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AbstratWe desribe a robust and eÆient system for reognizing typeset and handwrittenmathematial notation. From a list of symbols with bounding boxes the system ana-lyzes an expression in three suessive passes. The Layout Pass onstruts a BaselineStruture Tree (BST) desribing the two-dimensional arrangement of input symbols.Reading order and operator dominane are used to allow eÆient reognition of symbollayout even when symbols deviate greatly from their ideal positions. Next, the LexialPass produes a Lexed BST from the initial BST by grouping tokens omprised ofmultiple input symbols; these inlude deimal numbers, funtion names, and symbolsomprised of non-overlapping primitives suh as `='. The Lexial Pass also labels ver-tial strutures suh as frations and aents. The Lexed BST is translated into LATEX.Additional proessing, neessary for produing output for symboli algebra systems,is arried out in the Expression Analysis Pass. The Lexed BST is translated into anOperator Tree whih desribes the order and sope of operations in the input expres-sion. The tree manipulations used in eah pass are represented ompatly using treetransformations. The ompiler-like arhiteture of the system allows robust handlingof unexpeted input, inreases the salability of the system and provides groundworkfor handling dialets of mathematial notation.�R. Zanibbi, D. Blostein and J.R. Cordy are with the Department of Computing Siene, Queen'sUniveristy, Kingston, Ontario, Canada, K7L 3N6. E-mail: fzanibbi,blostein,ordyg�s.queensu.a.1



Index Terms� doument image analysis, reognition of mathematial notation, diagramreognition, tree transformation, graphis reognition1 IntrodutionAutomated reognition of mathematial notation is a hallenging pattern reognition prob-lem of great pratial importane. Appliations inlude the onversion of sienti� papersfrom printed to eletroni form, and the reading of sienti� douments to visually impairedusers. Reognition of handwritten expressions permits users to write mathematial expres-sions on a data tablet; this is a onvenient alternative to input methods suh as typingLATEX expressions, or using a struture-based editor for mathematial notation.Over the past thirty years, researhers have investigated many approahes to reognizingmathematial notation. Surveys are available in [1℄ and [2℄.1.1 ChallengesThis setion briey reviews some of the hallenges that arise in reognition of mathematialnotation. First, expressions must be loated in a doument image that ontains a mix oftext, expressions, and �gures. Expressions an be o�set or in-line. Various approahes tothis problem have been studied [3, 4℄.Reognizing mathematial symbols is diÆult, beause a large number of symbols, fonts,typefaes and font sizes are used [5℄. Care must be taken to distinguish between noise andsmall symbols suh as periods and ommas.Reognizing the spatial relationships between symbols (the symbol layout) is hallenging,partiularly for handwritten notation. The blurry distintion between in-line and supersriptrelationships, shown in the progression 2x 2x 2x 2x 2x, makes it diÆult to de�ne robustmethods for reognizing relationships. A statistial study of supersript versus in-line versussubsript relationships in handwritten mathematis expressions is reported in [6℄. Context2



(a) (b) ()Figure 1: These expressions illustrate that ambiguous layout an onfuse the order, preseneand sope of operators. (a) Whih division is performed �rst? (b) Is a supersripted? ()What is the extent of the sope of the summation?must be analyzed to determine the logial meaning of spatial relationships. For example,the symbol arrangement xi has di�erent logial meanings in the expression xiyj versus axi.Figure 1 shows expressions for whih ambiguous layout onfuses the order, sope and evenpresene of operations. The inexat symbol plaement that is ommon in handwrittennotation (Figure 2a) ompounds this problem.Ambiguous spatial relationships and symbol identities need to be resolved using on-textual analysis [7, 8℄. Also, ontextual analysis is needed to disambiguate the roles ofmathematial symbols. For example, a horizontal line may at as a fration line, subtra-tion symbol, or as an overbar for Boolean negation. Exploitation of redundany is a ommontehnique for resolving ambiguities; an example is the redundany between ity name andpostal ode in address reognition [9℄. However, mathematis uses a onise notation, onewhih provides little redundany.Finally, mathematis notation is not formally de�ned, and many dialets are in use.Similar to natural languages, mathematial symbols and strutures are invented or re-de�nedas needed by the users of the notation. Publiations about the formatting of mathematialnotation are available [10, 11, 12℄. However, these are not in a form that an be used as aspei�ation for a mathematis reognition system.1.2 Mathematis reognition via tree transformationIn this paper we desribe the design and implementation of a mathematis reognitionsystem that makes extensive use of tree transformation. The ideas underlying this approah3
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Figure 2: Overview of Proessing in DRACULAEmay be relevant in any appliation where syntati pattern reognition is appropriate. Thefollowing strategies are used to struture the reognition system.We analyze symbol layout in mathematial expressions by searhing for linear stru-tures (baselines) in the input and then using these as the basis for �nding seondary linearstrutures. Intelligent searh funtions are applied in image subregions; the subregions arede�ned in a symbol-spei� way, as desribed in Setion 3. This strategy allows us to exploitthe left-to-right reading order of mathematial notation, thereby analyzing layout eÆientlywithout baktraking. Similar layout analysis tehniques have been used in appliationsinluding parsing of visual languages [13℄ and reognition of mathematial notation [14, 15℄.One of our ontributions is to generalize the tehnique to make it robust enough to handlethe irregular symbol layouts present in handwritten expressions (Figure 2a).The linear strutures (baselines) are organized into a Baseline Struture Tree (BST).This tree forms the basis for subsequent, ompiler-style proessing. Proessing is dividedinto three major passes: (1) the Layout Pass builds an initial BST, (2) the Lexial passgroups and labels ompound symbols (e.g. `sin') and struture symbols (e.g. frationlines), and (3) the Expression Analysis Pass analyzes expression syntax (operator preedeneand assoiativity), and produes an operator tree. The operator tree desribes an ordered4



appliation of operators to operands. This represents the semantis of the mathematialexpression, as is needed for evaluating the expression, or translating the expression into aComputer Algebra System format.The use of passes results in robust proessing of input: the Layout Pass proesses allinputs, even those that ontain syntax errors or unknown onstruts. This produes usefulpartial results for any input. Also, the use of passes is a helpful struturing tool for reog-nizing various dialets of mathematial notation. While the ore of the Layout Pass is �xed,the symbol lass de�nitions used in the Layout Pass may be easily rede�ned. Additionally,the Lexial Pass and Expression Analysis Pass may be provided with dialet-spei� tablesand rules.All of the proessing in our approah is performed using tree manipulations alled treetransformations. Tree transformations allow the omputations we perform to be expressedin a onvenient and ompat form (see Setion 1.3). Our deision to make use of tree trans-formations stemmed from the observation that both the layout and syntax of mathematialexpressions are hierarhial, and as a result are usually expressed as trees. Trees are used informatting languages suh as LATEX, for representing the parse of mathematial expressionsin ompilers [16℄, and in many other approahes to mathematis reognition (as surveyedin [8℄).Our implementation is alled the Diagram Reognition Appliation for Computer Un-derstanding of Large Algebrai Expressions (DRACULAE) [8, 17℄. For proessing on-lineinput, DRACULAE is pakaged with a user interfae and a third-party symbol reognizer,the Freehand Formula Entry System [18, 19℄.DRACULAE obtains linear or lose to linear performane on many inputs. The worst-ase time omplexity of DRACULAE, when proessing an input of n symbols is O(n2 lgn).Worst ase inputs are unsyntati or unlikely. For example, one worst-ase input onsistsof a series of P symbols, eah plaed to be a supersript of the preeding one. Most inputsare proessed in near-linear time. This is partiularly impressive beause DRACULAE han-5



dles handwritten inputs with irregular symbol plaements. Many alternative approahesdesigned to ope with ambiguous layout, suh as stohasti grammars [20℄ and graph trans-formation [21℄ involve extensive amounts of searh or baktraking. DRACULAE urrentlyreognizes a single dialet of mathematis notation, but has been onstruted to allow mul-tiple dialets to be aommodated in the future.Figure 2 provides an overview of the proessing performed by DRACULAE. Tree trans-formation, whih is used throughout the implementation, is disussed in Setion 1.3. Thesymbol layout model and Baseline Struture Trees are de�ned in Setion 2. The symbollayout model is used by the Layout Pass (Setion 3) to onvert the input into a BaselineStruture Tree. The Lexial Pass (Setion 4) onverts this to a Lexed BST. Finally, theExpression Analysis Pass (Setion 5) produes an operator tree. Experimental results onhandwritten and typeset input are presented in Setion 6.1.3 Tree TransformationDRACULAE uses trees as its entral data struture. The reognition proess begins bybuilding a tree that enodes low level baseline struture. This tree is suessively re�nedand restrutured to represent higher levels of understanding at eah stage of the proess.Tree restruturings are implemented using a programming language onstrut alled treetransformation. As illustrated in Figure 3, a tree transformation is a restruturing rule thatsearhes a host tree (the sope) for subtrees with a partiular shape and attribute values(the pattern); eah mathing subtree is replaed with a new subtree (the replaement)restrutured from the original.We use the tree transformation language TXL to speify our tree transformations ina ompat, abstrat manner [22, 23℄. Originally designed for programming language pro-essing tasks, TXL spei�es tree transformations in ASCII text using a highly readableby-example style of rule spei�ation (Figure 3), and provides an eÆient, robust parserto rapidly onvert trees to and from ASCII text form. TXL transformation rules an be6
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(a) A Tree Transformation Rulerule onvertAdditionsToOperatorTreesreplae [expression℄LeftSubexpression[expression℄ +RightSubexpression[term℄by ADD LeftSubexpressionRightSubexpressionend rule(b) The Same Rule Written in TXLFigure 3: A tree transformation rule from the Expression Analysis Pass. This rule �nds allparse subtrees for subexpressions that use an in�x binary + operation. Eah of these parsesubtrees is replaed by an operator subtree expliitly indiating that addition is intended.ombined and ontrolled using funtional programming onstruts, and are diretly and eÆ-iently exeuted by the TXL interpreter. The amount of ode needed to desribe a omplextree transformation in TXL is orders of magnitude less than in a general purpose program-ming language suh as C, and our entire system is implemented by less than 3,500 lines ofTXL ode.2 Symbol Layout in Mathematial ExpressionsMathematial notation uses symbol layout to onvey whih operators are used, and whatthe arguments to these operators are. An analysis of operator dominane and baselines7



an be used to reover this information. The following setions de�ne operator dominane,baselines, Baseline Struture Trees, and symbol lasses. These de�ne the symbol layoutmodel whih forms the basis of the Layout Pass.2.1 Operator Dominane and BaselinesOperator dominane [24℄ is a onept used to determine the preedene and arguments ofoperators with vertially staked operands, suh as frations and P.Range: The range of an operator is the expeted loation of its operand(s) [24℄. The rangesDRACULAE uses are desribed in Setion 2.3.Operator Dominane: Operator A dominates operator B if B is in the range of A, andA is not in the range of B [24℄. An operator dominates the symbols that onstituteits arguments.If operator A dominates operator B, then A is of lower preedene than B, and B is anoperator in an argument of A. For example, in the expression `x+ y�z�da ' the `+' dominatesthe fration line, beause the fration line is in the range of the addition sign, and theonverse is false. Similarly, the fration line dominates the subtration and multipliationoperators and their operands. Neither the subtration or multipliation operator dominatesthe other, beause both are in the range of the other. The symbols `y',`z',`d' and `a' areall dominated by the fration line, beause they are symbols of the fration's arguments.Similarly, the `+' dominates the `x'.Figure 1a is ambiguous beause the operator dominane (and as a result, preedene) isunlear: the fration lines are of equal length and arranged vertially, and so neither appearsto dominate the other. Di�erent dialets of mathematial notation use varying de�nitionsof operator range and dominane. For instane, the ambiguity in Figure 1a an be resolvedby hoosing a de�nition of operator dominane that results in seletion of either the top orbottom line. 8



Baseline and Start Symbol are de�ned using operator dominane and the left-to-rightordering of mathematial notation.Baseline: A baseline in mathematial notation is a linear horizontal arrangement of sym-bols, intended to be pereived as adjaent.For example, there are two baselines in the expression x2+a � y. One baseline ontains thesymbols (x;�; y) and the other ontains (2;+; a). In handwritten expressions, the plaementof baseline symbols may deviate far from the ideal horizontal arrangement (Figure 2a).Nested Baseline: A nested baseline is a baseline that is either vertially o�set from asymbol, or ontained by a symbol (as in the ase a square root ontaining an expressionomprised of one or more baselines).For example, in the expression 12 , the two baselines 1 and 2 are nested relative to thefration line. Similarly, in the expression x2+a � y, the supersripted baseline (2;+; a) isnested relative to the x.Dominant Baseline: The dominant baseline of a mathematial expression ontains thesymbols that are not nested relative to any other symbols in the expression. Thedominant baseline of a mathematial expression begins with the Start Symbol of theexpression.Start Symbol: In a mathematial expression, the Start Symbol is the operator that dom-inates the leftmost subexpression, or the leftmost symbol if no suh operator exists.Examples of Start Symbols are shown in Figure 4. The Layout Pass (Setion 3) ontainsalgorithms for loating the Start Symbol and subsequent baseline symbols.2.2 Baseline Struture TreesA Baseline Struture Tree represents the hierarhial struture of baselines in an expression[17℄. The Baseline Struture Tree expliitly aptures important aspets of symbol layout,9



(a) (b) ()Figure 4: Examples of Start Symbols. In (a) the leftmost symbol is not dominated by anoperator, and is the Start Symbol. In (b), the Start Symbol is the wider fration line, asit is the dominant operator of the expression. Similarly in (), the integral dominates theleftmost subexpression and is the Start Symbol.without ommitting to any partiular syntati or semanti interpretation. For instane, aBaseline Struture Tree an be used to represent the symbol layout of `2+', despite the fatthat this expression is syntatially and semantially invalid. Similarly, a Baseline StrutureTree represents the symbol layout of `f(x)' regardless of whether funtion appliation ormultipliation of variables is intended.A Baseline Struture Tree (or BST ) ontains two types of nodes: symbol nodes and regionnodes, de�ned below. These nodes are arranged in levels: any path through the tree enoun-ters symbol nodes and region nodes in alternation. The root of the tree, EXPRESSION ,is a region node representing the entire image.Symbol Node: A symbol node represents a mathematial symbol. The symbol node storesthe identity of the symbol (as provided by symbol reognition), the lass of the symbol(as de�ned in Table 1), and the attributes of the symbol (the bounding box andentroid oordinates). A symbol node is the root of a subtree of the BST. SupposeS is a symbol represented by symbol node snode. The hildren of snode are regionnodes representing image subregions that ontain baselines nested relative to S.Region Node: A region node represents an image region whih ontains a baseline, possi-bly with nested baselines. The image region is de�ned relative to the symbol that isthe parent of this region node; the spatial relationship is aptured by the region label,de�ned below. The region node is the root of a subtree; the hildren of the region10



node are symbols that form the region's dominant baseline.Region Label: All region nodes in a BST have a region label, one of ABOV E, BELOW ,SUPER, SUBSC, UPPER, LOWER, TLEFT (top-left), BLEFT (bottom-left),CONTAINS and EXPRESSION . As shown in Figure 5, the lass of a symboldetermines what regions are de�ned relative to the symbol.In a Baseline Struture Tree, region nodes represent all mathematially-important spatialrelationships other than horizontal adjaeny. Horizontal adjaeny has speial status be-ause it de�nes baselines. Symbols that are on the same baseline are represented in the treeas ordered siblings.These de�nitions are illustrated using the Baseline Struture Tree shown in Figure 2b.This tree ontains four region nodes (EXPRESSION , SUPER, ABOV E, BELOW ) andeight symbol nodes (A + � � D C B 2). The dominant baseline of the whole expression is(A + � � D). The `2' is the sole symbol in the baseline loated BELOW the �rst `�'. The`C' is the sole symbol of the baseline that is supersripted (SUPER) relative to the `A'.2.3 Symbol ClassesIn the Layout Pass, Symbol lasses and the parameters  (entroid ratio) and t (thresholdratio) are used to de�ne image regions around symbols. As is desribed in Setion 3, theLayout Pass reognizes the symbols in the dominant baseline of a region, de�nes subregionsaround these symbols, and searhes for nested baselines in these subregions. This setionde�nes the symbol lasses and regions that are used, and de�nes the test for determiningwhether a symbol lies in a region. These de�nitions omprise the symbol layout model.The entroid of a symbol is a point used to test whether a symbol lies within a region.This is a ommon tehnique in the literature on reognition of mathematial notation, �rstused in the work of Anderson [25℄. Collapsing a symbol to a single point allows for simplergeometri analyses. The entroid X-loation is always entered in the bounding box, at11



Table 1: Symbol lasses and their assoiated attributes. The ABOVE, BELOW, SUPERand SUBSC thresholds are used to de�ne the regions assoiated with eah symbol, as shownin Figure 5. The values maxY and minY are bounding box oordinates, and H is thebounding box height (maxY - minY). The entroid ratio, , and the threshold ratio, t, areboth in the range [0,0.5℄, with t � .Symbol Class y-entroid ThresholdsBELOW ABOVE SUBSC SUPERNon-Sriptedunary/binaryoperators and relations(+,-,=,�,!,et.) 12H 12H 12H � �Open Braket(; f; [ H minY maxY � �Root (p ) H minY maxY tH H � (tH)Variable Range�; R ;�;[;\ 12H tH H � (tH) tH H � (tH)Plain: Asender0. . . 9, A. . . Z, b,d,f,h,i,k,l,t,�;�;�;�;�;�;	; 
; Æ; �; � H tH H � (tH) tH H � (tH)Plain: Desenderg,p,q,y, ; �; �; �; �;  H � (H) 12H + t12H H � t12H 12H + t12H H � t12HPlain: CenteredAll other symbols(inluding Close Brakets) 12H tH H � (tH) tH H � (tH)
(minX + maxX)/2. As shown in Table 1, the omputation of the entroid Y-loationdepends on the entroid ratio , and on whether the symbol is an asender, desender, orentered.A region is an axis-parallel box; the region inludes the left and bottom edges of the box,but not the right and top edges. The Layout Pass tiles the image with regions. All pointsin the image belong to exatly one region, so eah symbol's entroid is loated in exatlyone region.Every symbol is assigned a symbol lass, as de�ned in Table 1. The symbol lass deter-mines where nested baselines an be loated relative to the symbol. This is illustrated inFigure 5.Ambiguity, in the form of overlapping regions, an arise in the region de�nitions shown12
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Plain: Centered Plain: Centered(Close Braket)Figure 5: Regions assoiated with the di�erent symbol lasses. The right end of the HOR,SUPER, SUBSC, UPPER and LOWER regions is loated at the minX oordinate of the nextbaseline symbol. The left end of the LOWER and UPPER regions is the maxX oordinateof the previous baseline symbol. Y-thresholds for eah region are de�ned in Table 1.in Figure 5. Consider two adjaent baseline symbols, where the symbol on the left has aSUPER or UPPER region, and the symbol on the right has an UPPER region (i.e. is in lassVariable Range). The SUPER or UPPER region of the left symbol overlaps the UPPERregion of the right symbol. Similarly, the SUBSC or LOWER region of the left symboloverlaps the LOWER region of the right symbol. For example, in the expression `x2 10000Pi=1 i',the symbols 2 and 1 fall in both the SUPER region of the `x' and the UPPER region of theP. This ambiguity is resolved in the Layout Pass using analysis of loal ontext (funtionColletRegions in Setion 3.1).
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3 Layout PassThe Layout Pass produes a Baseline Struture Tree from a list of symbols with boundingboxes. It identi�es the dominant baseline of the expression, partitioning any symbols noton the dominant baseline into regions relative to the dominant baseline symbols. Thisproess is applied reursively in the partitioned regions. The left-to-right reading order ofmathematial notation is exploited to onstrut the BST eÆiently without baktraking,even when symbol layout is irregular. Extensive researh went into de�ning the searhfuntions Start and Hor, disussed below. The inspiration for this direted searh amefrom the linear positional grammar work of Costagliola et. al. [13℄, where syntax-drivenlinear sanning of the input is used to parse visual languages. The diretionality present inmathematial notation made it possible for us to adapt these ideas for use in the Layoutpass.Eah input symbol s has bounding box oordinates denotedminX(s),minY (s),maxX(s),andmaxY (s). The Layout Pass begins with a preproessing step, in whih Table 1 is used toassign eah input symbol a symbol lass lass(s), a entroid (entroidX(s), entroidY (s)),and region thresholds (aboveThreshold(s), belowThreshold(s), superThreshold(s), subsThreshold(s)).After this preproessing, funtionBuildBST reates the BST. Setion 3.1 de�nes BuildBSTand the most important funtions it uses: ExtratBaseline, Start,Hor, and ColletRegions.Supporting funtions are de�ned in Setion 3.2.The major steps in the Layout Pass are as follows. They are illustrated in Figure 6.1. The initial Baseline Struture Tree onsists of a root EXPRESSION node, with asorted list L of symbols as hildren. Symbols are sorted by minX oordinate. R isthe image region that ontains the entire expression.2. Find the symbol whih begins the dominant baseline in region R. This is omputedas S1 = Start(L). The Start funtion heks for ases in whih symbol S1 is not theleftmost symbol in list L. For example, the limits of a P an begin to the left of the14



P.3. Find S2 : : : Sn, the rest of the symbols in the baseline that begins with symbol S1.This is done by funtion Hor. Care is taken to handle irregular symbol layout, suhas in the expression in Figure 6.4. Add S1 : : : Sn, the symbols in the dominant baseline in region R, to the Baseline Stru-ture Tree. The symbol nodes are inserted as o�spring of the region node representingR.5. The symbols of the dominant baseline, S1 : : : Sn, are used to partition region R intosubregions, using the region de�nitions from Figure 5. All the symbols in list L thatare not part of the dominant baseline are assigned to one of these subregions.6. For eah non-empty subregion found in the previous step, add a Region Node to theBaseline Struture Tree. Reursively apply steps Steps 2 to 6 to eah of these regions.In summary, the Layout pass reursively applies searh funtions and image partitioning toreognize dominant and nested baselines. The searh funtion Start is used to loate theleftmost symbol of the dominant baseline, and Hor is used to loate suessive symbols ina baseline.3.1 Top Level Funtions in the Layout PassThis setion and the next setion provide a funtional spei�ation of DRACULAE's LayoutPass. The input, whih is passed to funtion BuildBST , is a list of symbol nodes, annotatedwith bounding box oordinates. The output is a Baseline Struture Tree desribing thelayout of these symbols.Funtion names are followed by a type spei�ation. The parameter and return-valuetypes are BST (Baseline Struture Tree), SNODE (a symbol node, whih may be the root ofa subtree), RNODE (a region node, whih may be the root of a subtree), REGION LABEL15



Input:
B 2+C D

EXPRESSION

A

DA B 2

TLEFT

C

+

EXPRESSION

(a) Initial BST (b) First HOR Result
D

C

TLEFT

A +

B 2

BELOWABOVE

EXPRESSION

ABOVE BELOW

B 2

SUPER

C

A + D

EXPRESSION

() Seond HOR Result (d) Final BSTFigure 6: BST onstrution by the Layout Pass for the expression in Figure 2a. (a) Theinitial BST. This is reated in funtion BuildBST , before invoking ExtratBaseline. TheStart funtion loates the leftmost symbol in the dominant baseline, indiated here by airle around the `A'. (b) The tree after Hor has found the next baseline symbol (`+');region partitioning plaes the `C' into the TLEFT region of the `+'. () The tree after thethird baseline symbol (`-') is loated by Hor. (d) The �nal tree, after the last two baselinesymbols have been found, and the TLEFT partitioning has been re�ned. In this example,the nested baselines do not require further proessing as they are single symbols.(one of the ten region labels de�ned in Setion 2.2), SNODE LIST (a list of symbol nodes),RNODE LIST (a list of region nodes), REGION LABEL LIST (a list of region labels),BOOLEAN, and INTEGER. When several arguments have the same type, integer subsriptsare added. Arguments are referened using the same names, written in lower ase.For list notation, jlistj is the number of items in a list, list � item denotes removal ofan item from a list, and (item) denotes a list onsisting of a single item.BuildBST (SNODE LIST !BST 0): Construt a Baseline Struture Tree from snode list,the input list of symbol nodes. 16



1. Let root be a region node labelled EXPRESSION . If jsnode listj = 0 Returnroot.2. Let snode list0 = SortSymbolsByMinX(snode list).3. Make eah symbol node in snode list0 be a hild of root.4. Return ExtratBaseline(root).ExtratBaseline (RNODE ! RNODE 0): Find the dominant baseline in the region rep-resented by rnode and update the part of the BST that is rooted at rnode. Makereursive alls to add nested baselines.1. Let snode list = Symbols(rnode). If jsnode listj � 1 Return rnode.2. Let sstart = Start(snode list).3. Let baseline symbols = Hor((sstart),snode list).4. Let updated baseline = ColletRegions(baseline symbols).5. Update the tree rooted at rnode by disarding the hildren of rnode, and re-plaing them by the symbol nodes in updated baseline. (Eah symbol node inupdated baseline is itself the root of a subtree.)6. Now use reursion. For eah region node hildrnodei that is a hild of a symbolnode in updated baseline, replae this hildrnodei by ExtratBaseline(hildrnodei).7. Return rnode.Start (SNODE LIST ! SNODE 0): Find the symbol node whih begins the dominantbaseline in snode list. Compare the last two symbols in snode list, remove the dom-inated symbol, and reurse. Symbol sn dominates the previous symbol, sn�1 if (a)Overlaps(sn,sn�1), or (b) Contains(sn,sn�1), or () lass(sn) = Variable Range and:IsAdjaent(sn�1,sn). Otherwise, sn�1 dominates sn.
17



Hor ((SNODE LIST1,SNODE LIST2) ! SNODE LIST 0): Find the symbols of thebaseline that begins with the symbols in snode list1, and ontinues with a subset of thesymbols in snode list2. The symbols of the baseline are returned as snode list0. Anynon-baseline symbols in snode list2 are partitioned into regions: these nodes are plaedbelow the hild region nodes of the symbols in snode list0. The non-baseline symbolsare partitioned into TLEFT;BLEFT;ABOV E;BELOW and CONTAINS regionsrelative to the last loated baseline symbol, b. Symbols in TLEFT and BLEFTregions are later reassigned by the ColletRegions funtion.1. If jsnode list2j = 0 Return snode list1.2. Let urrent symbol be the last symbol of snode list1.3. Let (remaining symbols,urrent symbol0) = Partition(snode list2,urrent symbol).4. In snode list1, replae urrent symbol by urrent symbol0.5. If jremaining symbolsj = 0 Return snode list1.6. If lass(urrent symbol0) = Non-Sripted then ReturnHor(ConatLists(snode list1,(Start(remaining symbols))),remaining symbols).7. Let SL = remaining symbols.8. While jSLj 6= 0(a) Let l1 be the �rst symbol in SL.(b) If IsRegularHor(urrent symbol0,l1) then ReturnHor(ConatLists(snode list1,(ChekOverlap(l1, remaining symbols))),remaining symbols ).() Let SL = SL� l1.9. Let urrent symbol0 = PartitionF inal(remaining symbols, urrent symbol0).10. Return ConatLists(snode list1,(urrent symbol0)).18



ColletRegions (SNODE LIST ! SNODE LIST 0): snode list is a list of symbol nodeswhose subtrees ontain temporary regions labelled TLEFT and BLEFT , reatedby funtion Hor. The symbols in a TLEFT region are reassigned to SUPER (aregion assoiated with the preeding baseline symbol) or UPPER (a region assoiatedwith the urrent baseline symbol) regions; similarly, symbols in BLEFT regions areassigned to SUBSC or LOWER regions. For brevity we show only the TLEFT asehere.1. If jsnode listj = 0 Return snode list.2. Let s1 be the �rst symbol of snode list. Let s01 = s1. Let snode list0 =snode list� s1.3. If jsnode listj > 1 then(a) Let s2 be the seond symbol of snode list. Let s02 = s2.(b) Let (superList,tleftList) = PartitionSharedRegion(TLEFT ,s1,s2).() Let s01 = AddSuper(superList; s1).(d) Let s02 = AddT left(tleftList, RemoveRegions((TLEFT ),s2)).(e) In list snode list0 replae s2 by s024. If lass(s01) = Variable Range(a) Let upperList = (TLEFT ,ABOVE,SUPER).(b) Let s01 =MergeRegions(upperList,UPPER,s1).5. Return ConatLists((s01),ColletRegions(snode list0)).3.2 Supporting Funtions in the Layout PassThe following funtions, listed in alphabetial order, are used by the top-level funtionsshown in the previous setion. 19



AddAbove, AddBelow, et. ((SNODE LIST ,SNODE) ! SNODE 0): The symbolnodes in snode list beome grandhildren of snode. For AddAbove, they are plaedas hildren of an ABOVE region node. Funtions AddBelow, AddSuper, AddSubs,AddContains, AddTleft, and AddBleft are de�ned analogously.ChekOverlap ((SNODE,SNODE LIST ) ! SNODE 0): Look through snode list forNon-Sripted symbols whih horizontally overlap snode, tested via the Overlaps fun-tion. Return the widest suh symbol if one exists. If there are no suh symbols, returnsnode.ConatLists ((SNODE LIST1,SNODE LIST2) ! SNODE LIST 0): Conatenate thesymbol node lists snode list1 and snode list2, returning the resulting list.Contains ((SNODE1,SNODE2) ! BOOLEAN 0): Return true if snode1 6= snode2,lass(snode1) = Root, minX(snode1) � entroidX(snode2) < maxX(snode1), andminY (snode1) � entroidY (snode2) < maxY (snode1).HasNonEmptyRegion ((SNODE,REGION LABEL)!BOOLEAN 0): Return true ifsnode has a hild region node rnodewith region label region label, and jSymbols(rnode)j> 0.IsAdjaent ((SNODE1,SNODE2)! BOOLEAN 0): Test whether snode1 is horizontallyadjaent to snode2, where snode1 may be to the left or right of snode2. Return trueif lass(snode2) 6= Non-Sripted, snode1 6= snode2, andsubsThreshold(snode2) � entroidY (snode1) < superThreshold(snode2).IsRegularHor ((SNODE1,SNODE2) ! BOOLEAN 0): Return true if(a) IsAdjaent(snode2,snode1), or (b)maxY (snode1)�maxY (snode2) andminY (snode1)�minY (snode2), or () lass(snode2) is Open Braket or Close Braket, andminY (snode2)� entroidY (snode1) < maxY (snode2).20



MergeRegions ((REGION LABEL LIST ,REGION LABEL,SNODE)! SNODE 0):For every region label in region label list, �nd all hildren of snode that have this la-bel. All of these region nodes are then merged into a single region node labelledregion label.Overlaps ((SNODE1,SNODE2)! BOOLEAN 0): Test whether snode1 is a Nonsriptedsymbol that vertially overlaps snode2. For example, in Figure 2a the fration line over-laps the entroid of the `B'. Return true if (a) snode1 6= snode2, and (b) lass(snode1)= Non-Sripted, and () minX(snode1) � entroidX(snode2) < maxX(snode1), and(d) :Contains(snode2,snode1), and (e) eah of (i) and (ii) are false: (i) lass(snode2) isOpen Braket or Close Braket, minY (snode2)� entroidY (snode1)<maxY (snode2),and minX(snode2) � minX(snode1). (ii) lass(snode2) is Non-Sripted or VariableRange, and maxX(snode2) - minX(snode2) > maxX(snode1) - minX(snode1).Partition ((SNODE LIST ,SNODE)! (SNODE LIST 0,SNODE 0)): The symbol nodesin snode list are tested for belonging in regions of snode. Symbol nodes that fail thetest are returned in list snode list0. Symbol nodes that pass the test are plaed belowthe appropriate hild region nodes of snode; the updated subtree is returned as snode0.PartitionFinal ((SNODE LIST ,SNODE)! SNODE 0): The symbol nodes in snode listare plaed below supersript or subsript region nodes relative to snode, where snodeis the last symbol on a baseline.PartitionSharedRegion ((REGION LABEL,SNODE1,SNODE2) !(SNODE LIST 01,SNODE LIST 02)): If region label is TLEFT, the symbols in theTLEFT region of snode2 are partitioned into two lists: snode list01 onsists of thesymbols in the SUPER region of snode1 and snode list02 onsists of the symbols inthe UPPER region of snode2. Analogous omputation is done when region label isBLEFT, this time partitioning the BLEFT region into a SUBSC and LOWER region(not shown). 21



1. Let rnode = the hild region node of snode2 that has region label TLEFT . LetSL = Symbols(rnode).2. If lass(snode1) = Non-Sripted, then Let snode list01 be an empty list.3. Else If lass(snode2) 6= Variable Range, or lass(snode2) = Variable Range andHasNonEmptyRegion(snode2, ABOV E) is false, then Let snode list01 = SL.4. Else If lass(snode2) = Variable Range and HasNonEmptyRegions(snode2, ABOV E)then snode list01 = (l1,l2,: : :,li) where l1 is the �rst symbol of SL and li is therightmost symbol in SL suh that IsAdjaent(li,snode2) holds.5. Return (snode list01,SL - snode list01).RemoveRegions ((REGION LABEL LIST ,SNODE)! SNODE 0): Remove all hildregion nodes from snode that math any of the labels in region label list.SortSymbolsByMinX (SNODE LIST ! SNODE LIST 0): Sort snode list, a list ofsymbol nodes, into order of inreasing minX bounding box oordinate.Symbols (RNODE ! SNODE LIST 0): Returns the hildren of rnode as a list.4 Lexial AnalysisFollowing the onstrution of the Baseline Struture Tree in the Layout Pass, the LexialAnalysis pass transforms the BST into a Lexed BST using a set of tree transformations thatreognizes groups of adjaent input symbols that represent single mathematial symbols.Two kinds of groups of input symbols are reognized in this pass: ompound symbols, whihare single-baseline groups of input symbols that represent a single mathematial symbol(e.g. equal signs, deimal numbers, funtion names), and struture symbols, multi-baselinegroups of input symbols that imply a mathematial symbol by its loal strutural ontext(e.g. frations, limits, aents on symbols). The result of the Lexial pass is a tree in whih22
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(d) (e) (f)Figure 7: Examples of Tree Transformation Rules in the Lexial Pass. The pattern (leftside) of eah rule is searhed for depth-�rst in a BST. If the pattern mathes a subtree,the subtree is replaed by the right side of the rule, and then searhing ontinues. We use[Region Node℄ and [Symbol Node℄ to represent any region node or symbol node respetively.[Baseline℄ represents a list of symbol nodes, while `...' represents an arbitrary list of regionor symbol nodes. Similar to rules () and (d), there is a omplement for rule (f) that is notshown to loate simple hoie notation where the bottom symbol is found �rst.these mathematial symbols are expliitly identi�ed for parsing by Expression Analysis inthe next pass.Some example Lexial Analysis transformation rules are shown in Figure 7. Eah of theserules searhes the BST for the pattern of a partiular mathematial symbol and restruturesthe tree to provide an expliit label and grouping of the input symbols for the mathematialsymbol. As eah group of symbols is reognized and relabelled as a mathematial symbol,the bounding box of the reognized unit is omputed from its omponent symbols. Amongother uses, these bounding boxes may be used to provide feedbak in user interfaes orresolve ambiguities (although urrently DRACULAE does not make use of these values).The Lexial Analysis pass is designed to easily aommodate di�erent dialets of math-ematis simply by adding or replaing transformation rules for the mathematial symbolsof the dialet. For some dialets and mathematial symbols, attention to the ordering ofthe rules is neessary beause the patterns of two or more transformation rules may ontain23



shared symbols or strutures, or beause the pattern of one transformation is only produedafter the appliation of another transformation.4.1 Compound SymbolsThe Lexial Pass begins by applying a set of tree transformation rules to searh the BSTfor ompound symbols (Figure 7a). Compound symbols are sequenes of input symbols ona single baseline that are to be treated as single mathematial symbols, for example the `s',`i ' and `n' of the mathematial funtion name `sin', the grouping of sequenes of digits intonumbers, and the olletion of one line above another into an equals sign. These orrespondto the treatment of pairs of haraters suh as `<' and `=' as the single operator `<=' inprogramming language ompilers.For the mathematial dialet urrently reognized by DRACULAE, the Lexial passreognizes the following ompound symbols (single baseline strutures): deimal numbers(e.g. 1, .01, 1.01), funtion names (e.g. ln, lg, log, exp, sin, os, tan), and over-segmentedsymbols (e.g. any of =;�;�=; k;�;�;!; ).DRACULAE urrently does not use any whitespae analysis: analysis depends onlyon input symbol adjaeny, not on the amount of whitespae between them. As a result,Lexial Analysis loates funtion names simply by searhing baselines for adjaent letterswhih form one of the known funtion names, replaing the group of letters with a singlesymbol node labelled with the funtion name. This is adequate when variables and onstantnames onsist of single letters. However, onsider `ost = a � x', where the urrent systemwould identify `ost' as as `os' and `t'. In future we hope to employ whitespae analysis toimprove reognition of multi-letter funtion and variable names.The Lexial pass uses loal adjaeny to reognize ompound symbols. For instane,the two unonneted lines of an equals sign may be represented as two separate lines in theBST, one above or below the other. The Lexial pass uses a tree transformation to searhthe BST for this pattern, and replaes it with a single symbol node labelled `=' (Figure 7a).24



A similar method is used in [26℄ to detet ompound symbols.4.2 Struture SymbolsFollowing the reognition of ompound symbols, the Lexial pass applies a set of transfor-mation rules to detet struture symbols (Figure 7b-f). Struture symbols are multi-baselinegroups of input symbols that imply a mathematial symbol by its loal ontext. Examplesare frations, limits, root signs and aents. This is analogous to a programming languageompiler using ontext to reognize that a parenthesized subexpression represents an argu-ment list or array index.Figure 7b-f show example tree transformation rules used to identify and relabel squareroots, frations, aents and simple mathematial hoie notation in a BST in DRACULAE.At the end of the Lexial pass, normally no region labels remain unless the input BSTontains ompound symbols or symbol strutures not de�ned in the dialet.5 Expression AnalysisAfter Lexial Analysis has identi�ed ompound and struture symbols in the Lexed BST,the Expression Analysis pass uses a mathematial expression grammar and a set of treetransformations to reate the �nal operator tree. In an operator tree, internal tree nodes areoperators and leaf nodes are operands. Operator trees enode all the information neessaryto evaluate the represented mathematial expression in the semantis of the dialet.5.1 Expression Syntax AnalysisThe expression grammar spei�es the preedene and assoiativity of mathematial opera-tors in the mathematial dialet using a modi�ation of the traditional ontext-free expres-sion grammars used in programming language ompilers [16℄. The Lexed BST produedby the Lexial pass is �rst linearized into a text string, and then parsed using the TXL25



parser to reate an expression parse tree analogous to those produed by the syntax passof a ompiler. At present the DRACULAE expression grammar parses only a subset ofthe dialet of mathematis reognized by the Lexial pass, but this subset an easily beextended simply by adding new grammatial forms to the expression grammar.Expression Analysis returns an error if the parse fails. This ould be either beausethe expression is malformed, or beause it is outside of the urrent dialet. Although theexpression an always be displayed to the user (beause the Layout and Lexial Passesalways produe a result), it is inappropriate to evaluate it in these irumstanes.5.2 Expression Semanti AnalysisSemanti analysis onsists of reognizing the semantis of the parsed expression to reognizeimplied operators (suh as adjaent operands meaning multipliation), to analyze the typesof operands to infer type onversion operators, and to reorder operands to preede theiroperators in the textual output of the Expression pass. These tasks are ahieved using aset of tree transformation rules that searh for these patterns in the expression parse treeand then restruture the tree to add the impliit operators and reorder operands. Theserules are simpli�ed by the fat that analysis and labelling of struture symbols was alreadyhandled in the Lexial pass.The operator tree output by the Expression Analysis pass is in a form that an be moreor less diretly translated and exeuted by a Computer Algebra System suh as Mathematia[27℄ or Maple [28℄.6 Test ResultsAt the time of this writing, the only publily available ground-truthed set of mathemat-ial expressions is in the University of Washington English/Tehnial Doument ImagesDatabase III (UW-III)[29℄. The mathematial notation omponent of UW-III is omprised26



of 25 ground-truthed doument images ontaining mathematial expressions. Developingmethods for evaluating doument reognition systems is an ative area of researh (e.g. [30℄).Most of these methods require a large representative orpus of douments with ground truth.In addition to failitating evaluation, suh orpora allow automati dedution of languagede�nitions and probabilisti ontextual information (as has been done for natural languageunderstanding [31, 32℄). In ontrast, the lak of further orpora of mathematial expres-sions has resulted in researhers designing reognition systems that desribe only a singlemathematial dialet, de�ned using sample expressions and (perhaps largely) introspetion.Fortunately work is ongoing to establish a new orpus of typeset and handwritten mathe-matial expressions [33℄.Results for mathematial notation reognition have most ommonly been presented interms of reognition suess or failure on a small set of sample expressions, or using theperentage of orretly reognized expressions in a set of test expressions (e.g. [26, 34℄).Reently some new metris have been proposed to better haraterize errors in baselinestruture [35℄, expression syntax [36℄, and overall system performane [36℄.In Setion 6.1 we assess DRACULAE's Lexed BST reognition performane on the UW-III database using two new metris for baseline struture auray, namely (1) the ratioof orretly reognized baselines to total baselines in the ground truth representation ofan expression, and (2) the perentage of symbols or tokens in a BST that are loatedon their orret baselines. In Setion 6.2 we desribe some informal results onerningthe performane and usability of DRACULAE in the ontext of an on-line mathematialexpression entry system, the Freehand Formula Entry System [18, 19℄.6.1 Results for Typeset Expressions in UW-IIIWe used the UW-III symbol and bounding box ground truth data to test DRACULAE'sLexed BST output (see Setion 4). This test data was not used during system development.The test set was made using the ground truth for 23 of the 25 pages in the database27



(pages 20 and 21 were removed as they ontained matrix expressions). Expressions spanningmultiple lines were broken into separate subexpressions. The �nal test set ontained 73expressions omprised of 1917 input symbols, with a mean of 26.3 symbols per expression.The LATEX ground truth for these expressions ontained 648 baselines with 1919 tokens,with means of 3.0 tokens per baseline, and 8.9 baselines/expression. Tokens do not alwaysorrespond to input symbols, primarily due to groupings of letters in funtion names (e.g.`sin', `ln') and to aented symbols. Symbols and their aents are often ground truthed asa single symbol in UW-III, though they are represented as two tokens (symbol and aent)in LATEX. Most baselines ontain few symbols: 62% are omprised of a single token, while84% are omprised of three tokens or less.We ran DRACULAE using a series of layout model parameters. For eah test expressionwe ompared DRACULAE's LATEX output to the UW-III ground truth LATEX. This om-parison was done using a TXL program, as explained below. Table 2 shows the thresholdvalues that were used. No test was performed for  = 1=4; t = 1=3 as this results in subsriptregions that are higher than the Y-entroid for symbol lasses suh as Plain Asender andDesender.For eah test expression a ontext-free grammar spei�ed in TXL is used to parse theDRACULAE output and UW-III ground truth LATEX representations. The parse trees arethen ompared. Idential trees orrespond to perfet struture (Lexed BST) reognition.For non-mathing trees, the TXL program outputs a list of baseline pairs orresponding tothe two trees, starting with the �rst mismathing pair. This list is used, along with imagesorresponding to the LATEX strings and the original doument images, to manually loateadditional errors.We ount errors of two types. The �rst is the number of inorret baselines, where aninorret baseline is one in whih any of the following are true: (1) the list of tokens on thebaseline do not math ground truth, (2) the baseline is nested relative to a token whih doesnot math the ground truth token, or (3) the depth in the BST or region of the baseline28



Table 2: UW-III database test results. Eah table entry shows the result of running DRAC-ULAE with di�erent entroid and threshold ratio values  and t (see Table 1). Given arethe number of orretly plaed tokens, number of orret baselines, number of inorretbaselines, and the number of orret expressions. There are 1919 tokens, 648 baselines and73 expressions in the ground truth. We report the perentage of orret tokens to totalground truth tokens and orret baselines to total ground truth baselines.Threshold Centroid Ratio ()Ratio (t) 1/3 1/41/3 Tokens Corret: 1642 (86%)Baselines: Corret: 463 (71%)Inorret: 251Expressions Corret: 20 (27%)1/4 Tokens Corret: 1728 (90%)Baselines: Corret: 513 (79%)Inorret: 165Expressions Corret: 28 (38%) Tokens Corret: 1728 (90%)Baselines: Corret: 513 (79%)Inorret: 165Expressions Corret: 28 (38%)1/6 Tokens Corret: 1679 (87%)Baselines: Corret: 471 (79%)Inorret: 146Expressions Corret: 27 (37%) Tokens Corret: 1679 (87%)Baselines: Corret: 471 (79%)Inorret: 146Expressions Corret: 27 (37%)1/8 Tokens Corret: 1679 (87%)Baselines: Corret: 471 (79%)Inorret: 146Expressions Corret: 27 (37%) Tokens Corret: 1658 (86%)Baselines: Corret: 453 (70%)Inorret: 155Expressions Corret: 27 (37%)does not math ground truth. Table 2 shows the number of properly reognized baselines.The seond type of error is the number of misplaed tokens. A token is misplaed ifit appears on a baseline other than that in the ground truth. A properly plaed tokenappears on the same baseline, at the same depth, in the same region (e.g. supersripted orsubsripted), and nested relative to the same parent token as in the ground truth. Aordingto this de�nition, a token may be properly plaed on an inorret baseline. Table 2 shows thenumber of properly plaed tokens. Measuring tokens provides a more informative measurethan measures based on entire expressions or baselines.The total number of expressions reognized without error is very low. However, theperentage of properly plaed tokens is 86 - 90%. This means that DRACULAE plaes29



most symbols in the test set on their proper baseline.The most ommon soure of errors is mis-detetion of sripted and horizontally adjaentsymbols. The de�nition of supersript, subsript and horizontal regions for desending lasssymbols in our urrent symbol layout model appears to be partiularly poor. For example,when a `p' is followed on a baseline by a Plain Asender symbol, this is often mis-detetedas a supersript.Other errors inlude (1) mis-detetion of kerned symbols as below rather than subsriptedrelative to the parent symbol, (2) mis-detetion of a lose braket as below instead of to theright of a fration line, beause the entroid of the braket is below the fration line, (3) abug in the partitioning routines that yields two additional tokens for one of the expressions,and (4) a small number of additional tokenization errors.The tests onsist of 73 expressions, run for seven ombinations of t and  values, for atotal of 13,403 input symbols. These tests took 206 seonds to exeute as a bath proesson a 900MHz Pentium III with 256MB of RAM running Linux. This rate of 65 symbols perseond inludes the time taken for TXL to re-interpret DRACULAE seven times.A number of researhers have reently reported properly reognizing the symbol layoutof over 90% of the mathematial expressions in their test sets [26, 33, 37, 38, 39, 40℄. Itis diÆult to meaningfully ompare these results. The test sets used by other authors aregenerally not publily available. Also, di�erent authors use di�erent metris. We view ourmetris as an important new tool for evaluating reognition results at a level that is betweensymbol reognition and operator trees.A system that makes use of more layout information, suh as whitespae and pointsize information, and/or more sophistiated ontextual analyses would perform better thanour urrent system. It is interesting how well DRACULAE is able to perform without suhinformation. In the future we plan to extend our layout model. Some alternative approahesto analyzing layout in mathematial expressions inlude penalty funtions [38℄, projetionpro�les [26℄, de�ning `strong' and `weak' region areas using a training set [37℄, virtual link30



networks [37, 39℄, onvex hulls [7℄, the generation of multiple interpretations to ope withambiguity [41℄, and the inorporation of probabilisti information [20, 42℄.We are also beginning to explore reognition of tabular strutures suh as matries andlists of expressions [43℄. Existing approahes to matrix reognition inlude [37, 39, 40, 44℄.6.2 Testing DRACULAE on Handwritten Expressions Using FFESWe have informally tested DRACULAE's reognition apabilities for handwritten mathe-matial notation. These tests use the Freehand Formula Entry System (FFES), an on-lineinterpretive interfae for entering mathematial expressions [18, 19℄. This interfae allowsa user to enter, delete, move, and relabel symbols. DRACULAE is given the urrent listof symbols with bounding boxes, and provides an interpretation of the urrent expression.Sample expressions reated using FFES are provided in Table 3. Eah of the expressions inthis table are proessed in well under a seond.Table 3 shows that DRACULAE is robust: all inputs are mapped to LATEX output.Lexed BST (and LATEX) output is produed even if an expression ontains unknown and/orunsyntati baseline strutures, as in Table 3b, d, e. The use of operator dominane in thesearh funtions provides some skew tolerane (Table 3b). Large, deeply nested expressions(Table 3e) and nested aents (Table 3b) are handled.Operator trees are produed for expressions that fall within the dialet de�ned in theurrent Expression Analysis pass. In Table 3a, the impliit multipliation of `a' and `b' ismade expliit in the operator tree.The disambiguation of SUPER=UPPER and SUBSC=LOWER regions is fragile. Forexample, the limits of adjaent Variable Range Symbols are improperly segmented in Table3d, where the `1' is mistakenly grouped with the seond P symbol. (The LATEX string hasbeen altered to make this error easily visible.) Analysis of whitespae would orret manysuh errors.Some usability results for FFES/DRACULAE were obtained in an experiment omparing31



Table 3: Reognition results for sample expressions reated using the Freehand FormulaEntry System (FFES). For these expressions threshold ratio t = 1=6 and entroid ratio = 1=4 were used.Input Expression LATEX (Lexed BST) Operator Tree(a) (pab+b3 )2 EXPONENT
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on-line expression entry time using di�erent feedbak mehanisms [19℄. All 27 partiipantsin the experiment suessfully entered the trial expressions, and all reported that theyfound bitmaps produed from DRACULAE's LATEX output to be useful. Twenty-four of thepartiipants (89%) reported that they were interested in using a system similar to FFESwith DRACULAE again.
32



7 ConlusionWe have presented a methodology and implementation (DRACULAE) for rapid, robustreognition of typeset and handwritten mathematial expressions. DRACULAE makes useof searh funtions that exploit the left-to-right reading order of mathematial notationand operator dominane to reursively and eÆiently extrat baselines in a mathematialexpression.The Baseline Struture Tree (BST) is a simple hierarhial desription of symbol layoutin mathematial expressions. Tree transformation is used as an eÆient, ompat meansto express a series of restruturings of BSTs, from an initial list of symbols to an initialBST, a Lexed BST (translatable to LATEX), and �nally to an operator tree (translatable toComputer Algebra System languages).DRACULAE's arhiteture is similar to that of a ompiler. This provides a framework foroping with dialets, by separating symbol layout analysis, lexial grouping, syntax analysis,and semanti analysis. This arhiteture also makes the system easy to reon�gure.AknowledgementsWe would like to thank Edward Lank, Nik Willan and Genarro Costagliola for valuabledisussions and inspiration. We are grateful to Steve Smithies, Kevin Novins and Jim Arvofor making the Freehand Formula Entry System available. Last but not least we wish tothank the anonymous reviewers for their helpful omments. This researh is supported bythe Natural Sienes and Engineering Researh Counil of Canada.Referenes[1℄ D. Blostein and A. Grbave, \Reognition of Mathematial Notation," Handbook ofCharater Reognition and Doument Image Analysis, pp. 557{582. World Sienti�,33
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