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Abstract: An OMR system objective is to transcribe an image of a music score into a machine
readable format. A music grammar can be used in order to model the structural knowledge of
music scores. Music scores can have a high density of symbols and the different preprocessing step
can lead to wrongly segmented components. However, we don’t want to tell the grammar how a
music symbol should be segmented. Statistical model like convolutional neural network are much
more suited for localizing and classifying music symbols In this report, we propose a way to
combine a music grammar with a convolutional neural network architecture capable of doing
localization and classification of music symbols. The grammar is used to generate small contextual
zone that will be then fed to the neural network. This grammar can then also be used to
bootstrap a dataset generation for the training of neural networks. We demonstrate the use of our
model on the concrete task of recognizing accidentals in a music score and obtain 93.4% of
localization accuracy and 96.2% of classification accuracy.
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1 Introduction

Optical Music Recognition (OMR) can be described as a sub field of Document and Image Recog-
nition. It has been studied for decades, starting from Pruslin [Pruslin, 1966] in 1966 and is still an
active area of research. An OMR system objective is to transcribe an image of a music score into
a machine readable format. A music score is constituted of many symbols arranged in a complex
bi-dimensional structure. Music symbols has the property to be relatively simple, however a score
has the particularity that almost every symbols are connected by five lines. Since 1994, the research
team Intuidoc from the Irisa laboratory has developed a generic way of recognizing structured doc-
uments by using the DMOS system and have applied it on orchestral music scores. The team has
already formalized the music notation grammar into rules understandable by the DMOS system.
But there are still problems during the low-level image recognition task. Indeed, because of the
density of information in a musical score and because of all preprocessing phases applied to the
image, there are often cases of broken and overlapping musical symbols. In these cases, a simple
classifier of well segmented symbols is not sufficient to correctly segment and localize the symbols.

However, the literature on statistical models like neural networks 2.3.2 shows us that such
models has probably the capability to learn to localize and recognize such symbols. Despite their
performances on local localization and classification tasks, we can’t expect to train a neural network
to recognize an entire page of music score. This is where the music grammar is very interesting
for their capability to work with very complex, hierarchical structures. This complex structure and
knowledge can then be used to generate local contextual zone that will then be fed to neural networks
However, we don’t want to tell the grammar how a symbol should be segmented. Furthermore, the
grammar should hand down all the graphical recognition task to a neural network that will be able
to localize and classify music symbols.

In this report, we will first review the state of the art of OMR in section 2.1 by introducing how
a music score is structured, then we will review the state of the art of OMR by presenting all steps
classically used in OMR at section 2.2: pre-processing, staff recognition and removal, segmentation
and recognition of music symbols, music notation reconstruction. We will also introduce the reader
to statistical models like hidden markov model and convolutional neural network used for symbols
localization and classification in section 2.3 and 2.4. The DMOS system will also be introduce in
section 2.6. We will then explained in section 3 our proposition to combine a simple music grammar
and a convolutional neural network architecture in order to localize and recognize music symbols
with a concrete application to recognize an accidental. Finally, we will expose in section 4 different
experiments in order to demonstrate that we are able to localize and recognize a music symbols in
an image with a local context.

2 Related works

In this section we will first define what is Optical Music Recognition and its main issues. Then
we will describe all the steps commonly used for implementing an OMR system. In a second step,
we will describe techniques for merging the recognition and segmentation of music symbol by using
hidden markov model and neural network. We will also describe the use of such neural network on
optical character recognition and object localization and recognition. Finally, we review in more
detail the DMOS method as a generic method of document recognition.
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Figure 1: List of the main musical symbols [Fornés and Sánchez, 2014].

2.1 Definition of Optical Music Recognition

Nowadays, digitizing scores is a common practice to save and share music. But the format of these
documents cannot be directly interpreted by a computer. That is why Optical Music Recognition
systems have been developed for converting an image of a score to a format that is understandable
by a computer. This computer vision task could be therefore classified as a hybrid domain between
Optical Character Recognition and image recognition. OMR is principally used to save time because
manually transcribing a score in machine readable format is very time consuming. Many music
composers still find awkward to directly write music with a music composer software and prefer to
write their music on paper. The use of OMR in these situations could integrate into the working
flow of music composer their habit to write music on paper and automatically transcribe them in a
computer readable format.

A score is a structured document used to formalize music. Its organization is hierarchical, for
example:

• Different staves are used for different instruments or voices;

• Each staff contain five lines;

• A staff contains music symbols;

• A music symbol like a note is constructed by the association of graphical primitives like a dot,
stem and flags . . .

There are multiple symbols in musical notation resumed in figure 1: clefs, notes and rests, breaks,
accidentals and key signatures, time signatures, dynamics . . .

OMR systems are faced with multiple problems such as:

• The high density of symbols;
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(a) Examples of symbols that should not touch
[Coüasnon et al., 1995].

(b) Examples of lots of cascading accidentals. (c) Example of vertical synchronization of an orches-
tral score.

Figure 2: Examples of some OMR main problems.

• High connectivity between symbols;

• High variation of symbols;

• Overlapping and broken symbols like in figure 2b.

A score has a unidirectional direction of reading that corresponds to the time flow, but multiple
things can happen simultaneously. For example, when there are multiple instruments in the same
score, all music symbols are vertically synchronized across staves as illustrated in figure 2c. As a
consequence, the output of an OMR system is not just a one dimensional sequence of symbols. All
graphical symbols must be localized horizontally and vertically in order to deduce their relations
between each other.

Authors like in [Rebelo et al., 2012] or [Fornés and Sánchez, 2014] generally describe an OMR
system by identifying multiple steps: pre-processing, staff recognition and removal, symbol seg-
mentation, symbol recognition, music notation reconstruction. A typical architecture of an OMR
system is resumed in figure 3 at page 4. We will first review all these different steps, however, as said
in [Couasnon and Camillerapp, 1995], an OMR system constituted of these sequential steps, also
described as a bottom-up system, is very limited because the segmentation and recognition is done
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Figure 3: Typical architecture of an OMR system [Rebelo et al., 2012].

without using the context. That’s why we will also present more in details the DMOS system at
the end of this part because of its special architecture that can use the context for segmenting and
recognizing music symbols. Also, we will particularly focus our attention on symbol segmentation
and recognition because it is the central theme of this internship.

2.2 Different step of OMR

2.2.1 Pre-processing

The pre-processing phase of OMR consists of making some operations on the raw image to ease
the latter steps of OMR. Before anything, the image has to be converted into a binary image. This
operation is a classical step of computer vision tasks. Then, optional operation can be applied to
enhance the quality of the score.

• Skew correction for staff line: used for simplifying the staff recognition and removal step;

• Noise removal for bad scanning and digitization, for example see the figure 4 on page 5;

• Some other morphological operations . . .

2.2.2 Recognition and removal of music staves

One characteristic of a music score is that most of the symbols are connected by the five lines that
constitute a staff. Lines and spacing are used for describing a note pitch, therefore it is essential
to recognize these lines for the later music notation reconstruction step. Also, these lines are an
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Figure 4: Old and damaged handwritten score [Fornés and Sánchez, 2014].

obstacle for almost every classical technique of segmentation and recognition used in computer
vision. This is why, most OMR systems first remove these lines.

A fast way to do this is to do a horizontal projection of a music staff. The resulting vertical
position of an intensity peak is an indicator of the position of a line. It is worth noting that
projections techniques do not work well if the score contains a high density of symbols or if lines are
curved. Also, the removal task is often done with a thickness criterion and often result in breaking
symbols. Candidate assemblage and contour tracking are another way to remove a staff that are
relatively fast to compute and can sometimes deal with overlapping symbols. Graph path search
techniques can produce really good results, but are slow to compute. Finally, detection of lines in
an image can be done by using complex filters like a Hough transform or a Kalman filter like the
one used in the DMOS system [d’Andecy et al., 1994]. The Kalman filter used in DMOS has the
capability to recognize curved line, useful to detect handwritten line.

2.2.3 Music symbol segmentation and recognition

Music symbol segmentation and recognition are a very important part of an OMR system. It is still
a challenging part because of the high number and high variability of music symbols and its complex
bi-dimensional structure. This complexity is often aggravated because of bad digitization and paper
degradation for ancient scores like the figure 4. Furthermore, symbols are often deteriorated because
most of OMR systems do the staff removal step that often leads on breaking symbols. Broken
symbols then make the segmentation steps more challenging, even more if the context information
is not taken into account.

Techniques used by OMR systems during this step are very diverse and many solutions have
been proposed. However, most of OMR systems first does a segmentation step and then apply
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recognition techniques to extract the correct symbol. A simple way of segmenting a score is by first
extracting graphical primitives like lines, blobs, circles . . . and then joins these graphical primitives
for the recognition stages. Symbols can be extracted and recognized by using template matching
techniques. But these kinds of techniques have many drawbacks as they are slow to compute and
have a really low robustness when recognizing a symbol. One way to recognize a symbol from a
bounding box candidate is by computing simple operation that will result in simple features of the
region of interest and then compare these features with those same features computed from symbols
models. This same philosophy can be used with different techniques by using symbol descriptors
like centroids, Zernike moments, and decision trees.

The use of classifiers is yet another method to recognize a music symbol and four of them are
compared in [Rebelo et al., 2009]. One of them is a Hidden Markov Models and they have been
extensively used for optical character recognition and speech recognition. They have attempted to
apply a Hidden Markov Model for recognizing very simple and old scores following the proposition
of [Pugin, 2006]. Their proposition has the interesting property to merge the segmentation task and
the recognition task. In the contrary, the following classifiers also presented in [Rebelo et al., 2009]
need a prior segmentation before the recognition can take place. This constraint is very limiting
because many errors can happen in the segmentation phase because of broken and overlapping
symbols. Indeed, the use of the context is essential in correctly segmenting a music symbols.
The use of simple neural networks like a multi-layered perceptron also have been reviewed for
recognizing music symbols. The classic backward-propagation algorithm has been used for the
training algorithm. Disappointing results was produced as they were outperformed by some simple
classifiers as the k-NN classifiers. Nowadays, new neural network architectures have been proposed
in similar domain like OCR, Speech Recognition or Computer Vision, but to our knowledge, they
have never been used in the field of OMR. The k-nearest neighbor algorithm used in this context
is the simplest classification algorithm used. They implemented it using Euclidean distance and it
gave the second best result after the Support Vector Machine (SVM) classifiers. SVM used a radial
basis function network and at the time of the study, it was the classifier that gave the best result.
For this internship, we are looking for new ways of recognizing broken and overlapping symbols and
one of our hypothesis is that by merging the segmentation and recognition phase, we will enable
the recognition of those badly segmented symbols and consequently improve the overall recognition
rate of music symbols. That is why we will review more in detail the HMM proposition in section
2.3.1.

2.2.4 Music notation reconstruction

The music notation reconstruction has the specific task to interpret the spatial relationship between
different primitives or symbol recognized. This kind of algorithm has to deal with the complex two
dimensional structure of music notation. As a consequence the positional information of a music
symbol is very important as well as the context of the symbol.

OMR system has used fuzzy models or grammars to formalize musical notation. We can differen-
tiate two kinds of grammars. Rule based grammar, or graph based grammar. Most of the systems
that use a grammar for formalizing the music grammar are only using an ascending recognition
methods. All steps of preprocessing, staff recognition and removal, symbol segmentation, symbol
recognition and finally music notation reconstruction using a grammar take place sequentially and
therefore limit the use of the context in the segmentation and recognition phase. In this work, we
will focus on rule based grammar by presenting the DMOS system [Couasnon, 2001] in section 2.6
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Figure 5: Example of old score recognized in [Pugin, 2006].

as it is the system that will be used during this internship.

2.3 Merging recognition and segmentation phase for symbol classification

Our hypothesis is that by merging the segmentation task at the symbol level, we will enable the
recognition of broken and overlapping symbols and therefore improve the recognition rate of our
system. An attempt has been made in this direction by using a Hidden Markov Model for recognizing
old and very simple scores.

2.3.1 Hidden Markov Model applied to OMR

Authors in [Pugin, 2006] present a Hidden Markov Model for recognizing old and very simple scores
as show in figure 5. They decided to avoid the staff removal step and the segmentation step because
they considered that these steps are important sources of errors. They trained their model with
a dataset of 240 pages of music scores containing 52,178 characters corresponding to 175 classes
symbols. The scores were printed with two music fonts made up of very different graphical sym-
bols. Partitions were manually annotated with graphical information. The recognition process used
imitates speech recognition as they used a sliding window for scanning the score. They simplified
the problem by only having a succession of notes from left to right. As a consequence, their system
couldn’t handle chords because the model was sequential and unidirectional. They decided to use
6 features from the raw score image and used the Baum-Welch algorithm for training the HMM.
Here is the list of the 6 features: number of connected components, second and third features are
functions of the gravity centers of the image, the largest black element, the smallest white element,
total area of black elements. The recognition rate obtained on the training data was around 96% but
this rate is highly dependent on the feature chosen, the sliding window width, . . . However, authors
don’t explicitly precise if the training data and the validation data are the same or different. If the
two sets are the same, the generalization capability of this system is called into question.

This method has the advantage to avoid explicit segmentation by using a Hidden Markov Model.
But this model will be hard to be applied to more complex scores as they have simplified the problem
by using only unidimensional scores. Indeed, the objective of this internship is to work on bigger and
complex orchestral scores. The HMM is also known for having difficulties to use context information
because of their architecture principle. This is why, we will introduce in section 2.3.2 another way
to make a joint segmentation and recognition using convolutional neural network.

2.3.2 Convolutional neural network

A convolutional neural network is a kind a neural network specifically designed to work with images.
These networks compute small local features of the input data and gradually build more complex
features by stacking multiple convolutional layers.

A typical architecture of a convolutional neural network is composed of two type of layers. A
convolutional layer that can take two dimensional data as input and apply multiple convolutional
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Figure 6: Convolutional neural network with successive convolution and subsampling
[Lecun et al., 1998].

filters. The weight of each neurons constitute the convolutional kernels of each filters. To compute
the output of the layer, the results of the convolution is biased and feed to an activation function.
A convolutional layer can therefore be seen as an extractor of learned features. Following a convo-
lutional layer, a pooling layer is used to reduce the dimension of the input data. This operation can
be viewed as a subsampling operation and is used to create high-level features as the network archi-
tecture goes deeper. Finally, a fully connected layer of neuron, also called a dense layer is applied to
calculate the output of the architecture. This layer organization is illustrated in figure 6, which is
the architecture named LeNet-5 proposed by Yann le Cun in [Lecun et al., 1998] to recognize digit.

These two layers are used consecutively and repeatedly in order to make a deep neural network
capable of doing, for example, classification and regression problems. However, some activation
function and objective function will be more adapted for doing either classification or regression task.
Often, we will choose the rectify activation function ϕ(x) = max(0, x) for convolutional layer and a
final softmax function ϕ(X)j =

eXj∑K
k=1 e

Xk
in conjunction of an objective function that will minimize

the categorical cross entropy of the prediction The rectify activation function ϕ(x) = max(0, x) for
convolutional layer and a final softmax function ϕ(X)j =

eXj∑K
k=1 e

Xk
will particularly well suited for

doing classification task. And often, we will try to minimize the categorical cross entropy between
the predictions and the targets during the training. On the other hand, when doing a regression
task, we will try to minimize the mean squared error.

2.3.3 Spatial transformer network

As we saw earlier, a convolutional neural network is a very powerful class of model to be applied
on image classification and regression problems. The use of simple pooling layer is used to reduce
the dimension of the data flow in the network. This can guarantee a relative spatial invariance
of the features in the deeper level of the network. However, in the early layers of the network,
all features are closely linked to a small local context in the image. This leads to the fact that a
convolutional neural network is dependent on the spatial position of an object in the image. In
[Jaderberg et al., 2015], the author present a new kind of neural layer allowing the network to make
an explicit spatial manipulation on the input feature map. The manipulation of the input feature
map is only conditional on the feature map itself and no other ground truth data is used to train the
network. One advantage of this layer is that it can be seamlessly integrated into an existing neural
network layer. This network can be used to improve the accuracy of a classification task by cropping
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Figure 7: Example of output of the spatial transformer network. The first column is the network
input, the second column show the geometrical transformation applied to the input image, the
third column is the output of the geometrical transformation and finally the last column is the class
prediction of the network.

and scaling the appropriate region of an image in order to remove the background noise of an object
like presented in figure 7. The author presented other kind of applications like a co-localization
task where the spatial transformer network has to localize an object of unknown class present in
multiple images. This network can also be used to make a spatial attention mechanism by applying
a downsample factor that will allow more computation efficiency by reducing the input resolution
of the classification part.

The architecture of a spatial transformer module is divided into three part. A localization
network, a grid generator and a sampling module, see figure 8. The localization network goal is to
produce the parameters of the transformation that will be applied to the input feature map. This
regression task is solved by using either a fully-connected neural network or a convolutional neural
network. The second part, the grid generator, is a special layer used to map the output grid of
pixels to the input grid of pixels. This mapping can be performed by using any kind of geometrical
transformation: affine transformation, thin plate transformation ... However, this transformation
has to be differentiable in respect to their parameters. This allows the grid generator to be also
differentiable and to backpropagate the gradient through the network. Also, this grid generator
module can take a downsample factor, allowing the module to reduce the size of the output data
and producing an attention mechanism. Finally, the last layer, called the sampling module, samples
the input feature map following the grid generated by the grid generator. Again, one can used any
kind of sampling method as long as the sampling method is derivable. It is because all the part of
the spatial transformer network is differentiable that it can be seamlessly integrated into existing
architecture of neural network.

The author presents a series of experiment to validate his model and has used data coming from
the MNIST dataset. This MNIST dataset is dataset of handwritten digits containing 10 classes
(0 to 9 digits) with a training set of 60,000 images and a test set of 10,0000 images. He first use
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Figure 8: Architecture of the spatial transformer network.

multiple distorted MNIST dataset produced by rotating, scaling, translating the digit and also by
doing more complex transformation like projective transformation and elastic warping. He also used
a cluttered MNIST dataset where the digit is into a bigger image containing noise. The classification
part and localization network was tested with a fully connected neural network and a convolutional
neural network making four combinations possible. Also, he compares the results of network having
or not a spatial transformer, making a total of six possible experiments. The results in figure 1
shows that adding a spatial transformer network improve significantly the classification accuracy
of the overall network. The transformation used by the spatial transformer network is an affine
transformation allowing the network to crop, scale and rotate the image. This shows that by only
taking appropriate region of an image, the classification task is better performed.

2.4 Joint object localization and recognition techniques

After reviewing some techniques used in OCR and Speech Recognition, it could be interesting to
see what kinds of recognition systems are used for object recognition in an image. Nowadays, deep
neural networks are widely used in object recognition and are known to be the state-of-the-art in
image recognition [Erhan et al., 2014]. We will also review another proposition [Ba et al., 2014]
that concentrate on modeling an effective visual attention model.

2.4.1 Deep Neural Network

In [Erhan et al., 2014], they used a Deep Neural Network for detecting and localizing multiple
scalable object in an image. A common way to localize different object in an image is to train one
object detector by class to recognize. As the number of classes grows, it becomes computationally
difficult to scale up the system. The originality of this works is to train one single Deep Neural
Network that is class agnostic and use it to localize any object of interest in an image. This Deep
Neural Network is structured with multiple Convolutional Neural Networks and multiple max-
pooling layers. The output is normalized with a soft-max layer. The recognition system proposed
has the capability to output a bounding box to localize objects and a confidence score about the
label of all objects detected. This proposition’s strength is its property to handle naturally multiple
instance of an object in an image. This network was benchmarked by using the Pascal Visual
Object Classes (VOC) Challenge [Everingham et al., 2009]. They used the 2007 edition to evaluate
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Table 1: Results of the MNIST experiment of [Jaderberg et al., 2015]. The results presented here
is the error rate of each experiments. FCN means Fully Connected Network, CNN means Convo-
lutional Neural Network. Aff, Proj, TPS are respectively the affine transform, projective transform
and thin plate transformation used by the spatial transformer network. Different operation were
used in order to produce different datasets : R rotation, RTS rotation translation and scaling, P
projective distortion and E elastic distortion.

the model and the 2012 edition to train the model. The result presented shows that this system can
be quite competitive although they do not achieve the best results. However, the computational
cost of this system is much lower than the best recognition system.

In the context of OMR, this kind of network could be interesting as it can localize precisely with
a bounding box an object in an image. The fact that the bounding box is scalable is also interesting
because there are multiple musical symbols that can be used at different sizes. Still, this kind of
neural network can’t yet localize a symbol inside of an entire page of music sheet. This is why the
use of the grammar like the one used in this internship 3.1 is very interesting in order to facilitate
the localization task of the network.

2.4.2 Multiple Object Recognition with Visual Attention

Authors of [Ba et al., 2014] proposed an attention-based model inspired by the human vision with
the purpose to recognize multiple objects in images. Studies on human vision show that a human
gradually construct its environment representation by focusing its attention on successive small
parts of the image. This principle is used here by using a Deep Recurrent Neural Network that
processes an image by taking glimpse at different resolutions. A glimpse is a small part of the image
centered on a special location. Furthermore, they used reinforcement learning to train the network to
learn about how to scan the image. The model can learn to localize and recognize multiple objects,
although it was only trained with class labels. Jimmy Ba, Volodymyr Mnih and Koray Kavukcuoglu
first validated the model by localizing and recognizing pairs of MNIST numbers as shown in figure
9b. The error rate of this experiment was 5% and it significantly outperformed the other models.
To also test their model on a real world problem, they evaluated the system by using the model
to transcribe house numbers from the SVHN dataset [Netzer et al., 2011]. The training set was
composed of 200,000 images and the validation set of 5000 images. They obtained the lowest error
rate of 3.9%. This model showed to be more accurate than state of the art convolutional networks,
although the model is using fewer parameters and less computation. A diagram of this model is
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(a) Deep recurrent attention model [Ba et al., 2014]. (b) Using the visual model to recognize MNIST num-
bers [Ba et al., 2014].

Figure 9: Visual attention recurrent model and examples of recognition of MNIST numbers

shown in figure 9a.
The Visual Attention model process the image in N sequential steps. For each step, the model

scans a new location and extracts a glimpse at this location. From this glimpse, the model updates
its internal representation of the image. The model uses a special classifier for recognizing objects.
Finally, the model output a new location to scan from. The model is divided successively in sub-
component and each of those components is a neural network. The first network is the glimpse
network used to extract features from the glimpse with two input layer: a convolutional layer that
take a glimpse as an input and a fully connected layer that take the location of the glimpse as
an input. These two layers are then combined by multiplying the output of each layer. The next
network is a recurrent network composed of two recurrent layers composed themselves of LSTM
units. Its work is to aggregate information extracted from successive glimpses while preserving
the spatial information. Then a third network called the emission network is used to predict the
location of the next glimpse. A context network is used to compute an initial state of the system
and provide the location of the first glimpse. Finally, a classification network is used to output a
prediction from the RNN layer. It is composed of a fully connected hidden layer and a softmax
output layer.

This kind of model could be useful in our OMR system. The fact that this model can locate and
recognize symbol, although the network was only trained with class labels is interesting because in
OMR, we only have databases containing class label symbols. Furthermore, this system can locate
an object in an image, making it ideal for an OMR system. Without having this system to learn how
to read a complex score, we could use the grammar to make a first rough segmentation and then use
this recognition system for locating accidentals, key signatures, time signature, silences. . . Although
this proposition could have been very interesting to study, I didn’t have the time to experiment this
model during this internship.

2.5 Multi-lingual printed and handwritten text recognition system

We already highlighted the fact that OCR is a source of inspiration for OMR, but the main difference
is that the structure to recognize is much simpler in OCR. A score is a bi-dimensional structure
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Figure 10: Example of a document from the Maurdor Challenge [Moysset et al., 2014].

with a notion of vertical synchronization and this notion is especially important for orchestral scores
where there are many parallel staves for each instruments. However, this is only true at the symbol
level. In fact, if we zoom out and consider an entire document, the recognition process can be
much more complex. For example, the Maurdor evaluation is a computer vision and document
recognition contest with some very hard data to recognize like the figure 10. A complete document
processing chain is composed of: document layout analysis, write type identification, language
identification, text recognition, logical organization extraction, information extraction. The A2IA
team has submitted a text recognition module that ranked first at the second Maurdor evaluation for
both printed and handwritten text recognition for French, English and Arabic [Moysset et al., 2014].
They used a Long Short Term Memory Recurrent Neural Network, with little changes:

• Adapted the sub-sampling filter size to fit the image resolution;

• Tuned hidden layer sizes for the dataset.

One important improvement to the training phase was the use of a powerful regularization technique
called dropout.

However, the interesting part here is the fact that the DMOS system was used in the precedent
module called the module layout analysis, and was used to detect line of text. In a complete
recognition system, DMOS would be used to extract line of text that will be then fed to this
recognition module. In the context of this internship, we could also use the powerful grammar
present in the DMOS system to roughly segment a score and generate zones with broken and
overlapping symbols. Then, we could feed these zones to a recognition system like the one we saw
previously.

2.6 DMOS: a generic document recognition method

DMOS, "Description and MOdification of Segmentation", is a general method for the recognition of
structured documents. Its main purpose is to separate the semantic and graphic knowledge of the
program that do the recognition task because of the well-known paradox in computer vision that
there is a "discrepancy between the way knowledge describe an object and the way objects have to
be recognized" [Couasnon, 2001].

The system implemented in [Couasnon, 2001] is mainly separated in two parts. First, the system
uses a grammar for formalizing the semantic and graphical organization of the documents. This
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grammar is defined in EPF (Enhanced Position Formalism) and then compiled to a Prolog dialect
called λProlog. There are two levels of grammar:

• A physical level: formalization of the graphical organization of the documents;

• A logical level: work on the semantic level of the document.

The grammar first manipulates terminals that are simple graphical units like a line segment or a
component (connected or not). It’s by agglomerating these terminals that the grammar construct
complex structures that will describe the graphical and the semantic organization of the document.

The second part is where the originality of the approach is found. A classical computer vision
system that uses a grammar only uses it at the end of the recognition chain. First, some tools for
segmenting and recognizing a symbol is used. Then, labels recognized are fed into the grammar
for detecting possible recognition errors and performing the reconstruction of the semantic notation
of the document. In the DMOS system presented by [Couasnon, 2001], the grammar totally guide
the segmentation and recognition of the document. This grammar decides on how to segment the
document, then feed the candidates into classifiers that will confirm the label of the candidate. The
grammar can then check if the recognition is consistent, and if it is not, it can redo the segmentation
step for finding a better solution. The grammar can therefore use the context for segmentation and
recognition tasks.

For validating the modeling capacity of DMOS and its advantageous use of the context, this
method has been initially implemented for recognizing orchestral scores. Furthermore, this system
has been applied and validated on more than 700 000 complex documents of different types: archive
documents, handwritten letters, forms, mathematical formula . . . However, this system is still having
difficulties in recognizing broken and overlapping symbols in scores. That is why we propose in
the following section a combination of syntactic recognition using DMOS and a localization and
recognition module using convolutional neural networks. The grammar used by DMOS will generate
zone with local context and pilot the neural recognition module in order to localize and classify
broken and overlapping symbols. We also show a way to bootstrap the generation of a dataset by
using a music grammar.

3 Proposed method for joint localization and recognition of music
symbols

In this section, we present our proposition to do a joint localization and recognition of music
symbols using a neural network. Neural networks, and especially convolutional neural networks,
are a very powerful class of model for doing image localization and recognition tasks. However,
the dimension of the image is static inside a neural network (inscribe in the architecture of the
network). Furthermore, the dimension of the input data is directly connected the computation cost
of the network. This is why it is currently impossible to use a convolution neural network on, for
example, an entire page of music sheet. To resolve this problem, we used a simple music grammar
that will enable us to generate a dataset of symbols, well segmented and badly segmented, with
a small context. To resolve this problem, we used a simple music grammar that will enable us to
generate a zone hypothesis where the network will have to localize, classify the music symbols and
reject if there are no symbols. During this internship, we will only be using a minimal grammar in
order to localize and classify accidentals. This will be enable us to make experiments to validate
our model of neural network. We now present this grammar.
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3.1 Simple music Grammar for accidental localization

In order to produce a dataset allowing to train a neural network to localize and to classify, we used
the music grammar introduced in [Coüasnon and Camillerapp, 1994]. This grammar was adapted
for the newer version of the DMOS system. As we introduced earlier, the DMOS system delegate
all the low level recognition and segmentation process of the image to a specific framework called
“Vision Precoce”. This framework allowed us to extract multiple visible clue in a score:

• Staff lines: the staff lines was extracted by using a kalman filter and put into a specific layer;

• Note heads: note heads were extracted by using heuristics on the size and area of the note head;
These note heads were also put into a specific layer to ease the music notation reconstruction
process;

• Vertical segments: vertical segments presents in the score were also detected by using the
kalman filter. These segment represents potential stem for the grammar;

• After the staff removal step, we can then extract all the remaining connected components that
will be used to construct a note with an accidental. Before starting the construction of the
musical notation with this grammar, we first filter all the connected components of the music
score using a simple classifier of well segmented symbols presented in section 3.3.2.

Next, we will use grammar rules to construct a representation of the music notation. In the
context of this grammar, DMOS also use the concept of layers. Each layers can be used to represent
a different resolution and can be used to regroup components in order to ease the work of the
grammar. A special operator USE_LAYER layer FOR rule is used to change the current layer for a
certain rule. Other special operator are used, especially the operator AT (zone) && rule in order
to search a component relative to another component.

First of all, we extracted the staff lines of the score. This allowed us to deduce the height of the
staff interline which a very important parameter for the grammar and the for the dataset generation.
These staff lines were put into a separate layer and a special connected component is build for each
set of five staff lines to construct a complete staff.

1 % Detect f i v e conse cu t i v e s t a f f Line and cons t ruc t an ob j e c t CCportee that w i l l
r ep r e s en t a s t a f f

2 detec tPor tee CCportee : :=
3 detec tL igne Ligne1 &&
4 detec tL igne Ligne2 &&
5 detec tL igne Ligne3 &&
6 detec tL igne Ligne4 &&
7 detec tL igne Ligne5 &&
8 ‘ ‘ ( constructCCPortee Ligne1 Ligne5 CCportee ) .

Once a staff has been built, we try to construct a note by first searching a potential stem. If a
vertical segment has been found, then change the current layer to the note head layer in order to
find a note head.
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1 note_H NuGr Note _TypeTete TypeNote Duree SegHampe CCaff : :=
2 % Search ing f o r a po t e n t i a l stem
3 hampe haut SegHampe &&
4 % Change the cur rent l ay e r to the l ay e r that conta in s note head and f o r a note

head
5 USE_LAYER( nomResol "Tete" ) FOR( tete_de_note_H CCtete Tete SegHampe) &&
6 ‘ ‘ ( cons_elemVoixNot Note TypeNote NuGr Duree haut 1 [ Tete ] CCtete SegHampe) .

To search for a note head, we need to search at one of the extremity of the stem. If the note
head is situated at the bottom of the stem, we will need to search in a zone that will be close, at
the left and low extremity of the stem. The AT (procheGextrB SegHampe operator does that in the
following code:

1 tete_de_note_H CCtete Tete SegHampe ::#
2 AT( procheGextrB SegHampe) && ( t e t e CCtete ) &&
3 USE_LAYER( nomResol "Music" ) FOR( a l t e r a t i onL CCtete SymbAlter ) &&
4 ‘ ‘ ( cons_tete Tete CCtete 0 _HautNote SymbAlter _NbPt _LstSymbPt 0 [ ] ) ) ) .

Finally, when a note has been constructed, we search an accidental once again with AT (procheGmemeL)
operator at the left, on the same line of the note head:

1 a l t e r a t i onL CCtete SymbAlter : :=
2 AT(procheGmemeL CCtete ) && a l t e r a t i o n 0 1 CCtete SymbAlter .

With this simple grammar, we can only construct a representation of a note with or without
an accidental. In addition of this simple grammar, we used a simple convolutional neural network
classifier presented in section 3.3.2 to filter connected component and put a label on accidentals.

3.2 Dataset generation using the music grammar

With the grammar presented in section 3.1, we generated a dataset that will be used to train a neural
network that will localize and recognize an accidental. When the accidental is well segmented, the
grammar won’t normally have any problem to construct the note with an accidental. However, when
the accidental is not well segmented, the grammar won’t be able to construct a correct representation
of the note. Nonetheless, the grammar still have multiple information that could be of great use for
the neural network. For example, we know that the vertical position of the accidental is directly
dependent of the vertical position of the associated note head, see figure 11. However, the horizontal
position of the accidental is dependent of the local context of the score, see figure 12.

When the grammar is searching an accidental, it already knows the position of the note head. So
it would be very interesting to send this information to the neural network to ease his localization
task. To do this, we took thumbnail of region that could contain an accidental. The vertical position
of the thumbnail is centered on the vertical position of the note head and is horizontally positioned
at the left of the note head. The size of the thumbnail is decided from the height of the staff
interline. The height of an accidental is around three times the height of an interline, so we took a
squared image of 6 times the height of an interline to be sure not to cut a part of the accidental.
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Figure 11: The vertical position of an accidental is directly dependent of the vertical position of
the associated note head.

Figure 12: The horizontal position of the accidental is dependent of the context.

The generation of the dataset was done from five different music sheets, for in total of 70 pages of
scores. A particular style of music score were chosen in order to find many accidentals like in figure
13.

This dataset contains examples of well segmented symbols as well as examples of not well
segmented symbols. We also added a reject class that will permit the neural network to learn
whether an image contains or not an accidental. The figure 14 presents examples of images contains
in this dataset.

At the end of this work, during the experimentation part, we will need to evaluate the localization
accuracy of the network. However, we only have the ground truth data of the localization of the
accidental only on images of well segmented symbols. That’s why we will use different part of this
dataset for different task:

• When we will have to explicitly use in the experiment the ground truth localization of the
accidental, we will only use images of well segmented accidental;

• On other cases, we will use the whole dataset.

Figure 13: Score containing many accidentals.
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(a) Well segmented sharp example. (b) Not well segmented sharp example.

(c) Well segmented flat example. (d) Not well segmented flat example.

(e) Well segmented natural example. (f) Not well segmented natural example.

(g) Example from the reject class.

Figure 14: Example of images in the dataset generated by the grammar.

This dataset is described in table 2

3.3 Neural network architecture proposition

Our neural network architecture proposition is strongly inspired from the one proposed by Jaderberg
[Jaderberg et al., 2015]. We will first describe our localization network used to make segmentation
prediction. Then, we will expose our classification network that was used in the grammar to
recognize well segmented symbols and in conjunction with the localization network. Finally, the
full architecture composed of the localization network and the classification network is presented in
section 3.3.3.

3.3.1 Localization network

This localization network is used to produce an segmentation hypothesis of an accidental. In order
to do this regression task, we sued a convolutional neural network composed of a two dimensional
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Label WS accidental Not WS accidental Total
JUNK 0 1965 1965

BECARRE 697 256 953
DIESE 621 150 771
BEMOL 143 98 241
Total 3426 2469 3930

Table 2: Images distribution by class for the dataset generated from the grammar. The first column
contains the number of Well Segmented (WS) images. The second column contains the number of
not Well Segmented images. The last column contains the total of images in the whole dataset.
We only have the ground truth localization on well segmented symbols. Examples of images are
presented in figure 14

input layer of size 120x120 neurons. Then we used two consecutive layer of pooling and convolution
with pooling size of 2x2, 20 convolutional filters of size 5x5. The end of the network is composed of
two fully connected layers of 50 neurons and finally 6 outputs neurons. We used the mean square
error as the objective function and trained by using the adam optimizer.

The output of this network is composed of 6 neurons, where each output represents a geometrical

transformation matrix parameter Tn:
[
T1 T2 T3
T4 T5 T6

]
T1 and T5 parameters determine the zoom, T3 and T6 parameters determine the translation, T2 and
T4 parameters determine skewness. In order to simplify the task of the neural network, we will
ignore the skewness parameter in the transformation.

3.3.2 Classification network

In order to classify the music symbols and reject the image if it doesn’t contain any symbols, we
used a convolutional neural network with the following architecture:

• A two dimension input layer. The size of the input layer is dependent of the experiment.
When this network is used in conjunction of the localization network, the size is calculated
from the input size of the localization network and the downsampling factor of the spatial
transformer network. For example, if the input size of the localization network is 120x120
neurons and the downsampling factor is 2, the input of this network will be 60x60 neurons;

• Two consecutive convolutional and pooling layer with 32 convolutional filters of size 3x3 and
a pooling size of 2x2.

• A dense layer containing 256 fully connected neurons.

• The final layer contains as much as neurons as class to classify. For example, in the first
experiment 4.1, this layer contained 18 neurons in order to classify all the 18 classes of music
symbols present in the dataset 3. For our final example 4.2.2, we only use four neurons in
order to classify three kinds of accidentals or reject if no accidentals is present in the image.
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Label Number of images
MEZZO 38
CLE_FA 258
CLE_UT 20
FORTE 191
SOUPIR 656
PIANO 236
POINT 295

BECARRE 1394
BEMOL 2092
PAUSE 126

CLE_SOL 904
DMSOUPIR 719
CHEVRONV 33
CHEVRONH 356

DIESE 1886
FINPEDALE 273

TALON 52
PEDALE 230
Total 9759

Table 3: Images distribution by class for the dataset of well segmented symbols.

• When doing a classification task, it is very interesting to combine our final layer with the
softmax activation function in order to produce a probability distribution over the output of
the network.

• Finally, the loss used to measure the accuracy of this network was the categorical cross entropy
function. The training update was the adam optimizer, the same as the localizer network.

3.3.3 Full architecture

In order to do a joint localization and classification of music symbols, we merged the two previous ar-
chitecture into a single, end to end trainable, neural network. The junction between the localization
network and the classification network was done using the spatial transformer network introduced
in section 2.3.3. Once the localization network has produced a set of transformation parameters
that localize the symbols, the spatial transformer network is used to transform the input image. A
down sample factor is used in order to reduce the input size of the classifier network. This factor
creates a way to make a visual attention mechanism and make use of multiple resolution inside the
same network. This transformed image is then fed to the classifier in order to recognize a symbol
or reject the image. We used this network in different ways during our different experiments. In
the experiment 4.2.1, this network was used directly. However, in the experiment 4.2.2, we first
directly trained the localization network to regress the transformation parameters. We then loaded
and fixed the learned parameters of the localizations network and learned the classification task
only.
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(a) Natural (b) Flat (c) G Clef

(d) Sharp (e) Pedal (f) Quarter Rest

Figure 15: Example of images in the well segmented dataset

4 Experiments

In order to validate the model, we have conducted multiple experiments that will be presented in
the following section.

4.1 Classification of well segmented music symbols

The goal of the first experiment was to make a classifier of well segmented music symbols. This
experiment informed us about the level of difficulty for neural networks to classify music symbols.
The dataset used was generated from older data used in a precedent internship and from data
already present in the intuidoc team. One difficulty in making a dataset of music symbols is the
fact that there is a large variation of size between class of music symbols. For example, a G clef
will be around 15 times taller than a simple point. Here we chose the simple solution to resize
every symbols to the same size. However, the output size cannot be chosen arbitrarily because if
the output size is to far from the original size of the symbols, an aliasing effects will be created
and the symbols will be too damaged to be recognized. To choose a good output size, we reasoned
in term of staff interline height. Indeed, almost every symbols’ height in a score is relative to the
staff interline height of the score. For example, we can quantify that a G clef is 8 times the size
of an interline, an accidental is three time the size of an interline and a point half the size of an
interline. We chose here to take the middle of these two extreme and set the output size to three
time the size of an interline. We didn’t constrain the width of symbols and kept the original ratio
between the height and width of the images. As a consequence, the symbols was always placed at
the center of the frame. We considered here that the resolution of an interline was 20 pixels, which
is a reasonable value to have. Therefore, we have squared images of size 60x60 pixels with centered
symbols of height 60 pixels and variable width. The table 3 resume the image distribution of the
dataset over all the class of the dataset.

The architecture we took was the classifier network presented in the section 3.3.2 which is a
simple convolutional neural network composed of two layers of convolution and pooling followed by
a dense layer. The dataset has a total of 9759 images with a very irregular distribution of images
between classes. For a supervised training of convolutional neural network, it is considered as a
small dataset. We therefore need to test thoroughly the training on the whole dataset. We used
the cross validation technique by splitting the dataset into five part. For each of the five runs,
three splits of the dataset was used for training, one split for validation and one split for testing.
The validation part was used to validate the accuracy of the network at each epoch of the training.
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Label Exact Error Accuracy
MEZZO 38 0 100%
CLE_FA 258 0 100%
CLE_UT 20 0 100%
FORTE 191 0 100%
SOUPIR 655 1 99.8%
PIANO 236 0 100%
POINT 295 0 100%

BECARRE 1388 6 99.6%
BEMOL 2092 0 100%
PAUSE 126 0 100%

CLE_SOL 903 1 99.9%
DMSOUPIR 718 1 99.9%
CHEVRONV 32 1 97%
CHEVRONH 354 2 99.4%

DIESE 1877 9 99.5%
FINPEDALE 272 1 99.6%

TALON 52 0 100%
PEDALE 230 0 100%
Total 9737 22 99.8%

Table 4: Result of testing the whole dataset with the music symbol classifier by using cross valida-
tion.

An early stopping mechanism was put in place to automatically detect over-fitting and stop the
training. At the end of the training, a split was used to definitely test the training. For each run,
the testing split was different which result in testing the whole dataset. The results presented in
table 4 shows that with 99.8% of accuracy, this is an easy task for a convolutional neural network. It
is this network was used within the grammar in order to make classification hypothesis on whether
the connected component was an accidental or not.

4.2 Localization and classification of accidental

We will now introduce experiments done in order to make a neural network architecture able to
localize and classify accidental symbols.

4.2.1 Joint localization and classification training

This experiment was done in order to find how the spatial transformer will react when working
with music symbols with background noise coming from real scores. We used in this experiment the
whole architecture introduced in 3.3.3. The dataset used is the whole dataset presented in section
3.2. The training was done with the same protocol presented in section 4.1. We divided the dataset
into five splits for doing a cross validation on the entire dataset. Three splits was used to train the
network, one split for validation and early stopping and finally one split for testing. The results are
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Label Exact Error Accuracy
BEMOL 218 23 90.5%
JUNK 1946 19 99%

BECARRE 927 26 97.3%
DIESE 758 13 98.3%
Total 9737 22 99.8%

Table 5: Result of testing the whole dataset generated by the grammar using the whole architecture,
localization and classification, by using cross validation.

presented in the table 5. We can see that we achieve a good classification results with a slightly
more error for the flat class but this is not surprising as this class is the less present in the dataset.

The methodology used to evaluate the localization accuracy is the following. We distinguish
three class of localization: a complete localization, a partial localization and an error localization.
Different minimum and maximum thresholds on the width and height of the ground truth bound-
ing box was used to decide if a bounding box produced by the network was a complete, partial
localization or an error. We compared the recognized bounding box and the ground truth bounding
box using these thresholds in order to verify that the recognized bounding box width and height
was approximately the same size as the width and height of the ground truth bounding box. We
also computed the intersection bounding box between the recognized bounding and the ground
truth bounding box and compared the width and height of this new box with the ground truth to
check the position of the recognized box. The complete localization is decided when the height and
width of the recognized box and the intersection box is within a centered interval of 10% around
the ground truth value. The partial localization is decided when the height of the recognized box
and the intersection box is within a centered interval of 30% around the ground truth value, the
same is computed for the height, however we took a centered interval of 20%. We chose to be more
flexible on the width parameter unlike the height parameter because the vertical localization task
is easier than the horizontal localization task. Indeed, we chose earlier to generate images for the
dataset vertically centered on the note head associated to the accidentals 3.2. This leads to the
fact that the vertical position of accidentals is very stable. If any of those values are outside these
thresholds, the localization is considered as a wrong localization. We can see that for all accidental
classes, the network didn’t try to make any segmentation. For this experiment, the localization
results are really disappointing as shown in the table 6. We can see that only the junk class is
giving a good localization, but it’s a deceptive result. It’s because we evaluate that a good junk
localization is the identity transform, and as we see in the localization examples in figure 16, the
localization network is always doing a transformation that is really close to the identity transform.
Here we can emit the hypothesis that we don’t have enough data to make the localization layer find
implicitly a good transformation to localize the symbol. To resolve this problem, we will see now
how to explicitly regress the localization network to do a good segmentation of the input data by
applying the principle of transfer learning.
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Label Complete Rec Partial Rec Error
Number rate Number rate Number rate

BEMOL 0 0% 0 0% 143 100%
BECARRE 0 0% 0 0% 621 100%
DIESE 0 0% 0 0% 697 100%
Total 0 0% 0 0% 1461 100%

Table 6: Results of the localization task on the whole dataset generated by the grammar using the
whole architecture, localization and classification, using cross validation. Although the recognition
rate is good 5, the localization is not working. This probably because there not enough data to
infer the localization of the symbol.

(a) Complete localization produced by the
network.

(b) Ground truth localization.

(c) Partial localization produced by the net-
work.

(d) Ground truth localization.

(e) Localization error produced by the net-
work.

(f) Ground truth localization.

Figure 16: Example of localization (blue bounding box) produced by the whole network. There
are no real localization learned by the network.

4.2.2 Joint localization and classification with transfer learning

During this experiment, we will try to improve the results obtained in section 4.2.1 by doing transfer
learning. Transfer learning is a technique commonly used in neural network to explicitly guide what
the neural network should learn. The principle is to do separate training of subparts of the whole
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(a) Complete localization produced by the
network.

(b) Ground truth localization.

(c) Partial localization produced by the net-
work.

(d) Validation localization.

(e) Localization error produced by the net-
work.

(f) Validation localization.

Figure 17: Example of localization produced when explicitly training the localization network.

Label Complete Rec Partial Rec Error
Number rate Number rate Number rate

BEMOL 61 42.7% 68 47.6% 14 9.8%
BECARRE 313 45.0% 310 44.5% 73 10.5%
DIESE 455 73.3% 156 25.1% 10 1.6%
Total 829 56.8% 534 36.6% 97 6.7%

Table 7: Measure of the localization task on the well segmented symbol dataset generated by the
grammar produced the localization network, using cross validation. We can see a clear improvement
on the localization rate 93.3% from the 0% from before 6.

architecture and then load all the prelearned parameters into the whole network and redo a whole
training of the whole architecture. This way, we can guide some subpart of the network to explicitly
learn what we want. In our context, we saw precedent section that the localization network didn’t
do any progress during the training of the whole network. In this experimentation, we tried to
explicitly learn the localization parameters produced by the localization network. For this, we only
used a subpart of the dataset generated by the grammar, for which we know the ground truth
localization of the symbols. Also, we removed the junk class as there is nothing to localize in these
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Figure 18: Examples of localization done by the final experiments. The examples are shown in
pair of images with at the left the original image with the red bounding box localization and at the
right, the image resulting of this transformation that was then fed to the classifier. The first column
shows localization of symbols that led to a good classification. The last column shows localization
of symbols that led to a bad classification.
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Label Exact Error Accuracy
BEMOL 198 43 82.2%
JUNK 1924 41 97.9%

BECARRE 909 44 95.4%
DIESE 750 21 97.3%
Total 3781 149 96.2%

Table 8: Result of testing the whole dataset generated by the grammar using the whole architecture,
localization (fixed pre-learned parameters) and classification, by using cross validation.

images. The results we obtain in table 7 show that we obtain a big improvement from the last
experiment. These results are generated using the same techniques and threshold as earlier. We
obtained 93.4% of good localization with 56.8% of really accurate localization and 36.6% of partial
localization. A large window of improvement is still possible as the dataset may still contains ground
truth errors as the manual checking wasn’t done perfectly.

The following experiment was to trained the classification network on the results of the local-
ization network. In order to do this, we used the whole architecture presented in section 3.3.3.
However, we fixed the localization network parameters during the training phase to the one learned
by the precedent experimentation. The accuracy we obtained are slightly lower than the one we
had during the first joint localization and classification experiment in table 5 with 96.8% instead
of 99.8%. When we see at the segmentation produced by the localization layer in figure 18 sorted
by the fact that if their classification was good or not, we can see that when the localization layer
is doing an accurate segmentation the classification is going well and when the localization is less
accurate the classification end up wrong. However, we can see that multiple badly segmented sym-
bols are accurately localized and classified by the network. One big improvement we could do to
our system would be to produce the ground truth localization on badly segmented symbols and
add those images to the dataset used to train the localization layer. This would lead to a better
localization and consequently to a better classification.
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4.3 Experiment summary

The table 9 is a summary of all experiments presented before in order to localize and recognize or
reject a music symbol.

1st Experiment 4.2.1 2nd Experiment 4.2.2
Label Loc accuracy Classif accuracy Loc accuracy Classif accuracy

BEMOL 0% 90.5% 90.3% 82.2%
JUNK 99% 97.9%

BECARRE 0% 97.3% 89.5% 95.4%
DIESE 0% 98.3% 98.4% 97.3%
Total 0% 99.8% 93.4% 96.2%

Table 9: Summary of joint segmentation and classification experiment. We can see a clear im-
provement on localization rate caused by explicitly learning the localization task. However, the
classification is slightly decreased because of the instability of the localization network.

5 Conclusion

A renewed interest is showing toward OMR in the computer vision and pattern recognition research
field because it has still many challenges to overcome. Many solutions have been proposed for
every step of OMR: pre-processing, staff recognition and removal, music symbols segmentation and
recognition, music notation reconstruction. However, traditional OMR system that implement all
these steps have an ascending architecture and imply many limitations. By applying all these steps
sequentially, it is not possible to use the context during the segmentation and recognition phase. The
DMOS system is different because it is the grammar that guide the segmentation and recognition
of the score. The starting point of this internship is to improve the segmentation and recognition of
broken and overlapping musical symbols of this DMOS method. However, this method should be
generically applicable to any types of structured document. For this internship, the DMOS system
will be used as a base for supporting this joint segmentation and recognition method but it should
be usable in another recognition system.

In this work, we proposed a system combining a music grammar by using the DMOS system
and an architecture of neural network capable of localizing and recognizing music symbols. The
music grammar can guide the neural network to localize and recognize symbols on small zone of the
music score. Moreover, the generation of these by the music grammar can be used to bootstrap the
generation of a dataset in order to train neural network on the task of localizing and recognizing
music symbols. Our neural network architecture is composed of two part: a localization network
capable of producing geometrical transformation parameters that will localize the symbols and a
classification network capable of recognizing music symbols and reject when there is no symbol.
We demonstrate the use of such an architecture on the specific task of recognizing accidentals in
music scores. We first train the whole network without explicit ground truth localization data. The
classification rate we obtain was of 99.8%, however no localization was done by the network. On the
second experiment, we obtained 93.4% of localization accuracy by explicitly training the localization
network and 96.2% of accuracy for the classification network. Lots of improvement can still be
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make in order to increase these scores, especially by producing ground truth localization on badly
segmented symbols and expand the dataset used to train the localization network. Furthermore,
this method should be generalizable to other music symbols like note heads, silence, clefs. . . The
interesting property of this system is that it could be applied on handwritten music score with very
few modifications because both the grammar and neural network can be used on handwritten data.
Finally, other kinds of document types could get benefit from this method by using neural networks
adapted to character recognition like recurrent neural networks.
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