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Abstract—We utilize Coates’ unsupervised feature learning
method and Ada-Boost to detect and recognize part label regions
in patent drawings. Image patches are harvested from training
data, and features are learned from patterns in image patches.
Angle distances between samples and feature banks are com-
puted, and used in Ada-Boost classifier. We extract image patches
with different sizes to counter the scale problem. An ensemble
Ada-Boost is used to classify pixels as text or background.
Meta-Boost is introduced to improve performance. The pixel
level detections are then grouped into ‘Connected Components’.
Several denoise methods are applied, followed by ‘Tesseract’
OCR. Our system achieves competitive performance without
using strong prior knowledge.

I. INTRODUCTION

The text detection methods have draw a lot of attention in
recent years. Locating text in natural scene images or patent
drawings poses a much more complicated problem than for
text lines in conventional documents. Classifiers which can
discriminate text from background and noise are required.
Considering texts in natural scenes or drawings may appear
in different fonts, sizes, orientations and illuminations, text
detection is a challenging problem.

To address this problem, several papers have been pub-
lished. Epshtein etc. [1] used Stroke Width Transform to detect
text in natural scene images. Lu etc. [2] used a linear object
erasing method to detect texts in machine drawings. Zhang
etc. [3] used Edge Gradients to extract character candidates
and grouped candidates with Graph Spectrum.

Instead of designing features and tuning parameters by
hand, an adaptive learning method might generate desirable
features automatically. They are independent from prior knowl-
edge of the target shape or color information. Despite the
dataset variations, the classifier generated are adapted to the
data.

Kavukcuoglu etc. [4] used the convolutional learning
method to learn sparse codings from the data. Meanwhile,
they also learned efficient encoders from the data to re-
duce the computation time. Coates etc. [5] tested several
unsupervised learning methods, such as sparse auto-encoder,
sparse restricted Boltzmann machine, K-means and Gaussian
Mixtures. In another paper, Coates etc. [6] made the use
of convolutional K-means to quantize the feature space into
several typical patterns, and utilized the pattern bank to classify

the target images. They claimed that convolutional K-means
yields results comparable to other methods while being much
simpler and faster to compute.

We propose an end-to-end system for part label detection
and recognition for patent drawing images. We implement
Coates’s unsupervised learning method, and use Ada-Boost to
extract labels from patent drawings. ‘Tesseract’ OCR [7] is
used to recognize text information in the detected Region Of
Interest (ROI).

II. USPTO ALGORITHM CHALLENGE

Text detection in patent drawings has a lot of practical
interest but is difficult [8]. The algorithm is useful in patent
image digitization and automation, so that we can for example
automatically display the text associated with part label overtop
of a diagram images as it is being read online. There were
two competitions held to encourage novel and efficient text
detection and recognition algorithms for patent, in ‘USPTO
Algorithm Challenge’ 1. There are totally 306 patent drawing
images in competition 1, divided into 3 subsets. They contains
178, 35, 93 images as training, provisional test and system
test sets, respectively. There are 139 additional images in
competition 2. We use data from competition 1 only in our
experiment.

The top 1 player team in challenge 1 used a Connected
Components (CC) based algorithm for text detection. they
examined the shapes of CCs. If a CC’s size, aspect ratio,
boundary length and etc. is out of a prefixed range, it will be
discarded. Template matching method was used to recognize
characters. A language model is used to filter recognized
symbols, word length is limited to 4 characters, and only a, c, f,
g are allowable English characters. Information from ’.html’
files were used to support recognition when confidence was
low.

We propose a method starting from pixel level, based on
the image patch patterns around label text and figure drawings.
The first stage detection will discard undesirable pixels and
select text candidates pixels. The second stage, it will group
the candidate pixels and find text in ROI.

1http://community.topcoder.com/longcontest/?module=
ViewProblemStatement&rd=15027&pm=11645
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Fig. 1: USPTO patent drawing part label detection and recog-
nition system.

III. ALGORITHM

Our system consists of two parts: Text detection and
character recognition. The detection system contains two
components: Unsupervised feature learning and Ada-Boost
classification, as in Fig. 1.

A. Convolutional K-means Feature Learning

The features used for different kinds of images and dif-
ferent tasks usually varies accordingly. The feature selection
is usually done by human with expert knowledge and image
processing experience. However, the possibility of making the
feature selection automatic and adaptive is attractive. Coates
etc. [6] proposed unsupervised feature learning method which
generates feature patterns from training images. Then they used
a Support Vector Machine to detect texts inside natural scenes.
The feature generation and classification are both automated.

In our system, the image pixel values are binarized to black
and white. Then the pixels are extracted from the images in
raster scan mode. Vast areas of the images are plain white
pixels, they are discarded to save time. The pixels are used
only when they are black. We extracted their neighbourhood
pixels as image patches. For example, if we extract 9×9 pixels
image patch, the 9 × 9 neighbourhood will then be reshaped
to a 1× 81 vector used as feature vector.

To address the scale problem, the image patches are pro-
duced with different sizes. We use 5× 5, 9× 9, 15× 15, and
19 × 19, to cover sizes from small to large. Different image
patch sizes are used to address structures in different scales.
Small image patch presents local structures while large patch
presents relatively global structures in the image.

We use Coates’ Convolutional K-means to learn features
from the extract feature vectors. The Convolutional K-means
method is similar to standard K-means, updating sample clus-
ter labels and shifting cluster centers iteratively to maximize
inter cluster distance and minimize intra cluster distance.
However, Convolutional K-means uses inner product distance
instead of Euclidean distance, as described below:

For sample matrix containing m samples with n features,
we make the matrix size as n × m, where each column
corresponds a sample vector and each row corresponds a

feature, X ∈ Rn×m. For initialization, we randomly pick k
samples from the sample matrix X , normalize each vector, so
cluster center matrix D ∈ Rn×k. k is the number of clusters.

The goal here is to minimize the equation:∑
i

||Dsi − xi||2 (1)

as in [6]. Each column of D is the normalized basis vector. si
is the hot encodings vectors with only one non-zero element.
si denoted which column of D that current sample xi is
belonging to, and its magnitude is the dot product distance
between the current sample and cluster center. xi is the
corresponding training sample. To search for matrix D with
minimum overall distances from samples to cluster centers, we
alternatively minimize D and si.

Having D fixed, we solve for si by letting si[k] = D(k)>xi

for k = argmaxjD
(j)>xi. Here , si[k] means kth elements

of si, D(j)> means the transpose of nth column of D. And
other elements in si except si[k] are set to zero.

Having si fixed, we solve for the minimum of equation (1)
for D in closed form. Notice that each column of D could be
solved independently. So for each column, we solve:∑

p

||yap − xp||2 (2)

Here y is a column of D, which is a center vector of a cluster.
p is the indices of samples that are assigned to column/cluster
y. ap is the single non-zero element in sp. xp are samples that
are classified to y. Compute the first derivative and set it to
zero, we have:

y =

∑
p apxp∑
p a

2
p

(3)

We now could compute each column y in matrix D using the
classified samples xp and their corresponding hot encodings
sp. Notice second derivative of (2) is always greater than or
equal to zero, so we are minimizing the distance.

We update D and s alternatively, and after certain number
of iterations (512 iterations in experiment) or the overall
distance is less than a threshold, we stop the learning process.
Columns of D is then used as a bank of quantized features.
These quantized features, unlike features designed with prior
knowledge, are directly learned from the data.

B. Ada-Boost Classification

The bank of quantized features we learned from the data
is used to classify the samples into two different classes,
foreground (part label) and background. For each sample, we
first compute the similarity to each of the cluster centers
(quantized features). This similarity is represented by the
angle distance between sample feature and bank of quantized
features. The angle distances are used as features for Ada-
Boost.

For unsupervised quantization using k clusters, the new
feature is a k×1 vector with each element as an angle distance.
For a training sample set with m samples, the training data for
Ada-Boost is a matrix with size k ×m. The training dataset



is labeled by {−1, 1}, indicating samples are background or
foreground correspondingly.

We use confidence-rated weak prediction Ada-Boost classi-
fier. The weak hypothesis of our Ada-Boost is based on a single
threshold decision stump. The confidence of the classifier on
each sample is the scalar distance from current sample to
the threshold [9]. Thus at each iteration of boosting, we find
the single threshold which divides the training samples with
minimum weighted error. And we reweight each sample based
on the classification correctness and confidence-rate. The mis-
classified sample weight will increase in the next iteration. The
final classifier is a weighted combination of classifiers in each
iteration.

C. ‘Tesseract’ OCR

As patent labels are usually drawn using typeset characters,
we expect it could be recognized by a typical OCR engine
with fairly high accuracy. Our system utilizes Tesseract [7]
to recognize the symbols, meanwhile, locate the texts more
precisely based on the OCR output, once we found the
bounding boxes of the part labels.

Tesseract is known for its accuracy on clearly printed text
documents. To be able to use Tesseract on patent drawings, we
need to firstly localize the text position. Connected foreground
image patches are grouped as ROIs. We extract black pixels
from ROIs and group them into CCs.

Several denoising methods are used to enhance recognition
results. To counter the case where one symbol is separated
due to noise or detector’s missing, we perform morphological
close, which is a morphological dilation followed by erosion,
capable of closing small gaps between CCs. We also imple-
ment a boundary object remover, where objects touching the
boundaries of the current ROI are removed. As most true
detections are in the center of the ROI, boundary objects
are mostly neighbouring objects. This process reduces false
positives.

Because some patent drawings have part label written
vertically with 90 degrees counter-clockwise rotation, pre-
processing is needed to rotate them back before recognizing.
The aspect ratio of each object is defined as its height divided
by its width. As horizontally written characters usually have
aspect ratio greater than 1, and vertically written characters
usually have aspect ratio less than 1. We count the numbers of
objects having aspect ratio greater than 1 or less than 1 in each
patent drawings. If the final vote decision suggests that they
are written vertically, we then rotate all ROIs in this patent
drawing 90 degrees clockwise. Then the OCR is performed
for each ROI.

We set page segment mode of Tesseract to treat each ROI
as a single text line. This setting is important as other settings
will produce much lower recognition results. The output of
OCR consists of two parts, the recognized symbol class and
the symbol location. Then symbol location from OCR output
is used above ROI position from detection to localize the part
label more accurately.

IV. EXPERIMENT

We use USPTO images provided by USPTO Algorithm
Challenge I for training and testing. The training set from the

competition is used for unsupervised learning and Ada-Boost
training, the ‘system’ set is used to evaluate our system. There
are totally 178 training and 93 testing images. Because images
are very large, to reduce computation time, they are resampled
to 1/6 of the original size before generating image patches.
Resample is done by bilinear interpolation, the aspect ratio is
preserved. In OCR, the images with original size are used, in
order to get sufficient recognition accuracy from Tesseract.

For each image, the competition holder has prepared
ground truth. They are polygon vertices values surrounding
part labels. The images contain figures, part labels, figure
labels, tables and document headers. The patent drawing
header is removed easily, because they are all at a fix position
on top of the image.

A. Convolutional K-means Experiment

The ground truth is created for each pixel, if the pixel is
inside foreground polygonal bounding boxes, it is considered
as a foreground sample. Otherwise, it’s background.

The image patches are extract as introduced in section
III. Feature vectors are then used to form training dataset
matrix. The unsupervised learning method is used to generate
quantized feature vectors from the training dataset. Here in
experiment, we use 128 clusters in each case, and we train
convolutional K-means for 512 iterations.
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Fig. 2: Two types of system architectures. Type I uses all
features in one single boost. Type II boosts using different
feature banks, and in a cascaded second stage, previous results
with confidence ratings are used to generate a final decision.

B. Ada-Boost and Meta-Boost Experiment

There are three sets of feature banks unsupervised trained
from different sample data. One feature bank is trained using
foreground samples only, another feature bank uses back-
ground, the third one uses both foreground and background.
We compare the performance of the classifier using different
feature banks. Moreover, we would like to use features from
all three banks to create a large feature ensemble. Therefore,
we could boost on features from different feature banks and
achieve higher performance. Fig. 2 shows two possible Ada-
Boost architecture alternatives using different feature banks. In
our experiment, we test both structures shown in Fig. 2, within
each type of structure, we use image patch sizes from 5×5 to
19× 19. Thus, from each case, we produced 4 different patch
sizes by 128 number of clusters, totally 512 features. In Fig.
2a, we concatenate all features from different feature banks and



different patch sizes together to form a single feature matrix
with each feature length equaling 512 × 3 = 1536. In Fig.
2b, we train three Ada-Boost classifiers with different feature
banks, then use a Meta-Boost to combine the results of the
three.

The Meta-Boost structure utilizes the classification results
from each branch classifier. The branch classifier’s output is
actually the weighted sum of basic classifiers, at the final stage,
weighted sum is binarized to produce classification decision,
positive or negative. However, if we omit binarization, Ada-
Boost can provide a real valued estimation of each sample,
the sign is classification decision and magnitude is the fuzzy
confidence-rate of the classification. Utilizing this real number
output allows designing another Ada-Boost classifier using pre-
vious classification results as features and combining different
classifiers’ decisions to improve accuracy. Because Ada-Boost
classification results in branches are used as meta-data for the
final classifier, so final classifier is called ‘Meta-Boost’.

Meta-Boost will allow faster training in each branch clas-
sifier, as they are shorter in feature length comparing to Type
I ensemble and could be computed simultaneously. Instead
of allowing classifier to freely choose best features in each
iteration, Meta-Boost structure forced final classifier to include
features from foreground, background and FG+BG bank. In
our experiment, as foreground, background and FG+BG banks
are describing different aspects of image patterns, classi-
fiers could benefit from this forced inclusion. In Ada-Boost,
confidence-rated weak hypothesis is used as in [9]. The Ada-
Boost runs to 256 iterations for each architecture in Fig. 2.

C. Tesseract Experiment

The estimated foreground pixels are then grouped into CCs.
A morphological close with 3 × 3 pixels kernel is performed
beforehand to remove gaps. Other processes, such as boundary
objects remover, auto-rotation and underscore remover (see
section III C) are also implemented. The bounding boxes are
then extracted from the original images. The bounding boxes
in detection map are then used as masks to extract ROI from
original images. Tesseract OCR is used towards each region
to recognize symbol class and locate symbol position more
precisely. The Tesseract OCR results are filtered. Only English
characters and numbers will be kept, other symbols like
punctuation marks, Greek letters, math symbols are discarded.
Comparing to other systems (see Section II), our system used
extremely simple language model.

(a) Examples of FG
feature bank

(b) Examples of BG
feature bank

(c) Examples of
FG+BG feature bank

Fig. 3: Quantized feature pattern bank using unsupervised
learning algorithm from different sample pools.

Fig. 4: Error rate through iterations for training using different
Ada-Boost classifiers.

(a) Original Image

(b) Text detection map

(c) Tesseract OCR result

Fig. 5: Original image (a), text detection map (b) and Tesseract
OCR output (c) examples.

V. RESULTS AND DISCUSSION

We learned the quantized feature banks from FG, BG
and FG+BG images patches. From Fig. 3 we could see that
feature banks using BG and FG+BG are relatively similar,
meanwhile, feature banks using only foreground have larger
distance from the other two. The background bank usually
catches the horizontal, vertical and diagonal line patterns. The
foreground bank catches the patterns where objects are laying
in the center and homogeneous regions on the boundaries. This
is easy to be imagined, as background commonly contains
figures with lines and curves, and label texts are isolated
symbols.

The pixel level detection map examples are illustrated in
Fig. 5b. The texts are extracted with very high recall value.
Detection false positives are showing as noise in the image,
most of them can be easily removed by OCR.



We use two types of Ada-Boost architectures shown in Fig.
2. The converge speed is actually very similar among different
branch classifiers in Type II. However, the error rates have
significant differences. Fig. 4 shows the unweighted error rate
variation with iterations for training samples. The FG branch
produced worst performance with final error rate 30.5% on
training, while the FG+BG branch has best error rate 18.7%
on training for pixel-level detection.

The performance of text detectors are also evaluated us-
ing precision, recall and F-metric, as listed in Table I. The
Meta-Boost classifier achieves slightly better precision and F-
measure comparing to Ensemble Ada-Boost for testing sam-
ples. All precision, recall and F-metric is evaluated in pixel-
level. We count the number of true positive pixels, total number
of detected pixels and total number of foreground pixels to
compute precisions and recalls.

The examples of OCR errors are illustrated in Fig. 5c.
The bounding boxes detected are drawn overtop the original
testing images. Correct detections are marked as green, while
false positives and missing are marked as blue and red. The
detection results will affect OCR performance. False positives
as noise CCs around symbols will reduce accuracy of OCR.
The false negatives will also make the symbol hard to be recog-
nized. In evaluation, part labels that are partially recognized are
assumed as error and marked as red. This evaluation method
could be improved in the future.

The final performance evaluation is generated in label-level
using tools provided by competition. The method of computing
precision and recall can be found in their website (see Section
II). Denoise process is important, the OCR accuracy without
denoise is much lower. Our system achieves 70.10% precision,
69.33% recall for testing data, as listed in Table II.

We evaluated the performance of detection and recognition
part separately by computing precision and recall while making
OCR or detection perfect, as shown in Table II. When detection
is perfect, Tesseract gets 83.72% precision and 83.72% recall.
When OCR is perfect, our system produces 78.26% precision
and 96.12% recall on label-level. Our detection has found
most true positives while having many false positives. The
real system gets both lower precision and recall. Since some
part labels are handwritten, they are difficult to be recognized.
In contrast, some false positives, like texts in tables or figures,
are easier to be read by OCR system. The handwritten part
labels and texts in tables or figures that do not belong to part
labels caused most of the errors. The results are very close
to the Top 1 player of USPTO Competition I, while we are
not using high level prior assumptions, language model or text
information to the system.

TABLE I: A comparison of our system using different archi-
tectures, evaluated using pixel-level precision, recall and F-
measure.

Precision Recall F-measure

FG 35.4 85.3 50.03
BG 60.1 92.9 72.98

FG+BG 63.8 94.1 76.04
Ensemble 65.7 95.2 77.75
MetaBoost 65.9 95.1 77.85

TABLE II: A comparison of different systems, evaluated using
label-level precision and recall.

Precision Recall

Perfect Detection + Tesseract OCR 83.72 83.72
Proposed Detection + Perfect OCR 78.26 96.12

Proposed System 70.10 69.33
Top1 competitor 72.14 69.87

VI. CONCLUSION

A part label text detection and recognition system for patent
drawing image is proposed. Our system learns features from
data directly, using Convolutional K-means. An Ada-Boost
classifier is trained to automatically classify pixels as fore-
ground or background. A Meta-Boost algorithm is proposed
to shorten training while increasing accuracy. ‘Tesseract’ OCR
is used to recognize symbols and refine symbol locations. Our
system can produce competitive performance for a difficult
dataset without high level prior knowledge. The feature learn-
ing, classification, scale selection are all automated, which
makes our system very easy to adapt to datasets with different
features and scales, e. g. natural scene images. In the future,
we will add attentional shift feedback to feature learning
and classifier training, focusing on mis-classified samples, and
implement Viola and Jones [10] cascaded classifier.
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