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Abstract

Scanning Single Shot Detector for Math in Document

Images

Parag Shrikrishna Mali, M.S.

Rochester Institute of Technology, 2019

Supervisor: Dr. Richard Zanibbi

We introduce the Scanning Single Shot Detector (ScanSSD) for detect-

ing both embedded and displayed math expressions in document images using

a single-stage network that does not require page layout, font, or, character

information. ScanSSD uses sliding windows to generate sub-images of large

document page images rendered at 600 dpi and applies Single Shot Detector

(SSD) on each sub-image. Detection results from sub-images are pooled to

generate page-level results. For pooling sub-image level detections, we intro-

duce new methods based on the confidence scores and density of detections.

ScanSSD is a modular architecture that can be easily applied to detecting

other objects in document images.
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For the math expression detection task, we have created a new dataset

called TFD-ICDAR 2019 from the existing GTDB datasets. Our dataset has

569 pages for training with 26,396 math expressions and 236 pages for test-

ing with 11,885 math expressions. ScanSSD achieves an 80.19% F-score at

IOU50 and a 72.96% F-score at IOU75 on TFD-ICDAR 2019 test dataset. An

earlier version of ScanSSD placed 2nd in the ICDAR 2019 competition on the

Typeset Formula Detection (TFD). Our data and code are publicly available

at https://github.com/MaliParag/TFD-ICDAR2019 and https://github.

com/MaliParag/ScanSSD, respectively.
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Chapter 1

Introduction

As PDF format greatly facilitates document sharing and printing, it

has become a standard for publishing scientific documents. The latest PDF

specifications make it possible to embed structural information (such as iden-

tification of special elements like figures, tables, and, footnotes), but most

existing software which generates PDF documents choose not to make use of

this feature and only focus on the visual representation of the documents. The

lack of such structural information challenges automatic information retrieval

and information extraction. Multiple methods have been proposed for the

detection of tables, diagrams, headers/footers, cross-references, paragraphs,

algorithms, and, mathematical expressions. These methods have many appli-

cations including but not limited to the image reconstruction, diagram classi-

fication, text line transcription, document format conversion, screen readers,

and, math recognition.

Math expressions in the PDF documents can not be easily located,

searched, and, reused as most of the PDF documents only contain page ren-

dering information. So, it has become important to come up with the math

expression recognition method for the PDF documents. The mathematical ex-

1



Figure 1.1: Examples of embedded and displayed math expressions. Green
highlight shows embedded (or in-line) math expressions and blue highlight
shows displayed (or offset) math expressions.

pression recognition is an active area of research since 1967 [1]. Zanibbi et al.

[56] describes four problems that a math recognition system should address:

math detection, math symbols extraction and recognition, layout analysis,

and, mathematical content interpretation. The detection of math expressions

is the first step in the recognition process.

Many proposed methods for math detection in PDF documents oper-

ate on the document page images. These methods use additional information

available from PDF documents like page layout, character labels, character

locations, font sizes, etc. However, there are multiple challenges while extract-

ing information from the PDF documents. PDF documents are generated by

different tools and their character information quality can be very different.

Lin et al. [37] point out that a math expression element can be composed of

several types of objects (e.g. text, image, graph). For example, the square

root sign in a PDF generated from LATEX contains the text object representing

a radical sign and a graphical object representing the horizontal line. As a

result, it becomes difficult to directly match the PDF object to mathematical

elements in the math expressions.

2



(a) The input to the system will be a PDF
document

(b) Yellow regions show the bounding
boxes for the displayed and embedded
math expressions

Figure 1.2: Input and expected output of a math detection system for a PDF
document page
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Math expressions in the documents can be displayed expressions that

are offset from the text paragraphs or expressions that are embedded in the

text lines. Figure 1.1 shows examples of embedded and displayed math ex-

pressions. Displayed expression detection is relatively easy, as they differ sig-

nificantly in height and width of the line, character size, and, symbol layout

[17]. Embedded mathematical expressions can include complex mathematical

structures like Σ besides symbols or variables. Many embedded math expres-

sions also have their explicit natural language definitions like ‘where w is the

set of words’. Iwatsuki et al. [27] concluded that distinguishing dictionary

words that appear in italics and embedded mathematical expressions is a non-

trivial task. As a result, many approaches have been proposed specifically

for embedded math expression detection [36, 27] whereas others detect only

displayed math expressions [10, 15].

The methodology proposed in this thesis is inspired by the following

research questions:

1. Can we detect both embedded and displayed math expressions in typeset

documents using only one framework?

2. Can we detect both embedded and displayed math expressions in typeset

document images without the use of additional information like page

layout, character labels, character location or OCR codes?

3. Are object detection methods like Single Shot Multibox Detector (SSD)

used for detecting objects in natural scenes applicable for detecting math

4



expressions in typeset document images? If yes, which changes should

be made in object detection architectures to make it well-suited for this

task?

Thesis Statement: Both embedded and displayed math expressions in type-

set document images can be detected accurately in one framework using deep

learning-based object detection methods without the use of additional infor-

mation like page layout, character labels, character locations, font size, font

type, or OCR codes.

We use intersection over union (IOU) metric to calculate the accuracy of

the system. Please refer Chapter 3 for more details on the evaluation method.

Contributions: We have created a new dataset for math expression de-

tection in typeset documents. In Chapter 3, we define the problem state-

ment, evaluation methods, and, discuss the creation of a new dataset for

math expression detection. We make our dataset publicly available at https:

//github.com/MaliParag/TFD-ICDAR2019.

In Chapter 4, we propose ScanSSD architecture to detect both embed-

ded and displayed math expressions in the typeset document images. Our

architecture uses sliding windows to generate sub-images of the large docu-

ment page image and detects math expressions in the generated sub-images.

We introduce pooling methods that use the sub-image level detections to gen-

erate page level detections. Our method achieves F-score of 80.19% at IOU50

5

https://github.com/MaliParag/TFD-ICDAR2019
https://github.com/MaliParag/TFD-ICDAR2019


and 72.96% at IOU75 on TFD-ICDAR 2019 test dataset. Our code is publicly

available at https://github.com/MaliParag/ScanSSD.

We discuss different rule-based and learning-based methods for page

object detection Chapter 2. Chapter 5 discusses different models and their

performance on our validation and test datasets. Also, we provide character

level results and compare our results with other methods. Details about the

validation set are provided in Appendix A, and additional results are provided

in Appendix B and Appendix C.

6
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Chapter 2

Background

Document image understanding includes detection of objects like the

math expressions, figures, text-lines, tables, etc. from the document image.

Different layouts of documents and many variations in the page’s structure

make it difficult to design an efficient and accurate system for the detection of

page objects. The document image understanding problem can be simplified

if we detect one page object at a time. In this chapter, we disuss methods for

detecting one as well as multiple page objects at a time. We mainly focus on

math expression detection.

2.1 Page Object Detection

Li et al. [31] describe the two major problems with page object detec-

tion. First, document images differ greatly from the natural images in terms of

color and texture which makes texture-based region proposal generation and

selective search methods not useful for this task. Second, page objects have a

more diverse scale and aspect ratio than natural scene objects. Furthermore,

the background information inside the page objects may be larger than those

between objects, which makes the grouping of object elements difficult.

7



In this section, we summarize methods for detecting different page ob-

jects like algorithms, headers/footers, cross-reference, paragraphs, diagrams,

and, tables. In the next section we describe methods for math expression

detection.

Algorithm Detection For algorithm detection, Bhatia et al. [2, 3] propose

a three-step method. In the first step, they use PDFTextStream 1 to extract

all the text from the PDF documents. In the second step, they use grammar

for algorithm captions to find out if algorithms are present in the text. In the

third step, if the algorithm is present in the text, the text is further processed

to extract the lines which describe the algorithm using a naive bayes classifier

trained on the variety of content and context features.

Tuarob et al. [50] use PDFBox2 to extract text lines from the doc-

uments along with the font size information from each text line. They use

heuristic rules that detect algorithms which accompanied the captions. They

also propose a machine learning-based method that directly detects the algo-

rithms instead of the captions. Their method detects the sparse boxes in the

document and classifies them as an algorithm or not using features like font

style, context, content, and, structure.

1http://snowtide.com/PDFTextStream
2http://pdfbox.apache.org/
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Header/Footer Detection Lin proposed a robust header and footer ex-

traction method using fuzzy string matching and page association [34]. They

base their method on the observation that the header and footer are text lines

and have a similar structure with the neighboring pages. In their method,

they need bounding boxes and text from the document. In their experiments,

they look at the eight neighboring pages and for each page, they find a simi-

larity score between each line on these pages based on edit distance cost and

geometric similarity.

Dejan et al. [8] propose a header/footer detection method based on the

textual variability score. They claim that the header/footer zones have much

lower textual variety than the body of the page. Using a few heuristic rules,

they find the header and footer regions which minimize the textual variability

score. This method works well when the headers and footers are homogeneous

in the document and partially fails for the documents that are composed of

parts with different headers and footers.

Cross-reference Detection Footnotes/endnotes, figure/table captions, and

references are very common in PDF documents. However, the detection of

these cross-references is seldom addressed. Li et al. [30] describe a two-step

process for footnote identification. They used different features, thresholds,

and rules for different types of cross-references. In the first step, they use a

PDF parser to get the basic results of page segmentation and layout analysis.

In the next step, they extract features based on the cross-reference type and

9



cluster the results. Finally, they match the references to their corresponding

entities, i.e. footnotes, tables or figures.

Paragraph Detection Darvishy et al. [7] describe an algorithm for para-

graph detection for an open-source PDF Accessibility Validation Engine (PAVE).

They examine the distribution of element heights and elements that exceed the

median of the element height with a small error are ignored. It is possible to

extract the information regarding element heights, widths, etc. from the born-

digital PDF documents. In the next step, they group text elements into blocks

based on spatial proximity. To create the paragraphs in the correct order, they

use the XY-cut algorithm [41] to determine the ordering on the text blocks.

There are other document format conversion methods like [8] which also use

XY-cut algorithm for paragraph detection.

Diagram Detection Futrelle et al. [13] describe a method for extraction of

vector-based3 diagrams. Vector-based diagrams are defined by set of paths and

symbols. Vector-based diagrams can be rendered at any scale while maintain-

ing their appearance. In their method, they parse PDF command sequences

comprising each document to get a sequence of objects. In the next step,

they identify visible objects and render them in 1D or 2D spatial indexes. Fi-

nally, they use a recursive algorithm to extract diagrams and sub-diagrams by

looking at the vertical and horizontal white space bands.

3Raster diagrams are comprised of individual pixels of color. JPG, PNG, GIF are exam-
ples of raster formats.
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Table Detection Hao et al. [22] use visual features of the table areas for

CNN while taking into account the non-visual information in the PDF docu-

ments. They select the initial areas with some heuristic rules. Faster R-CNN

based methods described by the Schreiber et al. [47] and Gilani et al. [18]

use techniques like data augmentation and transfer learning for getting a good

performance. He et al. [24] proposed a multi-scale multi-task fully convolution

neural network (FCN) for page segmentation. They also propose a conditional

random field (CRF) on top of segmentation and contour detection to refine

the segmentation output. TableSeer [50] automatically detects and extracts

the tables in digital documents. BioText4 search engine is a specialized search

engine for biology documents and can extract the tables and figures.

Multiple Page Object Detection In their method Li et al. [31], they

detect multiple types of page objects in a single framework. After extraction

of the connected components, they segment the page into column regions and

then line regions. The line regions are classified and clustered with the CRF

based classification models. Once the regions are classified, they group the

regions belonging to the same class and cluster to form a page object.

Gao et al. [14] conducted a competition on page object detection at

ICDAR 2017 where the displayed math was one of the targets. One group used

Single Shot Detector (SSD), one group used CNN and the rest of the groups

who participated in the competition used faster R-CNN in their system as one

4http://biosearch.berkeley.edu

11



of the stages. In this competition, they observe that the recall of the systems

which used faster R-CNN directly was decreased when the IOU threshold was

increased. Hence, they mention that the precision of the faster R-CNN is not

high enough for detection of the math expression.

Yi et al. [53] proposed a three-phase framework for page object detec-

tion. In the first phase, they use the custom-designed component-based region

proposal method for document images for generating candidate regions. In the

next phase, they give all the candidate regions as input to CNN to classify. In

the third phase, they use a dynamic programming algorithm to redistribute

the labels and confidence coefficients obtained from the CNN instead of using

non-maximal suppression (NMS) used by earlier methods like SSD. We would

like to try similar dynamic programming algorithm instead of NMS in our

architecture in future.

2.1.1 Summary of Page Object Detection

Most of the page object detection methods described in this section

use visual information from the page images and non-visual information (like

character locations, character labels etc.) available from the PDF documents.

These methods rely on the page layout, spacing, element heights, font, char-

acter locations, character lables etc. to find the candidate regions. Use of

non-visual information from the PDF documents simplifies the detection task.

Methods which do not require additional non-visual information from the PDF

documents, use heuristic rules, XY-cut algorithm, projection-profile cutting to
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find the candidate regions. Finally, based on the type of object these methods

are trying to detect they use a set of heuristic rules or a classifier trained on

the visual/non-visual information.

Tha main disadvantage of the methods that use non-visual information

is that they can not be used for documents where only page images are avail-

able. Most of the scanned documents that are available in the PDF format

do not contain the information required by these methods. Absence of such

information requires us to use OCR before applying these methods.

2.2 Math Expression Detection

Lin et al. classify the math expression detection methods into three

categories based on the features used [37]. These categories are character-

based, image-based, and, layout-based. Character-based methods use OCR

engine to recognize the characters and the characters which are not recognized

by the OCR engines are considered as the candidates for the math expression

elements. The second category of methods uses image segmentation tech-

niques. Most of these methods require finding the segmentation threshold

values. Setting the threshold values is very difficult, especially for the un-

known documents. The layout-based methods detect the math expressions

using features like line height, line spacing, alignment, etc. Many of the pub-

lished methods use the combination of character features, layout features, and

context features. We can also classify the math expression detection meth-

ods as rule-based or learning-based. Many traditional detection methods use
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heuristic rules to find the math regions. Methods published recently use tradi-

tional machine learning and deep learning to detect math regions. Yet another

way to classify the math detection methods is based on the type of input that

the method expects. Many methods expect document images and character

information, whereas few others work only with document images.

2.2.1 Rule Based Methods

Lee et al. [29] use run-length image representation and extract adjacent

black pixels as one segment. They merge adjacent segments into one if the

distance between the segments is less than the threshold value. Then they label

each line either as text or expression based on the line height and line spacing

above and below. After labeling lines, they extract connected components

from the image and treat each connected component as a character. They

recognize each character. Finally, they use heuristic rules to generate symbol

relation trees that define math expressions.

Garain and Chaudhari did a manual statistical survey of over 10,000

document pages and found out the frequency of each mathematical character in

the expression [4]. They used the information found in this survey to develop a

method for the detection of the embedded mathematical expressions [16]. They

scan each text line and decide if the line contains one of the 25 most frequent

mathematical symbols. After finding the leftmost word which contains the

mathematical symbols, they grow the region around the word on the left and

the right based on a few rules to get the complete math area. For detection
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of the displayed math expressions, they use two features. First, the white

space around the math expressions. Second, the standard deviation of the left

lowermost pixels of the symbols of the text line. They base this feature on

the observation that for a math expression the leftmost pixels of each symbol

is not on the same line, for text line it is on the same line. One disadvantage

of their method for embedded math expression detection is that it requires

symbol recognition, which adds complexity to the system. In contrast to Lee

et al. [29] and Garain and Chaudhari[4], we do not manually design features.

Our method learns visual features during training. Also, our method does not

require character recognition.

Toumit et al. [49] introduce the concept of mathematical objects to

characterize the characters that are not plain text. They define an elementary

mathematical object as an elementary mathematical entity that cannot be

broken up into smaller objects without losing its mathematical meaning (e.g.

‘a’, ‘+’, ‘lim’). They define multiple classes for mathematical objects: simple

object (e.g. ‘a’, ‘+’), a composite object (e.g. ‘i’, ‘=’), an implicit object

(e.g. multiplication in ‘2a’), operator (e.g. ‘∩’), comparator (e.g. ‘>’, ‘=’),

spatial connector(e.g. ‘[]’). Based on the class of objects detected in the

text line, they use context-specific rules for region growing. For example, for

parentheses, they check symbols between left and right locations. In contrast

to their method, our method does not require defining additional mathematical

object categories or any context-specific region growing rules. It completely

depends on the visual information available in the document image.
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Kacem et al.[28] propose local and global segmentation for detecting

math expressions. The global segmentation uses visual and layout features of

the adjacent connected components to detect the displayed math expressions.

Local segmentation uses a region growing approach for the detection of the

embedded math expressions. They use characters that are known to be math-

ematical (e.g., operators) as seeds for growing regions based on few heuristic

rules. Similar to Kacem et al.[28] our method uses features from different lev-

els including the global context. In contrast to this method, we use the same

framework for the detection of embedded and displayed math expression.

Drake and Baird [10] use the pruned Delaunay triangulation of a set of

locations of black connected components as input and classify each vertex and

each edge either as math or text. They applied this method for the detection of

the displayed math expressions, not the embedded math expressions. Similar

to Drake and Baird [10], we make use of black connected components. But

in contrast to Drake and Baird [10], black connected components are not

central to our method. We only use them in postprocessing (refer to Chapter

3, Section 3.4.1). Also, our method works for both embedded and displayed

math expressions.

2.2.1.1 Summary of Rule Based Methods

Rule based methods use manually designed heuristic rules that rely on

the occurrence of the mathematical operators or symbols. To check the oc-

currence of the mathematical operators or symbols they need character labels.
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They either use character labels available from the PDF documents or use

OCR to get character labels. Extraction of character labels from PDF doc-

uments or use of OCR is not 100% accurate that adds noise to the system.

Moreover, designing heuristic rules for all types of mathematical operators or

symbols is a difficult task as different symbols are used for same math op-

erations by different groups. Also, rule based methods either do not detect

embedded math expressions or use a different set of rules for embedded math

expressions than displayed math expressions.

2.2.2 Traditional Machine Learning Based Methods

Traditional machine learning methods use information extracted from

the documents for training a classifier like support vector machine (SVM) using

manually designed features. These methods generally use different classifiers

for detecting displayed and embedded math expressions.

Lin et al. [37] proposed a method for math detection, which is a four-

step process that uses a combination of various features. In the first step, they

extract the locations, bounding boxes, baselines, fonts, etc. and use them as

the character and layout features in the following steps. They also process

the math symbols that comprise multiple objects. For example, the vertical

delimiter is made up of multiple vertical short line objects. They detect the

named mathematical functions like sin, cos, etc. and the numbers. In the

next step, they distinguish between the text lines and non-text lines. They

find the displayed math expression in the non-text lines using geometric layout
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features (for example, line-height), character features (for example, is it the

part of named math function like sin), and context features (for example,

whether the preceding and the following character is a math element). In the

last step, they use another classifier that classifies the characters into math

and non-math characters. They find embedded math expressions by merging

the area of the characters that are tagged as math characters. They used

SVM classification for both isolated math expression detection and character

classification into math and non-math.

For characterization of embedded and displayed math expression, Chu

and Liu [6] propose novel features based on centroid fluctuation information of

non-homogeneous regions. They adopt the method proposed for sign detection

in natural images for text localization and text segmentation. They trained

the SVM classifier to check if a line was displayed math expression or not. To

detect the embedded math expression, they segment the text lines that are

detected not be displayed math expression into words. They merge all in-line

connected component bounding boxes that are within the threshold to form a

word. They assume that the space between characters is less than the space

between the words. They extract handcrafted layout features like centroid

fluctuation, the height of the word, etc. and train SVM classifier to check if a

word belongs to an embedded math expression.

For text line segmentation, Lin et al. [35] proposed a method based

which uses projection profile cutting (PPC) for getting original text lines.

Given a list of text lines, they extract layout features (e.g. vertical distance),
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content features (e.g. is there a fraction sign between this line and next line)

and text line features of consecutive text lines (e.g. height, the width of the

text line). They use a two-step merging process to merge consecutive text lines.

In the first stage, they check if two consecutive text lines should be merged or

not. In the second stage, they use another classifier trained on similar features

to merge/split text lines in a multi-line math expression. They report results

using different classifiers including SVMs.

2.2.2.1 Summary of Traditional Machine Learning Methods

All the traditional machine learning methods used SVM classification,

and two different techniques to detect embedded and displayed math expres-

sions. Methods proposed by Lin et al. [37] and Chu and Liu [6], and Lin

et al. [35] have one common disadvantage. These methods use manually de-

signed features for training two different classifiers. The method proposed by

Lin et al. [37] has one more disadvantage. Their method is designed to work

only with born-digital PDF documents. It needs additional information like

locations, bounding boxes, baselines, fonts, etc. from the PDF document for

detecting math expressions which makes it impossible to use where additional

information is not available.

2.2.3 Deep Learning Based Methods

For born-digital PDF papers, Iwatsuki et al. [27] created a manually

annotated dataset and applied conditional random field (CRF) for the math-
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zone identification using both layout features (e.g. font types) and linguistic

features (e.g. n-grams) extracted from PDF documents. For each word, they

used three labels: the beginning of math expression, inside math expression,

and the end of the math expression. Each word is annotated using conditional

random fields (CRF). They concluded that the words and fonts are important

for distinguishing math from the text. This method has limitations as it

requires a specially annotated dataset that has each word annotated with

either beginning, inside or end of the math expression label. Their method

works only for PDF documents that have layout information.

Gao et al. [15] use a combination of CNN and RNN for the detection

of the math areas. In the first step, they extract text, graph and image stream

from the PDF document. Next, they perform top-down (based on XY cut

algorithm) and bottom-up (based on connected component analysis) layout

analysis to generate the candidate expression regions. They use candidate

math expression regions as the input to the next step, where feature extraction

networks extract the features from the candidates. Next, they assign each

candidate a class. In the final step, they adjust and refine the incomplete math

expression areas. Similar to their method, we use a CNN model (VGG16 [48])

in our network architecture for feature extraction. In contrast to their method,

we do not depend on the layout analysis of the page.
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2.2.3.1 Summary of Deep Learning Methods

Deep learning methods used for page object detection are deep con-

volutional neural networks (CNNs). These methods expect images and some

of them expect additional page layout information. Many CNN based object

detectors perform far better than traditional methods. Object detctors learn

features automatically and thereby avoid the need of feature engineering. On

the other hand, we need to carefully decide the values for the hyper-parameters.

2.2.4 Unsupervised Learning

All the math detection methods discussed so far are supervised learning

methods. Wang et al. [52] propose an unsupervised learning algorithm that is

based on the observation that in one PDF document math expresssions tend

to use one particular style of font setting. To detect math expressions they

start with detecting lines and columns using projection-profile cutting. They

find posterior probability of each character being math or non-math using font

setting information available from the PDF documents. They extract group

of characters which they call none-separable character set (NSCS) and use

character level posterior probability for applying Bayesian inference to decide

if NSCS is math or non-math. They claim that their method is singificantly

faster than the supervised learning algorithms.
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2.2.5 Summary of Math Expression Detection

Similar to page object detection methods discussed in the Section 2.1,

most math detection methods rely on the additional page layout information

available from the born-digital PDF documents which makes them unusable

when PDF documents are made up of scanned pages. Methods which work

with images use OCR to recognize the characters to get character-level infor-

mation. Many methods use projection-profile cutting and XY-cut algorithm to

find the candidate regions. Moreover, these methods use different techniques

for embedded math expressions and displayed math expressions. For math ex-

pression detection, both supervised and unsupervised learning methods have

been proposed.

We wanted to develop a method which works only from page images

without use of any additional information or any heuristic rules and detects

both embedded and dsplayed math expressions in one framework. Deep learn-

ing based object detection methods need only images and target regions for

training. We apply one such method for detecting both embedded and dis-

played math expressions in one framwork.

In the next section, we summarize different object detection methods

and our motivation behind using Single Shot MultiBox Detector (SSD) [38] in

our architecture (described in Chapter 4).
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2.3 Object Detection Using Deep Learning

First deep learning algorithm which achieved significantly better results

on the object detection task was R-CNN [20] (region proposal with CNN).

They used selective search algorithm [51] to generate ≈ 2k region proposals

per input image. They wrap these region proposals into squares and use

VGG16 [48] (refer to Section 2.3.3) to extract features. They use extracted

features to train SVM for classification of objects. Their algorithm predicts

the class for each region proposal and offsets for adjusting the bounding box

of the proposal. There are two main disadvantages to this method. First, they

use ≈ 2k region proposals per image that slow down the network. Second, the

selective search algorithm is fixed. It is not a learning algorithm.

Girshick [46] addressed problems with the R-CNN with Fast R-CNN.

Unlike R-CNN that feeds ≈ 2k regions to CNN per image, only the original

input image is fed to CNN to extract feature maps. They use feature maps

for region proposals and fully connected layers at the end of the network for

feature extraction. Finally, they use extracted features to predict the class and

bounding box offset values. The region proposal from feature maps uses selec-

tive search algorithm. Selective search is the bottleneck in the Fast R-CNN.

As mentioned before, selective search is a fixed algorithm and not learned.

Faster R-CNN [46] uses feature maps for region proposals just like Fast R-

CNN. Unlike Fast R-CNN, Faster R-CNN uses a different network called a

region-proposal network for proposing regions. This network learns to pro-

pose regions while training. Faster R-CNN removes the bottleneck introduced
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because of selective search.

In contrast to R-CNN, Fast R-CNN, and Faster R-CNN that use region

proposals, YOLO [43] is a single-stage network for object detection. It is

significantly faster than the methods that require region proposals. They

divide the input image into a grid. Each cell in the grid has an associated set

of bounding boxes. They train a network that outputs class confidences and

offsets for each bounding box. Bounding boxes that have class confidences

higher than the threshold value are selected to locate the object within the

image. Improved versions of the YOLO architectures like YOLO9000[44] and

YOLOv3[45] have been proposed.

Similar to YOLO, Single Shot MultiBox Detector (SSD) [38] is a single-

stage network. SSD is faster and more accurate than YOLO [38]. Similar to

YOLO, SSD divide the input image into grid and each cell in the grid has an

associated set of bounding boxes. Unlike YOLO, SSD uses multiple grids with

different sizes instead of just one grid size. Network learns to predict the offsets

for each bounding box associated with grid cells in different grids. Different

grid sizes allow network to divide the responsibility of detecting objects at

different scales. Just like R-CNN, SSD uses VGG16 architecture. Unlike R-

CNN, Fast R-CNN, and, Faster R-CNN SSD does not require selective search,

region proposals, or multi-stage networks. Even though SSD is more accurate

than YOLO, performance of SSD dips for small object detection.

In our method for math detection, we use SSD architecture with sliding

windows to generate smaller sub-images to zoom-in on the math regions to
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Figure 2.1: Example of NMS. The left image shows multiple detections for one
math expression and right image shows the output generated after NMS.

improve detection rates.

2.3.1 Non-Maximal Suppression

Object detection algorithms use non-maximal suppression (NMS) which

is a hand crafted postprocessing step that is not present while training. NMS is

a iterative, greedy, locally optimal strategy which keeps only one detection per

group (ideally obtaining only one detection per object) from relatively dense

detection outputs near the correct location of the object generated by object

detection methods while inferring. For each iteration of NMS a group is de-

fined by selecting current maximum confident detection and other detections

overlapping with the maximum confident detection. For each group a max-

imum confident detection is selected and other detections with IOU greater

than threshold with maximum confident detection are suppressed. NMS does

not modify any of the input bounding boxes, it just selects best bounding

boxes based on the confidence and IOU threshold (refer to Chapter 3). Figure

2.1 shows an example of NMS where only one box is selected from a group

of detections. Other detections are suppressed because they have higher IOU

with selected detection than the threshold.
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2.3.2 Discrete Convolution

Discrete convolution is an operation on functions with real-valued ar-

guments. The first argument to convolution is referred to as the input and the

second argument is referred to as the kernel, and the output is referred to as

the feature map. We can use equation 2.1 to calculate value of location (i, j)

of the feature map for two dimensional input image I of size x × y and two

dimensional kernel K [21].

S(i, j) =
∑
x

∑
y

I(x, y)K(i− x, j − y) (2.1)

2.3.3 VGG16

Figure 2.2 shows the VGG16 architecture. VGG16 is a 16 layer deep

convolutional neural network with 13 convolutional (CONV) layers and 3 fully

connected (FC) layers. VGG16 uses 2 × 2 maxpool layers with stride 2 and

RELU activation. We explain the FC layer and CONV layer with the help of

an example in Figure 2.3 and Figure 2.4, respectively. FC layer in Figure 2.3

flattens 2× 2× 3 input image to 1D vector of size 12. It maintains 2 vectors

of size 12 for performing dot products with the input 1D vector and generates

vector of size 2 as output. This FC layer needs to learn 24 parameters to

convert input of size 2×2×3 to output of size 2. Figure 2.4 shows convolution

process. CONV layer in Figure 2.4 uses two filters of size 2 × 2 × 3 (same

size as input image) for dot product and generated output of size 1 × 1 × 2.
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Figure 2.2: VGG16 architecture. We show all the convolutional (CONV) layers
in blue, max pool layers in orange and fully connected (FC) layers in yellow.
All CONV layers use padding 1, kernel size 3 × 3, and, ReLU activation.
CH i → j represents that the convolution layer expects i channel input and
generate j channel output. VGG16 expects image of size 224 × 224 × 3 as
input. This architecture was evaluated on ImageNet [9] dataset which has
1000 classes.

CONV layer uses discrete convolution operation explained in Section 2.3.2.

Just like FC layer, CONV layer needs to learn 24 parameters to convert input

of 2 × 2 × 3 to output of size 2. This property of FC layer and CONV layer

is used to convert FC to CONV layer. Conversion of FC to CONV layer is

explained in the next section.

2.3.4 Conversion of FC Layers to CONV Layers

VGG16 is not a fully convolutional network as it uses 3 fully connected

layers. But, it is possible to convert a network to a fully convolutional network

by converting fully connected layers to convolutional layers. Consider fully

connected layer from Figure 2.3 and convolutional layer from Figure 2.4. The

input and output of these two layers are the same. Y 1 and Y 2 are the dot
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Figure 2.3: An example of a fully connected layer which receives an input of
size 2× 2× 3 and generates 1D output of size 2.

Figure 2.4: An example of a convolutional layer which receives an input of size
2× 2× 3 and generates output of size 1× 1× 2.
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products of the input image and layer parameters (like weights or filter values).

It means a fully connected layer with input image of size H×W×C and output

of size N is equivalent to a convolutional layer with the same input and kernel

size of H ×W with N output channels, provided the same set of parameters

are used in convolutional filter and fully connected layer weights. Hence, a

fully connected layer can be converted to a convolutional layer by reshaping

the parameters used in the fully connected layer. In VGG16, FC6 receives an

input of size 7 × 7 × 512 and generated output of size 4096. Hence, we can

convert FC6 to CONV6 with total 4096 filters of size 7 × 7 × 512. Similarly,

other FC layers can be converted to CONV layers (FC7 to CONV7 and FC8

to CONV8).

2.3.5 Dilated Convolution

The VGG16 needs to learn 102,760,448 (= 7 × 7 × 512 × 4096) pa-

rameters for CONV6 layer and 16,777,216 (= 1× 1× 4096× 4096) paramters

for CONV7 layer. In practice, many state-of-the-art architectures which use

VGG16 for feature extraction use lesser number of small-sized filters while

converting FC layers to CONV layers [38, 5]. For example, instead of using

7 × 7 kernel, 3 × 3 kernel is used by picking every third parameter along a

particular dimension. Picking every mth parameter along a particular dimen-

sion is known as decimation. It reduces the number of parameters to learn.

But we need a 7 × 7 kernel for CONV6 to be equivalent to FC6. So, a pro-

cess called dilated convolution is used instead of discrete convolution (refer to
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2.3.2). The term dilated convolution was first used by Yu and Koltun [54].

We call the fully convolutional VGG16 with the lesser number of small-sized

filters as FC-reduced VGG16.

Figure 2.5 shows the dilated convolution process with dilation factor

of 2. Dilation factor controls the spacing between the kernel points. The

convolution performed in this way is also known as the à trous algorithm.

Different convolution operations for deep learning are described by Dumoulin

et al. [11] and open source code5 provided by Dumoulin et al. was used for

generating Figure 2.5. We use FC-reduced VGG16 with à trous algorithm in

our architecture. We describe the parameters we used for conversion of FC6

and FC7 in Chapter 4.

2.4 Summary

In this Chapter, we mainly summarized math expression detection

methods and some methods for other page object detection. Page obejct detec-

tion methods whether rule based or learning based, supervised or unsupervised

use both visual (page image) and non-visual information (character labels, lo-

cations, font size, font type etc.) available from the PDF documents. Also,

methods that do not use non-visual information from the PDF documents use

projection profile cutting or XY-cut algorithms for finding candidate regions.

Additionally, they require character recognition to find character labels. More-

5Figure 2.5 was generated using the open-source code from https://github.com/

vdumoulin/conv_arithmetic
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 2.5: The dilated convolution operation. The blue matrix is input and
the green matrix is the output. The dark blue locations are the locations where
the filter is applied to get the value at the dark green location. The filter is
not applied to consecutive locations in the input, but it is applied by skipping
some locations. The dilated factor decides the number of locations to skip.

31



over, most of the methods use different techniques to find the embedded and

displayed math expressions.

Method designed for born-digital PDF documents that use additional

information available from the PDF, can not be used for the PDF documents

which do not contain this additional information (e.g. PDF documents gener-

ated using scanned document pages). Use of projection profile cutting, XY-cut

algorithms, or, character recognition adds complexity to the system. Different

methods for detection of embedded and displayed math expressions requires

us to train two different classifiers, decide two different thresholds, or, design

two different set of rules.

In Chapter 4, we propose ScanSSD architecture that needs only doc-

ument page images as input and detects both embedded and displayed math

expressions in a single framework without use of any additional non-visual

information like character locations, character labels, etc or heuristic rules,

projection profile cutting, or, XY-cut algorithms. Our architecture is based

on object detection method called Single Shot MultiBox Detector (SSD) [38].

We use sliding windows to generate sub-images of whole page image for de-

tecting small math expressions and extensive data augmentation for generating

data for training a deep network. Unlike R-CNN networks, SSD [38] does not

require selective search, region proposals, or multi-stage networks. Just like

YOLO, SSD is a single-stage object detector but, SSD is faster and more

accurate than YOLO [38]. Chapter 4 describes our architecture in depth.

Before introducing our architecture in Chapter 4, in Chapter 3 we for-
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mally define the math detection task and the steps we took for creating a new

dataset for math expression detection.

33



Chapter 3

Math Detection Task and Dataset Preparation

In this chapter, we define the math detection task and describe how we

prepared the dataset for this task. Our dataset was used for the Competition

on Recognition of Handwritten Mathematical Expressions and Typeset For-

mula Detection (CROHME + TFD 2019) at the 15th International Conference

on Document Analysis and Recognition (ICDAR 2019) [40].

3.1 Math Detection Task

Our aim is to detect math expressions in typeset documents. We define

math expression detection task as follows: Given an input image I, generate

a set of math expression bounding boxes DI where each bounding box d ∈ DI

is given by top-left and bottom-right co-ordinates of the box {l, t, r, b} (l=left,

t=top, r=right, b=bottom). If GI is a set of ground truth bounding boxes

g ∈ GI , we can define an injective (or one-to-one) function 1 f : D → G that

maps each detection with a ground truth with which the detection has the

highest IOU score. The IOU score is defined by Equation 3.1. f is defined in

1The function f is said to be injective provided that for all a and b in input domain X,
whenever f(a) = f(b), then a = b; i.e, f(a) = f(b) implies a = b.
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Algorithm 1.

IOU(Si, Sj) =
| Si ∩ Sj |
| Si ∪ Sj |

(3.1)

Algorithm 1: Definition of f

Result: One to one mapping from detections DI to ground truths
GI

avail(d) = GI , ∀d ∈ DI ;
f(d) = argmaxg IOU(d, g)∀g ∈ GI , d ∈ DI ;

while all detections are mapped to ground truth do
if f(di) = f(dj) and i 6= j then

if IOU(di, f(di)) ≥ IOU(dj, f(dj)) then
avail(dj) = avail(dj)− f(di);
f(dj) = argmaxg IOU(dj, g)∀g ∈ avail(dj);

else
avail(di) = avail(di)− f(dj);
f(di) = argmaxg IOU(di, g)∀g ∈ avail(di);

end

end

end

where, Si ∩ Sj denotes the set of shared pixels between Si and Sj and Si ∪ Sj

denotes the set of all pixels in Si and Sj.

For image I, if f maps d ∈ DI to g ∈ GI , we say d matches g if

IOU(d, g) ≥ T , where T ∈ [0, 1]. As T increases, the matching criteria be-

comes more strict. Figure 3.1 shows matched and unmatched detected bound-

ing box for T = 0.75 while illustrating the nature of IOU score. We report our

results for T ∈ {0.5, 0.75} in Chapter 5.
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(a) Detection and ground truth
has IOU ≥ 0.75

(b) Detection and ground truth
has IOU < 0.75

(c) Detection and ground truth
has IOU < 0.5

(d) Detection and ground truth
has 0.5 ≤ IOU ≤ 0.75

Figure 3.1: The figure shows the nature of IOU score. The detected region
is shown in blue and the ground truth is shown in green. If T = 0.75, the
detection from Figure 3.1b is not considered as a valid match as IOU ≤
T . Even though the detection from the Figure 3.1c covers the entire math
expression, it is not considered as a valid match as IOU ≤ T .

The function f , maps one detection bounding box to exactly one ground

truth box. We represent each match as an ordered pair (d, g) and set of all

such matches as MI . We define precision, recall and F1-score to evaluate the

performance of the math detector in Equation 3.2, Equation 3.3, and Equation

3.4, respectively.

1. Precision (P ): The fraction of matched bounding boxes among all de-

tected bounding boxes.

P =
|MI |
| DI |

(3.2)
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2. Recall (R): The fraction of matched detected bounding boxes over the

total amount of ground truth bounding boxes.

R =
|MI |
| GI |

(3.3)

3. F1-score (F ): Considers the trade-off between precision and recall, which

is the harmonic mean of precision and recall.

F =
2× P ×R
P +R

(3.4)

3.2 Math Detection in PDF Documents

Math detection in born-digital PDF is a simplified version of math

detection in images. In born-digital PDF documents, we have information

related to character locations, character labels, font name, font size, etc. The

availability of additional information makes math detection in PDF documents

a simpler task than math detection in document images. A math detection

system which detects math from input images can be easily used for born-

digital PDF documents. Each page from the PDF can be rendered as an

image and can be used as an input to the math detection system. Hence, we

concentrate on the math detection in document images.
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3.3 GTDB Datasets

Table 3.1: GTDB datasets statistics

GTDB-1 GTDB-2
Number of articles 32 16
Number of pages 544 343
Number of math symbols 162,406 115,433
Number of text symbols 646,714 507,412

GTDB datasets are publicly available2 that provide annotations for

document page images collected from scientific journals and textbooks. The

GTDB-1 dataset contains 32 articles3 on mathematics and GTDB-2 dataset

contains 16 articles. Table 3.1 shows the details of these two datasets. Diverse

font faces and mathematical notation styles are used in these articles. They

provide ground truth annotations in CSV files. GTDB datasets do not provide

the PDF files directly, but they provide the links to the files.

Example ground truth annotations shown in Figure 3.2. The first line is

a file header showing the format version. Record starting with ‘Sheet’ denote

the beginning of a new page. It has four entries: Sheet, page id, filename, -1.

Record stating with Text, Line, or Image represents a component. It has six en-

tries: Text, Line, or Image, component id, bounding box co-ordinates. Record

starting with Chardata denotes a character. It has ten entries: Chardata, char-

acter id, bounding box co-ordinates, text mode (0: text, 1: math), relationship

2Available from https://github.com/uchidalab/GTDB-Dataset
3GTDB repository mentions 31, but there are actually 32 articles in GTDB-1
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label, parent character id, ocr code. The link label is one of the following:

horizontal(0), right-superscript(1), right-subscript(2), left-superscript(3), left-

subscript(4), upper(5), lower(6), the first character in expressions or ordinary

texts (-1).

We show an example of the output generated by our visualization tool

for the ground truth annotations in Figure 3.3. The ground truth permits

comparison of detected regions at the raw image or character levels. GTDB

datasets do not include bounding boxes for the math regions. Moreover, the

annotations provided in the dataset do not match perfectly with the page

regions. So, we performed data cleanup and aligned the ground truth with

the page objects it corresponds to. We used a cleaned version of the dataset

to generate the bounding boxes for math regions for our experiments. We

explain our data cleanup process and generation of ground truth for the math

expression detection in the next section.

Infty GT-Data Format Ver.1.1
Sheet,1,ASENS 1997 367.png,-1 Text,1,202,114,1202,309
Line,1,259,114,1049,221 Chardata,1,259,162,297,206,0,-1,-1,4141
Chardata,2,304,178,333,207,0,-1,1,416E
Chardata,3,338,177,367,207,0,-1,2,416E
Chardata,4,373,201,379,206,0,-1,3,142E
Chardata,5,379,114,413,221,0,-1,4,0E81
Chardata,9,489,177,514,206,0,-1,8,4165
Chardata,10,519,178,548,207,0,-1,9,416E
Chardata,11,1600,1585,1643,1624,1,0,10,4178
Image,1,1482,634,1980,968

Figure 3.2: Example of ground truth annotations from GTDB dataset
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Figure 3.3: Visualization of ground truth annotations from GTDB dataset.
The red boxes are for text regions, magenta boxes are for images, blue boxes
are for textlines, green highlights are for text characters, and, yellow highlights
are for math characters. Even though the diagram in the magenta box contains
math regions, they are not annotated in the GTDB dataset.

Figure 3.4: GTDB data cleanup process
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3.4 Dataset Preparation for Math Detection

We used the links provided by the GTDB datasets to download the

files manually. Some of the links were broken, and we had to use a different

source to download the document. We could not find a source to download

two documents4 in GTDB-1 dataset, hence we used 30 documents from this

dataset. The annotations given for all the documents from GTDB dataset

and many documents from the GTDB-2 dataset were not in perfect alignment

with the page structure. Hence, we started data cleanup. Figure 3.4 outlines

the steps in our data cleanup process.

We use pdf to image conversion tool5 to render 600 dpi images for each

downloaded pdf file. Most of the PDF files in this dataset are scanned docu-

ments. We observed two types of artifacts in the PDFs, first introduced while

scanning and second introduced while downloading from the internet. To re-

move artifacts (like small black regions) introduced while scanning, we apply

median filtering. Median filtering is a non-linear digital filtering technique

that is known for removing salt-and-pepper noise. Some PDF documents have

vendor information added as a footnote. We manually painted that informa-

tion white. Next, we find the bounding box of each connected component

in the image. Then we find a page bounding box Bpg which contains all the

bounding boxes for connected components found in the previous step. Bpg is a

matrix in homogeneous co-ordinates. From the ground truth annotations, we

4We could not find AM chapter12 and AnnMS 1971 157 173.
5python3 package: pdf2image version 1.5.4
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find another page bounding box Bgt for the same page represented as a mtrix

in a homogeneous co-ordinates. Ideally, Bpg = Bgt. But, as we mentioned

earlier the annotations from the GTDB dataset do not align with the page

objects. Hence, we find scaling and translation transformations T such that

T = BgtB
−1
pg . We apply the same set of transformations T to each bounding

box in the original ground truth to generate the new ground truth for the im-

ages. We use new ground truth to generate the bounding boxes for the math

expressions.

GTDB datasets do not provide bounding boxes for math expressions,

but they provide the character level annotations. We use the character level

information to find the bounding boxes for the math regions. We perform

connected component based postprocessing for the math regions as described

in Section 3.4.1. In this step, we fit all the connected components inside or

intersecting the current math bounding box perfectly by growing or shrinking

the bounding box. We used the obtained annotations for our dataset. Example

of the initial ground truth and output of the cleanup process is shown in

Figure 3.5. The dataset created by us was used for CROHME + TFD 2019

competition at the ICDAR 2019 conference. We refer to the dataset used in

CROHME + TFD 2019 as TFD-ICDAR 2019 dataset. For ICDAR 2019, we

provided math bounding boxes and character bounding boxes. We did not

provide line, image or text region bounding boxes.

After data cleanup, we split the dataset in train data and test data. The

train and test dataset statistics are given in the Table 3.2. For math or text in
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(a) The input image to the data
cleanup process

(b) Original ground truth annotations
as an input to the data cleanup process

(c) The output ground truth
annotations after data cleanup

(d) The ground truth annotations
from TFD-ICDAR 2019

Figure 3.5: Inputs and outputs of the data cleanup process. We highlight text
characters in green and math characters in yellow. For TFD-ICDAR 2019
dataset, we maintained only character information and math region bounding
boxes.

Table 3.2: ICDAR2019 dataset statistics

Statistics
TFD-ICDAR 2019 TFD-ICDAR 2019 Version 2
Train Test Train Test

Number of documents 36 10 36 10
Number of pages 569 236 569 236
Single character math regions 7506 2556 7506 2556
Multi character math regions 18890 9329 18947 9350
Total math regions 26396 11885 26453 11906

the figures GTDB datasets have no annotations and hence the TFD-ICDAR

2019 dataset does not have annotations for the same.

3.4.1 Postprocessing

Figure 3.6 shows the example of postprocessing of the boxes. We ex-

pand or shrink the detected boxes so they perfectly fit the connected compo-

nents inside them. This makes sure that there is no unnecessary white space

43



Figure 3.6: Example of postprocessing of a box so that it perfectly fits the
connected components inside it or connected components it is touching

inside the detected boxes. If the detected box intersects a connected compo-

nent, we expand the detected box to include that connected components in it,

with the goal of capturing entire characters belonging to the detection region.

Character bounding boxes and OCR codes are available in the GTDB

dataset, which can be used in the future to improve the detector. We discuss

different methods in which character data can be used in Chapter 6.

3.4.2 Dataset Release

Our dataset (TFD-ICDAR 2019 dataset) and evaluation tools are pub-

licly available at https://github.com/MaliParag/TFD-ICDAR2019. With the

dataset, we also provide additional scripts to download dataset PDF files, ren-

der page images from PDFs, and visualize annotations. For the CROHME +

TFD 2019 competition we observed that participating teams faced problems

while using annotations, as the 600 dpi images rendered on their machines

had slightly different sizes. It is possible that participating teams used dif-

ferent image rendering tools or different version of the same image rendering

tools and got different image sizes. Also, we observed that there are few pages

mostly in the test dataset where few math bounding boxes are not correct or
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missing.

We fix the problems with TFD-ICDAR 2019 in version 2 of the dataset.

In version 2, we provide the size of each image used while generating the dataset

annotations to avoid image size related issues. We did not use normalized co-

ordinates while providing the annotations to avoid potential aliasing issues

because of the floating-point arithmetic. In version 2, we added missing boxes

and fixed the invalid boxes. Statistics of the version 2 of the dataset are given

in Table 3.2.

All the results presented in this thesis use the TFD-ICDAR 2019 dataset

to benchmark against other systems. We did not use version 2 of the dataset

as it was developed after the experiments were done.
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Chapter 4

Methodology

We aim to detect both embedded math regions and displayed math

regions using only one framework. We can treat math expression detection

as an object detection task. Among the CNN-based object detectors, SSD is

faster than most of the models and has competitive accuracy to models that

use an additional object proposal step like R-CNN and Faster R-CNN [38][26].

Liao et al.[32] with their TextBoxes architecture have shown that SSD with

few modifications can detect wide regions. Math regions can be very wide and

with similar modifications used in TextBoxes, SSD should be able to detect

them. Hence, we used SSD architecture for math expression detection. In

this chapter, we describe our system architecture and how it addresses the

challenges in math expression detection in typeset documents.

In the next section, we give overview of the ScanSSD architecture.

4.1 Overview

Figure 4.1 shows overview of the ScanSSD architecture. First, we use

sliding windows to obtain image patches while maintaining overlap between

the patches. We modify the ground truth bounding boxes to represent math
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regions in the extracted patches using sliding windows and cut the bounding

boxes if the sliding window method splits a math region into multiple patches.

Next, we use patches generated using sliding windows as input to SSD. In the

next stage, we get confidence and bounding boxes at the patch level as the

output of the SSD. In the final stage of SSD, we apply non-maximal suppression

over detected bounding boxes. NMS is a greedy, locally optimal strategy which

keeps only one detection per group (ideally keeping only one detection per

object) from relatively dense detection outputs near the correct location of

the object generated by object detection methods.

Figure 4.1: Overview of the ScanSSD architecture. The figure shows the steps
in the detection of math expressions in the highlighted area of an input image.

We stitch the output of SSD, generated at the patch level, to get the

bounding boxes at the page level. Then we use a pooling method to obtain the

final detection results for the page. We tried different pooling methods and we
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describe each pooling method in section 4.4. In pixel-level pooling methods,

we use detected boxes and their confidences to assign a pixel level score and

get a score map. We apply a threshold on the score map and convert it into

a binary mask. We assign a value of 1 to the pixels that have a higher score

than the threshold and a value of 0 to others. In the next step, we extract

the bounding boxes of the connected components of pixels with a value of 1.

Finally, we expand or contract the detected bounding box, so it perfectly fits

the connected components inside it or connected components it is touching.

4.2 Methods

In this section, we discuss all the methods used in our network archi-

tecture like sliding windows, data augmentation, detection regions and their

visualization, multi-scale feature maps and their importance, matching strat-

egy for default boxes, and, use of convolution kernels.

4.2.1 Sliding Windows

In this section, we describe the sliding window method we used to gen-

erate sub-images from the original page images. We observed that converting

the 600 dpi images from the GTDB dataset to 300 × 300 or 512 × 512 loses

too much information. Figure 4.2a and 4.2b show the sample images of size

300× 300 and 512× 512 respectively. We generated these images using linear

interpolation. We can see that these images do not have enough resolution

for the detection of math expressions. We trained the SSD model using low-
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resolution images and found that the network only detects bold characters

from the input image as math regions.

(a) Resizing 600 dpi image to size 300×300
image

(b) Resizing 600 dpi image to size 512 ×
512 image

Figure 4.2: The results of conversion of 600 dpi images to lower sizes using
linear interpolation. Other interpolation methods can be used but there still
will be loss in information. We could not use larger images with sizes like
1024× 1024 and above for training because limited GPU memory size.

TFD-ICDAR 2019 dataset provides links to the PDF files. We use PDF

to image conversion tool1 to render 600 dpi images for each downloaded PDF

file. We found that all the PDF files were generated by scanning the document

pages and no protocol was followed regarding PDF page size while creating

PDF files from the scanned images. Hence, each generated image is of different

size. We slide a window of size 1200×1200 with a vertical and horizontal shift

1python3 package: pdf2image version 1.5.4
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of 120 pixels i.e. stride of 120 pixels (or 10%), over the image to obtain sub-

images of size 1200× 1200. 1200× 1200 window makes math expressions big

enough for SSD to detect them effectively (As discussed in Chapter 2, Section

2.3 that SSD is better at detecting bigger objects rather than smaller objects).

Figure 4.3 shows the example of the sub-images generated using our sliding

windows. While using the sliding windows on the training data, we also update

the ground truth math bounding boxes to represent the math expressions in

these sub-images, this involves cutting the wide ground truth math bounding

boxes into multiple smaller bounding boxes, scaling, and translation. For

SSD300 we resize 1200 × 1200 sub-images to 300 × 300 and for SSD512 we

resize them to 512 × 512. We explain the SSD architecture later in Section

4.3. Next, we discuss the advantages and disadvantages of the sliding window

method.

Advantages There are four main advantages of using the sliding window

method. The first advantage of the sliding window method is data augmenta-

tion. The number of images available for training is only 569, which is a tiny

number for training a deep neural network. Using 1200×1200 window size and

a stride of 120 pixels, we get 656,717 sub-images with math regions. Second, we

limit the loss of information by converting sub-image to 300×300 or 512×512

instead of directly converting original image to 300× 300 or 512× 512. Third,

as we maintain the overlap between the windows, the network can see the same

region multiple times and get multiple chances to detect a math region. This
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can increase the overall recall of the network because regions appear in more

parts of a detection window. Finally, Liu et al. [38] mention that SSD is not

that good at detecting small objects. Math expressions with just one or two

characters can be a small region. It would be very difficult for SSD to detect

these regions if we use the whole page as an input to the SSD. Creation of

smaller sub-images increases the size of smaller math regions, which makes it

easier for SSD to detect them. Therefore, we use the sliding window method

to generate smaller sub-images for this task.

Disadvantages There are a few disadvantages to the sliding window method.

Windowing cuts the math regions if they do not fit the window. This means

that one big math expression might be split into multiple sub-images. For

example, refer to Figure 4.3 where a math expression (2.2) in the highlighted

image is split into multiple sub-images. Splitting math expressions into mul-

tiple sub-images makes it impossible to train the SSD network to detect big

math expression as an object, so we train the network to detect the small parts

of big math expressions as objects in different sub-images. Furthermore, we

need a method to stitch the results from all the sub-images for a page together

to get final detection results for the original page. We discuss how we address

these problems using pooling methods in section 4.4.

In the Section 4.2.2, we describe other data augmentation methods that

we used while training the models.
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Figure 4.3: Sub-images generated for the highlighted region with 10% stride.
For page image of size 6000×4800 one such highlighted region generates 31 sub-
images. There are 41 such highlighted regions. It results in 1271 sub-images.
Page images of different sizes will generate a different number of sub-images.
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4.2.2 Data Augmentation

Data augmentation explained in this section is performed when a batch

of images is created for training. One image goes through a series of opera-

tions explained in this section to generate a new image. We use photometric

distortion and random sample crop to make the model robust to various object

sizes and shapes just like original SSD model [38]. In photometric distortion,

we convert RGB image to HSV color space and assign random hue and satura-

tion to the image before converting it back to RGB. Next, we apply a random

contrast, random brightness and random lighting noise (i.e., we shuffle image

channels randomly) to the image. In the case of the random crop, we randomly

sample each training image using one of the following options:

• Use original input image as it is

• Sample a patch so that the minimum Jaccard overlap with the objects

is 0.1, 0.3, 0.5, 0.7, or 0.9.

• Randomly sample a patch

As there are 7 options for the random crop, probability that an option

is selected is (1/7)th. Randomly sampled patches have two contraints. First,

width and height of generated patch should be at least 30% of the original

width and height, respectively. Second, the aspect ratio of the generated

patch should be between 0.5 and 2.
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We use the zoom out operation proposed in the original SSD model

that creates more small object examples. In this operation, we place the input

image on a canvas of size up to 16× the size of the image before applying

the random crop. Unlike original SSD, we do not perform mirroring of the

image because we do not think it will help improve the results for the math

expression detection.

In this data augmentation process one input image generates only one

output image in one epoch. But, the same input image might generate differ-

ent output image in next epoch as we randomly select values for the series of

operations, i.e., we might use different values in different epochs for hue, satu-

ration, brightness, patch size, etc. We do not increase the available number of

training images in one epoch, but the number of distinct images network has

seen during training increase as we train for multiple epochs.

4.2.3 Multi-scale Feature Maps for Detection

In original SSD architecture [38], after the base network VGG16, ad-

ditional feature layers are added. These layers decrease in size and allow

predictions to be made at multiple scales. Feature maps are obtained after ap-

plying convolution on each feature layer. The convolution process is explained

in Section 4.2.6. Lower layer feature maps (like a featue map from Conv4 3)

that appear earlier in the network capture more fine-grained details and can

improve the segmentation quality [39][23]. By utilizing the feature layers of

different scales in the same network we can mimic the effect of processing the
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image at different sizes and combining the results afterward. Just like Liu

et. al [38], for SSD300 we use feature maps extracted from Conv4 3, FC7,

Conv8 2, Conv9 2, Conv10 2, and, Conv11 2 and for SSD512 we use feature

maps extracted from Conv4 3, FC7, Conv8 2, Conv9 2, Conv10 2, Conv11 2,

and, Conv12 2. We use total 6 feature maps in case of SSD300 and 7 feature

maps in case of SSD512. One of the feature maps is extracted from the VGG16

as shown in Figure 4.7. VGG16 is a deep convolutional neural network used

for feature extraction. Refer to Chapter 2, Section 2.3.3 for more details on

VGG16. Size of each feature layer is written on each feature layer in Figure

4.7.

4.2.4 Detection Regions

In SSD, we define potential locations for the objects of interest in

the feature maps. We call these initial potential locations for objects of in-

terest as default boxes. While training network predicts four offset values

∆(cx, cy, h, w), two for the center of the default box (cx, cy) and one for the

height (h) and width (w) each. Using predicted offset values, we get a detec-

tion hypothesis per default box. We show the default boxes for feature maps

from SSD512 architecture in the Figure 4.4. These default boxes cover every

area of the image and should be able to detect an object at any location. The

lower-level feature maps like 64 × 64 have small default boxes and learn to

detect small objects. The higher-level default boxes like 4× 4 use big default

boxes and learn to detect relatively big objects.
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Default Box Tiling Our default box tiling method is exactly the same as

the original SSD model [38]. We place default boxes so that different feature

maps learn to be more responsive to objects of different scales. If there are m

feature maps for the prediction, we calculate the scales of the default boxes

using Equation 4.1. The lowest feature layer has a scale of 0.2 and it is denoted

by smin. The highest feature layer has the scale of 0.9 and it is denoted by

smax. In Equation 4.1, we use smin = 0.2 and smax = 0.9.

sk = smin +
smin
m− 1

(k − 1), k ∈ [1,m] (4.1)

We define the aspect ratios ar of the default boxes before training. We

center each default box at ( i+0.5
|fk|

, j+0.5
|fk|

), where | fk | is the size of one side of the

kth square feature map and i, j ∈ [0, |fk|). We calculate the width and height of

each default box for given feature map as wak = sk
√
ar and height hak = sk/

√
ar.

For aspect ratio 1, one additional default box of scale sk =
√
sksk+1 is added.

Example Let us understand the tiling of default boxes with an example.

Consider we want to find the default boxes for feature map of size 3 × 3 for

SSD300 architecture shown in Figure 4.7a. We have |fk| = 3. As 3× 3 is the

fifth feature map (38 × 38 being first), k = 5. SSD300 uses total 6 feature

maps, hence m = 6. SSD300 uses aspect ratios {1, 1/2, 2} in the fifth feature

map. Now, we can calculate the s5:

s5 = 0.2 +
0.2

6− 1
(5− 1) = 0.36 (4.2)
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Figure 4.4: Default boxes visualization for SSD512 architecture. Each ? rep-
resents the center of default boxes. Each ? has a few default boxes associated
with it. For example, each ? in feature maps 64×64, 32×32, 16×16, 8×8, 4×
4, 2×2, and 1×1 have 4, 6, 6, 6, 6, 4, and 4 default boxes associated with them,
respectively. For simplicity, we show default boxes around only one ? (green).
We show default boxes with same aspect ratios in the same color (e.g. red for
aspect ratio 1, green for aspect ratio 2 and 1/2, yellow from aspect ratio 3 and
1/3) across all feature maps. We show all default boxes associated with every
? from all feature maps at once in the last image. Size of feature maps is equal
to number of default box centers for that feature map, i.e., for x × x feature
map there will be x rows with x default box centers.
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We define 9 locations on the feature map of size 3× 3 to be the centers

of our default boxes using formula ( i+0.5
|fk|

, j+0.5
|fk|

). For example, for i=0 and j=0,

we define center at (0+0.5
3
, 0+0.5

3
) i.e., (1

6
, 1
6
). For feature map 3 × 3, i ∈ [0, 3)

and j ∈ [0, 3). For each of the 9 locations defined as the center, we add four

default boxes. For aspect ratio a = 1, we get width w1
5 = s5

√
1 and height

h15 = s5/
√

1. For aspect ratio a = 1 we also add another default box with

s5 =
√
s5s6. So, we get a default box with width

√
s5s6 and height

√
s5s6.

s6 can be calculated just like s5 using Equation 4.1. For aspect ratio a = 2,

we get width w2
5 = s5

√
2 and height h25 = s5/

√
2. Similarly, for aspect ratio

a = 1/2, we get width w
1/2
5 = s5

√
1/2 and height h

1/2
5 = s5/

√
1/2. As there

are 9 center locations and 4 default boxes per location, we get total 36 default

boxes for feature map 3× 3. Here, we calculated the center locations, width,

and, height for unit size image. For SSD300, input image size is 300 × 300.

Therefore, we need to scale the calculated values of center locations, width,

and, height by 300.

Similar to the feature map of size 3×3, we can calculate centers, widths,

and heights of the default boxes for other feature maps.

4.2.4.1 Counting Total Number of Default Boxes

Original SSD300 [38] architecture uses feature maps of size 38×38, 19×

19, 10×10, 5×5, 3×3, and 1×1 with default boxes 4, 6, 6, 6, 4, 4. Hence, total

number of default boxes in original SSD300 architecture can be calculated as:
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total default boxes for original SSD300 = 38× 38× 4

+ 19× 19× 6

+ 10× 10× 6

+ 5× 5× 6

+ 3× 3× 4

+ 1× 1× 4

= 8732

(4.3)

Similarly, for original SSD512:

total default boxes for original SSD512 = 64× 64× 4

+ 32× 32× 6

+ 16× 16× 6

+ 8× 8× 6

+ 4× 4× 6

+ 2× 2× 4

+ 1× 1× 4

= 24564

(4.4)

So, original SSD300 and SSD512 use 8732 and 24564 default boxes re-

spectively2. We describe the number of default boxes used for each experiment

in Section 4.1.

2Please refer original caffe implementation and documentation regarding number of de-
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In the next section we discuss the matching strategy and why it is

important to use multi-scale feature maps with multiple aspect ratios.

4.2.5 Matching Strategy

Our matching metric is same as original SSD [38]. Each ground truth

box is matched to a default box with best IOU (refer to Chapter 3). IOU

is defined as the area of intersection over the area of union for given shapes.

It is also known as the Jaccard index or Jaccard overlap. Also, each default

box is matched with a ground truth box with Jaccard overlap of more than a

threshold (0.5). Matching more than one default boxes to one ground truth

box simplifies the learning problem by allowing the network to predict higher

scores for more default boxes. The matched default boxes are considered as

positive examples (POS) and other default boxes are considered as negative

examples (NEG).

Figure 4.5 show default boxes overlaid on the input image of size 512×

512. Each feature map is a pixel grid, but the associated default boxes are

defined by the co-ordinates in the original image space. The lower level feature

map 64 × 64 has smaller default boxes associated with it. The higher level

default box 32×32 has larger default boxes associated with it. Hence, 32×32

feature map learns to detect bigger objects as compared to 64 × 64 feature

map. If we only use features from 32× 32 default box for detection we might

fault boxes: https://github.com/weiliu89/caffe/tree/ssd. Calculated number of de-
fault boxes matches perfectly.
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miss smaller objects. Hence, it is important to use feature maps of different

sizes for prediction. For highlighted ground truth box in the Figure 4.5 wide

yellow box has the maximum IOU. Hence, while training a wide yellow box

will be matched with the highlighted ground truth.

(a) Default boxes for 32× 32 fea-
ture map overlaid on input image
of size 512× 512.

(b) Default boxes for 64× 64 fea-
ture map overlaid on input image
of size 512× 512

Figure 4.5: Example of default boxes for 32× 32 and 64× 64 overlaid on the
input image of size 512 × 512. Each location denoted by a blue ? has the
same set of associated default boxes for each feature map. Figure 4.5a shows
a highlighted ground truth.

Original SSD [38] architecture uses aspect ratios (width/height) of

{1, 2, 3, 1/2, 1/3}. But, Figure 4.6 shows that there the many wide default

boxes with aspect ratio more than 3 in the dataset. It is important to use

default boxes with an aspect ratio of more than 3 for effective training. Wide

default boxes will have higher chance of matching with wide ground truths as

per matching strategy explained in Section 4.2.5. Hence, along with default
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boxes used in the original SSD, we also experiment with wider default boxes

used in TextBoxes[32] of aspect ratios {5, 7, 10, 1/5, 1/7, 1/10}. Also, we ex-

periment with only wide default boxes with aspect ratios {1, 2, 3, 5, 7, 10}. We

explain the details of our experiments in Section 4.5.

Figure 4.6: Histogram of aspect ratios of math expression bounding boxes in
the GTDB dataset. We round all the aspect ratios up while generating this
histogram. There are many math regions with aspect ratios over 3.

SSD300 architecture proposed in the paper [38] used 8732 default boxes.

In our experiments, the use of additional wider default boxes results in far more

default boxes than original SSD. As the number of non-math regions is higher

than the number of math regions, the number of the default boxes that match

math regions is lower than the number of default boxes that match the non-
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math regions, i.e., POS ¡ NEG. It results in the class imbalance problem. In

our experiments, we tried the focal loss[33] and hard negative mining to reduce

the effect of class imbalance (refer to Section 4.3.2) .

4.2.6 Kernel Sizes for Detection

The architecture in 4.3 only uses convolution and pooling layers i.e. the

network is fully convolutional. In case of SSD architecture, at each location

in the feature layer of size m× n with p channels a kernel of size a× b× p is

applied to produce an output value. Original SSD [38] uses 3 × 3 × p kernel.

We try 3×3×p and 1×5×p kernels in our experiments. p changes depending

on the feature map. Liao et al. [32] claim that kernels of size 1 × 5 yield

rectangular receptive fields which better-fit words with larger aspect ratios,

also avoiding noisy signals that a square-shaped receptive field would bring in.

They base their architecture for text detection in natural scenes on the SSD.

Math expressions are usually wide, and hence we tried the kernel of size 1× 5.

We explain the details for each experiment in Table 4.1.

Now, let us look at the complete SSD architecture.

4.3 SSD Architecture

Figure 4.7 shows the SSD300 and SSD512 architectures. These archi-

tectures are feed forward convolution networks that produce a fixed number of

bounding box hypotheses, each with an associated probability. Non-maximal

suppression (NMS) is applied to the bounding boxes to get the final SSD out-
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put results. NMS is a greedy, locally optimal strategy which keeps only one

detection per group (ideally obtaining only one detection per object) from

relatively dense detection outputs near the correct location of the object gen-

erated by object detection methods. Section 2.3.1 from Chapter 2 describes

the NMS in detail. These SSD architectures use VGG16[48] pre-trained on a

ImageNet[9] dataset as a base network. VGG16 is a deep convolutional neural

network with 13 convolutional layers and 3 fully-connected layers. VGG16

architecture is described in Chapter 2, Section 2.3.3. We use the first 13 con-

volutional layers from the VGG16 network as it is. The last fully-connected

layer FC8 is removed. The reamining two fully-connected layers are converted

to convolutional layers using a method described in Chapter 2, Section 2.3.4.

The Figure 4.7 shows FC6 and FC7 layers converted to convolutional layers.

We mention the sizes of FC6 and FC7 on the layers. As compared to SSD300,

SSD512 is deeper with one extra feature layer (Conv12 2) and has input image

size 512× 512 instead of 300× 300.

Both original SSD300 and SSD512 [38] uses a = 3, b = 3. Original

SSD300 uses d1 = 4, d2 = 6, d3 = 6, d4 = 6, d5 = 4, d6 = 4. SSD512 uses

d1 = 4, d2 = 6, d3 = 6, d4 = 6, d5 = 6, d6 = 4, d7 = 4. Conv4 3, FC7, Conv8 2,

Conv9 2, Conv10 2, Conv11 2 are used as feature layers in SSD300. SSD512

adds one more feature layer Conv12 2. ‘Classes is the number of classes to be

predicted by the network. In our case, Classes=2 (math and non-math). For ith

feature map of size m×n the number of default boxes is calculated as m×n×di.

For each default box, network predicts class confidences and 4 offset values.
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(a) A SSD300 network with VGG16 as a base network

(b) A SSD512 network with VGG16 as a base network

Figure 4.7: Simplified SSD300 and SSD512 architectures with VGG16 as base
network. a × b is the size of the kernel. di represents the number of default
boxes used in the feature map. Detailed architecture is shown in Figure 4.8.
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Hence, each feature layer is used to predict m×n× di× (Classes+ 4) values.

Refer to Section 4.2.4 for more information about default boxes.Convolution

layers applied applied after each feature layer are shown at the bottom of each

feature layer with stride used (s1 = stride 1 and s2 = stride 2). Default stride

is 1. We mention the parameters we used while training in the Table 4.1.

The detailed SSD300 architecture is shown in the Figure 4.8. We show

the changes in the original VGG16 architecture, extra layer, localization, and,

confidence layers with number of input and output channels, kernel sizes,

stride, and, padding. Also, we show the output size after each layer and input

and output sizes for the localization (LOC) and confidence (CONF) layers.

There are 6 feature maps, 6 LOC layers (one per feature map), and, 6 CONF

layers (one per feature map).

4.3.1 Loss Functions

We use the loss function proposed by Liu et al. in the SSD paper [38].

Let xpij = {1, 0} be an indicator for matching the ith default box to the jth

ground truth box of category p. In the matching strategy used in the model

(refer to section 4.2.5 for more details), we can have
∑

i x
p
ij ≥ 1. It means that

more than one default box can match one ground truth box. The overall loss

is a weighted sum of localization loss and confidence loss. Next, we describe

the bounding box regression problem and the localization loss.
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Figure 4.8: Detailed SSD300 architecture. The FC6 and FC7 layers from
VGG16 are converted to yellow boxes: CONV6 and CONV7. The green high-
lights show the difference between original VGG16 (refer to Section 2.2) and
VGG16 used by SSD300. FC8 layer from VGG16 is removed. The light blue
boxes show the extra layers added after VGG16. The purple highlights show
the feature map layers. Feature maps extracted from feature layers are used by
LOC and CONF layers to predict the four bounding box offsets ∆(cx, cy, w, h)
and class confidences for each default box at each location.
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Bounding Box Regression Let us define the predicted box l as l = {lcx, lcy, lw, lh},

where superscript (cx, cy) is the x and y co-ordinate of the center of the box,

w is the width, and, h is the height. Similarly, the ground truth bounding box

g can be defined as l = {lcx, lcy, lw, lh}. We configure the bounding box regres-

sor to learn four functions, fcx, fcy for scale-invariant transformation between

centers of l and g and fw, fh for log-scale transformation between widths and

heights. In general, we define fi, where i ∈ {cx, cy, w, h} as a bounding box

correction function. fi takes l as the input. The target values ĝ for bounding

box correction functions fi are defined below:

ĝcxj = (gcxj − dcxi )/dwi

ĝcyj = (gcyj − d
cy
i )/dhi

ĝwj = log(
gwj
dwi

)

ĝhj = log(
ghj
dhi

)

(4.5)

We use smoothL1 loss defined by Girshick[19] for the bounding box

regression problem. It is given by Equation 4.6. It is claimed to be less

sensitive to outliers.

smoothL1(t) =

{
0.5t2, if | t |< 1;

| t | −0.5, otherwise
(4.6)

Localization Loss The localization loss is the smooth L1 loss [12] between

the predicted box(l) and the ground truth box(g). We calculate the overall
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localization loss as:

Lloc(x, l, g, f) =
∑
i∈POS

∑
m∈{cx,cy,w,h}

(xpijsmoothL1(fm(li)− ĝmj )) (4.7)

where POS are positive examples and | POS |= N . POS and NEG (negative

examples) are defined in the Section 4.2.5. x is the indicator function, l is

the predicted box, g is the ground truth, and, fi is the set of bounding box

correction functions. From Equation 4.7 we can see that the localization loss

is calculated only for positive examples.

Confidence Loss The confidence loss is the cross entropy loss over multiple

class confidences (c). It is given by Equation 4.8.

Lconf (x, c) = −
∑
i∈POS

xpij log ĉpi −
∑

i∈NEG

log(ĉ0i )

where,

ĉpi = exp(cpi )/
∑
k

exp(cki )

(4.8)

Overall Loss The overall objective loss function used in our model is given

by Equation 4.9:

L(x, c, l, g) =
1

N
(Lconf (x, c) + αLloc(x, l, g, f)) (4.9)
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where N is the number of matched default boxes. If N is 0, the loss is set to

0. We set the weight term α to 1 like original SSD[38].

4.3.2 Dealing with Class Imbalance

In this section we discuss two techniques we used to address the class

imbalance problem we get from having many more non-math than math re-

gions during training: focal loss and hard negative mining.

4.3.2.1 Focal Loss

Figure 4.9: Behavior of focal loss function for different values of γ. Setting
γ > 0 reduces the relative loss for well-classified examples (pt > 0.5), putting
more focus on hard, misclassified examples. The blue line is the CE loss. The
purple line shows the curve for the FL with γ = 2 which was found to be
working best by Lin et al [33]. This figure is taken from Lin et al. [33].
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The original SSD architecture[38] used the cross-entropy (CE) function

(refer to Equation 4.8) for confidence loss calculation. Cross-entropy is defined

by Equation 4.10. Here y ∈ {±1} which is the ground truth class and p ∈ [0, 1]

is the model’s estimated probability.

CE(p, y) =

{
− log p, if y = 1

− log(1− p), otherwise
(4.10)

The FL is modification of CE. Lin et al.[33] define pt as given in Equa-

tion 4.11 and rewrite the cross-entropy function (Equation 4.10) as Equation

4.12. The FL is defined in the Equation 4.13.

pt =

{
p, if y = 1

1− p, otherwise
(4.11)

CE(p, y) = CE(pt) = − log pt (4.12)

FL(pt) = −(1− pt)γ log(pt) (4.13)

If γ = 2 and pt = 0.9, then FL will be 100 times lower than the CE. When

pt = 0.968, FL will be 1000 times lower than the CE. This allows the network

to focus more on correcting the misclassified examples. Also, when γ = 0, FL

is equivalent to CE. Figure 4.9 shows the behavior of FL for different γ values.

We call (1− pt)γ a modulating factor. As pt → 1, the (1− pt)γ → 0 and effect

of easy examples is down-weighted. The focusing factor γ smoothly adjusts
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the rate at which the examples are down-weighted. Here, by easy examples

we mean examples were classified with high confidence by the network. Easy

examples can include math and non-math regions.

In practice α balanced variant of focal loss is used. α ∈ [0, 1] is a

weighting factor for class 1 and 1− α for class -1.

αt =

{
α, if y = 1

1− α, otherwise
(4.14)

FL(pt) = −αt(1− pt)γ log(pt) (4.15)

Focal loss is applied on all the examples while training, none of the

examples are left out while training. Lin et. al [33] claim that γ = 2 and

α = 0.25 worked best in their experiments. We experimented with both CE

and FL. For more details on the experiments, please refer to Chapter 5.

Let us see a method used in the original SSD architecture [38] to deal

with the class imbalance problem called hard negative mining.

4.3.2.2 Hard Negative Mining

After matching step described in Section 4.2.5, we end up with positive

examples and a large number of negative examples, especially when there

is a large number of default boxes. Hence, while training instead of using all

negative examples, they are sorted by their confidence in descending order and

top examples are selected such that the ratio between positive and negative
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examples is at most 1:3 as per original SSD model [38]. It means that only the

negative examples with the highest confidence are used in the computation

of total loss. If hard negative mining (HNM) is used, in our loss function

(refer to Section 4.3.1), when number of positive examples is equal to N (i.e.

| POS |= N), the number of negative examples must be less than or equal

to 3N (i.e., | NEG |≤ 3N). We apply HNM every time we compute the

confidence loss. Liu et al. [38] claim that, HNM results in faster optimization

and more stable learning.

4.4 Pooling Detected Math Regions

We show the steps in the pooling process in Figure 4.10. As shown

in Figure 4.10, at the inference time we generate smaller sub-images from

the input image. We pass these sub-images as input to the model and get the

predicted bounding boxes with prediction confidence. Figure 4.11 shows patch

level detection results with confidence. The same region can be seen multiple

times because of the sliding window method used and multiple bounding boxes

can be predicted for the same region. To get final detection results, we use the

predictions from the network for voting at the pixel level. We consider each

pixel in the bounding box to have the same confidence as the bounding box.

Let B be a set of page level bounding boxes and C be set of confidences

obtained after patch level detection results. Bi ∈ B is a ith bounding box with

confidence Ci ∈ C. Let each pixel in image I of size h× w be represented by

set of pixels Pab, where a ∈ [0, h) and b ∈ [0, w). We say that a pixel Pab ∈ Bi
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Figure 4.10: Voting based pooling method to get final detection results

if it is inside the bounding box Bi. Let us define Liab = 1 if Pab ∈ Bi and 0

if Pab /∈ Bi. It is possible that
∑

i L
i
ab ≥ 1 which means that Pab can belong

to more than one bounding box. To calculate the score Sab at Pab we tried

different voting functions. They are defined as follows:

• Uniform weighting: Each bounding box is given the same weight. So,

the number of bounding boxes in which the pixel exists is the number of

votes for that pixel.

Sab =

|B|∑
i=0

Liab (4.16)

• Maximum score: The maximum confidence the network had for a pixel

is the score for that pixel.

Sab = Max(LiabCi),where i ∈ [0, | B |) (4.17)

• Average score: The average of confidences of all bounding boxes which

contain Pab.
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Sab =

∑|B|
i=0 L

i
abCi∑|B|

i=0 L
i
ab

(4.18)

• Sum score: We sum the confidences of all bounding boxes surrounding

the pixel and assign it as a score to that pixel.

Sab =

|B|∑
i=0

LiabCi (4.19)

After assigning the pixel scores, we apply a threshold. Figure 4.12

shows how thresholding is applied at the page level. We decide the threshold

value using training data by performing grid search over possible threshold

values and finding a value for which network generates best detection results

(f-score). We found that the average score does not perform as good as other

methods. In Chapter 5, Figure 5.2a, 5.2b, and, 5.2c show the f-score for

different threshold value when threshold is 50% and 75% for maximum score

algorithm, sum score algorithm and equal score algorithm respectively. For

uniform weighting and sum score, we try thresholds from 0 to 55 with an

increment of 1. For maximum score the minimum value is 0 and maximum

value is 100. So, we try threshold values from 0 to 100 with an increment

of 1. We choose the threshold value for which we get maximum F-score for

IOU75. For uniform weighting, we get the highest F-score for IOU75 of 76.8%

at the threshold of 30. F-score for IOU50 for the same threshold is 86.8%.

We observed that the algorithm sum score has comparable highest F-score of

75.6% for IOU75 and 85.92% for IOU50 for the threshold of 13. For the max
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Figure 4.11: The bounding boxes and confidences for sub-images predicted by
the SSD. It can be observed that the confidences of math expressions changes
as the window shifts. The network is sensitive to the position of the object in
the input image. The confidence scale: gray ≈ 0, red ≈ 0.5, white ≈ 1.0
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Figure 4.12: Thresholding operation. The left image shows the votes given to
each pixel by the voting algorithm and the right image shows the binary mask
generated after thresholding

score, we get the highest F-score of 62.72% for IOU75 and 72.59% for IOU50

at the threshold of 81. For further explanation and results refer to Chapter 5.

We generate a final binary mask using the threshold value. Pixels which

have scored more than the threshold are assigned a value of 1 and others are

assigned 0. Finally, we extract bounding boxes of the connected components

from the binary mask as math expressions. Figure 4.13 shows the full page

detection results and confidence scores after pooling.

4.5 Training

Table 4.1 shows the parameters we used in our experiments. Sub-

image generated using sliding window of size 1200 × 1200 is converted to

input image size. Aspect ratios (AR) used are A1,A2, A3, and, A4 . A1
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(a) Full page detection results after
pooling

(b) Full page confidence score. Only
maximum confidence is shown.

Figure 4.13: Full page results after pooling

Table 4.1: Parameters used in the experiments

Experiment
Input
size

AR Kernel HNM LF

SSD300 300× 300 A1 3× 3 1:3 CE
SSD512 512× 512 A2 3× 3 1:3 CE
ASPECT512 512× 512 A3 3× 3 1:3 CE
HBOXES512 512× 512 A4 3× 3 1:3 CE
FLNEG512 512× 512 A3 3× 3 1:3 FL
FL512 512× 512 A3 3× 3 OFF FL
MATH512 512× 512 A3 1× 5 1:3 CE
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represents the aspect ratios used in the original SSD300[38]. For feature map

38 × 38, 3 × 3, and 1 × 1 we use 3 aspect ratios 1, 2, 1/2. For feature maps

19× 19, 10× 10, 5× 5 we use additional {3, 1/3} aspect ratios. A2 represents

the aspect ratios used in the original SSD512[38]. For feature maps 64 × 64,

2 × 2, and, 1 × 1 we use {1, 2, 1/2}. For feature maps 32 × 32, 16 × 16,

8 × 8, and, 4 × 4 we use additional {3, 1/3} aspect ratios. A3 denotes use of

{1, 1/2, 1/3, 1/5, 1/7, 1/10, 2, 3, 5, 7, 10} for all feature maps. A4 denotes use of

{1, 2, 3, 5, 7, 10} for all the feature maps. Note that for aspect ratio 1×1 we add

two default boxes as explained in the Section 4.2.4. Exactly one default box

is added for other aspect ratios. Suffix 300 and 512 in the experiment name

denotes use of 6 feature layers like SSD300 and 7 feature layers like SSD512

respectively. The kernel sizes shown in the table are used for extraction of

feature maps from the feature layers. These kernel sizes are denoted by the

a × b in Figure 4.3. HNM is hard negative mining. The ratio shown in the

HNM column is the ratio of positive examples to the negative examples. LF

is loss function used for calculating the classification loss. CE is cross entropy

and FL is focal loss.

The VGG16 base network is pre-trained3 on the ImageNet [9] dataset.

ImageNet is a large image dataset with average of 500 images per category.

We fine-tune the resulting model using stochastic gradient descent (SGD) with

an initial learning rate 10−4, 0.9 momentum, 5 × 10−4 learning rate and a

3Weights are available at https://s3.amazonaws.com/amdegroot-models/vgg16_

reducedfc.pth
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batch size of 16. We also use a learning rate decay policy. We decay learning

rate by factor of 10 at iteration 80k, 100k and 120k. We train our network

for 132k iterations (4 epochs). For non-maximal suppression we use IOU

threshold of 0.45 and confidence threshold of 0.25.To avoid overfitting we use

data augmentation (refer to Section 4.2.2) and validation set. We split each

PDF from training data in 80% and 20%. The pages that were used for

validation are given in Appendix A.

We train the best performing model using training and validation dataset

for 165k iterations (4 epochs) and test the generalization on the test dataset.

4.5.1 Number of Default Boxes Per Experiment

Figure 4.14 shows the total number of default boxes used in each ex-

periment. The method to calculate the number of default boxes is explained

in the Section 4.2.4.1.

4.6 Implementation

We modified open source PyTorch [42] implementation of SSD4 to use

it for math expression detection. Max deGroot who works with Amazon Alexa

developed this repository. It supports training and testing SSD300 model on

the VOC 2007, VOC 2012 and COCO dataset. It uses Visdom5 for plotting

training curves. Visdom is a flexible tool for creating, organizing, and sharing

4https://github.com/amdegroot/ssd.pytorch
5For more information refer to https://github.com/facebookresearch/visdom
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Figure 4.14: Total number of default boxes used in each experiment

visualizations of live data and supports Torch6 and Numpy7. Below is a list of

major changes in the original implementation.

1. We added support to train and test on the GTDB dataset.

2. We added support to train and test the SSD512 model.

3. We added multiple command-line arguments and configuration file to

easily modify the hyper-parameters for experiments.

6Torch is a scientific computing framework with wide support for machine learning algo-
rithms. Read more on http://torch.ch/

7Numpy is a libray in Python programming language that supports large multidimen-
sional arrays. Read more on https://numpy.org/
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4. We added data reader for GTDB dataset which uses a sliding window

method described in Section 4.2.1 to generate sub-images and new an-

notations.

5. We added a confidence map and detection results visualization method.

6. We added scripts to perform the grid search for threshold values.

7. We implemented the stitching algorithm described in Section 4.4 includ-

ing uniform weighting, average score, maximum score, and, sum score.

8. We added support for using a validation set while training and automatic

generation of validation loss vs. epoch graphs using Visdom.

9. The original code only supported testing one image at a time, so we

added support for batch testing.

10. We use the logger to store the logs generated while performing the ex-

periments.

11. We added functionality to measure the training and testing time.

12. We also added other functionalities for better organization of generated

outputs, like changing the titles of generated training plots as per the

given experiment name, storing weights in a directory named experiment

name, etc.

13. We implemented a focal loss function and ability to easily select between

cross-entropy and focal loss using command line arguments.
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14. We implemented functionality to turn on or off the hard negative mining

and tall default boxes.

15. In the original code, we got −∞ values in the loss sometimes. It was

introduced while calculating ĝwj = log(
gwj
dwi

) and ĝhj = log(
ghj
dhi

) in Equation

4.7. If gwj or ghj is 0, we replace it with a very small value 8.

16. The random crop logic9 was not the same as original SSD paper [38].

We modified the code to make it same as original SSD paper.

8For more information refer to https://github.com/amdegroot/ssd.pytorch/pull/

116
9For more information refer to https://github.com/alamdegroot/ssd.pytorch/

issues/119

83

https://github.com/amdegroot/ssd.pytorch/pull/116
https://github.com/amdegroot/ssd.pytorch/pull/116
https://github.com/alamdegroot/ssd.pytorch/issues/119
https://github.com/alamdegroot/ssd.pytorch/issues/119


Chapter 5

Results

In this chapter, we measure the effectiveness of the proposed method

using the TFD-ICDAR2019 dataset. We designed the experiments to find the

hyper-parameters for SSD model and chose a set of parameters that performed

best on the validation set for measuring the performance of ScanSSD on the

test dataset. We also analyze results at the character level. We provide the

number of sub-images generated using sliding windows for training, validation,

and, test dataset. We provide training time and compare precision, recall, and,

F-score of a single character and multi-character math expressions. Moreover,

we find how effectively our model detected the math characters in the docu-

ment images. We compare the performance of our models on the validation

set and decide the model with the highest F-score on the validation set as the

final model. We train our final model with training and validation data and

test the generalization on the test dataset. We use a grid search to find out

the best pooling method and the best threshold for the pooling method. Also,

we studied the effect of postprocessing on the detection results.
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5.1 Effect of Data Augmentation

It is common in the object detection literature to use extensive data

augmentation to avoid overfitting on the training data [43, 38]. In addition to

data augmentation while training as described in Section 4.2.2, sliding windows

generate a large number of sub-images from a small number of pages. For

training and validation, we get 524,718 and 131,999 sub-images with math

regions respectively. Validation split is provided in Appendix A. We trained

our model for 6 epochs (more than 185k iterations) and found out that the

validation loss continued to decrease.

(a) Loss on training set per epoch (b) Total loss on validation set per epoch

Figure 5.1: The figure shows continued decrease in the total loss on validation
set. The rate of decrease in loss on validation set is almost 0 after epoch 4.

Figure 5.1 shows the continued decrease in validation loss while train-

ing. The rate of decrease in validation loss is almost zero after epoch 4. So,

we train our models for 4 epochs (≈ 132k iterations on training dataset) while

performing our experiments. Each iteration uses a batch size of 16. Each batch

is generated by sliding a window of size 1200 × 1200 on a page image main-

taining 90% overlap till we get 16 sub-images. We apply data augmentation
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explained in Chapter 4, Section 4.2.2 for each batch.

5.2 Finding a Good Threshold for Pooling Methods

(a) Threshold value search for maximum
score algorithm. Highest F-score obtained
for threshold 53 for IOU50 and threshold
81 for IOU 75.

(b) Threshold value search for sum score
algorithm. Highest F-score obtained for
threshold 13 for both IOU 50 and IOU
75.

(c) Threshold value search for uniform
weighting algorithm. Highest F-score ob-
tained for threshold 30 for both IOU 50
and IOU 75.

Figure 5.2: The grid search for the threshold value for different voting based
algorithms
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We decide the threshold value for pooling algorithms explained in Sec-

tion 4.4 by performing grid search over possible threshold values and finding a

value for which network generates best detection results (F-score) on the train-

ing data. We choose the threshold value for which we get maximum F-score

for IOU75. Figure 5.2a, 5.2b, and, 5.2c show the F-score for different thresh-

old value when threshold is 50% and 75% for maximum score algorithm, sum

score algorithm and uniform weighting algorithm respectively. For uniform

weighting and sum score, we try thresholds from 0 to 55 with an increment

of 1. We observed a continued decrease in the score after threshold 30 for

uniform weighting and after threshold 13 for sum score. For maximum score,

the minimum threshold value is 0 and the maximum value is 100 as it is the

network confidence which ranges from 0 to 100. So, we try threshold values

from 0 to 100 with an increment of 1. For uniform weighting, we get the high-

est F-score for IOU75 of 76.8% at the threshold of 30. F-score for IOU50 for

the same threshold is 86.8%. We observed that the algorithm sum score has

comparable highest F-score of 75.6% for IOU75 and 85.92% for IOU50 for the

threshold of 13. For the max score, we get the highest F-score of 62.72% for

IOU75 and 72.59% for IOU50 at the threshold of 81. It is not shown in the

figure, but the precision and recall gradually decrease as the number of votes

increase for the pooling methods. We use uniform weighting with threshold 30

for all experiments as it obtains highest F-score among the scoring methods

that we tried.
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5.3 Results on Validation Dataset

To decide which hyper-parameters work well for math detection in SSD,

we designed a set of experiments. All the experiments were performed exactly

once. In this section, we provide results obtained on the validation dataset

for all the experiments. The total number of sub-images in the validation set

is 207,856. Out of 207,856 sub-images, 131,999 sub-images have at least one

math region.

5.3.1 Precision, Recall, and F-score

Figure 5.3 summarizes the results on the validation dataset. We started

with SSD300 which takes input image of size 300 × 300 as our baseline. We

changed the input image size to 512×512 for SSD512 and observed the signifi-

cant improvement in the F-score for both IOU50 and IOU75. Refer to Chapter

4, Section 4.5 for detailed explanation of each experiment. ASPECT512 used

additional wider default boxes. We used exactly 12 default boxes for each

grid center in a feature map. We were expecting improvement in the F-score

with additional wider default boxes but the F-score decreased as compared to

SSD512. It is possible that the initial random initialization of weights was not

good for ASPECT512.

In HBOXES512, we removed all the tall default boxes and just used

the wide default boxes. HBOXES512 performed better than the ASPECT512.

Removal of tall default boxes significantly reduced the number of default boxes

per input image. Most of the math regions are wider, use of only wide default
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Figure 5.3: Formula detection results on the validation set for IOU50 and
IOU75
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boxes in case of HBOXES512 might have reduced the noise introduced by tall

default boxes and helped HBOXES512 learn better than ASPECT512.

We used focal loss with negative mining for model FLNEG512 and used

focal loss without negative mining for model FL512 instead of cross-entropy

loss for calculating classification loss. As expected FL512 performed better

than the FLNEG512 as the focal loss is designed to replace hard negative

mining and FLNEG512 uses focal loss with hard negative mining.

Finally, we used MATH512 model which is the same as HBOXES512

except we replaced a kernel of size 3×3 with 1×5 in the confidence (CONF) and

localization (LOC) layers in SSD architecture (refer to Figure 4.8 in Chapter

4). We observed that the MATH512 has the highest recall and second-highest

precision (after SSD300). It has the highest F-score. One of the reasons can be

that the use of a wider 1× 5 kernel creates rectangular receptive fields which

better represent math regions in the original image.

To summarize, we observed that focal loss does not perform better

than cross-entropy with hard negative mining for our architecture. Focal loss

performs worse if combined with hard negative mining. Use of a very large

number of default boxes can affect performance because of noise introduced

due to unnecessary default boxes. Aspect ratios of default boxes should be

carefully chosen as they play an important role in the effective training of

SSD. Use of kernel size in CONF and LOC layers of SSD (shown in Chapter

4, Figure 4.8) that creates the shape of receptive field similar to the shape of

object that we want to detect results in performance improvement.
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5.3.2 Character Level Detections

Figure 5.4 shows the character level results on the validation set. Char-

acters completely inside detected bounding boxDC can be either text character

DT or math characters DM . All the characters that are completely inside the

ground truth bounding box are considered as a ground truth math characters

GM . Character level results can be calculated using Equation 5.1, Equation

5.2, and, Equation 5.3.

Precision =
| DM |

| DM ∪DT |
(5.1)

Recall =
| DM |
| GM |

(5.2)

F − score =
2× Precision×Recall
Precision+Recall

(5.3)

Figure 5.4 shows the character level results. It can be seen that we

get over 90% F-score for all the models. It is mainly because our method

can accurately detect math characters. The F-score for formula detection is

lower than character level detection because of splitting (detecting multiple

bounding boxes for a math expression) and merging (detecting one bounding

box for multiple math expressions).
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Figure 5.4: Character level results on the validation set

5.3.3 Single-character Vs. Multi-character Math Expression De-
tection

It can be seen from Figure 5.5 that the recall for single character math

expressions is always lesser than the multi-character math expressions. All of

our models clearly perform worse for single-character math expressions because

they detect many single-digit numbers like references, footnotes, figure number

etc. that are not math regions. Also, it is difficult to get IOU score more than

the threshold for single character math regions as they are very small in size.

It can also be seen that when we moved from input image size of 300×300 (in

SSD300) to 512 × 512 (in other models) the recall for single character math

expressions significantly improved. It is because we get more context while
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detecting a single character.

5.4 Results on the Test Dataset

In this section, we provide the results on the test dataset. We trained

MATH512 model with training and validation data for four epochs (165k it-

erations). The total number of sub-images with math regions generated using

sliding windows from for training is 656,717. The number of sub-images gen-

erated using sliding windows from test dataset is 415,796. Our model took 24

hours, 18 minutes to train on two Nvidia GeForce GTX 1080 Ti. Our model

operates at 27 frames per second (FPS) at inference time using one Nvidia

GeForce GTX 1080 Ti GPU. If we assume about 1200 sub-images per page,

it will take about 45 seconds per page.

5.4.1 Effect of Postprocessing

We perform two types of postprocessing: postprocessing-1 and postprocessing-

2. In postprocessing-1, we adjust the detected boxes before pooling and in

postprocessing-2, we adjust detected boxes after pooling. We studied the ef-

fect of both postprocessing on the detection results. It can be seen from Figure

5.6 that when we apply both postprocessing we get the highest F-score. When

applied independently postprocessing-1 performs better than postprocessing-

2. Postprocessing the detections definitely improves F-score, but on the other

hand, takes additional time. The time taken per page by each type of post-

processing is shown in Figure 5.7. We observed that postprocessing-1 takes
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Figure 5.5: Single-character vs. multi-character math expression detection
results on the validation set for IOU50 and IOU75
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Figure 5.6: Effect of postprocessing
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Figure 5.7: Time taken by postprocessing methods on test set

a significant amount of time. The labels on the x-axis shows which postpro-

cessing was used (ON-ON means both the postprocessing were used, ON-OFF

means just the first postprocessing was used, etc).

5.4.2 Final Results on Test Dataset

We would like to point out that in TFD-ICDAR2019 test dataset rela-

tions between the characters are given. It is possible to group math characters

following their relationships with other characters just using a graph traversal

method. The bounding box for a group of characters found this way repre-

sents a multi-character math region. It is not possible to detect single character

math regions using this method as they do not have any relationships with

other characters. A tree is generated when characters are grouped by following

their relationships with other characters. Such a tree is called a symbol layout

tree (SLT). We provide the results of this method in Figure 5.8.
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Figure 5.8: Comparision of ScanSSD with other systems on TFD-ICDAR2019
test dataset
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We believe Samsung R&D used the relationships available in the dataset

for finding the locations of multi-character regions and statistical methods for

finding single character math regions. Our method that reads given relation-

ships to form symbol layout tree (SLT) shows really good results. But, in

the real world, the relationships between characters are generally not available

and hence this thesis focuses on developing a method which works just from

document images. RIT2 was an earlier version of our system submitted to IC-

DAR2019 competition. Similar to RIT2, RIT1 works from the images and uses

YOLOv3 object detection for finding math regions. Our method MATH512

has about 5% increase in the F-score for IOU50 and about 4.5% increase in

F-score for IOU75 as compared to RIT2.

5.4.3 Filewise Detection Results

Figure 5.9 shows filewise detection results. We obtained highest pre-

cision of 91.32% (Gidas79) and highest recall of 85.79% (Erbe94) for IOU50

and the highest precision of 87.69% (Gidas79) and highest recall of 83.61%

(Erbe94) for IOU75 (The filename corresponding to each number is given in

the parentheses). We obtained lowest precision of 79.13% (Katz99) and lowest

recall of 62.88% (Emden76) for IOU50 and lowest precision of 68.29% (Emden)

and lowest recall of 62.88% (Emden76) for IOU75. The highest F-score was

86.87% (Gidas79) and 84.76% (Erbe94) for IOU50 and IOU75, respectively.

We observed the highest drop in the precision of 13.97% (Emden76) and high-

est drop in the recall of 11.36% (Kazhdan79) when the IOU threshold was
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increased from 50% to 75%. We think that page layout plays an important

role in the detection results. If lines are well-spaced and characters are not

vertically close to each other, it reduces the number of cases where only one

bounding box is detected for multiple math regions. For example, lines in Em-

den76 are very close to each other as compared to lines in the Erbe94. Hence,

we get better F-score for Emden76 as compared to Erbe94. Also, if a docu-

ment has more displayed math expressions than embedded math expressions

we get more F-score.

5.4.4 IOU vs. F-score

Figure 5.10 shows the decline in the F-score with the increase in the

IOU threshold. As expected the highest F-score is at lowest IOU threshold

0.05 and lowest F-score is at IOU threshold 1.0. The rate of decline in the

F-score is high towards the high IOU threshold values. This graph shows,

our method can detect math regions with 58.95 F-score for very strict IOU

threshold of 0.95.
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Figure 5.9: Filewise detection results on the test set for IOU50 and IOU75
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Figure 5.10: Decline in the F-score with increase in the IOU threshold

5.4.5 Examples of Positive Detections

Figure 5.11 shows math regions correctly detected by our method. Our

method can detect math regions of arbitrary size, from one character to hun-

dreds’ of characters. Also, it detects matrices and correctly rejects equation

numbers, page numbers and other numbers which are not math expressions.

5.4.6 Examples of Negative Detections

Figure 5.11 shows three cases where our method fails. First, when

there is a large space between characters from the same math expression,

our method generates multiple detections for one math expression (split de-
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Figure 5.11: Examples of positive and negative detections. Invalid detections
are highlighted in red
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Figure 5.12: Math regions detected by our method. Invalid detections are
highlighted in red

tections). Second, when math expressions are very close to each other, our

method detects only one box for multiple expressions (merged detections).

We observed that most of the failure cases are because of split detections or

merged detections. Even though we are detecting math regions in both merged

or split detections, precision and recall go down as our evaluation criteria use

IOU threshold. Hence, we also provide character level results in Section 5.4.7

and Section 5.4.8. Third, sometimes our method detects wide and embedded

graphs (visually similar to functions) as math expressions. Examples of this

case are shown in Figure 5.12.

Detection results for all pages from one PDF are given in Appendix B.
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5.4.7 Character Level Detections

We found that our method detects almost all the math characters

present in the documents. Figure 5.13 shows character level results for MATH512.

Our architecture is good at detecting math characters, i.e., it is good at clas-

sification, but not as good at localizing the math expressions. The recall of

our method is about 96.62% and precision is 90.36% (i.e. 90% of detected

characters are math character). The F-score at the character level is 91.44%

and it drops by 11.25% for math expression detection for IOU50 and 18.48%

for IOU75.

Figure 5.13: Character level results for test set
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Figure 5.14: Single-character vs. multi-character math expression detection
results on the test dataset for IOU50 and IOU75

5.4.8 Single-character Vs. Multi-character Math Expression De-
tection

ScanSSD clearly performs better for multi-character math regions. It

can be seen from Figure 5.14 that, ScanSSD achieves 17.33% more recall

for multi-character math regions for IOU50 and 15% more recall for multi-

character math regions for IOU75. As explained earlier in Section 5.3.3, our

model clearly performs worse for single-character math expressions because it

detects many single-digit numbers like references, footnotes, figure number,

etc. that are not math regions. Also, it is difficult to get the IOU score more

than the threshold for single character math regions as they are very small in

size.

Few applications like indexing research documents for math formula

search that might not require single character math detection can train the

same model ignoring the single character math expressions and can get better

performance.
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5.5 Additional Examples

We use pages from Chapter 4, Section 4.3.1 and give them as input to

ScanSSD. Figure 5.15 shows results obtained by ScanSSD. Our method detects

most of the math regions from these pages. It does not have any problem in

detecting displayed math expressions. Few of the single character math regions

are not detected. We observe the same behavior on ICDAR 2019 test dataset,

where results for multi-character math regions for our method are better than

single-character math regions. One of the reasons that single-character math

regions were missed is that they do not have any distinguishing property like

the bold font that will differentiate them from text characters. Another reason

can be that the single-character regions are less wide.

5.6 Summary

To summarize, we observed that:

1. Focal loss does not perform better than cross-entropy with hard negative

mining for our architecture.

2. Focal loss performs worse if combined with hard negative mining.

3. Use of a very large number of default boxes can affect performance be-

cause of noise introduced due to unnecessary default boxes.

4. Aspect ratios of default boxes should be carefully chosen based on the

object to be detected as default boxes play an important role in the
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Figure 5.15: Detections in the real world document images. These images are
from this thesis Chapter 4.
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effective training of SSD.

5. Use of kernel size in CONF and LOC layers of SSD (shown in Chapter 4,

Figure 4.8) that creates the shape of receptive field similar to the shape

of the object we want to detect results in performance improvement.

6. Our model performs better for multi-character math expression detec-

tion.

7. Many failure cases for formula detection are because of the split and

merge of the bounding boxes as explained in Section 5.4.6.

8. We obtain very good detection results at character level that suggests

improvement in the pooling methods will improve the overall F-score for

formula detection.
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Chapter 6

Conclusion

We introduced ScanSSD architecture for detecting both embedded and

displayed math expressions in document images using a single-stage network

that does not require page layout, font, or, character information. We used

sliding windows to generate sub-images of a large document page image ren-

dered at 600 dpi and applied single shot detector (SSD) on each sub-image.

We introduced pooling methods based on the confidence scores and density of

detections to generate page-level results.

Liu et al. [38] discussed that SSD struggles to detect small objects.

Also, we found that the conversion of a page image rendered at 600 dpi to

lower sizes lost a large amount of information. In our initial experiments,

SSD missed many math expressions when we used lower resolution images as

input. Hence, for SSD to detect the math expressions effectively we use sliding

windows to generate sub-images so that math expression cover a relatively

bigger area of input images instead of using images with lower resolution where

math expressions cover a smaller area of images.

Through our experiments described in Chapter 4, Table 3.1, we ob-

served that:
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1. Focal loss does not perform better than cross entropy with hard negative

mining for our architecture where maximum number of default boxes

used is 65,532. Focal loss performs worse if combined with hard negative

mining.

2. Use of a very large number of default boxes can affect performance be-

cause of noise introduced due to unnecessary default boxes. Aspect ratios

of default boxes should be carefully chosen based on the object to be de-

tected as default boxes play an important role in the effective training

of SSD.

3. Use of kernel size in CONF and LOC layers of SSD (shown in Chapter 4,

Figure 4.8) that creates the shape of receptive field similar to the shape

of the object we want to detect results in performance improvement.

We combined our findings in MATH512 model that uses cross-entropy

with hard negative mining with only wide default boxes and kernel of size 1×5

and obtained the best results.

An earlier version of ScanSSD placed 2nd in the ICDAR 2019 compe-

tition on the Typeset Formula Detection (TFD). ScanSSD achieves 80.19%

F-score at IOU50 and 72.96% F-score at IOU75 on ICDAR 2019 test dataset.

For very strict IOU threshold of 95% we get 59.59% F-score. Also, we get

90.36% precision and 96.62% recall at character level. Hence we conclude

that our hypothesis, both embedded and displayed math expressions in type-

set document images can be detected accurately in one framework using deep
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learning-based object detection methods without the use of additional infor-

mation, was confirmed.

6.1 Contributions

New dataset for math detection. We created a new dataset for math

expression detection and made it available to the public at https://github.

com/MaliParag/ICDAR2019. This dataset contains annotations for both em-

bedded and displayed math expressions. It also provides character locations

and OCR codes. Our dataset was used for Competition on Recognition of

Handwritten Mathematical Expressions and Typeset Formula Detection (CROHME

+ TFD 2019) at the 15th International Conference on Document Analysis and

Recognition (ICDAR 2019) [40]. After the competition, we fixed a few prob-

lems with the ICDAR 2019 dataset and released version 2 of the same dataset.

In Chapter 3, we describe the dataset creation process and statistics for both

versions 1 and 2 of the dataset.

ScanSSD architecture for math expression detection. In Chapter 4,

we introduced an architecture for math expression detection. Our method just

requires document page image as input and does not require additional infor-

mation like character labels, character locations, page layout information, etc.

like other math detection method discussed in the Chapter 2. Our method

learns the features while training and uses those features to predict the loca-

tions of the math regions. We do not rely on the manually designed features or
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algorithms like OCR, XY-cut or projection profile cutting to find the locations

of the math regions. It uses sliding windows to generate small sub-images from

the document image and applies SSD over each sub-image to detect math re-

gions. Then we use a polling method on the math regions detected from the

sub-images to generate bounding boxes for the math expressions at the page

level. In our modular architecture, we have a sub-image generation module,

an object detection module, a pooling module, and, a postprocessing mod-

ule. An earlier version of ScanSSD placed 2nd in the ICDAR 2019 competition

on the Typeset Formula Detection (TFD). Our code is publicly available at

https://github.com/MaliParag/ScanSSD.

6.2 Future Work

We discuss future work in two parts: improving performance and re-

ducing the time taken for detection.

6.2.1 Improving Detections

In this section, we describe different methods that we would like to try

to improve detection results.

Pooling Methods One of the key differences in math object detection in

the typeset documents and object detection in the natural scenes is that the

objects in the typeset documents will not be occluded by the other objects.

We believe this property will help us design better algorithm for non-maximal
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supression as original non-maximal supression algorithm is designed for natural

scenes where objects might overlap. Also, we observed that there are many

merged boxes. It is because of the pooling methods. We would like to use the

modified version of the pooling methods based on agglomerative clustering like

a fusion algorithm introduced by Yu et al.[55]. We believe that improving the

pooling methods will reduce the number of merged detections and improve

both precision and recall.

Ensemble Models In our experiments, we observed that the smaller input

image size 300×300 achieved at least 2% more precision than any other method

with a bigger input image size of 512× 512, but the recall is at least 10% less

when we used input image size 300×300. The higher precision for input image

size 300 × 300 might be because detected number of bounding boxes is less

as compared to image size 512 × 512. We would like to use both create an

ensemble of models for better detection. Also, we can generate a multi-scale

input image pyramid and get predictions from multiple image scales and pool

them later. It will slow down the detection process but might improve the

detection results.

Modifications in SSD Architecture We would like to explore different

layouts of the default boxes, different sizes of feature maps, different base

networks, etc. in SSD architecture. Deeper base networks like Resnet-101 [25]

can be used as a base network in SSD to get better features. But, it will slow

down the detection process.
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Using additional information. We believe that the math expression de-

tection problem can be solved without any additional information like char-

acter locations and labels. If additional information is available, we think we

can develop simpler and faster detection models. But, these models will have

use limited to detecting math expressions in documents where additional in-

formation is available. ICDAR 2019 dataset provides character locations and

labels and it will be a good starting point in developing such a model.

6.2.2 Speed-up

In this section, we discuss methods that we would like to try to reduce

the time taken by the overall detection process.

Fewer sub-images while testing In ScanSSD architecture described in

Chapter 4, we used a stride of 10% while generating sub-images using sliding

windows for training and testing. We would like to try stride over 10% so

we get less number of sub-images during inference. It will result in a faster

method for detection.

Smaller Base Network in SSD We used VGG16 base network in ScanSSD,

we think we can get similar results with specially designed smaller networks.

Use of smaller networks will speed-up the detction process.
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6.2.3 End Goal

End to End Training In our current architecture, we train the model to

detect the math expressions in the sub-images generated using sliding windows

and then use a fixed pooling method. We would like to design an architecture

where we can train the model end-to-end so it can learn the pooling method

itself.

Multiple Object Detection ScanSSD allows the use of multiple classes.

While detecting multiple objects, each page object can be assigned a class.

Search Engine We would like to extract and index page objects in docu-

ments. We can use the generated index to retrieve related documents in search

engines.
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Appendix A

Validation Dataset

We split the ICDAR 2019 training data into approximately 80% and

20%. Table A.1 shows the training and validation split. 116 out of 569 pages

are used for validation.
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Training set Pages Validation pages
Burstall77 24 23,20,3,5,15
BAMS 1998 123 143 21 2,17,12,11
AIF 1999 375 404 30 16,17,18,9,24,15
ASENS 1997 367 384 18 11,17,7,6
Brezis83 5 5
MA 1977 275 292 18 4,2,5,7
Borcherds86 4 2
BAMS 1971 1974 1 3 1
BAMS 1971 1974 2 4 4
MA 1999 175 196 22 19,1,10,16
JMS 1975 497 506 10 6,3
JMKU 1971 377 379 3 3
BAMS 1971 1974 3 4 1
AnnM 1970 550 569 20 7,18,8,17
AIF 1970 493 498 6 1
JMS 1975 281 288 8 8,7
TMJ 1990 163 193 32 1,23,31,28,5,9
TMJ 1973 317 331 16 7,11,16
MA 1970 26 38 13 7,1,12
InvM 1999 163 181 19 18,10,12,2
InvM 1970 121 134 14 9,3,2
BSMF 1970 165 192 28 22,20,7,27,23,13
ActaM 1998 283 305 23 15,17,20,6,10
ASENS 1970 273 284 12 5,7
TMJ 1973 333 338 6 2
Cline88 15 14,9,11
ActaM 1970 37 63 27 21,19,8,27,23
JMS 1975 289 293 5 4
BSMF 1998 245 271 27 11,1,25,3,10
Alford94 20 10,11,5,13
KJM 1999 17 36 20 11,6,3,10
JMKU 1971 181 194 14 8,14,1
Bergweiler83 37 18,11,9,24,34,13,1
Arkiv 1997 185 199 15 9,6,2
Arkiv 1971 141 163 23 16,7,1,10,5
JMKU 1971 373 375 3 2

Table A.1: Training and validation split.
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Appendix B

Whole page detection results

Following pages show whole page detection results for one PDF Lifile

from the dataset.
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Appendix C

Additional Results

C.1 Effect of Size of Sliding Window

For all our experiments we used sliding window of size 1200× 1200 for

creating sub-images. To check if ScanSSD performs better with bigger sliding

window that gives more context in each sub-image we increase the sliding

window size to 1800 × 1800. With bigger sliding window we get 122,140 and

50,845 sub-images with math regions for training and testing, respectively.

Figure C.1 shows the results using window size of 1800×1800 in compar-

ison with window size of 1200×1200. In this experiment, we used RIT2 system

which was submitted to ICDAR 2019. RIT2 system used SSD512 with aspect

ratios ar = {{1, 2, 3, 5}, {1, 2, 3, 5, 7}, {1, 2, 3, 5, 7}, {1, 2, 3}, {1, 2, 3}, {1, 2}, {1, 2}}

where ith member of ar represents aspect ratios used in the ith feature map.

For 1200 × 1200 we used sum score algorithm with threshold of 20 for pool-

ing and for 1800 × 1800 we used sum score algorithm with threshold of 1 for

pooling. Thresholds were decided by the grid search.

We found that window size of 1200×1200 performs better than 1800×

1800 for both IOU50 and IOU75. There can be two main reasons for window

size 1800× 1800 to perform worse. First, use of bigger window size results in
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Figure C.1: Comparison of sliding window size of 1800 × 1800 with sliding
window size of 1200× 1200.

less number of images for training. Second, Liu et al. [38] discussed that SSD

performs better while detecting large objects than small objects. Sub-images

generated using sliding window of size 1800× 1800 have smaller math regions

as compared sub-images generated using sliding window of size 1200 × 1200.

Hence, SSD might be performing better while detecting math regions in sub-

images generated using 1200× 1200.

In future we would like to use the validation dataset to perform grid

search on the sliding window size and find the optimal size for the sliding

window.
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