSL 201

create { Column } regions using

secondColumnProjection (sVerProjectTopRange ,
sVerProjectTopWeight ,
sVerProjectDefaultWeight ,
sColumnHistogramThreshold , sScanResolu t ion)

observing

{ Cel l , Block , Vline , Table Frame } regions

% Merge the new Columns t ha t are wi th in sColumnMinGap o f one another
% in the X d i r e c t i o n .
merge { Column } regions using

mergeHorCloseRegions (sColumnMinGap , sScanResolut ion)
observing

{ Vline } regions

end strategy

strategy step8
% Assign each Ce l l to the Column with which i t has
% ” r e l a t i v e ho r i z on t a l maximum over lap ” (see the paper)
% (none , i f t h i s va lue i s 0)
resegment { Ce l l } regions into { Column } regions using

assignCellsToColumns ()
observing

{ Column } regions

% Assign each Ce l l to the Row with which i t has
% ” r e l a t i v e v e r t i c a l maximum over lap ” (again , see the paper)
% (no assignment i f t h i s va lue i s 0)
resegment { Ce l l } regions into { Row } regions using

assignCellsToRows ()
observing

{ Row } regions

% Assign Ce l l s wi th Columns but no Row to the Row above .
resegment { Ce l l } regions into { Row } regions using

repairRowStructure ()
observing

{ Row, Column } regions

% Assign Ce l l s wi th a Row but no Column to a new Column .
segment { Ce l l } regions into { Column } regions using

repairColumnStructure ()
observing

{ Column , Row } regions

end strategy

strategy step9
% Need new l i n e ad jacenec ie s f o r the new Ce l l s .
analyzeLineAdjacency

% Merge Ce l l s at the same Row and Column pos i t i on .
% Check l i n e ad jacenc ie s to insure we don ’ t merge across
% a l i n e .
merge { Ce l l } regions using

mergeCellsAtSameGridPosit ion ()
observing

{ Column , Row } regions

{ ad j a c e n t l e f t , ad j a c en t r i gh t , ad jacent top , adjacent bottom }
relations

% Rows conta in ing Ce l l s t h a t have been merged have these Ce l l s rep laced

APPENDIX C. HANDLEY ALGORITHM IN RSL 202

% with the parent merged reg ions .
resegment { Ce l l } regions into { Row } regions using

rev iseMergedRegions ()
observing

{ Row } regions

% Columns conta in ing Ce l l s t h a t have been merged have these Ce l l s
% with the parent merged reg ions .
resegment { Ce l l } regions into { Column } regions using

rev iseMergedRegions ()
observing

{ Column } regions

end strategy

strategy step10
% Ce l l s in the f i r s t Row tha t span sNumberColsInSpanHeader
% Columns are c l a s s i f i e d as a Header .
c las s i fy { Ce l l } regions as { Header Cel l } using

l abe lHeader s (sNumberColsInSpanHeader)
observing

{ Row, Column } regions

end strategy

strategy step11
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Update the l i n e adjacency f o r the current Ce l l s .
analyzeLineAdjacency

% Merge Ce l l s t h a t span Rows at the top o f the t a b l e .
merge { Ce l l } regions using

mergeSpanningCell s (sMinNumberRowsForStyle1 , sRowMinGap ,
sScanResolut ion)

observing

{ Row, Column , Header Cel l , Hl ine } regions

{ ad jacent top , adjacent bottom } relations

% Update Row s t ruc tu r e to r e f l e c t the merged Ce l l s (NOTE:
% spanned Ce l l s are members o f a l l Rows conta in ing t h e i r ch i l d r en)
resegment { Ce l l } regions into { Row } regions using

rev iseMergedRegions ()

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Merge Ce l l s in a Row with Ce l l s in the Row above i f there
% i s no Ce l l in the l e f tmo s t Column , and the Rows are wi th in
% sMaxMultiLineSeparation o f one another .
merge { Ce l l } regions using

mergeCellsBelow (sMaxMultiLineSeparation , sScanResolut ion)
observing

{ Column , Row, Hl ine } regions

{ ad jacent top , adjacent bottom } relations

% Merge the Rows whose Ce l l s were merged in the prev ious s tep .
merge { Row } regions using

mergeRowsWithCellsMergedInLastStep ()
observing

{ Ce l l } regions

APPENDIX C. HANDLEY ALGORITHM IN RSL 203

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Part 3
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Third s tep ; merge l o n e l y Ce l l s in the f i r s t Column with the
% Ce l l below i t .
merge { Ce l l } regions using

mergeLoneCellsInRow ()
observing

{ Column , Row, Hl ine } regions

{ ad jacent top , adjacent bottom } relations

end strategy

strategy step12
% Update the l i n e adjacency f o r Ce l l s again .
analyzeLineAdjacency

% Merge up to sMaxNumberSandwhichRows at the top o f the t a b l e
% i f they are ” sandwhiched ” by two ho r i z on t a l l i n e s .
merge { Ce l l } regions using

mergeSandwhichedCells (sMaxNumberSandwhichRows)
observing

{ Row, Column } regions

{ ad jacent top , adjacent bottom } relations

end strategy

strategy step13
% Reject the o ld Row es t imates .
reject { Row } c l a s s i f i c a t i o n s

% As in s tep 4 , use a ho r i z on t a l p r o j e c t i on o f Ce l l s and ho r i z on t a l
% l i n e s to de f i n e Row l o c a t i o n s (t h i s time with a sma l l e r t h r e s ho l d)
create { Row } regions using

i n i t i a lRowPro j e c t i on (sSecondHorProjectThreshold)
observing

{ Cel l , Hline , Table Frame } regions

end strategy

strategy step14
% Reject the current t a b l e frame . . .
reject { Table Frame } c l a s s i f i c a t i o n s

% And crea te a new one using the bounding box o f the Ce l l s and
% v e r t i c a l and ho r i z on t a l l i n e s .
create { Table Frame } regions using

createRegionFromBB ()
observing

{ Cel l , Hline , Vl ine } regions

end strategy

strategy step15
% Create ” i n v i s i b l e ” l i n e separa tors at Row gaps .
create { I n v i s i b l e H l i n e } regions using

createLinesAtRowGaps ()
observing

{Row, Table Frame } regions

% Create ” i n v i s i b l e ” l i n e separa tor at Column gaps .
create { I n v i s i b l e V l i n e } regions using

createLinesAtColumnGaps ()
observing

{ Column , Table Frame } regions

APPENDIX C. HANDLEY ALGORITHM IN RSL 204

% Reject ” i n v i s i b l e ” Row separa tors t ha t are c l o s e to
% a rea l l i n e separa t ing Rows (wi th in sHlineMinGap mm)
reject { I n v i s i b l e H l i n e } c l a s s i f i c a t i o n s using

r e j e c tRea l I nvH l i n e s (sHlineMinGap , sScanResolu t ion)
observing

{ Hline , Row } regions

% Simi l a r l y f o r Column separa tors , remove ” I n v i s i b l e ”
% Column separa tors t ha t are c l o s e to a r ea l l i n e separa t ing
% Columns .
reject { I n v i s i b l e V l i n e } c l a s s i f i c a t i o n s using

r e j e c tRea l I nvV l i n e s (sVlineMinGap , sScanResolu t ion)
observing

{ Vline , Column } regions

% Replace r ea l double−r u l i n g s separa t ing Rows with
% a l i n e l o ca t ed at t h e i r v e r t i c a l mid−po in t .
replace { Hline } regions using

r ep l a c eC l o s eH l i n e s (sHlineMinGap , sScanResolut ion)
observing

{ I n v i s i b l e H l i n e , Row } regions

% Replace r ea l double−ru l i n g separa t ing Columns with
% a l i n e l o ca t ed at t h e i r ho r i z on t a l mid−po in t .
replace { Vline } regions using

r ep l a c eC l o s eV l i n e s (sVlineMinGap , sScanResolut ion)
observing

{ I n v i s i b l e V l i n e , Column } regions

end strategy

strategy step16
% For the l a s t time , update the l i n e and Ce l l adjacency .
% This time we use a d i f f e r e n t funct ion , as we want to use
% rea l and ” i n v i s i b l e ” r u l i n g s .
analyzeFinalLineAdjacency

merge { Ce l l } regions using

mergeRegionsSharingLineBounds ()
observing

{ ad j a c e n t l e f t , ad j a c en t r i gh t , ad jacent top ,
adjacent bottom } relations

end strategy

strategy analyzeFinalLineAdjacency
% This i s s im i l a r to ’ analyzeLineAdjacency ’ , but takes i n v i s i b l e
% l i n e s in to account .
reject { ad j a c e n t l e f t , ad j a c en t r i gh t , ad jacent top ,

adjacent bottom } relations

relate { Vline , Ce l l } regions with { a d j a c e n t l e f t } using

i n f e rF ina lCe l lBound ingL in e s (sLe f t)
observing

{ I n v i s i b l e V l i n e } regions

relate { Vline , Ce l l } regions with { ad j a c e n t r i g h t } using

i n f e rF ina lCe l lBound ingL in e s (sRight)
observing

{ I n v i s i b l e V l i n e } regions

APPENDIX C. HANDLEY ALGORITHM IN RSL 205

relate { I n v i s i b l e V l i n e , Ce l l } regions with { a d j a c e n t l e f t } using

i n f e rF ina lCe l lBound ingL in e s (sLe f t)
observing

{Vline } regions

relate { I n v i s i b l e V l i n e , Ce l l } regions with { ad j a c e n t r i g h t } using

i n f e rF ina lCe l lBound ingL in e s (sRight)
observing

{ Vline } regions

relate { Hline , Ce l l } regions with { ad jacent top } using

i n f e rF ina lCe l lBound ingL in e s (sTop)
observing

{ I n v i s i b l e H l i n e } regions

relate { Hline , Ce l l } regions with { adjacent bottom } using

i n f e rF ina lCe l lBound ingL in e s (sBottom)
observing

{ I n v i s i b l e H l i n e } regions

relate { I n v i s i b l e H l i n e , Ce l l } regions with { ad jacent top } using

i n f e rF ina lCe l lBound ingL in e s (sTop)
observing

{ Hline } regions

relate { I n v i s i b l e H l i n e , Ce l l } regions with { adjacent bottom } using

i n f e rF ina lCe l lBound ingL in e s (sBottom)
observing

{ Hline } regions

end strategy

Appendix D

Hu et al.’s Structure Recognition
Algorithm in RSL

The RSL strategy shown below has been used to implement Hu et al.’s table structure
recognition algorithm[53]. Note that we have adapted their algorithm slightly in order
to process inputs containing word regions from images rather than ASCII text files,
as in the original. This strategy is discussed in detail in Chapter 5.

RSL Strategy

%%%
%
% HuEtAl . r s l
% − Implementation o f Hu et . a l . ’ s t a b l e s t r u c t u r e r e cogn i t i on
% a lgor i thm from Document Recognit ion and Re t r i e va l VIII , 2 001 .
% − NOTE: This implementation adapts the o r i g i n a l ASCII−based s t r a t e g y
% to work with reg ions de f ined in Image f i l e s .
%
%%%
% Revis ion History
% v 1 . 0 . 0 Or ig ina l Version : Richard Zanibbi , Oct 01 2004 12 :29 :28
%%%

model regions

% Input reg ion types : note t ha t l i n e s are unused .
Image Word l i n e

% Types a s s o c i a t e d with Words
Alpha Word NonAlpha Word

% For Clus ter t r e e .
Clus te r

% Text l ine and types a s s o c i a t e d with Tex t l i n e s .
Text l ine Header l ine Boxhead Core Line Pa r t i a l L i n e
Cons i s t ent L ine In con s i s t e n t L in e

206

APPENDIX D. HU ET AL. ALGORITHM IN RSL 207

% Ce l l s and types a s s o c i a t e d with Ce l l s .
Ce l l Column Header Row Header Stub Head

% Rows , Columns , and Stub (a Column type)
Row Column Alpha Column NonAlpha Column Stub
Final Row Final Column

end regions

model relations

% Defau l t reg ion containment r e l a t i o n .
conta ins

% For index ing s t ru c t u r e .
i ndexes

end relations

recognition parameters

% Main s t r a t e g y
sThreshold 1 % for c r ea t i n g t e x t l i n e s from hor . p ro j e c t i on s
sOverlap 0 . 5 % over lap t h r e s ho l d f o r merging over lapp ing reg ions .
sScanResolut ion 300 % dpi

% Column ana l y s i s parameters
sAlpha 0 . 8 % a weight in [0 , 1]
sG 2 . 0 % a thresho ld , in MM

% Boxhead ana l y s i s
sMaxBoxheadHeight 30 %6.4 % mm; based on v . pro j .

% hard−va lued approximation o f ‘ 5 Tex t l ines ’

% Column Header ana l y s i s
sMinColumnSeparation 2 . 0 %1.5 % approximation o f ” two spaces ” in mm

% Row ana l y s i s
sMaxRowLineSeparation 4 . 5 % approximation in MM.

end parameters

strategy main
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Segment Words in to Tex t l i n e s
% (to ” fake ” ASCII t e x t)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c r e a t eTex t l i n e s

columnAnalysis
boxheadAnalysis

indexAna lys i s
rowAnalys i s
bodyCel lCreat ion

accept interpretations

end strategy

strategy c r e a t eTex t l i n e s
create { Text l ine } regions using

c rea teReg ionsFromPro jec t ions (sThreshold , sOverlap)
observing

{ Word } regions

resegment { Word } regions into { Text l ine } regions using

APPENDIX D. HU ET AL. ALGORITHM IN RSL 208

mergeYCentersInBB()
observing

{ Text l ine } regions

end strategy

strategy columnAnalysis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Bui ld the h i e r a r c h i c a l C lus ter
% t r e e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c las s i fy { Word } regions as { Clus te r }

bu i ldClus te rTree

print ” Clus te r t r e e i s complete . ”

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Segment Columns by cu t t i n g the
% Clus ter t r e e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c las s i fy { Clus te r } regions as { Column } using

cutClus te rTree (sAlpha , sG , sScanResolut ion)
observing

{ Text l ine } regions

print ” Clus te r t r e e has been cut . ”
end strategy

strategy bu i ldClus te rTree
% Using l i t e r a l , r e cu r s i v e d e s c r i p t i on from the paper .
for interpretations using

f i l t e rFo rComp le t eClu s t e rTree s ()
observing

{ Clus te r } regions

segment { Clus te r } regions into { Clus te r } regions using

j o i nC l o s e s tC lu s t e rPa i r ()

bu i ldClus te rTree
end strategy

strategy boxheadAnalysis
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Separate the t a b l e body from
% the Boxhead , i f p resen t .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
c las s i fy { Word } regions as { Alpha Word , NonAlpha Word } using

classifyWordTokenType ()

c las s i fy { Column } regions as { Alpha Column , NonAlpha Column } using

classifyDominantColumnTokenType ()
observing

{ Alpha Word , NonAlpha Word } regions

c las s i fy { Text l ine } regions as { Cons i s t ent L ine , I n c on s i s t en t L in e } using

c l a s s i f yT e x t l i n eCon s i s t e n c y ()
observing

{ Alpha Word , NonAlpha Word , Alpha Column , NonAlpha Column } regions

segment { I n c on s i s t e n t L in e } regions into { Boxhead } regions using

putInConsistentLinesInBoxhead (sMaxBoxheadHeight , sScanResolut ion)

APPENDIX D. HU ET AL. ALGORITHM IN RSL 209

observing

{ Cons i s t ent L ine } regions

resegment { Word } regions into { Column } regions using

removeBoxheadWordsFromColumns ()
observing

{ Boxhead , Column } regions

end strategy

strategy i ndexAna lys i s
% Define Header Ce l l s as groups o f ‘ c l o se ’ Words
% along Tex t l i n e s in the Boxhead .
segment { Word } regions into { Column Header } regions using

cutL ine IntoPhrase s (sMinColumnSeparation , sScanResolut ion)
observing

{ I n c on s i s t en t L in e , Boxhead } regions

% Assoc ia te Header c e l l s c l o s e s t to Columns . . .
relate { Column Header , Column } regions with { i ndexes } using

determineLowestColumnHeaders ()
observing

{ Boxhead , I n con s i s t en t L in e , Word } regions

% . . and (r e c u r s i v e l y) the parent Headers o f the
% Headers .
relate { Column Header } regions with { i ndexes } using

determineHeaderNest ing ()
observing

{ Boxhead , I n con s i s t en t L in e , Word , Column } regions

{ i ndexes } relations

% Leftmost Column i s assumed to be a Stub .
c las s i fy { Column } regions as { Stub } using

c l a s s i f yL e f tmo s t ()
end strategy

strategy rowAnalys i s
% Determine whether l i n e s end or (u sua l l y) cont inue a Row.
c las s i fy { Text l ine } regions as { Core Line , Pa r t i a l L i n e } using

c lass i fyText l ineRowType ()
observing

{ Word , Column , Boxhead } regions

% Use simple ru l e to combine these (p a r t i a l l i n e s always a s s o c i a t e d
% with core l i n e s above i f not i n t e r rup t ed by a ” b lank ” l i n e)
segment { Text l ine } regions into { Row } regions using

groupPart ia lToCoreLines (sMaxRowLineSeparation , sScanResolut ion)
observing

{ Boxhead , Core Line , Pa r t i a l L i n e } regions

end strategy

strategy bodyCel lCreat ion
% Create body Ce l l s .
segment { Word } regions into { Ce l l } regions using

segmentWordsInSameRowAndColumnAsCell ()
observing

{ Row, Column } regions

% Al l Column Headers are a l s o Ce l l s ; record t h i s .

APPENDIX D. HU ET AL. ALGORITHM IN RSL 210

c las s i fy { Column Header } regions as { Ce l l }

% Assign Ce l l s to t h e i r appropr ia te Rows
% and Columns ; use a new l a b e l to make book−keeping
% ea s i e r (d e f i n e new , r e j e c t o ld)
segment { Ce l l } regions into { Final Column } regions using

as s i gnCe l l sToRegion ()
observing

{ Word , Column } regions

% Define Row Headers .
c las s i fy { Ce l l } regions as { Row Header } using

assignRowHeaders ()
observing

{ Final Column } regions

% Reject o ld Columns .
reject { Column } c l a s s i f i c a t i o n s

segment { Ce l l } regions into { Final Row } regions using

as s i gnCe l l sToRegion ()
observing

{ Word , Row } regions

reject { Row } c l a s s i f i c a t i o n s
end strategy

Appendix E

Table Cell Interpretations

(a) Author and Handley Algorithm Interpretation

(b) Output Interpretation from Hu et al.’s Algorithm

Figure E.1: Cell Interpretations for Table in UW-I d05d

211

APPENDIX E. TABLE CELL INTERPRETATIONS 212

(a) Author and Handley Algorithm Interpretation

(b) Output Interpretation from Hu et al.’s Algorithm

Figure E.2: Cell Interpretations for Table in UW-I v002

APPENDIX E. TABLE CELL INTERPRETATIONS 213

(a) Author

(b) Handley Algorithm

Figure E.3: Author and Handley Algorithm Cell Interpretations for Table in UW-I
a038

APPENDIX E. TABLE CELL INTERPRETATIONS 214

Figure E.4: Hu et al. Algorithm Cell Interpretation for Table in UW-I a038

APPENDIX E. TABLE CELL INTERPRETATIONS 215

Figure E.5: Author’s Cell Interpretation for Table in UW-I a04g

APPENDIX E. TABLE CELL INTERPRETATIONS 216

Figure E.6: Handley Algorithm Cell Interpretation for Table in UW-I a04g

APPENDIX E. TABLE CELL INTERPRETATIONS 217

Figure E.7: Hu et al. Algorithm Cell Interpretation for Table in UW-I a04g

APPENDIX E. TABLE CELL INTERPRETATIONS 218

Figure E.8: Author Cell Interpretation for UW-I Table a002

APPENDIX E. TABLE CELL INTERPRETATIONS 219

Figure E.9: Handley Algorithm Cell Interpretation for UW-I Table a002

APPENDIX E. TABLE CELL INTERPRETATIONS 220

Figure E.10: Hu et al. Algorithm Cell Interpretation for UW-I Table a002

