
Re
ognizing Mathemati
al Expressions Using TreeTransformationRi
hard Zanibbi Student Member, IEEE, Dorothea Blostein, Member, IEEEand James R. Cordy, Member, IEEE �
Abstra
tWe des
ribe a robust and eÆ
ient system for re
ognizing typeset and handwrittenmathemati
al notation. From a list of symbols with bounding boxes the system ana-lyzes an expression in three su

essive passes. The Layout Pass
onstru
ts a BaselineStru
ture Tree (BST) des
ribing the two-dimensional arrangement of input symbols.Reading order and operator dominan
e are used to allow eÆ
ient re
ognition of symbollayout even when symbols deviate greatly from their ideal positions. Next, the Lexi
alPass produ
es a Lexed BST from the initial BST by grouping tokens
omprised ofmultiple input symbols; these in
lude de
imal numbers, fun
tion names, and symbols
omprised of non-overlapping primitives su
h as `='. The Lexi
al Pass also labels ver-ti
al stru
tures su
h as fra
tions and a

ents. The Lexed BST is translated into LATEX.Additional pro
essing, ne
essary for produ
ing output for symboli
 algebra systems,is
arried out in the Expression Analysis Pass. The Lexed BST is translated into anOperator Tree whi
h des
ribes the order and s
ope of operations in the input expres-sion. The tree manipulations used in ea
h pass are represented
ompa
tly using treetransformations. The
ompiler-like ar
hite
ture of the system allows robust handlingof unexpe
ted input, in
reases the s
alability of the system and provides groundworkfor handling diale
ts of mathemati
al notation.�R. Zanibbi, D. Blostein and J.R. Cordy are with the Department of Computing S
ien
e, Queen'sUniveristy, Kingston, Ontario, Canada, K7L 3N6. E-mail: fzanibbi,blostein,
ordyg�
s.queensu.
a.1

Index Terms� do
ument image analysis, re
ognition of mathemati
al notation, diagramre
ognition, tree transformation, graphi
s re
ognition1 Introdu
tionAutomated re
ognition of mathemati
al notation is a
hallenging pattern re
ognition prob-lem of great pra
ti
al importan
e. Appli
ations in
lude the
onversion of s
ienti�
 papersfrom printed to ele
troni
 form, and the reading of s
ienti�
 do
uments to visually impairedusers. Re
ognition of handwritten expressions permits users to write mathemati
al expres-sions on a data tablet; this is a
onvenient alternative to input methods su
h as typingLATEX expressions, or using a stru
ture-based editor for mathemati
al notation.Over the past thirty years, resear
hers have investigated many approa
hes to re
ognizingmathemati
al notation. Surveys are available in [1℄ and [2℄.1.1 ChallengesThis se
tion brie
y reviews some of the
hallenges that arise in re
ognition of mathemati
alnotation. First, expressions must be lo
ated in a do
ument image that
ontains a mix oftext, expressions, and �gures. Expressions
an be o�set or in-line. Various approa
hes tothis problem have been studied [3, 4℄.Re
ognizing mathemati
al symbols is diÆ
ult, be
ause a large number of symbols, fonts,typefa
es and font sizes are used [5℄. Care must be taken to distinguish between noise andsmall symbols su
h as periods and
ommas.Re
ognizing the spatial relationships between symbols (the symbol layout) is
hallenging,parti
ularly for handwritten notation. The blurry distin
tion between in-line and supers
riptrelationships, shown in the progression 2x 2x 2x 2x 2x, makes it diÆ
ult to de�ne robustmethods for re
ognizing relationships. A statisti
al study of supers
ript versus in-line versussubs
ript relationships in handwritten mathemati
s expressions is reported in [6℄. Context2

(a) (b) (
)Figure 1: These expressions illustrate that ambiguous layout
an
onfuse the order, presen
eand s
ope of operators. (a) Whi
h division is performed �rst? (b) Is a supers
ripted? (
)What is the extent of the s
ope of the summation?must be analyzed to determine the logi
al meaning of spatial relationships. For example,the symbol arrangement xi has di�erent logi
al meanings in the expression xiyj versus axi.Figure 1 shows expressions for whi
h ambiguous layout
onfuses the order, s
ope and evenpresen
e of operations. The inexa
t symbol pla
ement that is
ommon in handwrittennotation (Figure 2a)
ompounds this problem.Ambiguous spatial relationships and symbol identities need to be resolved using
on-textual analysis [7, 8℄. Also,
ontextual analysis is needed to disambiguate the roles ofmathemati
al symbols. For example, a horizontal line may a
t as a fra
tion line, subtra
-tion symbol, or as an overbar for Boolean negation. Exploitation of redundan
y is a
ommonte
hnique for resolving ambiguities; an example is the redundan
y between
ity name andpostal
ode in address re
ognition [9℄. However, mathemati
s uses a
on
ise notation, onewhi
h provides little redundan
y.Finally, mathemati
s notation is not formally de�ned, and many diale
ts are in use.Similar to natural languages, mathemati
al symbols and stru
tures are invented or re-de�nedas needed by the users of the notation. Publi
ations about the formatting of mathemati
alnotation are available [10, 11, 12℄. However, these are not in a form that
an be used as aspe
i�
ation for a mathemati
s re
ognition system.1.2 Mathemati
s re
ognition via tree transformationIn this paper we des
ribe the design and implementation of a mathemati
s re
ognitionsystem that makes extensive use of tree transformation. The ideas underlying this approa
h3

A ^{ C } + \frac { B } { 2 } − D

(e) LaTeX String

D

EXPRESSION

+ FRACTIONSUPERSCRIPT

CA B 2

A + D

ABOVESUPER

C B

EXPRESSION

BELOW

2

LaT
eX

 G
eneration

I.
 L

ay
ou

t P
as

s

II.
 L

ex
ic

al
 P

as
s

III
.

E
xp

re
ss

io
n

A
na

ly
si

s
P

as
s

A C B 2

D

EXPONENT

INTEGER ADD

INTEGER SUBTRACT

DIVIDE

(c) Lexed Baseline Structure Tree

(b) Baseline Structure Tree (BST) (d) Operator Tree

(a) Input Expression
(Symbols and Bounding Boxes)

Figure 2: Overview of Pro
essing in DRACULAEmay be relevant in any appli
ation where synta
ti
 pattern re
ognition is appropriate. Thefollowing strategies are used to stru
ture the re
ognition system.We analyze symbol layout in mathemati
al expressions by sear
hing for linear stru
-tures (baselines) in the input and then using these as the basis for �nding se
ondary linearstru
tures. Intelligent sear
h fun
tions are applied in image subregions; the subregions arede�ned in a symbol-spe
i�
 way, as des
ribed in Se
tion 3. This strategy allows us to exploitthe left-to-right reading order of mathemati
al notation, thereby analyzing layout eÆ
ientlywithout ba
ktra
king. Similar layout analysis te
hniques have been used in appli
ationsin
luding parsing of visual languages [13℄ and re
ognition of mathemati
al notation [14, 15℄.One of our
ontributions is to generalize the te
hnique to make it robust enough to handlethe irregular symbol layouts present in handwritten expressions (Figure 2a).The linear stru
tures (baselines) are organized into a Baseline Stru
ture Tree (BST).This tree forms the basis for subsequent,
ompiler-style pro
essing. Pro
essing is dividedinto three major passes: (1) the Layout Pass builds an initial BST, (2) the Lexi
al passgroups and labels
ompound symbols (e.g. `sin') and stru
ture symbols (e.g. fra
tionlines), and (3) the Expression Analysis Pass analyzes expression syntax (operator pre
eden
eand asso
iativity), and produ
es an operator tree. The operator tree des
ribes an ordered4

appli
ation of operators to operands. This represents the semanti
s of the mathemati
alexpression, as is needed for evaluating the expression, or translating the expression into aComputer Algebra System format.The use of passes results in robust pro
essing of input: the Layout Pass pro
esses allinputs, even those that
ontain syntax errors or unknown
onstru
ts. This produ
es usefulpartial results for any input. Also, the use of passes is a helpful stru
turing tool for re
og-nizing various diale
ts of mathemati
al notation. While the
ore of the Layout Pass is �xed,the symbol
lass de�nitions used in the Layout Pass may be easily rede�ned. Additionally,the Lexi
al Pass and Expression Analysis Pass may be provided with diale
t-spe
i�
 tablesand rules.All of the pro
essing in our approa
h is performed using tree manipulations
alled treetransformations. Tree transformations allow the
omputations we perform to be expressedin a
onvenient and
ompa
t form (see Se
tion 1.3). Our de
ision to make use of tree trans-formations stemmed from the observation that both the layout and syntax of mathemati
alexpressions are hierar
hi
al, and as a result are usually expressed as trees. Trees are used informatting languages su
h as LATEX, for representing the parse of mathemati
al expressionsin
ompilers [16℄, and in many other approa
hes to mathemati
s re
ognition (as surveyedin [8℄).Our implementation is
alled the Diagram Re
ognition Appli
ation for Computer Un-derstanding of Large Algebrai
 Expressions (DRACULAE) [8, 17℄. For pro
essing on-lineinput, DRACULAE is pa
kaged with a user interfa
e and a third-party symbol re
ognizer,the Freehand Formula Entry System [18, 19℄.DRACULAE obtains linear or
lose to linear performan
e on many inputs. The worst-
ase time
omplexity of DRACULAE, when pro
essing an input of n symbols is O(n2 lgn).Worst
ase inputs are unsynta
ti
 or unlikely. For example, one worst-
ase input
onsistsof a series of P symbols, ea
h pla
ed to be a supers
ript of the pre
eding one. Most inputsare pro
essed in near-linear time. This is parti
ularly impressive be
ause DRACULAE han-5

dles handwritten inputs with irregular symbol pla
ements. Many alternative approa
hesdesigned to
ope with ambiguous layout, su
h as sto
hasti
 grammars [20℄ and graph trans-formation [21℄ involve extensive amounts of sear
h or ba
ktra
king. DRACULAE
urrentlyre
ognizes a single diale
t of mathemati
s notation, but has been
onstru
ted to allow mul-tiple diale
ts to be a

ommodated in the future.Figure 2 provides an overview of the pro
essing performed by DRACULAE. Tree trans-formation, whi
h is used throughout the implementation, is dis
ussed in Se
tion 1.3. Thesymbol layout model and Baseline Stru
ture Trees are de�ned in Se
tion 2. The symbollayout model is used by the Layout Pass (Se
tion 3) to
onvert the input into a BaselineStru
ture Tree. The Lexi
al Pass (Se
tion 4)
onverts this to a Lexed BST. Finally, theExpression Analysis Pass (Se
tion 5) produ
es an operator tree. Experimental results onhandwritten and typeset input are presented in Se
tion 6.1.3 Tree TransformationDRACULAE uses trees as its
entral data stru
ture. The re
ognition pro
ess begins bybuilding a tree that en
odes low level baseline stru
ture. This tree is su

essively re�nedand restru
tured to represent higher levels of understanding at ea
h stage of the pro
ess.Tree restru
turings are implemented using a programming language
onstru
t
alled treetransformation. As illustrated in Figure 3, a tree transformation is a restru
turing rule thatsear
hes a host tree (the s
ope) for subtrees with a parti
ular shape and attribute values(the pattern); ea
h mat
hing subtree is repla
ed with a new subtree (the repla
ement)restru
tured from the original.We use the tree transformation language TXL to spe
ify our tree transformations ina
ompa
t, abstra
t manner [22, 23℄. Originally designed for programming language pro-
essing tasks, TXL spe
i�es tree transformations in ASCII text using a highly readableby-example style of rule spe
i�
ation (Figure 3), and provides an eÆ
ient, robust parserto rapidly
onvert trees to and from ASCII text form. TXL transformation rules
an be6

RightSubexpression LeftSubexpression

RightSubexpression LeftSubexpression +
[expression] [term]

[expression]

ADD

[expression] [term]

[expression]

(a) A Tree Transformation Rulerule
onvertAdditionsToOperatorTreesrepla
e [expression℄LeftSubexpression[expression℄ +RightSubexpression[term℄by ADD LeftSubexpressionRightSubexpressionend rule(b) The Same Rule Written in TXLFigure 3: A tree transformation rule from the Expression Analysis Pass. This rule �nds allparse subtrees for subexpressions that use an in�x binary + operation. Ea
h of these parsesubtrees is repla
ed by an operator subtree expli
itly indi
ating that addition is intended.
ombined and
ontrolled using fun
tional programming
onstru
ts, and are dire
tly and eÆ-
iently exe
uted by the TXL interpreter. The amount of
ode needed to des
ribe a
omplextree transformation in TXL is orders of magnitude less than in a general purpose program-ming language su
h as C, and our entire system is implemented by less than 3,500 lines ofTXL
ode.2 Symbol Layout in Mathemati
al ExpressionsMathemati
al notation uses symbol layout to
onvey whi
h operators are used, and whatthe arguments to these operators are. An analysis of operator dominan
e and baselines7

an be used to re
over this information. The following se
tions de�ne operator dominan
e,baselines, Baseline Stru
ture Trees, and symbol
lasses. These de�ne the symbol layoutmodel whi
h forms the basis of the Layout Pass.2.1 Operator Dominan
e and BaselinesOperator dominan
e [24℄ is a
on
ept used to determine the pre
eden
e and arguments ofoperators with verti
ally sta
ked operands, su
h as fra
tions and P.Range: The range of an operator is the expe
ted lo
ation of its operand(s) [24℄. The rangesDRACULAE uses are des
ribed in Se
tion 2.3.Operator Dominan
e: Operator A dominates operator B if B is in the range of A, andA is not in the range of B [24℄. An operator dominates the symbols that
onstituteits arguments.If operator A dominates operator B, then A is of lower pre
eden
e than B, and B is anoperator in an argument of A. For example, in the expression `x+ y�z�da ' the `+' dominatesthe fra
tion line, be
ause the fra
tion line is in the range of the addition sign, and the
onverse is false. Similarly, the fra
tion line dominates the subtra
tion and multipli
ationoperators and their operands. Neither the subtra
tion or multipli
ation operator dominatesthe other, be
ause both are in the range of the other. The symbols `y',`z',`d' and `a' areall dominated by the fra
tion line, be
ause they are symbols of the fra
tion's arguments.Similarly, the `+' dominates the `x'.Figure 1a is ambiguous be
ause the operator dominan
e (and as a result, pre
eden
e) isun
lear: the fra
tion lines are of equal length and arranged verti
ally, and so neither appearsto dominate the other. Di�erent diale
ts of mathemati
al notation use varying de�nitionsof operator range and dominan
e. For instan
e, the ambiguity in Figure 1a
an be resolvedby
hoosing a de�nition of operator dominan
e that results in sele
tion of either the top orbottom line. 8

Baseline and Start Symbol are de�ned using operator dominan
e and the left-to-rightordering of mathemati
al notation.Baseline: A baseline in mathemati
al notation is a linear horizontal arrangement of sym-bols, intended to be per
eived as adja
ent.For example, there are two baselines in the expression x2+a � y. One baseline
ontains thesymbols (x;�; y) and the other
ontains (2;+; a). In handwritten expressions, the pla
ementof baseline symbols may deviate far from the ideal horizontal arrangement (Figure 2a).Nested Baseline: A nested baseline is a baseline that is either verti
ally o�set from asymbol, or
ontained by a symbol (as in the
ase a square root
ontaining an expression
omprised of one or more baselines).For example, in the expression 12 , the two baselines 1 and 2 are nested relative to thefra
tion line. Similarly, in the expression x2+a � y, the supers
ripted baseline (2;+; a) isnested relative to the x.Dominant Baseline: The dominant baseline of a mathemati
al expression
ontains thesymbols that are not nested relative to any other symbols in the expression. Thedominant baseline of a mathemati
al expression begins with the Start Symbol of theexpression.Start Symbol: In a mathemati
al expression, the Start Symbol is the operator that dom-inates the leftmost subexpression, or the leftmost symbol if no su
h operator exists.Examples of Start Symbols are shown in Figure 4. The Layout Pass (Se
tion 3)
ontainsalgorithms for lo
ating the Start Symbol and subsequent baseline symbols.2.2 Baseline Stru
ture TreesA Baseline Stru
ture Tree represents the hierar
hi
al stru
ture of baselines in an expression[17℄. The Baseline Stru
ture Tree expli
itly
aptures important aspe
ts of symbol layout,9

(a) (b) (
)Figure 4: Examples of Start Symbols. In (a) the leftmost symbol is not dominated by anoperator, and is the Start Symbol. In (b), the Start Symbol is the wider fra
tion line, asit is the dominant operator of the expression. Similarly in (
), the integral dominates theleftmost subexpression and is the Start Symbol.without
ommitting to any parti
ular synta
ti
 or semanti
 interpretation. For instan
e, aBaseline Stru
ture Tree
an be used to represent the symbol layout of `2+', despite the fa
tthat this expression is synta
ti
ally and semanti
ally invalid. Similarly, a Baseline Stru
tureTree represents the symbol layout of `f(x)' regardless of whether fun
tion appli
ation ormultipli
ation of variables is intended.A Baseline Stru
ture Tree (or BST)
ontains two types of nodes: symbol nodes and regionnodes, de�ned below. These nodes are arranged in levels: any path through the tree en
oun-ters symbol nodes and region nodes in alternation. The root of the tree, EXPRESSION ,is a region node representing the entire image.Symbol Node: A symbol node represents a mathemati
al symbol. The symbol node storesthe identity of the symbol (as provided by symbol re
ognition), the
lass of the symbol(as de�ned in Table 1), and the attributes of the symbol (the bounding box and
entroid
oordinates). A symbol node is the root of a subtree of the BST. SupposeS is a symbol represented by symbol node snode. The
hildren of snode are regionnodes representing image subregions that
ontain baselines nested relative to S.Region Node: A region node represents an image region whi
h
ontains a baseline, possi-bly with nested baselines. The image region is de�ned relative to the symbol that isthe parent of this region node; the spatial relationship is
aptured by the region label,de�ned below. The region node is the root of a subtree; the
hildren of the region10

node are symbols that form the region's dominant baseline.Region Label: All region nodes in a BST have a region label, one of ABOV E, BELOW ,SUPER, SUBSC, UPPER, LOWER, TLEFT (top-left), BLEFT (bottom-left),CONTAINS and EXPRESSION . As shown in Figure 5, the
lass of a symboldetermines what regions are de�ned relative to the symbol.In a Baseline Stru
ture Tree, region nodes represent all mathemati
ally-important spatialrelationships other than horizontal adja
en
y. Horizontal adja
en
y has spe
ial status be-
ause it de�nes baselines. Symbols that are on the same baseline are represented in the treeas ordered siblings.These de�nitions are illustrated using the Baseline Stru
ture Tree shown in Figure 2b.This tree
ontains four region nodes (EXPRESSION , SUPER, ABOV E, BELOW) andeight symbol nodes (A + � � D C B 2). The dominant baseline of the whole expression is(A + � � D). The `2' is the sole symbol in the baseline lo
ated BELOW the �rst `�'. The`C' is the sole symbol of the baseline that is supers
ripted (SUPER) relative to the `A'.2.3 Symbol ClassesIn the Layout Pass, Symbol
lasses and the parameters
 (
entroid ratio) and t (thresholdratio) are used to de�ne image regions around symbols. As is des
ribed in Se
tion 3, theLayout Pass re
ognizes the symbols in the dominant baseline of a region, de�nes subregionsaround these symbols, and sear
hes for nested baselines in these subregions. This se
tionde�nes the symbol
lasses and regions that are used, and de�nes the test for determiningwhether a symbol lies in a region. These de�nitions
omprise the symbol layout model.The
entroid of a symbol is a point used to test whether a symbol lies within a region.This is a
ommon te
hnique in the literature on re
ognition of mathemati
al notation, �rstused in the work of Anderson [25℄. Collapsing a symbol to a single point allows for simplergeometri
 analyses. The
entroid X-lo
ation is always
entered in the bounding box, at11

Table 1: Symbol
lasses and their asso
iated attributes. The ABOVE, BELOW, SUPERand SUBSC thresholds are used to de�ne the regions asso
iated with ea
h symbol, as shownin Figure 5. The values maxY and minY are bounding box
oordinates, and H is thebounding box height (maxY - minY). The
entroid ratio,
, and the threshold ratio, t, areboth in the range [0,0.5℄, with t �
.Symbol Class y-
entroid ThresholdsBELOW ABOVE SUBSC SUPERNon-S
riptedunary/binaryoperators and relations(+,-,=,�,!,et
.) 12H 12H 12H � �Open Bra
ket(; f; [
H minY maxY � �Root (p)
H minY maxY tH H � (tH)Variable Range�; R ;�;[;\ 12H tH H � (tH) tH H � (tH)Plain: As
ender0. . . 9, A. . . Z, b,d,f,h,i,k,l,t,�;�;�;�;�;�;	;
; Æ; �; �
H tH H � (tH) tH H � (tH)Plain: Des
enderg,p,q,y,
; �; �; �; �; H � (
H) 12H + t12H H � t12H 12H + t12H H � t12HPlain: CenteredAll other symbols(in
luding Close Bra
kets) 12H tH H � (tH) tH H � (tH)
(minX + maxX)/2. As shown in Table 1, the
omputation of the
entroid Y-lo
ationdepends on the
entroid ratio
, and on whether the symbol is an as
ender, des
ender, or
entered.A region is an axis-parallel box; the region in
ludes the left and bottom edges of the box,but not the right and top edges. The Layout Pass tiles the image with regions. All pointsin the image belong to exa
tly one region, so ea
h symbol's
entroid is lo
ated in exa
tlyone region.Every symbol is assigned a symbol
lass, as de�ned in Table 1. The symbol
lass deter-mines where nested baselines
an be lo
ated relative to the symbol. This is illustrated inFigure 5.Ambiguity, in the form of overlapping regions,
an arise in the region de�nitions shown12

BELOW

HOR

ABOVEOpen Bra
ket Non-S
ripted Root
Variable Range Plain: As
ender Plain: Des
ender

Plain: Centered Plain: Centered(Close Bra
ket)Figure 5: Regions asso
iated with the di�erent symbol
lasses. The right end of the HOR,SUPER, SUBSC, UPPER and LOWER regions is lo
ated at the minX
oordinate of the nextbaseline symbol. The left end of the LOWER and UPPER regions is the maxX
oordinateof the previous baseline symbol. Y-thresholds for ea
h region are de�ned in Table 1.in Figure 5. Consider two adja
ent baseline symbols, where the symbol on the left has aSUPER or UPPER region, and the symbol on the right has an UPPER region (i.e. is in
lassVariable Range). The SUPER or UPPER region of the left symbol overlaps the UPPERregion of the right symbol. Similarly, the SUBSC or LOWER region of the left symboloverlaps the LOWER region of the right symbol. For example, in the expression `x2 10000Pi=1 i',the symbols 2 and 1 fall in both the SUPER region of the `x' and the UPPER region of theP. This ambiguity is resolved in the Layout Pass using analysis of lo
al
ontext (fun
tionColle
tRegions in Se
tion 3.1).
13

3 Layout PassThe Layout Pass produ
es a Baseline Stru
ture Tree from a list of symbols with boundingboxes. It identi�es the dominant baseline of the expression, partitioning any symbols noton the dominant baseline into regions relative to the dominant baseline symbols. Thispro
ess is applied re
ursively in the partitioned regions. The left-to-right reading order ofmathemati
al notation is exploited to
onstru
t the BST eÆ
iently without ba
ktra
king,even when symbol layout is irregular. Extensive resear
h went into de�ning the sear
hfun
tions Start and Hor, dis
ussed below. The inspiration for this dire
ted sear
h
amefrom the linear positional grammar work of Costagliola et. al. [13℄, where syntax-drivenlinear s
anning of the input is used to parse visual languages. The dire
tionality present inmathemati
al notation made it possible for us to adapt these ideas for use in the Layoutpass.Ea
h input symbol s has bounding box
oordinates denotedminX(s),minY (s),maxX(s),andmaxY (s). The Layout Pass begins with a prepro
essing step, in whi
h Table 1 is used toassign ea
h input symbol a symbol
lass
lass(s), a
entroid (
entroidX(s),
entroidY (s)),and region thresholds (aboveThreshold(s), belowThreshold(s), superThreshold(s), subs
Threshold(s)).After this prepro
essing, fun
tionBuildBST
reates the BST. Se
tion 3.1 de�nes BuildBSTand the most important fun
tions it uses: Extra
tBaseline, Start,Hor, and Colle
tRegions.Supporting fun
tions are de�ned in Se
tion 3.2.The major steps in the Layout Pass are as follows. They are illustrated in Figure 6.1. The initial Baseline Stru
ture Tree
onsists of a root EXPRESSION node, with asorted list L of symbols as
hildren. Symbols are sorted by minX
oordinate. R isthe image region that
ontains the entire expression.2. Find the symbol whi
h begins the dominant baseline in region R. This is
omputedas S1 = Start(L). The Start fun
tion
he
ks for
ases in whi
h symbol S1 is not theleftmost symbol in list L. For example, the limits of a P
an begin to the left of the14

P.3. Find S2 : : : Sn, the rest of the symbols in the baseline that begins with symbol S1.This is done by fun
tion Hor. Care is taken to handle irregular symbol layout, su
has in the expression in Figure 6.4. Add S1 : : : Sn, the symbols in the dominant baseline in region R, to the Baseline Stru
-ture Tree. The symbol nodes are inserted as o�spring of the region node representingR.5. The symbols of the dominant baseline, S1 : : : Sn, are used to partition region R intosubregions, using the region de�nitions from Figure 5. All the symbols in list L thatare not part of the dominant baseline are assigned to one of these subregions.6. For ea
h non-empty subregion found in the previous step, add a Region Node to theBaseline Stru
ture Tree. Re
ursively apply steps Steps 2 to 6 to ea
h of these regions.In summary, the Layout pass re
ursively applies sear
h fun
tions and image partitioning tore
ognize dominant and nested baselines. The sear
h fun
tion Start is used to lo
ate theleftmost symbol of the dominant baseline, and Hor is used to lo
ate su

essive symbols ina baseline.3.1 Top Level Fun
tions in the Layout PassThis se
tion and the next se
tion provide a fun
tional spe
i�
ation of DRACULAE's LayoutPass. The input, whi
h is passed to fun
tion BuildBST , is a list of symbol nodes, annotatedwith bounding box
oordinates. The output is a Baseline Stru
ture Tree des
ribing thelayout of these symbols.Fun
tion names are followed by a type spe
i�
ation. The parameter and return-valuetypes are BST (Baseline Stru
ture Tree), SNODE (a symbol node, whi
h may be the root ofa subtree), RNODE (a region node, whi
h may be the root of a subtree), REGION LABEL15

Input:
B 2+C D

EXPRESSION

A

DA B 2

TLEFT

C

+

EXPRESSION

(a) Initial BST (b) First HOR Result
D

C

TLEFT

A +

B 2

BELOWABOVE

EXPRESSION

ABOVE BELOW

B 2

SUPER

C

A + D

EXPRESSION

(
) Se
ond HOR Result (d) Final BSTFigure 6: BST
onstru
tion by the Layout Pass for the expression in Figure 2a. (a) Theinitial BST. This is
reated in fun
tion BuildBST , before invoking Extra
tBaseline. TheStart fun
tion lo
ates the leftmost symbol in the dominant baseline, indi
ated here by a
ir
le around the `A'. (b) The tree after Hor has found the next baseline symbol (`+');region partitioning pla
es the `C' into the TLEFT region of the `+'. (
) The tree after thethird baseline symbol (`-') is lo
ated by Hor. (d) The �nal tree, after the last two baselinesymbols have been found, and the TLEFT partitioning has been re�ned. In this example,the nested baselines do not require further pro
essing as they are single symbols.(one of the ten region labels de�ned in Se
tion 2.2), SNODE LIST (a list of symbol nodes),RNODE LIST (a list of region nodes), REGION LABEL LIST (a list of region labels),BOOLEAN, and INTEGER. When several arguments have the same type, integer subs
riptsare added. Arguments are referen
ed using the same names, written in lower
ase.For list notation, jlistj is the number of items in a list, list � item denotes removal ofan item from a list, and (item) denotes a list
onsisting of a single item.BuildBST (SNODE LIST !BST 0): Constru
t a Baseline Stru
ture Tree from snode list,the input list of symbol nodes. 16

1. Let root be a region node labelled EXPRESSION . If jsnode listj = 0 Returnroot.2. Let snode list0 = SortSymbolsByMinX(snode list).3. Make ea
h symbol node in snode list0 be a
hild of root.4. Return Extra
tBaseline(root).Extra
tBaseline (RNODE ! RNODE 0): Find the dominant baseline in the region rep-resented by rnode and update the part of the BST that is rooted at rnode. Makere
ursive
alls to add nested baselines.1. Let snode list = Symbols(rnode). If jsnode listj � 1 Return rnode.2. Let sstart = Start(snode list).3. Let baseline symbols = Hor((sstart),snode list).4. Let updated baseline = Colle
tRegions(baseline symbols).5. Update the tree rooted at rnode by dis
arding the
hildren of rnode, and re-pla
ing them by the symbol nodes in updated baseline. (Ea
h symbol node inupdated baseline is itself the root of a subtree.)6. Now use re
ursion. For ea
h region node
hildrnodei that is a
hild of a symbolnode in updated baseline, repla
e this
hildrnodei by Extra
tBaseline(
hildrnodei).7. Return rnode.Start (SNODE LIST ! SNODE 0): Find the symbol node whi
h begins the dominantbaseline in snode list. Compare the last two symbols in snode list, remove the dom-inated symbol, and re
urse. Symbol sn dominates the previous symbol, sn�1 if (a)Overlaps(sn,sn�1), or (b) Contains(sn,sn�1), or (
)
lass(sn) = Variable Range and:IsAdja
ent(sn�1,sn). Otherwise, sn�1 dominates sn.
17

Hor ((SNODE LIST1,SNODE LIST2) ! SNODE LIST 0): Find the symbols of thebaseline that begins with the symbols in snode list1, and
ontinues with a subset of thesymbols in snode list2. The symbols of the baseline are returned as snode list0. Anynon-baseline symbols in snode list2 are partitioned into regions: these nodes are pla
edbelow the
hild region nodes of the symbols in snode list0. The non-baseline symbolsare partitioned into TLEFT;BLEFT;ABOV E;BELOW and CONTAINS regionsrelative to the last lo
ated baseline symbol, b. Symbols in TLEFT and BLEFTregions are later reassigned by the Colle
tRegions fun
tion.1. If jsnode list2j = 0 Return snode list1.2. Let
urrent symbol be the last symbol of snode list1.3. Let (remaining symbols,
urrent symbol0) = Partition(snode list2,
urrent symbol).4. In snode list1, repla
e
urrent symbol by
urrent symbol0.5. If jremaining symbolsj = 0 Return snode list1.6. If
lass(
urrent symbol0) = Non-S
ripted then ReturnHor(Con
atLists(snode list1,(Start(remaining symbols))),remaining symbols).7. Let SL = remaining symbols.8. While jSLj 6= 0(a) Let l1 be the �rst symbol in SL.(b) If IsRegularHor(
urrent symbol0,l1) then ReturnHor(Con
atLists(snode list1,(Che
kOverlap(l1, remaining symbols))),remaining symbols).(
) Let SL = SL� l1.9. Let
urrent symbol0 = PartitionF inal(remaining symbols,
urrent symbol0).10. Return Con
atLists(snode list1,(
urrent symbol0)).18

Colle
tRegions (SNODE LIST ! SNODE LIST 0): snode list is a list of symbol nodeswhose subtrees
ontain temporary regions labelled TLEFT and BLEFT ,
reatedby fun
tion Hor. The symbols in a TLEFT region are reassigned to SUPER (aregion asso
iated with the pre
eding baseline symbol) or UPPER (a region asso
iatedwith the
urrent baseline symbol) regions; similarly, symbols in BLEFT regions areassigned to SUBSC or LOWER regions. For brevity we show only the TLEFT
asehere.1. If jsnode listj = 0 Return snode list.2. Let s1 be the �rst symbol of snode list. Let s01 = s1. Let snode list0 =snode list� s1.3. If jsnode listj > 1 then(a) Let s2 be the se
ond symbol of snode list. Let s02 = s2.(b) Let (superList,tleftList) = PartitionSharedRegion(TLEFT ,s1,s2).(
) Let s01 = AddSuper(superList; s1).(d) Let s02 = AddT left(tleftList, RemoveRegions((TLEFT),s2)).(e) In list snode list0 repla
e s2 by s024. If
lass(s01) = Variable Range(a) Let upperList = (TLEFT ,ABOVE,SUPER).(b) Let s01 =MergeRegions(upperList,UPPER,s1).5. Return Con
atLists((s01),Colle
tRegions(snode list0)).3.2 Supporting Fun
tions in the Layout PassThe following fun
tions, listed in alphabeti
al order, are used by the top-level fun
tionsshown in the previous se
tion. 19

AddAbove, AddBelow, et
. ((SNODE LIST ,SNODE) ! SNODE 0): The symbolnodes in snode list be
ome grand
hildren of snode. For AddAbove, they are pla
edas
hildren of an ABOVE region node. Fun
tions AddBelow, AddSuper, AddSubs
,AddContains, AddTleft, and AddBleft are de�ned analogously.Che
kOverlap ((SNODE,SNODE LIST) ! SNODE 0): Look through snode list forNon-S
ripted symbols whi
h horizontally overlap snode, tested via the Overlaps fun
-tion. Return the widest su
h symbol if one exists. If there are no su
h symbols, returnsnode.Con
atLists ((SNODE LIST1,SNODE LIST2) ! SNODE LIST 0): Con
atenate thesymbol node lists snode list1 and snode list2, returning the resulting list.Contains ((SNODE1,SNODE2) ! BOOLEAN 0): Return true if snode1 6= snode2,
lass(snode1) = Root, minX(snode1) �
entroidX(snode2) < maxX(snode1), andminY (snode1) �
entroidY (snode2) < maxY (snode1).HasNonEmptyRegion ((SNODE,REGION LABEL)!BOOLEAN 0): Return true ifsnode has a
hild region node rnodewith region label region label, and jSymbols(rnode)j> 0.IsAdja
ent ((SNODE1,SNODE2)! BOOLEAN 0): Test whether snode1 is horizontallyadja
ent to snode2, where snode1 may be to the left or right of snode2. Return trueif
lass(snode2) 6= Non-S
ripted, snode1 6= snode2, andsubs
Threshold(snode2) �
entroidY (snode1) < superThreshold(snode2).IsRegularHor ((SNODE1,SNODE2) ! BOOLEAN 0): Return true if(a) IsAdja
ent(snode2,snode1), or (b)maxY (snode1)�maxY (snode2) andminY (snode1)�minY (snode2), or (
)
lass(snode2) is Open Bra
ket or Close Bra
ket, andminY (snode2)�
entroidY (snode1) < maxY (snode2).20

MergeRegions ((REGION LABEL LIST ,REGION LABEL,SNODE)! SNODE 0):For every region label in region label list, �nd all
hildren of snode that have this la-bel. All of these region nodes are then merged into a single region node labelledregion label.Overlaps ((SNODE1,SNODE2)! BOOLEAN 0): Test whether snode1 is a Nons
riptedsymbol that verti
ally overlaps snode2. For example, in Figure 2a the fra
tion line over-laps the
entroid of the `B'. Return true if (a) snode1 6= snode2, and (b)
lass(snode1)= Non-S
ripted, and (
) minX(snode1) �
entroidX(snode2) < maxX(snode1), and(d) :Contains(snode2,snode1), and (e) ea
h of (i) and (ii) are false: (i)
lass(snode2) isOpen Bra
ket or Close Bra
ket, minY (snode2)�
entroidY (snode1)<maxY (snode2),and minX(snode2) � minX(snode1). (ii)
lass(snode2) is Non-S
ripted or VariableRange, and maxX(snode2) - minX(snode2) > maxX(snode1) - minX(snode1).Partition ((SNODE LIST ,SNODE)! (SNODE LIST 0,SNODE 0)): The symbol nodesin snode list are tested for belonging in regions of snode. Symbol nodes that fail thetest are returned in list snode list0. Symbol nodes that pass the test are pla
ed belowthe appropriate
hild region nodes of snode; the updated subtree is returned as snode0.PartitionFinal ((SNODE LIST ,SNODE)! SNODE 0): The symbol nodes in snode listare pla
ed below supers
ript or subs
ript region nodes relative to snode, where snodeis the last symbol on a baseline.PartitionSharedRegion ((REGION LABEL,SNODE1,SNODE2) !(SNODE LIST 01,SNODE LIST 02)): If region label is TLEFT, the symbols in theTLEFT region of snode2 are partitioned into two lists: snode list01
onsists of thesymbols in the SUPER region of snode1 and snode list02
onsists of the symbols inthe UPPER region of snode2. Analogous
omputation is done when region label isBLEFT, this time partitioning the BLEFT region into a SUBSC and LOWER region(not shown). 21

1. Let rnode = the
hild region node of snode2 that has region label TLEFT . LetSL = Symbols(rnode).2. If
lass(snode1) = Non-S
ripted, then Let snode list01 be an empty list.3. Else If
lass(snode2) 6= Variable Range, or
lass(snode2) = Variable Range andHasNonEmptyRegion(snode2, ABOV E) is false, then Let snode list01 = SL.4. Else If
lass(snode2) = Variable Range and HasNonEmptyRegions(snode2, ABOV E)then snode list01 = (l1,l2,: : :,li) where l1 is the �rst symbol of SL and li is therightmost symbol in SL su
h that IsAdja
ent(li,snode2) holds.5. Return (snode list01,SL - snode list01).RemoveRegions ((REGION LABEL LIST ,SNODE)! SNODE 0): Remove all
hildregion nodes from snode that mat
h any of the labels in region label list.SortSymbolsByMinX (SNODE LIST ! SNODE LIST 0): Sort snode list, a list ofsymbol nodes, into order of in
reasing minX bounding box
oordinate.Symbols (RNODE ! SNODE LIST 0): Returns the
hildren of rnode as a list.4 Lexi
al AnalysisFollowing the
onstru
tion of the Baseline Stru
ture Tree in the Layout Pass, the Lexi
alAnalysis pass transforms the BST into a Lexed BST using a set of tree transformations thatre
ognizes groups of adja
ent input symbols that represent single mathemati
al symbols.Two kinds of groups of input symbols are re
ognized in this pass:
ompound symbols, whi
hare single-baseline groups of input symbols that represent a single mathemati
al symbol(e.g. equal signs, de
imal numbers, fun
tion names), and stru
ture symbols, multi-baselinegroups of input symbols that imply a mathemati
al symbol by its lo
al stru
tural
ontext(e.g. fra
tions, limits, a

ents on symbols). The result of the Lexi
al pass is a tree in whi
h22

=ABOVE / BELOW ABOVE

OVERBAR

[Symbol Node]

[Symbol Node]
[BaselineA] [BaselineB]

FRACTION

[BaselineA] [BaselineB]

BELOWABOVE(a) (b) (
)
CONTAINS

[Baseline]

ROOT

[Baseline]

. . .

.

. . . OVERBAR

[Baseline]

[Baseline]

BELOW

[Region Node]

[Symbol NodeA]

[Baseline]

ABOVE

()

. . .

[Region Node]

. . .CHOICE

[Baseline][Symbol NodeA]

.

(d) (e) (f)Figure 7: Examples of Tree Transformation Rules in the Lexi
al Pass. The pattern (leftside) of ea
h rule is sear
hed for depth-�rst in a BST. If the pattern mat
hes a subtree,the subtree is repla
ed by the right side of the rule, and then sear
hing
ontinues. We use[Region Node℄ and [Symbol Node℄ to represent any region node or symbol node respe
tively.[Baseline℄ represents a list of symbol nodes, while `...' represents an arbitrary list of regionor symbol nodes. Similar to rules (
) and (d), there is a
omplement for rule (f) that is notshown to lo
ate simple
hoi
e notation where the bottom symbol is found �rst.these mathemati
al symbols are expli
itly identi�ed for parsing by Expression Analysis inthe next pass.Some example Lexi
al Analysis transformation rules are shown in Figure 7. Ea
h of theserules sear
hes the BST for the pattern of a parti
ular mathemati
al symbol and restru
turesthe tree to provide an expli
it label and grouping of the input symbols for the mathemati
alsymbol. As ea
h group of symbols is re
ognized and relabelled as a mathemati
al symbol,the bounding box of the re
ognized unit is
omputed from its
omponent symbols. Amongother uses, these bounding boxes may be used to provide feedba
k in user interfa
es orresolve ambiguities (although
urrently DRACULAE does not make use of these values).The Lexi
al Analysis pass is designed to easily a

ommodate di�erent diale
ts of math-emati
s simply by adding or repla
ing transformation rules for the mathemati
al symbolsof the diale
t. For some diale
ts and mathemati
al symbols, attention to the ordering ofthe rules is ne
essary be
ause the patterns of two or more transformation rules may
ontain23

shared symbols or stru
tures, or be
ause the pattern of one transformation is only produ
edafter the appli
ation of another transformation.4.1 Compound SymbolsThe Lexi
al Pass begins by applying a set of tree transformation rules to sear
h the BSTfor
ompound symbols (Figure 7a). Compound symbols are sequen
es of input symbols ona single baseline that are to be treated as single mathemati
al symbols, for example the `s',`i ' and `n' of the mathemati
al fun
tion name `sin', the grouping of sequen
es of digits intonumbers, and the
olle
tion of one line above another into an equals sign. These
orrespondto the treatment of pairs of
hara
ters su
h as `<' and `=' as the single operator `<=' inprogramming language
ompilers.For the mathemati
al diale
t
urrently re
ognized by DRACULAE, the Lexi
al passre
ognizes the following
ompound symbols (single baseline stru
tures): de
imal numbers(e.g. 1, .01, 1.01), fun
tion names (e.g. ln, lg, log, exp, sin,
os, tan), and over-segmentedsymbols (e.g. any of =;�;�=; k;�;�;!;).DRACULAE
urrently does not use any whitespa
e analysis: analysis depends onlyon input symbol adja
en
y, not on the amount of whitespa
e between them. As a result,Lexi
al Analysis lo
ates fun
tion names simply by sear
hing baselines for adja
ent letterswhi
h form one of the known fun
tion names, repla
ing the group of letters with a singlesymbol node labelled with the fun
tion name. This is adequate when variables and
onstantnames
onsist of single letters. However,
onsider `
ost = a � x', where the
urrent systemwould identify `
ost' as as `
os' and `t'. In future we hope to employ whitespa
e analysis toimprove re
ognition of multi-letter fun
tion and variable names.The Lexi
al pass uses lo
al adja
en
y to re
ognize
ompound symbols. For instan
e,the two un
onne
ted lines of an equals sign may be represented as two separate lines in theBST, one above or below the other. The Lexi
al pass uses a tree transformation to sear
hthe BST for this pattern, and repla
es it with a single symbol node labelled `=' (Figure 7a).24

A similar method is used in [26℄ to dete
t
ompound symbols.4.2 Stru
ture SymbolsFollowing the re
ognition of
ompound symbols, the Lexi
al pass applies a set of transfor-mation rules to dete
t stru
ture symbols (Figure 7b-f). Stru
ture symbols are multi-baselinegroups of input symbols that imply a mathemati
al symbol by its lo
al
ontext. Examplesare fra
tions, limits, root signs and a

ents. This is analogous to a programming language
ompiler using
ontext to re
ognize that a parenthesized subexpression represents an argu-ment list or array index.Figure 7b-f show example tree transformation rules used to identify and relabel squareroots, fra
tions, a

ents and simple mathemati
al
hoi
e notation in a BST in DRACULAE.At the end of the Lexi
al pass, normally no region labels remain unless the input BST
ontains
ompound symbols or symbol stru
tures not de�ned in the diale
t.5 Expression AnalysisAfter Lexi
al Analysis has identi�ed
ompound and stru
ture symbols in the Lexed BST,the Expression Analysis pass uses a mathemati
al expression grammar and a set of treetransformations to
reate the �nal operator tree. In an operator tree, internal tree nodes areoperators and leaf nodes are operands. Operator trees en
ode all the information ne
essaryto evaluate the represented mathemati
al expression in the semanti
s of the diale
t.5.1 Expression Syntax AnalysisThe expression grammar spe
i�es the pre
eden
e and asso
iativity of mathemati
al opera-tors in the mathemati
al diale
t using a modi�
ation of the traditional
ontext-free expres-sion grammars used in programming language
ompilers [16℄. The Lexed BST produ
edby the Lexi
al pass is �rst linearized into a text string, and then parsed using the TXL25

parser to
reate an expression parse tree analogous to those produ
ed by the syntax passof a
ompiler. At present the DRACULAE expression grammar parses only a subset ofthe diale
t of mathemati
s re
ognized by the Lexi
al pass, but this subset
an easily beextended simply by adding new grammati
al forms to the expression grammar.Expression Analysis returns an error if the parse fails. This
ould be either be
ausethe expression is malformed, or be
ause it is outside of the
urrent diale
t. Although theexpression
an always be displayed to the user (be
ause the Layout and Lexi
al Passesalways produ
e a result), it is inappropriate to evaluate it in these
ir
umstan
es.5.2 Expression Semanti
 AnalysisSemanti
 analysis
onsists of re
ognizing the semanti
s of the parsed expression to re
ognizeimplied operators (su
h as adja
ent operands meaning multipli
ation), to analyze the typesof operands to infer type
onversion operators, and to reorder operands to pre
ede theiroperators in the textual output of the Expression pass. These tasks are a
hieved using aset of tree transformation rules that sear
h for these patterns in the expression parse treeand then restru
ture the tree to add the impli
it operators and reorder operands. Theserules are simpli�ed by the fa
t that analysis and labelling of stru
ture symbols was alreadyhandled in the Lexi
al pass.The operator tree output by the Expression Analysis pass is in a form that
an be moreor less dire
tly translated and exe
uted by a Computer Algebra System su
h as Mathemati
a[27℄ or Maple [28℄.6 Test ResultsAt the time of this writing, the only publi
ly available ground-truthed set of mathemat-i
al expressions is in the University of Washington English/Te
hni
al Do
ument ImagesDatabase III (UW-III)[29℄. The mathemati
al notation
omponent of UW-III is
omprised26

of 25 ground-truthed do
ument images
ontaining mathemati
al expressions. Developingmethods for evaluating do
ument re
ognition systems is an a
tive area of resear
h (e.g. [30℄).Most of these methods require a large representative
orpus of do
uments with ground truth.In addition to fa
ilitating evaluation, su
h
orpora allow automati
 dedu
tion of languagede�nitions and probabilisti

ontextual information (as has been done for natural languageunderstanding [31, 32℄). In
ontrast, the la
k of further
orpora of mathemati
al expres-sions has resulted in resear
hers designing re
ognition systems that des
ribe only a singlemathemati
al diale
t, de�ned using sample expressions and (perhaps largely) introspe
tion.Fortunately work is ongoing to establish a new
orpus of typeset and handwritten mathe-mati
al expressions [33℄.Results for mathemati
al notation re
ognition have most
ommonly been presented interms of re
ognition su

ess or failure on a small set of sample expressions, or using theper
entage of
orre
tly re
ognized expressions in a set of test expressions (e.g. [26, 34℄).Re
ently some new metri
s have been proposed to better
hara
terize errors in baselinestru
ture [35℄, expression syntax [36℄, and overall system performan
e [36℄.In Se
tion 6.1 we assess DRACULAE's Lexed BST re
ognition performan
e on the UW-III database using two new metri
s for baseline stru
ture a

ura
y, namely (1) the ratioof
orre
tly re
ognized baselines to total baselines in the ground truth representation ofan expression, and (2) the per
entage of symbols or tokens in a BST that are lo
atedon their
orre
t baselines. In Se
tion 6.2 we des
ribe some informal results
on
erningthe performan
e and usability of DRACULAE in the
ontext of an on-line mathemati
alexpression entry system, the Freehand Formula Entry System [18, 19℄.6.1 Results for Typeset Expressions in UW-IIIWe used the UW-III symbol and bounding box ground truth data to test DRACULAE'sLexed BST output (see Se
tion 4). This test data was not used during system development.The test set was made using the ground truth for 23 of the 25 pages in the database27

(pages 20 and 21 were removed as they
ontained matrix expressions). Expressions spanningmultiple lines were broken into separate subexpressions. The �nal test set
ontained 73expressions
omprised of 1917 input symbols, with a mean of 26.3 symbols per expression.The LATEX ground truth for these expressions
ontained 648 baselines with 1919 tokens,with means of 3.0 tokens per baseline, and 8.9 baselines/expression. Tokens do not always
orrespond to input symbols, primarily due to groupings of letters in fun
tion names (e.g.`sin', `ln') and to a

ented symbols. Symbols and their a

ents are often ground truthed asa single symbol in UW-III, though they are represented as two tokens (symbol and a

ent)in LATEX. Most baselines
ontain few symbols: 62% are
omprised of a single token, while84% are
omprised of three tokens or less.We ran DRACULAE using a series of layout model parameters. For ea
h test expressionwe
ompared DRACULAE's LATEX output to the UW-III ground truth LATEX. This
om-parison was done using a TXL program, as explained below. Table 2 shows the thresholdvalues that were used. No test was performed for
 = 1=4; t = 1=3 as this results in subs
riptregions that are higher than the Y-
entroid for symbol
lasses su
h as Plain As
ender andDes
ender.For ea
h test expression a
ontext-free grammar spe
i�ed in TXL is used to parse theDRACULAE output and UW-III ground truth LATEX representations. The parse trees arethen
ompared. Identi
al trees
orrespond to perfe
t stru
ture (Lexed BST) re
ognition.For non-mat
hing trees, the TXL program outputs a list of baseline pairs
orresponding tothe two trees, starting with the �rst mismat
hing pair. This list is used, along with images
orresponding to the LATEX strings and the original do
ument images, to manually lo
ateadditional errors.We
ount errors of two types. The �rst is the number of in
orre
t baselines, where anin
orre
t baseline is one in whi
h any of the following are true: (1) the list of tokens on thebaseline do not mat
h ground truth, (2) the baseline is nested relative to a token whi
h doesnot mat
h the ground truth token, or (3) the depth in the BST or region of the baseline28

Table 2: UW-III database test results. Ea
h table entry shows the result of running DRAC-ULAE with di�erent
entroid and threshold ratio values
 and t (see Table 1). Given arethe number of
orre
tly pla
ed tokens, number of
orre
t baselines, number of in
orre
tbaselines, and the number of
orre
t expressions. There are 1919 tokens, 648 baselines and73 expressions in the ground truth. We report the per
entage of
orre
t tokens to totalground truth tokens and
orre
t baselines to total ground truth baselines.Threshold Centroid Ratio (
)Ratio (t) 1/3 1/41/3 Tokens Corre
t: 1642 (86%)Baselines: Corre
t: 463 (71%)In
orre
t: 251Expressions Corre
t: 20 (27%)1/4 Tokens Corre
t: 1728 (90%)Baselines: Corre
t: 513 (79%)In
orre
t: 165Expressions Corre
t: 28 (38%) Tokens Corre
t: 1728 (90%)Baselines: Corre
t: 513 (79%)In
orre
t: 165Expressions Corre
t: 28 (38%)1/6 Tokens Corre
t: 1679 (87%)Baselines: Corre
t: 471 (79%)In
orre
t: 146Expressions Corre
t: 27 (37%) Tokens Corre
t: 1679 (87%)Baselines: Corre
t: 471 (79%)In
orre
t: 146Expressions Corre
t: 27 (37%)1/8 Tokens Corre
t: 1679 (87%)Baselines: Corre
t: 471 (79%)In
orre
t: 146Expressions Corre
t: 27 (37%) Tokens Corre
t: 1658 (86%)Baselines: Corre
t: 453 (70%)In
orre
t: 155Expressions Corre
t: 27 (37%)does not mat
h ground truth. Table 2 shows the number of properly re
ognized baselines.The se
ond type of error is the number of mispla
ed tokens. A token is mispla
ed ifit appears on a baseline other than that in the ground truth. A properly pla
ed tokenappears on the same baseline, at the same depth, in the same region (e.g. supers
ripted orsubs
ripted), and nested relative to the same parent token as in the ground truth. A

ordingto this de�nition, a token may be properly pla
ed on an in
orre
t baseline. Table 2 shows thenumber of properly pla
ed tokens. Measuring tokens provides a more informative measurethan measures based on entire expressions or baselines.The total number of expressions re
ognized without error is very low. However, theper
entage of properly pla
ed tokens is 86 - 90%. This means that DRACULAE pla
es29

most symbols in the test set on their proper baseline.The most
ommon sour
e of errors is mis-dete
tion of s
ripted and horizontally adja
entsymbols. The de�nition of supers
ript, subs
ript and horizontal regions for des
ending
lasssymbols in our
urrent symbol layout model appears to be parti
ularly poor. For example,when a `p' is followed on a baseline by a Plain As
ender symbol, this is often mis-dete
tedas a supers
ript.Other errors in
lude (1) mis-dete
tion of kerned symbols as below rather than subs
riptedrelative to the parent symbol, (2) mis-dete
tion of a
lose bra
ket as below instead of to theright of a fra
tion line, be
ause the
entroid of the bra
ket is below the fra
tion line, (3) abug in the partitioning routines that yields two additional tokens for one of the expressions,and (4) a small number of additional tokenization errors.The tests
onsist of 73 expressions, run for seven
ombinations of t and
 values, for atotal of 13,403 input symbols. These tests took 206 se
onds to exe
ute as a bat
h pro
esson a 900MHz Pentium III with 256MB of RAM running Linux. This rate of 65 symbols perse
ond in
ludes the time taken for TXL to re-interpret DRACULAE seven times.A number of resear
hers have re
ently reported properly re
ognizing the symbol layoutof over 90% of the mathemati
al expressions in their test sets [26, 33, 37, 38, 39, 40℄. Itis diÆ
ult to meaningfully
ompare these results. The test sets used by other authors aregenerally not publi
ly available. Also, di�erent authors use di�erent metri
s. We view ourmetri
s as an important new tool for evaluating re
ognition results at a level that is betweensymbol re
ognition and operator trees.A system that makes use of more layout information, su
h as whitespa
e and pointsize information, and/or more sophisti
ated
ontextual analyses would perform better thanour
urrent system. It is interesting how well DRACULAE is able to perform without su
hinformation. In the future we plan to extend our layout model. Some alternative approa
hesto analyzing layout in mathemati
al expressions in
lude penalty fun
tions [38℄, proje
tionpro�les [26℄, de�ning `strong' and `weak' region areas using a training set [37℄, virtual link30

networks [37, 39℄,
onvex hulls [7℄, the generation of multiple interpretations to
ope withambiguity [41℄, and the in
orporation of probabilisti
 information [20, 42℄.We are also beginning to explore re
ognition of tabular stru
tures su
h as matri
es andlists of expressions [43℄. Existing approa
hes to matrix re
ognition in
lude [37, 39, 40, 44℄.6.2 Testing DRACULAE on Handwritten Expressions Using FFESWe have informally tested DRACULAE's re
ognition
apabilities for handwritten mathe-mati
al notation. These tests use the Freehand Formula Entry System (FFES), an on-lineinterpretive interfa
e for entering mathemati
al expressions [18, 19℄. This interfa
e allowsa user to enter, delete, move, and relabel symbols. DRACULAE is given the
urrent listof symbols with bounding boxes, and provides an interpretation of the
urrent expression.Sample expressions
reated using FFES are provided in Table 3. Ea
h of the expressions inthis table are pro
essed in well under a se
ond.Table 3 shows that DRACULAE is robust: all inputs are mapped to LATEX output.Lexed BST (and LATEX) output is produ
ed even if an expression
ontains unknown and/orunsynta
ti
 baseline stru
tures, as in Table 3b, d, e. The use of operator dominan
e in thesear
h fun
tions provides some skew toleran
e (Table 3b). Large, deeply nested expressions(Table 3e) and nested a

ents (Table 3b) are handled.Operator trees are produ
ed for expressions that fall within the diale
t de�ned in the
urrent Expression Analysis pass. In Table 3a, the impli
it multipli
ation of `a' and `b' ismade expli
it in the operator tree.The disambiguation of SUPER=UPPER and SUBSC=LOWER regions is fragile. Forexample, the limits of adja
ent Variable Range Symbols are improperly segmented in Table3d, where the `1' is mistakenly grouped with the se
ond P symbol. (The LATEX string hasbeen altered to make this error easily visible.) Analysis of whitespa
e would
orre
t manysu
h errors.Some usability results for FFES/DRACULAE were obtained in an experiment
omparing31

Table 3: Re
ognition results for sample expressions
reated using the Freehand FormulaEntry System (FFES). For these expressions threshold ratio t = 1=6 and
entroid ratio
 = 1=4 were used.Input Expression LATEX (Lexed BST) Operator Tree(a) (pab+b3)2 EXPONENT

DIVIDE 2

3

b

MULTIPLY

ba

ROOT−OF

ADD

(b) a _ b _
 (Outside Diale
t)(
) 7426Pi=100 i+
osn nFROMSCOPE

i

SUM−OF

=

i 100

7426

TO

cos

ADD

(d) ZAB 2Pi= 2P1j=2 ij (Outside Diale
t)
(e) q 4x2p2a 423+34(R 32b x24+adx)3x2 + �b+pb2�4a
22a (Outside Diale
t)

on-line expression entry time using di�erent feedba
k me
hanisms [19℄. All 27 parti
ipantsin the experiment su

essfully entered the trial expressions, and all reported that theyfound bitmaps produ
ed from DRACULAE's LATEX output to be useful. Twenty-four of theparti
ipants (89%) reported that they were interested in using a system similar to FFESwith DRACULAE again.
32

7 Con
lusionWe have presented a methodology and implementation (DRACULAE) for rapid, robustre
ognition of typeset and handwritten mathemati
al expressions. DRACULAE makes useof sear
h fun
tions that exploit the left-to-right reading order of mathemati
al notationand operator dominan
e to re
ursively and eÆ
iently extra
t baselines in a mathemati
alexpression.The Baseline Stru
ture Tree (BST) is a simple hierar
hi
al des
ription of symbol layoutin mathemati
al expressions. Tree transformation is used as an eÆ
ient,
ompa
t meansto express a series of restru
turings of BSTs, from an initial list of symbols to an initialBST, a Lexed BST (translatable to LATEX), and �nally to an operator tree (translatable toComputer Algebra System languages).DRACULAE's ar
hite
ture is similar to that of a
ompiler. This provides a framework for
oping with diale
ts, by separating symbol layout analysis, lexi
al grouping, syntax analysis,and semanti
 analysis. This ar
hite
ture also makes the system easy to re
on�gure.A
knowledgementsWe would like to thank Edward Lank, Ni
k Willan and Genarro Costagliola for valuabledis
ussions and inspiration. We are grateful to Steve Smithies, Kevin Novins and Jim Arvofor making the Freehand Formula Entry System available. Last but not least we wish tothank the anonymous reviewers for their helpful
omments. This resear
h is supported bythe Natural S
ien
es and Engineering Resear
h Coun
il of Canada.Referen
es[1℄ D. Blostein and A. Grbave
, \Re
ognition of Mathemati
al Notation," Handbook ofChara
ter Re
ognition and Do
ument Image Analysis, pp. 557{582. World S
ienti�
,33

1997.[2℄ K. Chan and D. Yeung, \Mathemati
al Expression Re
ognition: a Survey," Int'l J.Do
ument Analysis and Re
ognition, vol. 3, no. 1, pp. 3{15, August 2000.[3℄ A. Ka
em, A. Bela��d, and M.B. Ahmed, \Automati
 Extra
tion of Printed Mathe-mati
al Formulas Using Fuzzy Logi
 and Propogation of Context," Int'l. J. Do
umentAnalysis and Re
ognition, vol. 4, no. 2, pp. 97{108, De
. 2001.[4℄ R.J. Fateman, \How to Find Mathemati
s on a S
anned Page," Pro
. SPIE, 1999, vol.3967, pp. 98{109.[5℄ B.P. Berman and R.J. Fateman, \Opti
al Chara
ter Re
ognition for Typeset Math-emati
s," Pro
. Int'l Symposium on Symboli
 and Algebrai
 Computation, 1994, pp.348{353.[6℄ Z.W. and C. Faure, \Stru
tural Analysis of Handwritten Mathemati
al Expressions,"Pro
. Ninth Int'l Conf. Pattern Re
ognition, 1988, pp. 32{34.[7℄ E.G. Miller and P.A. Viola, \Ambiguity and Constraint in Mathemati
al ExpressionRe
ognition," Pro
. Fifteenth National Conf. Arti�
ial Intelligen
e, 1998, pp. 784 {791.[8℄ R. Zanibbi, \Re
ognition of Mathemati
s Notation via Computer Using Baseline Stru
-ture," Te
h. Rep. ISBN-0836-0227-2000-439, Dept. Computer S
ien
e, Queen's Uni-versity, Kingston, Ontario, Canada, August 2000.[9℄ S. Srihari, \From Pixels to Paragraphs: the Use of Contextual Models in Text Re
ogni-tion," Pro
. Se
ond Int'l. Conf. Do
ument Analysis and Re
ognition, 1993, pp. 416{423.[10℄ T.W. Chaundy, P.R. Barrett, and C. Batey, The Printing of Mathemati
s, OxfordUniversity Press, London, 1957. 34

[11℄ N.J. Higham, Handbook of Writing for the Mathemati
al S
ien
es, So
iety for Industrialand Applied Mathemati
s, Philadelphia, 1993.[12℄ D.E. Knuth, TEXand METAFONT - New Dire
tions in Typesetting, Digital Press, 12Crosby Drive, Bedford, MA 01730, USA, 1979.[13℄ G. Costagliola, A. De Lu
ia, and S. Ore�
e, \A Parsing Methodology for the Imple-mentation of Visual Systems," IEEE Trans. Software Engineering, vol. 23, no. 12, pp.777{799, De
. 1997.[14℄ H. Lee and M. Lee, \Understanding Mathemati
al Expressions Using Pro
edure-Oriented Transformation," Pattern Re
ognition, vol. 27, no. 3, pp. 447{457, 1994.[15℄ K. Inoue, R. Miyazaki, and M. Suzuki, \Opti
al Re
ognition of Printed Mathemati
alDo
uments," Pro
. Third Asian Te
hnology Conf. in Mathemati
s, 1998, pp. 280{289.[16℄ A. Aho, V. Je�rey, and D. Ullman, Prin
iples of Compiler Design, Addison-Wesley,1977.[17℄ R. Zanibbi, D. Blostein, and J.R. Cordy, \Baseline Stru
ture Analysis of HandwrittenMathemati
s Notation," Pro
. Sixth Int'l Conf. Do
ument Analysis and Re
ognition,2001, pp. 768{773.[18℄ S. Smithies, K. Novins, and J. Arvo, \Equation Entry and Editing via Handwritingand Gesture Re
ognition," Behaviour and Information Te
hnology, vol. 20, no. 1, pp.53{67, 2001.[19℄ R. Zanibbi, K. Novins, J. Arvo, and K. Zanibbi, \Aiding Manipulation of HandwrittenMathemati
al Expressions Through Style-Preserving Morphs," Pro
. Graphi
s Inter-fa
e, 2001, pp. 127{134.
35

[20℄ P. A. Chou, \Re
ognition of Equations Using a Two-Dimensional Sto
hasti
 Context-Free Grammar," Visual Communi
ations and Image Pro
essing IV, 1989, vol. 1199 ofSPIE Pro
. Series, pp. 852{863.[21℄ A. Grbave
 and D. Blostein, \Mathemati
s Re
ognition Using Graph Rewriting," Pro
.Third Int'l Conf. Do
ument Analysis and Re
ognition, Montreal, 1995, pp. 417{421.[22℄ J.R. Cordy, I. Charmi
hael, and R. Halliday, The TXL Programming Language -Version 10, TXL Software Resear
h In
., Kingston, Ontario, Canada, Jan. 2000.[23℄ J.R. Cordy, C.D. Halpern, and E. Promislow, \TXL: A Rapid Prototyping System forProgramming Language Diale
ts," Computer Languages, vol. 16, no. 1, pp. 97{107,Jan 1991.[24℄ S. Chang, \A Method for the Stru
tural Analysis of Two-Dimensional Mathemati
alExpressions," Information S
ien
es, vol. 2, pp. 253{272, 1970.[25℄ R.H. Anderson, Syntax-Dire
ted Re
ognition of Hand-Printed Two-Dimensional Equa-tions, Ph.D. thesis, Harvard University, Cambridge, MA, Jan. 1968.[26℄ M. Okamoto and B. Miao, \Re
ognition of Mathemati
al Expressions by Using theLayout Stru
tures of Symbols," Pro
. First Int'l Conf. Do
ument Analysis and Re
og-nition, Saint-Malo, Fran
e, 1991, vol. 1, pp. 242{250.[27℄ S. Wolfram, The Mathemati
a Book, version 4, Cambridge Univeristy Press, 1999.[28℄ F. Garvan, The MAPLE book, CRC Press, 2001.[29℄ I. Phillips, \Methodologies for Using UW Databases for OCR and Image UnderstandingSystems," Do
ument Re
ognition V, 1998, vol. 3305 of SPIE Pro
eedings, pp. 112{127.[30℄ I. Phillips and A. Chaabra, \Empiri
al Performan
e Evaluation of Graphi
s Re
ognitionSystems," IEEE Trans. Pattern Analysis and Ma
hine Intelligen
e, vol. 21, no. 9, pp.849{870, Sept. 1999. 36

[31℄ E. Brill, \Transformation-Based Error-Driven Parsing," Re
ent Advan
es in ParsingTe
hnology, pp. 1{13. Kluwer A
ademi
, 1996.[32℄ E. Charniak, Statisti
al Language Learning, MIT Press, 1993.[33℄ U. Garain and B.B. Chaudhuri, \On Development and Statisti
al Analysis of a Corpusfor Printed and Handwritten Expressions," Pro
. Fourth Int'l IAPR Workshop onGraphi
s Re
ognition, Sept. 2001, pp. 429{439.[34℄ A. Bela��d and J. Haton, \A Synta
ti
 Approa
h for Handwritten Mathemati
al FormulaRe
ognition," IEEE Trans. Pattern Analysis and Ma
hine Intelligen
e, vol. 6, no. 1,pp. 105{111, Jan. 1984.[35℄ M. Okamoto, H. Imai, and K. Takagi, \Performan
e Evaluation of a Robust Methodfor Mathemati
al Expression Re
ognition," Pro
. Sixth Int'l Conf. Do
ument Analysisand Re
ognition, 2001, pp. 121{128.[36℄ K. Chan and D. Yeung, \Error Dete
tion, Error Corre
tion and Performan
e Evaluationin On-line Mathemati
al Expression Re
ognition," Pattern Re
ognition, vol. 34, pp.1671{1684, 2001.[37℄ Y. Eto and M. Suzuki, \Mathemati
al Formula Re
ognition Using Virtual Link Net-work," Pro
. Sixth Int'l Conf. Do
ument Analysis and Re
ognition, 2001, pp. 762{767.[38℄ R. Fukuda, S. I, F. Tamari, X. Ming, and M. Suzuki, \A Te
hnique of Mathemati
alExpression Stru
ture Analysis for the Handwriting Input System," Pro
. Fifth Int'lConf. Do
ument Analysis and Re
ognition, 1999, pp. 131{134.[39℄ T. Kanahori and M. Suzuki, \A Re
ognition Method of Matri
es by Using VariableBlo
k Pattern Elements Generating Re
tangular Area," Pro
. Fourth Int'l IAPR Work-shop on Graphi
s Re
ognition, 2001, pp. 455{469.37

[40℄ K. Toyozumi, T. Suzuki, K. Mori, and Y. Suenega, \A System for Real-Time Re
og-nition of Handwritten Mathemati
al Formulas," Pro
. Sixth Int'l Conf. Do
umentAnalysis and Re
ognition, 2001, pp. 1059{1063.[41℄ H. Winkler, H. Fahrner, and M. Lang, \A Soft De
ision Approa
h for Stru
turalAnalysis of Handwritten Mathemati
al Expressions," Int'l Conf. A
ousti
s, Spee
h andSignal Pro
essing. 1995, pp. 2459{2462, IEEE.[42℄ C. Faure and Z.X. Wang, \Automati
 Per
eption of the Stru
ture of HandwrittenMathemati
al Expressions," Computer Pro
essing of Handwriting, R. Plamondon andC. G. Leedham, Eds., pp. 337{361. World S
ienti�
, 1990.[43℄ R. Zanibbi, D. Blostein, and J.R. Cordy, \Dire
tions in Re
ognizing Tabular Stru
-tures of Handwritten Mathemati
s Notation," Pro
. Fourth Int'l IAPR Workshop onGraphi
s Re
ognition, Sept. 2001, pp. 493{499.[44℄ R.H. Anderson, \Two-Dimensional Mathemati
al Notation," Synta
ti
 Pattern Re
og-nition, K.S. Fu, Ed., pp. 147{177. Springer Verlag, New York, 1977.BiographiesRi
hard Zanibbi re
eived Ba
helor of Musi
 and BA degrees in 1998 and an MS
 degree inComputing S
ien
e in 2000 from Queen's University, Kingston, Ontario, Canada, where heis
urrently pursuing a PhD in Computing S
ien
e. Ri
hard has worked as a resear
h pro-grammer for Legasys Corporation (1999-2000) and for the Medi
al Computing Laboratoryat Queen's University (2001-present). His resear
h interests in
lude diagram re
ognition,visual language theory, pattern re
ognition and human-
omputer intera
tion.Dorothea Blostein re
eived an MS
 degree in
omputer s
ien
e from Carnegie Mellon Uni-versity in 1980, and a PhD from the University of Illinois in 1987. Sin
e 1988 she has been38

a professor in the Department of Computing and Information S
ien
e, Queen's University,Kingston, Ontario. Dr. Blostein's resear
h interests in
lude pattern re
ognition, do
umentimage analysis and graph transformation. A parti
ular interest is the relationship betweengeneration and re
ognition of diagrams. She is
o-author of Lime, a sophisti
ated editorfor musi
 notation. Dr. Blostein was
hair of GREC 2001, the Fourth IAPR InternationalWorkshop on Graphi
s Re
ognition. She has served on the program
ommittees for ICPR2002, Diagrams 2002, WEDELMUSIC 2001, GREC'99, AGTIVE'99, and GREC'97. Dr.Blostein is a member of the IEEE and the IEEE Computer So
iety.James R. Cordy is Professor of Computing & Information S
ien
e and Ele
tri
al & Com-puter Engineering at Queen's University, Kingston, Ontario, Canada. From 1995 to 2000 hewas vi
e president and
hief resear
h s
ientist at Legasys Corporation, a software te
hnol-ogy
ompany spe
ializing in lega
y software system analysis and renovation. Prof. Cordyis the author or
o-author of numerous
ontributions in
omputer software systems, in
lud-ing the PL/I subset
ompiler SP/k (1977), the Toronto Eu
lid
ompiler (1980), the S/SL
ompiler te
hnology (1980), the Con
urrent Eu
lid programming language (1981), the Tur-ing programming language (1983), Turing Plus (1985), Obje
t-Oriented Turing (1992), theorthogonal
ode generation
ompiler te
hnology (1986), the TXL programming language(1991), the TXL sour
e transformation system (1995), the LS/2000 year 2000
onversionsystem (1996), and the LS/AMT software analysis and migration system (1999).

39

