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Abstract Most United States Patent and Trademark

Office (USPTO) patent documents contain drawing pages

which describe inventions graphically. By convention

and by rule, these drawings contain figures and parts

that are annotated with numbered labels but not with
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text. As a result, readers must scan the document to

find the description of a given part label. To make

progress toward automatic creation of ‘tool-tips’ and

hyperlinks from part labels to their associated descrip-

tions, the USPTO hosted a month-long online competi-

tion in which participants developed algorithms to de-

tect figures and diagram part labels. The challenge drew

232 teams of two, of which 70 teams (30%) submitted

solutions. An unusual feature was that each patent was

represented by a 300 dpi page scan along with an HTML

file containing patent text, allowing integration of text

processing and graphics recognition in participant algo-

rithms. The design and performance of the top-5 sys-

tems are presented along with a system developed af-

ter the competition, illustrating that the winning teams
produced near state-of-the-art results under strict time

and computation constraints. The 1st place system used

the provided HTML text, obtaining a harmonic mean of

recall and precision (F-measure) of 88.57% for figure re-

gion detection, 78.81% for figure regions with correctly

recognized figure titles, and 70.98% for part label de-

tection and recognition. Data and source code for the

top-5 systems are available through the online UCI Ma-

chine Learning repository to support follow-on work by

others in the document recognition community.

Keywords graphics recognition, text detection,

optical character recognition (OCR), competitions,

crowdsourcing

1 Introduction

The United States Patent and Trademark Office

(USPTO) is in the process of bringing an archive of

http://doi.dx.org/10.1007/s10032-016-0260-8
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eight million patents into the digital age by moderniz-

ing the representation of these documents in its infor-

mation technology systems. In their daily work, patent

examiners at the USPTO, as well as patent lawyers

and inventors throughout the world, rely on this patent

archive. Locating existing patents related to new patent

application requires significant effort, which has moti-

vated research into automatic retrieval of patents us-

ing both text [36] and images [3]. Most USPTO patent

documents contain drawing pages which describe the

invention graphically. By convention and by rule, these

drawings contain figures and parts that are annotated

with numbered labels but not with text, and so readers

must scan the entire document to find the meaning of

a given part label.

One would like to be able to automatically link part

labels with their definitions in digital patent documents

to save readers this effort. For example, one could cre-

ate ‘tool-tips’ for part labels and figures, where hov-

ering the pointer over a part label or figure brings up

text describing the part or figure, reducing the need to

switch back and forth between diagram and text pages.

Unfortunately, robust solutions to this problem are cur-

rently unavailable. While document image analysis [38]

and optical character recognition [12] have made signif-

icant advances, detecting figures and labels scattered

within drawings remains a hard problem. More gener-

ally, text detection in documents and natural scenes

[27, 29, 50, 66] remains a challenging image processing

task.

Prize-based competitions have a long history of en-

couraging innovation and attracting unconventional in-

dividuals who can overcome difficult challenges and suc-

cessfully bridge knowledge domains. This has lead to

an emergence of commercial platforms including Top-

Coder, InnoCentive, and Kaggle that have specialized

in executing large-scale competitions around algorithm

or software development. In September 2009, President

Obama called on all U.S. Federal government agencies

to increase their use of competitions to address difficult

challenges. Following this, the U.S. Congress granted

all those agencies authority to conduct prize competi-

tions to spur innovation in the America COMPETES

Reauthorization Act of 2010 [25]. These developments

helped provide a legal path for government agencies

to conduct prize competitions. NASA, which already

had prize authority and experience working with the

TopCoder software competition community [1], opened

a Center of Excellence for Collaborative Innovation to

help other U.S. Federal Agencies run challenges.

These developments together led to the USPTO

launching a software challenge to develop image pro-

cessing algorithms to recognize figure and part labels

Table 1 USPTO Challenge Overview

System Input
1. 8-bit greyscale drawing page scan (300 dpi)
2. Associated HTML patent text

System Output
1. Figure bounding boxes and title text
2. Part label bounding boxes and text

in patent documents on the TopCoder platform in De-

cember 2011 [53]. The goal of the competition was to

detect figure locations and labels along with part la-

bels in patent drawings, to enable their use in cross-

referencing text and image data.

References to figures and part labels are common

throughout a patent’s text. Often, many specific refer-

ences are combined in a single sentence. For illustra-

tion, we reproduce a sample sentence from a patent on

a sifter apparatus. The quoted text appears on page

ten while the referenced figure appears on page two of

patent US6431367 (emphasis in bold is ours).

FIG. 1 shows an outside appearance of the

prior art sifter in which a plurality of sifter

frames 101 are stacked on a sifting machine

frame 102, and are fixed unitarily to the sift-

ing machine frame 102 by bolts 103 and nuts

104.

Ideally, each of the part references highlighted in bold

could be turned into a tool-tip that overlays the text,

showing specific parts from Figure 1 on page two. Tool-

tips showing the description of parts from page ten

when hovering over part labels on page two would also

be useful. Both would facilitate patent examination by

avoiding the need to scroll within patents.

The specific goal of the challenge was to extract

the following from patent drawing pages: 1) figure lo-

cations and titles, and 2) part label locations and

text. Each region type was represented by a rectan-

gle (bounding box) with a text label (e.g., as a triple

((20, 20), (100, 100), “9b”) representing part label ‘9b’

located in a rectangle with top-left corner (20, 20) and

bottom-right corner (100, 100)). Inputs and outputs for

competition systems are provided in Table 1.

Participants were provided with images of patent

drawing pages, each of which contains one or more fig-

ures (see Fig. 1). Each figure has a title and in most

cases a large number of part numbers affixed to their

parts with curved lines and arrows. Most part labels

are numerical or alphanumerical. Complicating mat-

ters, many drawing pages also include additional num-

bers and text, such as page numbers, dates, patent num-

bers, or inventor names.
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Figure Detection and Title Recognition

One figure (Fig. 3) Four figures (Figs. 5–8) Two figures (Figs. 2 & 6) One figure (Fig. 6)

Part Label Detection and Recognition

Typeset numbers Cursive numbers and letters Labels over cross-hatching Slanted handwritten labels

Fig. 1 Sample results from the 1st place system (leftmost two columns) and 2nd place system (rightmost two columns) on
the Figure Detection and Title Recognition task (top row) and the Part Label Detection and Text Recognition Task (bottom
row). Target regions are shown in yellow (located, or true positive), blue (false positive), and red (missed, or false negative).
Figure titles are correctly recognized when they are included in the figure region box and the text label for the figure region
box contains the correct title. On the top row, inner columns show multi target figures (red) which the algorithm mistakenly
merges into a single figure (outer blue rectangles). Figure regions and titles are recognized correctly in the outer examples.
The bottom row shows part label detection and recognition results. In the leftmost figure, all but one label is detected by the
1st place algorithm, but in the second column from left, it misses several labels because of the font used. The example in the
third column has dense line art and hatching. The 2nd-place algorithm’s character recognizer can better handle the cursive
font used, but a number of labels are missed (red) including labels touching or on top of lines. In the rightmost example, the
page is rotated (in landscape orientation). Here six labels are detected correctly by the 2nd-place algorithm, but a number of
false positives (blue) are caused by over-segmenting part labels. Additional false positives (blue) are produced for holes in the
diagram (which have the same shape as 0/O), and the figure title (at right).

Each drawing page image is accompanied by the

text of the associated patent in HTML format. These

are useful because figures are described explicitly in

most recent patents, and part labels must be referred

to at least once in the text. Participants could use the

HTML text to validate and modify character recogni-

tion output.

Fig. 1 illustrates results from the 1st place system

(leftmost two columns) and 2nd place system (right-

most two columns). Both target (‘ground truth’) re-

gions and regions detected by the algorithms are shown.

The drawing page in the leftmost column contains one

figure titled ‘FIG. 3’ which has 18 part labels. A number

of challenges are illustrated in Fig. 1 including differing

page orientations (portrait vs. landscape), multiple fig-
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Fig. 2 Figure Titles from the USPTO Competition Dataset

ures on a page, text that does not belong to figures or

part labels, different fonts and font styles, handwritten

text, rotated text, drawing elements that look like char-

acters, and part labels that intersect lines in a drawing.

A sample of figure titles from the USPTO competi-

tion data are shown in Fig. 2. There is a large variety of

fonts, font styles (bold, italic, underline), and formats

(e.g., ‘Fig. 2,’ ‘Fig 2,’ ‘FIG-2,’ ‘Figure 2’), in either

portrait or landscape orientation. For the most part,

part labels are typeset numeric (‘11’) or alphanumeric

(‘14b’) strings in either portrait or landscape orienta-

tion. As illustrated in Fig. 1, there are also a number

of drawing pages for which part labels are handwritten

at an angle (i.e., slanted).

In this paper, we present the protocol and results

of this competition. Section 2 describes related work.

Section 3 describes the challenge in detail. In Section

4 we describe the approaches used in the top-5 algo-

rithms submitted to the competition and a benchmark

system we developed after the competition in Section

5. The top-5 ranked systems adopted similar strategies,

but differed in their approaches to text/graphics sepa-

ration, page orientation detection, region segmentation,

character recognition (OCR), validation, and use of the

provided HTML text. We analyze their performance in

Section 6. We then summarize lessons learned in Sec-

tion 7. In Section 8 we discuss the implications of this

work, and describe our competition design which may

provide a template for other competitions aiming to

solve document analysis problems using a global talent

pool [37].

To encourage others to develop this work further,

source code for the top-5 systems along with all la-

beled training and test data have been published un-

der Apache License 2.0 in the UCI Machine Learning

Repository.1

2 Related Work

In this section, we present background on competition-

based algorithm and software development in general,

as well as competitions in document image analysis and

information (patent) retrieval in particular. We then

provide an overview of graphics recognition and work

in text and engineering drawing dimension recognition.

Recognizing engineering and architectural drawings is

closely related to the USPTO challenge, in the sense

that detecting objects in drawings is similar to figure

detection, and recognizing dimensions is similar to rec-

ognizing part labels in patents.

Competition-Based Innovation. Prize-based

competitions have driven innovation throughout his-

tory [55]. For example, in the 18th century the British

government announced a prize of £20,000 for finding

a method to determine the longitude of a ship’s loca-

tion. More recently, prize-based competitions have been

used to find solutions to hard algorithmic problems in

biotech and medical imaging [31, 41]. These competi-

tions provide an alternative to approaches requiring an

extensive search to identify and contract with potential

solvers.

In recent years, prize-based contests have emerged

as part of a major trend towards solving industrial

R&D, engineering, software development, and scientific

problems. In the popular press, such competitions are

often referred to as ‘crowdsourcing’ [23]. In general,

crowdsourcing has come to imply a strategy that re-

lies on external, unaffiliated actors to solve a defined

problem [31]. Competitions provide an opportunity to

expose a problem to a diverse group of individuals with

varied skills, experience, and perspectives [6]. Often,

these individuals are intrinsically motivated, e.g., by

the desire to learn or gain reputation within a commu-

nity of peers. Competitions also allow rapid exploration

of multiple solutions in parallel as multiple competitors

attempt to solve a problem simultaneously [40, 56].

Academic Competitions. Competitions at aca-

demic document analysis conferences are common. For

1 http://archive.ics.uci.edu/ml/datasets/USPTO+

Algorithm+Challenge%2C+run+by+NASA-Harvard+

Tournament+Lab+and+TopCoder++++Problem%3A+Pat

http://archive.ics.uci.edu/ml/datasets/USPTO+Algorithm+Challenge%2C+run+by+NASA-Harvard+Tournament+Lab+and+TopCoder++++Problem%3A+Pat
http://archive.ics.uci.edu/ml/datasets/USPTO+Algorithm+Challenge%2C+run+by+NASA-Harvard+Tournament+Lab+and+TopCoder++++Problem%3A+Pat
http://archive.ics.uci.edu/ml/datasets/USPTO+Algorithm+Challenge%2C+run+by+NASA-Harvard+Tournament+Lab+and+TopCoder++++Problem%3A+Pat
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example, the International Conference on Document

Analysis and Recognition (ICDAR), the International

Association for Pattern Recognition (IAPR) Interna-

tional Workshop on Graphics Recognition (GREC),

and the International Workshop on Document Analy-

sis Systems (DAS) have hosted numerous competitions

on a variety of different document image analysis tasks

over a period of decades.

More broadly, some of the best-known and most

highly regarded academic competitions held within

Computer Science are the Text REtrieval Conference

(TREC) competitions, held for over two decades to de-

velop and refine algorithms for text and multimedia

search [54]. TREC competitions are numerous, and fo-

cus on a broad variety of information retrieval tasks. In

recent years, the TREC tasks span several domains in-

cluding web search, knowledge base curation, temporal

summarization, and information retrieval for medical

and legal documents. Consequently, methods submitted

to these competition span a wide variety of approaches

used in information retrieval.

In the past, TREC has included a competition for

text-based chemical patent retrieval, in which partici-

pants were given patent documents and asked to locate

related patents in the test collection [22], and a task

in 2011 involving recognition of chemical diagrams in

images (the winning system used a bottom-up, rule-

based strategy [49]). Similar competitions have also

been held as part of the Cross-Language Evaluation

Forum (CLEF), including competitions on recognition

of chemical diagrams and flow charts found in patent

images [36, 47]. Image-based patent search presents an

opportunity for members of the document analysis com-

munity, as work is currently in an early stage [3].

Competitions on graphics recognition problems are

held regularly, both for lower-level operations such as

vectorization and text/graphics separation, recognition

of text in diagrams (including rotated and slanted text

such as found in the USPTO data; see Figs. 1 and 2),

and the interpretation of specific graphic types includ-

ing technical drawings, tables, flowcharts, chemical di-

agrams and mathematical notation [2, 4, 18, 42]. These

competitions normally consider the recognition of iso-

lated graphics, whereas in the USPTO competition in-

puts are complete drawing pages, with associated head-

ers, annotations, and text.

While tremendously valuable for discerning and ad-

vancing the state-of-the-art, participants in academic

competitions tend to belong to the community asso-

ciated with a particular conference, prize amounts (if

any) are small, and often a conference participation fee

is required. For the USPTO competition described in

this article, crowdsourcing with significant cash prizes

for top-placing systems was used to solicit solutions

from a global pool of talent reaching beyond the aca-

demic image processing community.

2.1 Graphics Recognition

Graphics Recognition concerns a family of structural

pattern recognition problems in which the appearance

and content of diagrams, notations (e.g., math, chem-

istry), plots, tables, figures, and other non-text docu-

ment regions are recognized automatically. In the fol-

lowing we summarize aspects of Graphics Recognition

that pertain to the USPTO Competition.

Language Models. Concise, well-fit language

models provide beneficial constraints for hypothesis

generation, validation, and selection [38, 62]. As a sim-

ple example, recognizing arbitrary words is much more

difficult then recognizing U.S. postal codes, which are

five-digit tokens for which the set of valid codes is

known. Invalid postal codes created by recognition er-

rors can be easily detected and replaced with similar

valid codes. Similar word models are used by USPTO

competition systems to identify and correct invalid fig-

ure and part labels, along with graphical/visual con-

straints such as expected positions and sizes for figure

and part label text.

Generally speaking, as language model complexity

increases, so does the amount of information that may

be automatically inferred from similarity to legal hy-

potheses and/or context. However, detailed models can

be hard to define, and can also lead to fragility such as

when a valid interpretation cannot be found, or when a

few errors lead to many others due to the propagation

of constraints.

There is another, related trade-off in terms of hy-

pothesis generation: to obtain high recall for recogni-

ton targets in the presence of noise, alternative inter-

pretations (hypotheses) must be generated. However,

additional hypotheses increase execution time and the

likelihood of missing valid hypotheses and accepting in-

valid hypotheses. In the USPTO competition, examples

of noise include touching characters in a figure title, or

part labels intersecting lines in a drawing.

Architectural and Engineering Drawings. Lu

et al. consulted an expert to design a sophisti-

cated knowledge-based system for architectural draw-

ing recognition [34]. They observed that many implicit

relationships need to be interpreted in architectural

drawings, such as symmetry markings indicating inher-

ited properties of objects, and extensive use of refer-

ence to indicate correspondences of objects within and

between diagrams. An attributed Context-Free Gram-

mar language model is used to formalize the language
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of recognizable drawings, and to coordinate recognition

during a top-down parse of the input. The grammar is

designed to allow the parser to recognize objects in de-

creasing order of reliability. As objects are recognized,

context is utilized through propagating constraints aris-

ing from implicit relationships between recognized ob-

jects.

Syntactic pattern recognition techniques such as

used by Lu et al. can be brittle, in the sense that inputs

not resulting in a valid interpretation produce empty in-

put. Returning partial parses and error-correcting pars-

ing [9] can mitigate this problem, but not entirely solve

it. Grammars for syntax-based methods are created

by system designers presently, as grammatical infer-

ence remains a very difficult machine learning problem

[14, 19, 20].

Recognizing annotations in engineering and archi-

tectural drawings such as object dimensions [26], and

identifying part descriptions in diagram legends [58] are

closely related to finding part labels in the USPTO

Challenge. Part labels in patent drawings commonly

appear at the end of lines pointing to the correspond-

ing part (see Figure 1), similar to the appearance of

dimensions between or at the end of arrows in engi-

neering drawings. For recognizing dimensions, language

constraints are critical: for example, detected arrows are

used to locate dimension text more reliably [13, 30, 60].

Table Detection. Patent documents often contain

tables which can be easily confused with patent dia-

grams or drawings due to the presence of lines and the

two-dimensional arrangement of content in cells. A va-

riety of techniques have been used to detect the loca-

tion and underlying grid structure of tables in docu-
ment images including projection profile cutting, detec-

tion and analysis of lines (e.g., using the Hough trans-

form) and whitespace gap intersections, along with his-

togram smoothing and mathematical morphology oper-

ations [63]. There is also ongoing work in table structure

recognition and table content interpretation and com-

pilation [15, 39], but these tasks are not considered in

the USPTO competition.

2.2 Text/Graphics Separation and OCR

For the USPTO Competition, participating systems

needed to separate graphics from text in page images,

in order to locate figure regions and recognize figure ti-

tles and part labels using OCR. We summarize work

related to these tasks below.

Text/Graphics Separation. A common early

processing task is text/graphics separation, in which

regions containing text and other page contents are sep-

arated into two or more layers. Most text/graphic sep-

arators filter large connected components in the early

stages, along with long/thin and very small connected

components. This tends to filter out characters that are

small (e.g., ‘.’, ’,’) or that touch characters or graph-

ics; attempts are made to recover these lost characters

using context during word and text line detection, as

described below.

Image features for detecting text have included con-

nected component shape, aspect ratio, density, and

spacing [35, 65], similar features for skeletonized con-

nected components [13], and textural features that ex-

ploit the relatively high visual frequency of text in com-

parison to graphics (e.g., using Gabor filters [65] or

Gaussian second derivatives [61]).

A key issue for text/graphics separation is handling

different font sizes. This is dealt with by measuring fea-

tures at different scales [11, 61, 67]. Recently, image

patches have been used instead of connected compo-

nents, along with feature learning methods such as k-

SVD and sparse representation [11] and convolutional

k-means [67] to construct discriminative image patch

feature spaces.

Character Segmentation. Casey and Lecolinet

[8] identify three main aspects that character segmenta-

tion techniques incorporate to different degrees: 1) dis-

section (cutting using image features), 2) recognition-

based methods (incorporating OCR output as fea-

tures), and 3) holistic recognition (classifying complete

words rather than individual characters). Many sophis-

ticated segmentation methods are recognition-based,

with final segmentation maximizing a criterion based on

probabilities or costs associated with recognized charac-

ters. A common example is using Hidden Markov Mod-

els (HMM) to segment words and characters by max-

imizing the joint probability of the inferred characters

and words.

Optical Character Recognition (OCR). A very

wide array of techniques have been used for OCR, and

for space, we provide only a (very) brief summary.

An important OCR benchmark was the University of

Nevada at Las Vegas competitions, held annually dur-

ing the early 1990’s [44, 45]. Since that time, text OCR

has become a mature technology, and text recogni-

tion research has shifted toward the harder problems

of recognizing text in natural scenes, videos, and docu-

ments captured by camera [16, 24, 33, 62]. Over the last

decade, there have been a number of Robust Reading

competitions on these topics, held as part of the Inter-

national Conference on Document Analysis and Recog-

nition [27, 28, 50].

Word and Text Line Segmentation. Words and

text lines are commonly detected through clustering de-
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tected characters [43]. Inter-character, word or text-line

distance is estimated by some combination of distance,

relative orientation, and similarity of the components

(e.g., by estimated text height) in each group. Mor-

phological operations have been used to merge clus-

ters and shrink/tighten boundaries of connected com-

ponents during clustering [35].

To detect rotated text such as found in engineering

drawings and maps, Fletcher and Kasturi [17] make use

of the Hough transform to determine text line orienta-

tions from connected components. Tombre et al. ex-

tend their approach using median and linear regression

to produce additional local text orientation estimates

when clustering detected characters into strings [57].

To focus search, estimated word or text line end points

may be used as the initial cluster centers [46, 57]; Roy

et al. use the shape of spaces between characters while

expanding the ends of text lines, and are able to extract

curved text, such as found in document seals [46].

Bukhari et al. have provided a recent survey of cur-

rent methods for detecting curved and warped text lines

[7]. One strong approach estimates baseline and x-line

(the ‘middle’ line that sits on top of a lower case ‘x’) lo-

cations for individual characters, and then places active

contours (snakes) at the top and bottom of connected

components which are deformed based on an energy

model, after which overlapping snakes are combined.

3 The USPTO Challenge

This Section describes the design of the USPTO al-

gorithm competition, including the recognition tasks,

reference image data, ground truth data creation, eval-

uation and scoring methods, and the competition out-

come.

Input and Output. Table 1 summarizes the in-

puts and outputs for the competition. For input, sys-

tems receive a 300 dpi greyscale patent document image

(patents are, by requirement, greyscale), and an HTML

file containing the text of the patent. The HTML file

does not contain the patent’s title page, which has filing

meta information such as patent number, filing dates,

and a short abstract. Using combined visual and tex-

tual information for graphics recognition is infrequent

in the literature, and an unusual characteristic of the

competition.

For output, systems need to identify figure locations

and titles, along with part label locations and part la-

bel text. Figure and part locations are represented by

bounding boxes. Participant systems needed to imple-

ment two separate functions to produce these output,

the first for figure data and the second for part label

data.

System Constraints. For system tests and final

scoring, the competition imposed a time limit of one

minute per test case and a memory limit of 1024 MB.

There was no explicit code size limit but a limit of

around one MB was advised. Furthermore, the binary

executable size was limited to one MB, and the compi-

lation time limit was 30 seconds. These are the standard

time limits used for competitions on TopCoder. These

default values seemed appropriate so we decided to keep

with TopCoder conventions and work within bounds

that competitors were familiar with. The programming

languages supported by TopCoder and allowable for the

competition were Java, C++, C#, or Visual Basic .Net.

Data and Tools. Three different datasets were cre-

ated for the competition (see Section 3.2 for details). A

training dataset was available for download to all par-

ticipants, which they could use to design and test code

on their own machines. During the contest, any system

submission by a participant to the contest site would

generate a score visible only to the team using a sec-

ond private dataset (the system test set). To prevent

over-fitting of submissions to the training or system test

datasets, the last submission of each team was re-scored

using a third, private evaluation dataset at the end of

the contest.

We also provided an offline tester/visualizer, includ-

ing Java source code, which allowed participants to vi-

sualize their results, and check the precise implemen-

tation of the scoring calculation. This tool was used to

produce the images shown in Figure 1.

Team Composition and Ranking. Consistent

with usual practices in programming contests, partic-

ipants were able to make repeated code submissions to

enable testing of solutions and gather feedback about

solution quality. Participants were organized in teams

of two, and both members of a team were able to sub-

mit program solutions.2 Submissions were compiled and

executed on competition servers, where solutions were

tested against a private test case image set to allow ob-

jective scoring. The overall team score was given as the

maximum score of both team members.

2 Embedded within this competition was a social science
experiment to investigate different team formation mecha-
nisms. Two treatments were implemented. In treatment one,
teams were formed through bilateral agreement between par-
ticipants after communicating through a public forum or pri-
vate direct messaging (this was termed the ‘free-form’ treat-
ment). The second treatment, teams were formed based on a
stable-matching algorithm using participants’ stated prefer-
ences (termed ‘algorithm’ treatment). We found no significant
differences in algorithm performance between the two treat-
ments. The exact details of the social science experiment are
beyond the scope of this paper. Some preliminary results can
be found in this working paper http://goo.gl/NjoWce.

http://goo.gl/NjoWce
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System scores on the final test set were used to rank

systems and award prizes. System scoring is described

in Section 3.3. The execution and prizes for the compe-

tition are described next.

3.1 Running the Competition

TopCoder. The contest was run on the TopCoder.com

online programming competition website, a commercial

platform established in 2001 [1]. Working with Top-

Coder provides convenient access to a standing com-

munity of over 800,000 software developers who reg-

ularly participate in crowdsourcing competitions, and

provides infrastructure for online test and scoring of

solutions. (TopCoder also had a working relationship

with NASA’s Center for Excellence as described above,

which allowed the USPTO to pay the cash prizes.)

Apart from developing conventional software solutions,

competitors on this crowdsourcing platform also regu-

larly compete in contests to solve abstract algorithmic

problems that require a mix of logic, mathematical,

and programming skills. Since its inception a decade

ago, the platform has awarded over $70 million in cash

prizes.

Schedule and Prizes. Given the complexity of the

task to be solved, the competition ran for four weeks

between the end of 2011 and beginning of 2012 (many

TopCoder competitions run only for 10 days). To at-

tract participants, we offered a combined prize pool

of $50,000 which was split into two overall prizes and

22 smaller prizes for virtual competition rooms. We of-

fered two highly attractive overall prizes of $10,000 and

$5,000 for the first- and second-placed teams. However,

offering large, but few overall prizes may not result

in the best outcome due to an effort-reducing effect

of greater rivalry [5, 21]: if everyone competes against

everyone else, an individual team’s likelihood of win-

ning may be too low to warrant the investment of sub-

stantial effort. Therefore, we organized the competition

into 22 virtual rooms, each of which offered an addi-

tional $1,000 and $250 ‘room prize’ for the room win-

ner and runner-up. Furthermore, all active participants

also received a limited edition t-shirt to acknowledge

their efforts in participation which was paid for by the

Harvard-NASA Tournament Lab.

3.2 Patent Page Image and Text Datasets

Data Selection. For the purposes of this online com-

petition, we prepared a representative corpus of 306

patent drawing pages from various different patent

classes. For some patents we included one drawing page

in the set and for other patents we included multiple

drawing pages. The whole corpus was divided into three

subsets A (train), B (system test), and C (final test)

containing 178, 35, and 93 drawing pages, respectively.

The division was made randomly but with one restric-

tion: all drawing pages belonging to the same patent

were always placed into the same subset. We chose this

approach to test generalization towards the full patent

archive which contains many patents with more than

one drawing page. In addition to image data, partici-

pants also had access to the patent text in HTML for-

mat which was provided by USPTO. As described ear-

lier, title pages were omitted, which do not contain the

main content of the patent such as references to figures

and part descriptions.

Ground Truth Creation. To create the ground

truth reference standard, we used the image annota-

tion tool LabelMe [48].3 We used a private instance of

LabelMe rather than the open crowdsourcing platform,

to prevent leakage of the final scoring images. Two con-

tractors were paid by the USPTO to manually identify

and label the ground truth figure and part label re-

gions. The organizers then visually inspected the two

contractors’ work, and used the more accurate ground

truth for the competition.

File Formats. Page images were stored in JPEG

format, and patent texts in HTML format. Figure and

part label regions and text are represented separately

using text files called answer files. Answer files begin

with the number of detected regions (figures or part

labels) on the first line of the file. Each remaining line

defines a region, by a polygon represented using a list

of vertex coordinates followed by the associated text.

Ground truth annotators used polygons with various

numbers of vertices, as supported by LabelMe. All top-

5 systems represented each region using the four points

of a bounding box, as bounding boxes were used to

evaluate region detection (see below).

3.3 Evaluation Metrics and Scoring

Region Matching Criteria. The axis-aligned bound-

ing box for a candidate region BC matches the axis-

aligned ground truth bounding box for a region BG

when the intersection of the two boxes is as large as

some percentage α of the larger of the two boxes:

area(BC ∩BG) ≥ α max(area(BC), area(BG)) (1)

where αf = 0.8 for figures, and αp = 0.3 for part labels.

Different α values are used for figures and part labels

because of the much smaller size of the part labels.

3 http://labelme.csail.mit.edu/Release3.0/

http://labelme.csail.mit.edu/Release3.0/
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Text Matching Criteria. Figure titles and part

labels are normalized before comparison, as shown be-

low.

– Figure titles: Figure titles (identifiers) are pro-

vided without the ‘Fig.’, ‘Figure’ etc. indication,

e.g., ‘1a’ is the correct title for ‘Figure 1a.’ All let-

ters are converted to lower case; characters other

than a-z, 0-9, (, ), -, ’, <, >, . (period), and / are

removed. An output string must match the normal-

ized ground truth string for a figure title to be con-

sidered correct.

– Part labels: The same characters are preserved as

for figure identifiers. However, there are some spe-

cial cases, for example where two part labels may

be indicated together, e.g., ‘102(103)’ or ‘102,103’

indicating parts 102 and 103. Periods/dots must be

removed from the end of part labels. Subscripts are

indicated using < and > (e.g., A < 7 > for A7); su-

perscripts are represented in-line (e.g., 123b is rep-

resented by 123b).

Scoring Test Files. Each input file receives two

scores: one for part labels, and one for figures. Files

for which no output is produced are scored 0 points,

whether due to 1) exceeding the one-minute time limit,

2) exceeding the 1024 MB memory limit, 3) a system

crash, or 4) improperly formatted output.

For a figure or part label to be correct, both the

region and label must match. Partial credit is given

for matching a region correctly but mislabeling it. The

match score matchs for partial matches was 0.25, and

full matches was 1.0. To compute the accuracy, matchs
scores are added and used in weighted recall for ground

truth regions (R), precision of output regions (P ), and

their harmonic mean (F , the F-measure):

R =

∑
matchs

|Target Regions|
P =

∑
matchs

|Output regions|
(2)

F =
2RP

R+ P
(3)

For a test file, given system F-measure accuracy F

and run-time in seconds T ≤ 60 seconds, the figure or

part label detection score is given by:

score = F ×
(

0.9 + 0.1

(
1

max(T, 1)

0.75))
× 106 (4)

Execution time determines 10% of the final score; to

give a sense of the effect of speed on the score, at or

under one second incurs no penalty, at two seconds

roughly a 4% penalty, at five seconds 7%, and at 25

seconds 9.9%. This is noteworthy, because including ex-

ecution time directly in a scoring metric is uncommon

in the document image analysis literature. We perform

additional analyses to determine the effect of the spe-

cific relative weighting on determining contest winners

in Results section.

System Scoring. The final system score was de-

fined by the sum of all figure and part label test file

scores. There are many more part labels than figure

regions, as most figures contain multiple parts. Using

the sum of figure and part label scores insures that for

each file the figure and part label results are weighted

equally in the final system score.

4 Participant Solutions

In this section we analyze the five systems with the

strongest results submitted for the USPTO competi-

tion (the ‘top-5’). We provide a brief overview of each

system, followed by a discussion of their similarities,

and then a discussion of their differences. To support

our comparisons between systems, we use Table 2 to

summarize early processing and character recognition,

and Table 3 to summarize additional steps for locating

figure titles, figure regions (which include the location

of the figure title), and part labels. These tables were

created after carefully studying the source code and sys-

tem descriptions provided by each team.

4.1 Top-5 USPTO System Summaries

Below we briefly summarize the top-5 systems in the

competition. We also provide the programming lan-

guages used to implement each system (from 1st-5th

place). Sample results from the top-2 systems are shown

in Figure 1.

1. JacoCronje (JC, impl. C++). The winning system

is the only one to use the provided HTML text to

validate detected figure titles and part labels, and

uses OCR results for detected page numbers and

headers on drawing pages to help locate likely titles

and labels in the HTML text.

2. Protocolon (PC, impl. C++/OpenCV). Uses an

MLP character classifier trained using synthetic as

well as provided character images to handle the va-

riety of fonts (see Figure 2). Classification is itera-

tive, re-estimating font parameters while searching

for figure titles and part labels, and character candi-

dates are fit into a box containing an ascender and

descender region above and below the writing line.

3. Wleite (WL, impl. Java). Uses varying-width tem-

plates for character recognition, defined by the av-

erage training sample width for each class. Initially

locates figure titles using the shape of ‘Fig’ and
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‘Figure’ rather than character strings, and segments

figure regions using pixel projection-profile cutting

rather than agglomerative clustering.

4. GoldenSection (GS, impl. C#/R(MLP train-

ing)). Uses two MLP classifiers for character recog-

nition, one for frequent characters, and the other

for a larger vocabulary (the maximum confidence

result is used). This system employed the simplest

strategy, using no validation of detected figure titles

or part labels, and instead applying OCR in three

different directions to try and capture portrait and

left/right-rotated landscape page orientations.

5. tangzx (TZ, impl. C++). This system distin-

guishes connected components for label text from

figure text and graphics, instead of just text and

graphics. The simplest character features are used

in this system (15x15 binary grids). Only this sys-

tem tries to capture missing dots on ‘i’ characters

prior to recognizing part labels.

4.2 System Similarities

Generally speaking, systems are more similar in the

early stages of processing than character recognition

(see Table 2) or later processing when specific targets

are sought after (see Table 3). We summarize the main

ways in which the top-5 systems are similar below.

Processing Pipeline. All top-5 systems use a

data-driven, bottom-up pipeline recognition architec-

ture. Connected components of a given minimum and

maximum size are treated as character candidates, and

then used to filter non-figure text (page headers and

tables), detect page orientation and produce word can-

didates through distance-based clustering, with some

maximum distance used to merge CCs into clusters.

After this, pattern matching is applied to OCR results

for words to locate figure titles and part labels, with

most systems employing some validation step that fil-

ters and/or corrects detected titles or labels.

Figure regions are identified by clustering CCs with

the nearest detected title, and then including the title

in the final region, with the exception of the 3rd-place

system (WL; see below), which uses projection profile

cutting to locate regions containing a single detected

figure label. Other deviations and difference for specific

systems are provided in Tables 2 and 3.

Text/Graphics Separation (Table 2). As seen

in Figure 1, many drawing elements will form connected

components that are large in comparison with charac-

ters. Very small connected components are likely noise

(e.g., specks of dirt on the patent document), although

small character components such as the dot in an ‘i’ can

also be small. Text/Graphics separation is performed

using thresholds to define minimum and maximum sizes

for CC character candidates (see Table 2). System TZ

(5th place) is unique in that it defines three rather than

two size ranges: regular characters, characters in figure

titles, and graphics. This is to take advantage of the

fact that figure text is normally larger than graphic

CCs, but larger than part labels.

Filtering Non-Figure Contents (Table 2). Fig-

ure headers are located near the top of the page in either

landscape or portrait orientation and are not consid-

ered part of the figure itself. Hence, they need to be re-

moved. They are removed using one–or a combination–

of the following simple methods: (a) considering a mar-

gin around the entire page image (JC); (b) removing

detected text located near the top (WL) and/or left

edge of the page (PC); and (c) taking the length of the

detected text lines as a cue regarding the presence of a

header (TZ).

All systems but GS use simple table detection and

filtering, in order to remove words belonging to table

regions (which are not considered drawings in USPTO

patent documents and would hence not contain part

labels). Line detection is done using simple connected

component analysis (looking for long/narrow CCs).

Only PC (2nd place) makes use of line projections to try

and detect the presence of at least 2 or more columns

and rows to identify a table location. The remaining

methods consider whether ruling lines surround a word.

The WL system (3rd place) considers whether the end

of a line appears near the word, in which case the word

is assumed to be a candidate part label.

Training. Aside from the character recognizers,

many parameters in these systems are set based on as-

sumptions, or ‘empirically’ by trying different parame-

ter values and selecting those that perform best. While

potentially sub-optimal, this is necessary due to the

short duration of the competition.

4.3 System Differences

Tables 2 and 3 show a number of differences between

the systems, and include deviations from the strategy

above. Here we will discuss the most significant differ-

ences.

Word Detection & Page Orientation (Table

2). In the USPTO systems, word orientations are of-

ten used to detect whether patent drawing pages are

vertical or horizontal. Word detection and page orien-

tation are performed in different orders by the top-5

systems. As seen in Table 2, PC and GS (the 2nd and

4th place systems) perform OCR before clustering con-

nected components (CCs) into ‘words’ and estimating
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Table 2 Early Processing and Character Recognition for Top-5 Systems

System Place and Initials
1st (JC) 2nd (PC) 3rd (WL) 4th (GS) 5th (TZ)

Text/Graphics Separation & Word Detection

CC Classes (2) Text Graph (2) Text Graph (2) Text Graph (2) Text Graph (3) Text Graph FText
CC size filter X X X X X

Word Det.
After OCR X X
CC Clusters Ver. overlap &

hor. distance
(2 dirs.) Height ratio &
hor. distance; baseline
deviation

Ver. overlap & hor.
distance

Ver. overlap & hor.
distance; remove short
chars i, l, 1, or not in
0-9a-zA-Z

Ver. overlap & hor.
distance: Text &
FText (fig. text) CCs
clustered separately

Page Orientation & Filtering Non-Figure Contents

Orientation Text CCs vote
by wider/taller
& max hor. vs.
vert. overlap
with nearest
Text CC

OCR and seg. words
(both dirs); max mean
word width vs. height

Text CCs vote by
wider/taller

Consider OCR’d Text
CCs in 3 directions:
portrait, landscape-
left, landscape-right
(highest conf. results
used)

Text CCs vote by
wider/taller

Filter header X X X X

Table Filter If ruling lines in
‘word’ perime-
ter & intersect-
ing ‘words’

if ≥ 2 rows & cols,
via hor/ver projection
& line detection,

If ruling lines in
perimeter and not
near an incoming line

If lines found at two of
four ‘word’ BB sides

Character Recognition

Character (14) (36) (22) (31) Classifier a: (56)
Classes 0-9fgac* ()0-9a-hj-np-z* 0-9a-dA-F† 0-9a-giruA-GIRU! ()0-9a-lnr-uxy

(69) Classifier b: A-TV-Z
()0-9a-zA-Z-/.,!

Features 16 x 32 ternary
(b/w, hole)

16 x 16 grey values
(mean subtracted);
De-slanting; empty ar-
eas added for missing
ascender/descender
regions

W x 40 grey values
(avg. intensity); W is
avg. width for each
char. class

6 x 6 density
(% black), width,
height, aspect ratio,
total density

15 x 15 binary

Classifier Template
(pixel match %)

MLP 256:50:36

– iter. refinement
– re-estimate as-

cent/descent
regions, spacing,
italic angle

Template
(ssd pixel grey values)
resizes input region
to match each char.
template width

2 MLPs max of:

– a. 40:30:31 MLP
(frequent chars)

– b. 40:25:69 MLP

MLP 225:225:56

* Lower case symbol only: no symbol ‘i’
† No symbol ‘g’ or ‘G’; Symbols ‘0’ and ‘1’ have two sub-classes

the page orientation, while the remaining systems esti-

mate orientation and word locations before OCR. GS

considers three rather than two page orientations; por-

trait, along with landscape rotated left, and landscape

rotated right.

Character Recognition (Table 2). While all sys-

tems employ binary images for connected component

analysis, two of the systems (PC and WL) make use of

greyscale values during classification. All systems make

some use of a template grid feature, dividing a con-

nected component image into a fixed number of rows

and columns (see Table 2).

Template classifiers or neural networks are used for

character classification. These are logical given the time

constraints of the competition, as both are fast to exe-

cute. All neural networks are Multi-Layer Perceptrons

with a single hidden layer (although with differing num-

bers of nodes in each layer).

For the template character classifiers (1st and 3rd

place, JC and WL), templates are defined using training

images: JC uses a small set of characters directly taken

from training images for just the characters 0-9, f, g,

a and c, while WL uses approximately 5,000 images,

which are then averaged to produce a template for a

much larger character set.
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Table 3 Figures and Part Labels: Top-5 System Text Recognition, Region Segmentation and Validation Techniques

System Place and Initials
1st (JC) 2nd (PC) 3rd (WL) 4th (GS) 5th (TZ)

Figure Detection & Title Recognition

T. Syntax Contains ‘f1g’ (fig) Patterns for ‘fig’
(‘f1g’, ‘fzg’, etc.)

(Word-shape)
FIG + 1-3 digits,
FIGURE + 1-2 digits

Starts with ‘fig’ 3-9 chars; contains
‘fig’/‘FIG’ legal let-
ters: a-d, A-D

T. Detection Match words contain-
ing ’f1g’

Match ‘fig’ patterns
in words; estimate
font attributes, re-
peat OCR & look for
‘fig’ patterns; match
words with first three
letters with similar
ascent, descent, w/h
as detected titles;
re-estimate spacing
for large fonts; repeat
OCR on candidates

Match word shape
models; find best can-
didate by location in
figure and char confi-
dence, discard candi-
dates highly dissimi-
lar from ‘best’ candi-
date

Match words starting
with ’fig’

OCR FText CC clus-
ter candidates, reject
illegal titles

Fig. Regions Merge words with
nearest fig. title; ran-
dom search to min.
penalty to obtain one
title per figure

Merge words start-
ing with figure ti-
tles; iteratively add
CCs, updating BB,
allowable growing di-
rections. Obtains k
regions for k labels
(k=1 if no fig labels
detected)

(Top-down) Cut
page at horizontal
or vertical gap until
each figure contains
one fig. title

Merge CCs by prox-
imity (omitting fig la-
bels); obtain k figure
regions for k figure ti-
tles; assign titles to
regions by minimum
total distance

Merge non-Graphics
CCs with closest
Graphics CC. Detect
figure titles, then
assign merged CCs to
closest figure title

Validation Sort extracted figure
titles numerically.
Match best sequence
of figure titles in
HTML text using de-
tected page number
and header

Reject titles with low
character confidence
or unexpected posi-
tion (i.e., not near
boundary of figure re-
gion)

Penalize match-
ing score by not
counting unexpected
characters in titles

Part Label Detection & Recognition

L. Syntax Max 4 chrs, at least 1
digit, no more than 1
alphabetic; reject le-
gal figure labels

Max 9 chrs, up to
2 alphabetic; penalize
labels starting with
alpha. char; cannot
contain ‘mm’; reject
’0’ ’l’ ’1’ and isolated
alphabetic characters

Max 4 characters, up
to 2 alphabetic

Max 4 characters,
containing digits,
digits followed by
letters or letters
followed by digits.

Max 4 characters,
cannot be an isolated
0 (zero) or 1 (one)

L. Detection Filter large/small
words; reject low
confidence OCR,
illegal labels

Reject illegal; score
candidates by char
confidences & un-
likely label penal-
ties (e.g. ‘a1’);
re-estimate font pa-
rameters on most
confident candidates;
reject characters far
from mean confi-
dence, OCR modified
labels

Reject figure labels;
most frequent text
height for part labels
is estimated as most
frequent in Text CCs;
reject low confidence
labels not near a con-
necting line

Reject illegal labels Find small Text CCs
(e.g. ‘.’), merge them
with adjacent Text
CCs; OCR and reject
illegal labels; reject if
overlapped by fig. ti-
tle

Validation For low character
confidence labels,
assign most similar
word found in HTML
text to detected label
allowing common
confusions (e.g., ‘5’
and ‘s’), reject label
if more than 1/2
chars replaced

Separate labels joined
by parentheses (e.g.,
103(104)’)

Single digits must
have high confidence
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For the multi-layer perceptron (MLP) classifiers,

the 4th and 5th place systems (GS and TZ) use char-

acters located in the provided training images, while

the 2nd place system (PC) uses training image char-

acters along with synthetic characters generated using

fonts with different parameters. This produces a total

of 145,000 training samples (95% of which are used to

train the final classifier). Characters from training im-

ages are transformed to eight different slant angles, and

89,000 synthetic characters are created using different

variations of the ‘Hershey’ font, along with variations

in thickness and slant.

The PC (2nd place) system is unique in that

font metrics used for classification are iteratively re-

estimated at run-time. PC performs OCR in stages,

adapting font parameters to revise character classifi-

cation and segmentation results (e.g., when character

spacing is re-estimated for figure titles). Some other

systems adapt parameters at run time but to a lesser

degree. A number of the systems discard ‘words’ whose

size differs significantly from the mean size of detected

words, for example.

A number of the systems use thresholds on character

recognition confidence in ranking and selecting figure

title and part label hypotheses (e.g., in JC, to control

correction of part labels - see Table 3).

Figure Detection & Title Recognition (Ta-

ble 3). The most distinctive figure title detection and

recognition strategy is that of WL (3rd place system).

Rather than matching patterns in recognized character

strings, a word-shape model based on the geometry of

‘Fig’, ‘Figure’ etc. is used to locate possible titles be-

fore applying OCR, after which this word shape model

is updated to match the best candidate (determined

by location of the title and character confidence). Fur-

ther, figure regions are obtained using a top-down X-Y

cutting approach [38], rather than bottom-up agglom-

erative clustering of words or CCs.

Characters (Table 2) & Title/Label Syntax

(Table 3). A key difference between the top-5 sys-

tems are the language models used for character classes

and titles/label syntax, as seen in Tables 2 and 3. The

JC (1st place) system makes use of only 14 character

classes, with no class for ‘i’ or ‘I’, which class ‘1’ is ex-

pected to catch. The reason that this does not lead to

terrible performance is the correction mechanism used.

For both figure titles and part labels, words extracted

from the patent HTML text using pattern matching de-

fine a set of possible output strings, and hypothesized

figure titles are matched to their most similar sequence

in the patent text, and low-confidence part-labels are

corrected using the most similar part label detected in

the HTML text (see Table 3). JC was the only system

to use the HTML text to validate and constrain titles

and part labels.

Figure title syntax is similar across systems, with

some variations of ‘fig’ assumed to be at the beginning

of a figure title. Most systems assumed that part labels

are four characters long except for the 2nd place system,

where up to nine characters are permitted. All systems

reject labels inconsistent with their language model in

order to avoid false positives, and some also reject ti-

tles or labels containing low confidence characters (see

Table 3 for details).

5 Benchmark: Part Label Recognition System

After the competition, we created a system for part

label detection, to use as a benchmark for evaluating

and contextualizing USPTO participant solutions. The

comparison system was developed using state-of-the-art

techniques.

System Description. Like the USPTO solutions,

our comparison system uses a data-driven, bottom-up

recognition pipeline. Feature learning and sliding win-

dows are used for text detection, along with Tesseract

[52] for OCR. Part label text is detected using a boosted

ensemble of three binary AdaBoost base classifiers. Im-

age patches at different resolutions are used to accomo-

date different character sizes. Three template dictionar-

ies are learned using convolutional k-means [10] for 1)

text patches, 2) background patches and 3) combined

foreground and background patches. Nearby pixels de-

tected as text within are clustered into candidate words,

recognized by Tesseract and then corrected if necessary.

This system improves upon an earlier system [67].

Improvements included: 1) modifying training label re-

gions to more tightly crop around figure and part label

text, 2) CC size filters and page header removal, 3) us-

ing projection profile cutting (using gaps in pixels pro-

jected on the x or y-axis) to detect and separate mul-

tiple text lines in detected word regions, and 4) refined

part label language model, and improved validation and

correction of OCR results.

Language Model & Validation. Character

classes were 0-9a-zA-Z. Labels must contain at least

one digit, and be at most four characters long. At most

two characters may be alphabetic. Isolated ‘i’ ‘I’ and

‘0’ characters are rejected, along with words containing

‘Figure,’ ‘Fig,’ etc. Letters ‘O’ and ‘o’ are replaced by

‘0.’

OCR is performed twice for each candidate label,

using progressively larger paddings around a detected

label. If the results differ, the result producing the min-

imum Levenshtein (i.e., string edit) distance [59] with
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a word in the set of words extracted from the HTML

patent text is selected for output (similar to the 1st-

place USPTO system).

6 Results

6.1 Participants

The challenge drew 232 teams (463 participants), of

which 70 teams (30%) submitted code. The remain-

ing teams were lurkers and did not actively participate

in the competition. Twenty-nine countries were repre-

sented among the participants who submitted solutions.

The group of submitters included 49% professionals,

39% students, and the remainder reporting not working

or working part time. The majority of participants were

between 18 and 44 years old. Seven of the participants

were academics (PhD students, professors, or other re-

search positions). Most (80%) non-student participants

were self-described software developers of various kinds.

Collectively, teams submitted 1,797 solutions that

compiled on the competition servers, averaging to 25.7

submissions per team. The submitted solutions used

four programming languages (C#, C++, Java, VB).

Participants reported spending an average of 63 hours

each developing solutions, for a total of 5,591 hours of

development time.

6.2 Overall Ranking

All submissions were scored and ranked using the
method described in Section 3.3.4. A test set of 93 draw-

ing pages and HTML texts was used for evaluation (see

Section 3.2). The winning solution (JC) was created

by a team of two participants from the United States

and South Africa. Fig. 3 provides boxplotes illustrating

variance in performance of the top-5 systems on the

test data. All algorithms fail on at least some test cases

in both tasks achieving a score of zero. Conversely, all

algorithms also achieve a perfect score for at least some

test cases. The figure detection task was significantly

easier, with most algorithms receiving a perfect score

on many test cases.

We find a high correspondence in ranks between

the two tasks (Kendall’s tau rank correlation of 0.511;

p < .05 for the first ten ranks) indicating that teams

that did well in one task also did well on the other. No

4 The final ranking of all submissions is pub-
licly available on the TopCoder website at https:

//community.topcoder.com/longcontest/stats/?&sr=

1&nr=50&module=ViewOverview&rd=15027
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Fig. 3 Boxplot of algorithm performance (achieved competi-
tion score which combines F-measure accuracy and run-time
as given in Eq. 5) of individual test case score (dots show data
beyond the 1.5 inter-quartile range; i.e., outliers). At left is
overall score (including time taken), at center is weighted F-
measure for figure regions and titles, and at right is weighted
F-measure for part labels (1.0: perfect score; 0: complete fail-
ure).

system outside the top-5 scored higher on any individ-

ual task (figure or part label detection). Consequently,

the discussion of the top-5 solutions covers the best

submitted approaches.

We performed additional analyses changing the rel-

ative weighting between accuracy and execution time.

We find that the relative ranking of the top 5 algorithms

is relatively stable to different weights. Decreasing the

weight of execution time would not affect the ranking

at all: all top-5 systems would be ranked in exactly the

same order and the top-ranked algorithm would remain

the overall winner, even if execution time was not con-

sidered in system scoring. Increasing the relative impor-

tance of execution time to 50% would result in only one

change: the systems ranked 4th and 5th would switch

rank. In summary, while the relative weighting of ac-

curacy and execution time may have guided developers

in their algorithm design during the competition, the

chosen weighting mattered little in determining contest

winners.

6.3 Speed

Average execution speed per test case is shown in Fig. 4.

Run times are in milliseconds as measured on a quad-

core Intel Xeon 3.60 GHz with 4 GB of RAM. In all

cases, part label detection is slower than figure detec-

tion and labeling. This is because there are many more

part labels than figure titles in patent diagrams. All

character recognizers used in the top-5 systems have

fast execution, as a penalty is incurred when execution

take more than one second per page (see Section 3.3).

The PC and TZ systems (2nd and 5th place) are

much faster than the other systems. They are faster

https://community.topcoder.com/longcontest/stats/?&sr=1&nr=50&module=ViewOverview&rd=15027
https://community.topcoder.com/longcontest/stats/?&sr=1&nr=50&module=ViewOverview&rd=15027
https://community.topcoder.com/longcontest/stats/?&sr=1&nr=50&module=ViewOverview&rd=15027
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by more than a full second per page, on average. This

is despite PC using an iterated font adaptation for its

classifier, which is constrained based on character con-

fidences (i.e., if confidences are high, adaptation is not

performed). TZ has the simplest design, using simple

geometric and visual features and running OCR just

once with simple correction (see Table 3).

The slower execution of the remaining systems can

be explained as in the following. GS (4th) runs full OCR

and page analysis in three different page orientations,

using two different classifiers for every character, mak-

ing this the slowest system. WL resizes each character

image to fit a different template width for every char-

acter class, while JC uses an iterated random walk to

locate figure regions, and its validation using HTML

text performs a linear search over all candidate words.

Benchmark. Average execution time of the bench-

mark part label recognizer was 7.52 seconds, using a

single process on a 24 core Intel Xeon 2.93 GHz with

96 GB of RAM. Executing Tesseract takes roughly 1-2

seconds. This slow execution is due to using Python for

programming, and the cost of pixel-level convolutions

for the three visual word dictionaries (which could be

accelerated significantly using a GPU).

Clearly, the top-5 USPTO competition systems have

much faster average execution times, even taking into

account the slightly slower processor on which the

benchmark was run. The substantially slower execu-

tion of the benchmark system emphasizes the high run-

time performance for competition systems, particularly

when their detection accuracies are taken in account,

which we discuss next.

0

500

1000

1500

1 2 3 4 5
Algorithm (order by performance rank)

E
xe

cu
tio

n 
T

im
e 

(in
 m

s)

Test Case

Figures

Part Labels

Fig. 4 Average execution time per test case (time given in
milliseconds).

6.4 Recognition Accuracy

Figures 1 and 2 illustrate some of the challenges for

recognition of USPTO figures titles, figure locations,

and part labels. These include the presence of multiple

figures on a single page and multiple page orientations,

the intersection of part labels with drawing elements,

drawing elements similar in appearance to characters,

the variety of font faces, the use of handwriting, and

slanted text (see Figure 2).

Table 4 shows the average metrics for figure location

and title detection (top panel), and part label locations

and text (bottom panel). Part label detection results

are also shown for the benchmark algorithm (Bmk.).

The best result in each panel is that with the highest F-

measure (2RP/(R+P ), where R is weighed recall and P

is weighted precision (see Section 3.3). The F-measure

penalizes both low recall (i.e., many false negatives) and

low precision (i.e., many false positives).

Summary. Overall, the difference in average fig-

ure detection accuracy for the top-5 systems is small.

They are within 4-6% for all recall, precision and F-

measures for figure localization, and when also match-

ing title text (labels). For part labels the difference in

F-measures increases to 8%, and the variance in preci-

sion and recall measures across top-5 systems increas-

ing substantially. The highest part label F-measures are

also 10-11% lower than the highest figure F-measures,

reflecting the greater difficulty of correctly locating part

labels.

Figures. GS (4th place) has the strongest average

figure localization and title results, with better than

80% recall and precision. Interestingly, this was not the

best system for localizing figures - in fact, GS has a

5% lower F-measure than PC (2nd place), but then

recognizes a number of titles incorrectly. The GS system

employs two different MLPs for character recognition,
and detects figure titles simply by matching ‘fig’ at the

beginning of a segmented word (see Tables 2 and 3).

Part Labels. JC and WL (1st and 3rd place) have

the best average part label location and text (label) re-

sults. WL has slightly higher precision, and JC slightly

higher recall. PC and GS (2nd and 4th) find more part

labels, with roughly 5-10% higher recall than JC and

WL, but also produce more false positives with 10-15%

lower precision reflecting limited or absent validation

for part label text (see Table 3).

The increased part label recall for PC and GS may

be explained by two things. First, they apply OCR in

multiple directions (two and three, respectively), while

the other systems first estimate the page orientation

and then apply OCR in one direction. Second, they

use the most sophisticated character recognizers (see

Table 2). GS has the lowest precision, perhaps in part

because it does not remove words located in tables. The

high precision but low recall of TZ (5th place) may be

explained by a well-trained MLP classifier paired with
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Table 4 Accuracy: Average Recall, Precision and F-
measures for localization (BB detection) and localization with
correct labels. Top: figure results, Bottom: part results

Location (BB) Location + Label
Rank Precision Recall F-Measure Precision Recall F-Measure

F
ig
u
r
e
s

1 0.89 0.89 0.89 0.79 0.79 0.79
2 0.92 0.91 0.92 0.79 0.79 0.79
3 0.89 0.89 0.89 0.78 0.78 0.78
4 0.86 0.88 0.87 0.80 0.82 0.81
5 0.87 0.88 0.87 0.76 0.77 0.77

Location (BB) Location + Label
Rank Precision Recall F-Measure Precision Recall F-Measure

P
a
r
t
s

1 0.83 0.78 0.81 0.72 0.70 0.71
2 0.69 0.89 0.78 0.60 0.79 0.69
3 0.83 0.73 0.77 0.74 0.69 0.71
4 0.65 0.85 0.74 0.54 0.76 0.63
5 0.84 0.65 0.73 0.78 0.62 0.69

Bmk. 0.80 0.84 0.82 0.72 0.74 0.73

strict validation rules (see Table 3), leading to low recall

for part label detection.

Benchmark. The results for the benchmark part

label detector are shown in the bottom panel of Table

4. It obtains slightly higher part label localization and

localization with text results, by 1-2%. The final preci-

sion and recall measures for part label localization with

text are 71.91% and 73.55% (F: 72.72%), compared

with 72.14% precision and 69.87% recall (F: 70.99%)

by JC (1st place).

This shows that part label detection accuracy in JC

(1st place) is very close in performance to a system us-

ing convolutional feature learning and a sophisticated

OCR engine. Our benchmark benefits from being de-

signed after the competition results had been published,

which were used to inform the system design. Given

that participant systems needed to operate under strict

time and space constraints, and had no benefit of hind-

sight, we argue that our results confirm that the top

performing USPTO systems are of high quality.

7 Lessons Learned

We learned several valuable lessons about how to best

organize challenges. A first observation is that partic-

ipants in online competitions will use all available in-

formation. While only few competitors leveraged the

HTML text we provided, some solutions use it to obtain

relevant performance improvements, and this is a tech-

nique that may be beneficial in other document recog-

nition applications.

Second, to draw a broad audience it is important

to make startup-costs to participate as low as possible.

In our case, we provided clear instructions and a stub

implementation of the two functions that needed to be

implemented, specification of what the expected input

and output is, and training data. We also provided an

offline tester/visualizer (including source code), and an

online system with a separate, small dataset for par-

ticipants to automatically test their results during the

competition.

Third, for engineering efforts it is important that

the evaluation of systems reflect real-world solution re-

quirements, particularly when a winner is to be selected

and given a reward. If a scoring function fails to dis-

criminate among top solutions, e.g., because it reaches

a maximum and assigns the same scores to different

solutions, this can be catastrophic. Furthermore, the

scoring function can be used to place emphasis on as-

pects of solutions that are particularly relevant. In our

case, making execution time part of the scoring function

meant that participants had to optimize their solutions

for speed at least to some degree to avoid being pe-

nalized. This illustrates the use of scoring functions as

a general approach to support system engineering to

build practical systems. Furthermore, a simple weight-

ing mechanism can be used to adjust the relative im-

portance of different solution aspects. Depending on the

application, competition organizers (i.e., firms or other

solution seekers) can steer the tradeoff between accu-

racy dimensions (e.g., precision and recall), execution

time and space, or other aspects as needed.

Fundamental to innovation is the ability to success-

fully solve scientific, technical, and design problems.

However, often it is not apparent ex ante which ap-

proaches are most promising and the R&D process is

fraught with uncertainty [40]. One leading view casts in-

novation and problem solving as a process of “search”

over some poorly understood knowledge landscape [51].

A “parallel search” approach whereby multiple in-

dependent solvers (or teams of solvers) compete to solve

the same innovation problem in parallel is a widely used

approach to address this challenge. Following a parallel-

path strategy allows the seeker of a solution to expose a

problem to a set of solvers with varying skills and who

might employ varying approaches when it is ex ante

unknown which approach might be successful [40, 56].

Our competition shows how this parallel search process

was not just successful in exploring multiple solutions,

but also how it can be leveraged to explore clever solu-

tions to parts of the problem that can even be combined

(e.g., the use of validation using HTML text). In this

parallel search, even weaker systems can surprise with

interesting solutions to sub-problems. It is then possible

to break up solutions of interconnected modules based

on a decomposition in subprocesses.

An important challenge for researchers in document

analysis and pattern recognition more broadly is the

construction of frameworks that help identify and for-

malize modules created for competitions under time
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constraints, so that they can be later pulled apart and

recombined in a repository of modules, and then used

or refined in future work (e.g., follow-on competitions).

There has been some early work along these directions

[32, 64] but more might be done.

8 Conclusion

In this paper, we present the results of a month-long

algorithm competition to solve a difficult text process-

ing and graphics recognition task for the USPTO. In

summary, we show in detail the results of using a prize-

based contest to recruit skilled software developers to

productively apply their knowledge to a relevant graph-

ics recognition task in a practical setting. The resulting

diversity in the submitted solutions has the potential

to further improve the solution, for example, by com-

bining the most promising solutions to sub-problems.

In the simplest case, performance could be improved

by combining the best solution for the figure detection

task (4th place system) with the best solution for the

label detection task (1st place system). The comparison

against the performance of a leading alternative imple-

mentation confirms the quality of the top performing

systems.

The emergence of commercial online contest plat-

forms such as TopCoder, InnoCentive, and Kaggle,

which offer access to large pools of skilled software de-

velopers, has the potential to enable organizations to

crowdsource solutions to difficult software and algo-

rithm development tasks which could not have been

developed in-house. This approach could be especially

useful to address the demand for the many different

and highly specialized graphics recognition algorithms

which are required as a result of an explosion available

imaging data.

The top algorithms presented in this paper used

a variety of approaches, were fast, and also accurate.

Although the systems perform well, they are not yet

accurate enough to be put into every day use. How-

ever, the scoring mechanisms that reflect real-world

performance considerations, the training data includ-

ing ground truth, and the top performing solutions are

openly available. We hope that this will stimulate addi-

tional research in patent document analysis. Releasing

the source code of the five winning solutions makes a

breadth of alternative approaches available and offers

the opportunity to study the specific causes of differ-

ences in performance. The analyses we presented in this

work are a first step in that direction. The results of the

winning teams provide a great starting point for future

developments, and the implementation of a repository

of modules leveraging the diversity of submitted solu-

tions will hopefully lead to more accurate solutions in

the future.
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