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Abstract— We introduce a descriptor for shape feature ex-
traction and matching using keypoints that are extracted from
both the foreground and the background of binary images.
First, distance transform (DT) is applied on the image after
contour detection. Then, connected components (CCs) of pixels
having the same intensity are extracted. Keypoints correspond
to centers of mass of CCs. A keypoint filtering mechanism is
applied by estimating the spatial stability of keypoints when
successive iterations of image blurring and binarization are
applied. Finally, features are extracted for each keypoint using
a round layout which radius is set depending on the keypoint’s
location. We evaluate our descriptor using datasets of silhouette
images, handwritten math expressions, and logos. Experimental
results show that our descriptor is competitive compared with
state-of-the-art methods, and that keypoint filtering is effective
in reducing the number of keypoints without compromising
matching performances.

Keywords— Shape matching, local descriptors, keypoints, bi-
nary images, distance transform.

I. INTRODUCTION

Shape matching is a vibrant area of research on image
analysis due to the numerous applications it allows [1]. Par-
ticularly, when dealing with binary images where color and
texture information are absent (e.g. silhouette images, scanned
documents, sketches, etc.), shape is the only available feature
to be used for image representation and matching [2].

Numerous methods have been presented for shape feature
extraction in binary images [3][4]. Usually, images are sub-
jected to contour detection or skeletonization before using a
shape descriptor in order to remove redundant information and
reduce processing time [5]. Moreover, some methods select
certain keypoints and use them to extract features [6][7][8]. In
these cases, keypoints are selected based on their saliency or
by using uniform sampling from the shape contours.

In this work, we introduce a shape descriptor for binary
images based on the extraction of keypoints. The proposed
descriptor applies distance transform (DT) on the image after
contour detection. This generates a grayscale image where the
intensity of each pixel indicates its distance to the nearest
foreground pixel. Then, local maxima on the DT image are
extracted and they result in connected components having
the same grayscale intensity. The centers of mass of these
connected components correspond to keypoints. Afterwards,
keypoint filtering is performed to detect stable keypoints and
filter out keypoints caused by noise and contour perturbations.

Finally, a keypoint-dependent round layout is used to extract
features for each keypoint.

The keypoints extracted using DT are in locus of symmetry
between foreground pixels. We anticipate the significance of
such keypoints in shape matching due to the importance of
symmetry as a cue for recognition in human perception [9]
and as a characteristic of patterns that has been used for image
retrieval [10].

The proposed descriptor is evaluated using silhouette images
of the Kimia 216 dataset [11], handwritten mathematical
expressions of Zanibbi and Yu’s dataset [12], and logo images
of the Tobacco 800 dataset [13]. Comparison with existing
methods shows that our descriptor is competitive and that
keypoint filtering reduces the number of keypoints without
compromising performances.

The remainder of this paper is organized as follows: Sec.
II reviews key methods of shape matching. We present our
descriptor in Sec. III and evaluate it in Sec. IV. Concluding
remarks and future work are presented in Sec. V.

II. RELATED WORK

Research on shape matching has led to a large depository
of methods [3] where shape descriptors can be classified into
several categories including methods using global and local
features [4], contour-based and skeleton based methods [5],
and methods using keypoints [6][7][8].

Global methods extract features using the coarse informa-
tion of the shape, and hence do not convey much information
about the local details. Such methods include shape signatures
[14], Fourier descriptors [15], and angular partitioning [16].
Global methods are robust against noise but on the detriment
of representing fine details. On the other hand, other methods
integrate local neighborhoods of the shape points, which
makes them capable of capturing fine details of the shape.
Such methods include curvature scale space (CSS) [6], shape
contexts [7], and variations of binary local patterns [17].

Contours and skeletons have been used as an intermediate
representation before feature extraction. Contours are more
robust against noise than skeletons, as skeletons tend to
generate noisy branches and artifacts in presence of shape
border perturbations [5]. On the other hand, skeletons are more
suitable in applications that require the segmentation of the
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Fig. 1. Keypoint extraction steps: (a) Original binary image. (b) Image after normalization. (c) DT image. (d) Local maxima connected components. (e)
Keypoints (k = 11). (f) Keypoint vectors (α = 1): Circle radii correspond to the keypoint distance from the nearest contour point, and arrows show the
orientation of the vector delimited by the keypoint and its nearest contour point.

original object into constituent parts for graph-based feature
representation [18].

Other methods sample a number of keypoints from the
shape contour. Keypoint sampling is done based on their
saliency or by uniform sampling of contour points. CSS
uses scale space filtering [19] to extract inflection points
from closed contours [6]. Then, the contour deformation and
merging of inflection points caused by scale space filtering
are used for feature extraction. High curvature points of the
contour have also been used as keypoints [20]. On the other
hand, shape contexts perform uniform keypoint sampling from
the shape contours without special consideration about the
keypoints curvature or location [7][8].

Keypoints extracted using scale-space filtering in the well-
known SIFT descriptor have been very successful when ap-
plied on intensity images [21]. However, it has been shown
that SIFT keypoints are suboptimal compared to keypoints
that are uniformly sampled from the shape contours when
using complex binary images of Maya hieroglyphs [22]. This
result is due to the absence of local changes of intensity in
binary images that hinders scale-space filtering from detecting
distinctive keypoints and attributing them characteristic scales.
In contrast, our keypoints are extracted using DT and scale-
space filtering is used as a way to detect stable keypoints by
monitoring their location change during the image filtering.

III. THE PROPOSED DESCRIPTOR

Our descriptor extracts keypoints using DT (Sec. III-A).
Then, it applies keypoint filtering in order to filter out unstable
keypoints (Sec. III-B). Finally, features are extracted using
keypoint-dependent round layouts (Sec. III-C).

A. Keypoint extraction

Keypoints are extracted as follows: First, the original image
(Fig. 1(a)) is normalized by applying contour detection, then
detecting the bounding box of the contour and using it to
generate a larger image with the object shifted towards the
center (Fig. 1(b)). The width WN and height HN of the
normalized image are as follows:

WN = WBB × 1.5 + 20, HN = HBB × 1.5 + 20 (1)

where WBB and HBB are the dimensions of the object’s
bounding box. A frame of 1-pixel-width is added to the
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Fig. 2. Effect of the parameter k on the number of keypoints.

normalized image in order to avoid extracting local maxima
from the borders.

Next, distance transform (DT) is applied to generate a
grayscale image where the intensity of each background pixel
corresponds to its L1 distance from the nearest foreground
pixel (Fig. 1(c)). Then, local maxima are detected on the DT
image using a k×k square window. This generates connected
components with the same pixel intensity (Fig. 1(d)). Finally,
keypoints are extracted as centers of mass of the connected
components (Fig. 1(e)).

Local maxima detection is done using a k×k square window
located at each DT image pixel. The parameter k affects the
number of extracted local maxima. The larger k gets, the fewer
keypoints are detected (Fig. 2).

B. Keypoint filtering

The extracted keypoints may be not be all necessary as some
of them might be caused by noise and contour perturbations.
We observe that keypoints which maintain stable locations un-
der local image distortion are more distinctive than keypoints
that move when image local distortion is applied.

In this step, we implement a keypoint filtering mechanism
using scale space filtering [19]. The proposed mechanism
produces successive blurred images using the Gaussian filter
which spread function is defined as follows:

g(x, y, σ) =
1

2πσ2
e−(x+y)2/2σ2

(2)

where σ is the smoothing parameter that controls the scale,
and x and y are pixel coordinates. Then, the filtered images
are binarized using Otsu’s algorithm [23]. This mechanism is
used to produce N increasingly distorted images that are used
for keypoint extraction (Fig. 3).
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Fig. 3. Keypoint filtering: (a) Original image. (b) Keypoints for σ = 0.5.
(c) Keypoints for σ = 1.5. (d) Keypoints for σ = 3.5. (e) Keypoints for
σ = 4.5. (f) Stable Keypoints highlighted in blue for k = 11, θ = 2, and
δ = 3.

  

Fig. 4. Feature extraction layout. A layout is defined for each keypoint and
the layout’s radius is proportional to the distance between the keypoint and
its nearest contour point.

Afterwards, a measure of stability θ is assigned to keypoints
extracted from the original image. θ is equal to the number
of blurring iterations during which the keypoint remains in a
stable location. A keypoint is considered stable at iteration i
if its location pi does not move beyond a neighborhood δ× δ
from his previous location pi−1 at iteration i − 1. Fig. 3(f)
shows keypoints that are stable for at least 4

10 of N = 5
iterations and for δ = 3.

C. Feature represenation and matching

The last step is to generate a feature vector to each keypoint
k. For this purpose, we use a round layout which radius rk
is proportional to the distance between the keypoint k and its
closest contour point (Fig. 4):

rk = α× min
j≤NC

|kpj | (3)

where α is a constant, pj is a contour point of index j, and
NC is the total number of contour points.

Then, a histogram hk is extracted by calculating the dis-
tribution of contour points in distance and angle sections.
The distance between two histograms is expressed by the X 2

statistic:

X 2(h1, h2) =
1

2

K−1∑
k=0

[h1(k)− h2(k)]2

h1(k) + h2(k)
(4)

where K is the number of bins in a keypoint histogram.

The dissimilarity d between two images I1 and I2 is
estimated by the cumulative minimum distance between the
images’ keypoint histograms:

d(I1, I2) =
1

N1

N1−1∑
i=0

min
0≤j<N2

{X 2(h1i , h
2
j )} (5)

where N1 and N2 are the number of keypoints in I1 and I2.
d(I1, I2) is asymmetric. Therefore, we express the distance
between two images I1 and I2 as follows:

D(I1, I2) =
d(I1, I2) + d(I2, I1)

2
(6)

D ∈ [0, 1]. The smaller D(I1, I2) is, the more similar I1 and
I2 are.

The feature vector is translation-invariant due to using the
object’s bounding box for image normalization, and scale-
invariant due to using keypoint-dependent feature extraction
layouts. Rotation-invariance can be insured by using the ori-
entation of the vector delimited by the keypoint and its nearest
contour point as a reference orientation (Fig. 1(f)).

IV. EXPERIMENTAL RESULTS

We evaluate our descriptor using Kimia’s dataset of sil-
houette images [11], Zanibbi and Yu’s dataset of handwritten
mathematical expressions [12], and the logo set from Tobacco
800 dataset [13]. We downscale Zanibbi and Yu’s and Tobacco
logo images, which have larger sizes than silhouette images,
by a factor of 2 to reduce the number of keypoints for the
sake of efficient experimental performance. Fig. 5 and Table
1 show samples from the datasets and information about the
images. Silhouette images are neat comparing to handwritten
mathematical expressions and logo images. Handwritten math-
ematical expressions contain significant handwriting fluctua-
tions and component displacement and alteration. Logo images
are taken from scanned documents and they are the noisiest
compared to the two other datasets. Silhouette images contain
single component objects, while handwritten mathematical
expressions and logo images contain multi-component objects.

The goal of the experiments is to evaluate the descriptor’s
matching performances and the role of its parameters. The
effect of varying the parameters k, δ and θ is investigated,
and the performance of the descriptor is evaluated using the
precision at n metric, denoted P@n, that is defined as follows:

P@n =
|{n retrieved images} ∩ {relevant images}|

|{n retrievd images}|
(7)

The larger P@n is, the better matching performances are.
A desirable descriptor should extract a reduced number

of keypoints, yet remain distinctive. For this purpose, we
also evaluate the compactness of the descriptor using a
compression metric that is equal to the number of extracted
keypoints relative to the number of contour points. The smaller
compression is, the more compact the descriptor is. Both
P@n and compression are expressed in percentages.
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Fig. 5. Samples of the datasets: (a) shows images from Kimia’s dataset [11],
(b) shows images from Zanibbi and Yu’s dataset [12], and (c) shows image
from Tobacco 800 logo dataset [13].

Table 1. Information about the datasets images.

Dataset # images # classes # instance
per class

# contour
points

Kimia 216 18 12 494
Zanibbi and Yu 200 20 10 2275

Tobacco 412 35 [1, 68] 2300

The algorithm’s setting are as follows: The number of
iterations used for keypoint filtering is N = 5. The number
of histogram sections for the feature descriptor is 5 distance
sections and 12 angle sections. We set the number of retrieved
images n as query-dependent and equivalent to the number
of the query’s class instances. The constant for setting the
keypoint-dependent feature layout radius is set heuristically
α = 1.5 in order to insure that the feature extraction layout’s
bins of one unit distance can reach a sufficient number of
pixels, which are the ones located at a close distance to
the keypoint relative to the distance to its closest contour

Fig. 6. Effect of varying the parameter k on P@n and compression (the
y-axis interval is cropped for better visualization).

point. Image blurring is done using a Gaussian filter of scale
σmin = 0.5 that is incremented with ∆σ = 0.5.

A. Evaluation of the parameter k for setting the size of the
local maxima detection window

The parameter k defines the size of the local maxima
detection window during keypoint extraction. We evaluate
the role of this parameter on matching performances and
descriptor compactness. During this experiment, the keypoint
filtering step is omitted and all the extracted keypoints are
used regardless of their stability. Fig. 6 shows curves of P@n
and compression as functions of k. For all datasets, the best
matching performances correspond to k = 3. compression
rates for k = 3 were 36.67% for silhouette images, 36.1% for
handwritten mathematical expressions, and 21.22% for logo
images, which correspond to 181, 821, and 488 keypoints on
average respectively.

According to the results of this experiment, we set k = 3
empirically and use it in the following experiments.

B. Evaluation of the parameter δ for setting the maximum
keypoint location shift

The parameter δ defines the maximum location shift allowed
for a stable keypoint to move during keypoint filtering. In this
experiment, we investigate the effect of varying this parameter
on retrieval performances and descriptor compactness.



Fig. 7. Effect of varying the parameters δ and θ on P@n and compression (the y-axis interval is cropped for better visualization). The first row corresponds
to Kimia’s dataset, the second row corresponds to Zanibbi and Yu’s dataset, and the third row corresponds to Tobacco logo dataset.

Fig. 7 shows curves of P@n and compression as functions
of the stability threshold θ, and for δ ∈ {3, 5, 7, 9}. For all
datasets, using a strict δ = 3 leads to the most significant
compression. Up to θ = 3, matching performances remain
roughly equal for different values of δ. Then, for θ ≥ 4, a
decrease in performances is observed, noticeably for δ = 3.

The best trade-off between keypoints minimization and
matching performance preservation corresponds to δ = 5 and
θ = 3. In this case, matching performances correspond to
P@n = 85.84% for Kimia’s dataset, 84.15% for Zanibbi and
Yu’s dataset, and 80.99% for Tobacco 800 logo dataset, while
compactness performances are compression = 31.74% for
Kimia’s dataset, 31.95% for Zanibbi and Yu’s dataset, and

16.92% for Tobacco 800 logo dataset, that is using 157, 727,
and 389 keypoints on average respectively.

C. Comparative evaluation

The proposed descriptor is compared with existing methods
using the three datasets. In case of Kimia’s dataset, we
calculate the retrieval performance metric reported in several
published papers, that is the number of relevant retrieved im-
ages for each of the top 6 ranks and the percentage calculated
by summing these numbers. Comparison is done with Support
Regions Descriptor (SRD) [17], Shapes Context (SC) [7], and
Path Similarity Skeleton Graph Matching (PSSG) [18]. As for
the other datasets, we use the P@n performance metric and



Table 2. Retrieval results using Kimia’s dataset.

Algorithm 1st 2nd 3rd 4th 5th 6th Total
SRD [17] 216 199 188 181 176 167 86.96%

SC [7] 214 209 205 197 191 178 92.12%
Our descriptor 216 208 204 193 196 193 93.36%

PSSG [18] 216 216 215 216 213 210 99.22%

Table 3. P@n values using Zanibbi and Yu’s dataset and Tobacco 800 logo
dataset.

Algorithm Zanibbi and Yu Tobacco 800 logos
SRD [17] 47.6% 82.55%

Our descriptor 86.0% 81.25%

we use SRD for comparison. SC and PSSG are omitted here
because they need special considerations regarding keypoint
sampling and matching of multi-component images.

Tables 2 and 3 show the best performances achieved by
our descriptor (k = 3 and θ = 1) and performances of
other methods. Our descriptor yields competitive performances
on Kimia’s dataset, outperforming shape context and support
regions descriptor (SRD). Our descriptor significantly outper-
forms SRD in case of Zanibbi and Yu’s dataset, and it is
slightly outperformed by SRD in case of Tobacco 800 logos.

The lowest performances of our descriptor were observed
when using the Tobacco 800 logo dataset. This is explained by
the significant noise and intra-class variations in this dataset
(Fig. 5) and given that no preprocessing for noise reduction has
been applied. Here, the noise pixels and connected components
affect the bounding box’s dimensions and location during the
normalization step, which causes shifting in the locations of
keypoints and generates false ones (i.e. keypoints that are
caused by noise).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a descriptor for shape matching
using keypoints that are selected from both foreground and
background pixels. The descriptor is translation-invariant due
to using the object’s bounding box for image normalization,
and scale-invariant by using keypoint-dependent feature ex-
traction layouts. Rotation-invariance can be insured by using
the orientation of the vector delimited by the keypoint and its
nearest contour point as a reference orientation.

We evaluate our descriptor using three datasets of sil-
houette images, handwritten mathematical expressions, and
logo images. Experimental results and comparison with other
methods indicate that our descriptor has competitive matching
performances. Moreover, the keypoint filtering step is effective
in reducing the number of keypoints without compromising
matching performances.

We identify several directions for improving and extending
our research: Different approaches for keypoint filtering and
feature representation can be tried. Using different image
normalization strategies that focus on connected components
instead of the whole image can be useful for partial image
matching. In this case, specific preprocessing should be envis-
aged to overcome incorrect components disconnectedness or

merging, which can cause variations in the keypoints’ locations
and feature vectors. Related to this, the lower performance
when using the Tobacco 800 logo dataset reveals that specific
considerations should be done when handling noisy images.
We aim to make the setting of the number of image distortion
iterations N and the selection of the keypoint stability param-
eter θ automatic, and evaluate the generality of our descriptor
using large scale datasets. Color images can be used for such
an evaluation by applying edge detection prior to using DT.
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