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ABSTRACT
In math formula search, relevance is determined not only by the

similarity of formulas in isolation, but also by their surrounding

context. We introduce MathAMR, a new unified representation

for sentences containing math. MathAMR generalizes Abstract

Meaning Representation (AMR) graphs to include math formula

operations and arguments. We then use Sentence-BERT to embed

linearized MathAMR graphs for use in formula retrieval. In our

first experiment, we compare MathAMR against raw text using

the same formula representation (Operator Trees), and find that

MathAMR produces more effective rankings. We then apply our

MathAMR embeddings to reranking runs from the ARQMath-2

formula retrieval task, where in most cases effectiveness measures

are improved. The strongest reranked run matches the best P
′
@10

for an original run, and exceeds the original runs in nDCG
′
@10.
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1 INTRODUCTION
In contextualized math formula search, a formula selected from

a document is used as a query, and formulas in documents are

returned. For example, a formula might be selected from a question

post on a Community Question Answering (CQA) site, and then

issued as a query to find posts providing information about the

formula and/or the formula’s associated question. The relevance

of retrieved formulas is defined by both formula similarity and the

interpretation of formulas where they appear.

For retrieval, using context can be helpful in two ways. First, con-

text features can improve recall through characterizing a formula’s

meaning, or a setting where it might be employed. Second, context

can improve precision through including constraints, such as on the

range, domain, or types of variables [22]. Given this, we expect that

formula search systems exploiting both a formula and its context

yield better results than systems that ignore formula context. In

this paper, we show results consistent with that hypothesis.

As we explain in Section 2, mathematical notation is hierarchi-

cal, and represented naturally by trees. In this paper we represent

formulas using Operator Trees (OPTs), which are widely used for

computation and isolated formula search [7, 13, 36]. Text by con-

trast is expressed linearly, but the latent meaning of text is complex,

imperative

s/solve-1 e/equation p/product-of

0

y/you

2

4

:ARG0

:ARG1

:mode

:ARG2

:mod

:op1

:op2

Figure 1: AMR with incorrect formula representation for
“Solve the equation 𝑥2 − 4 = 0.” A method for avoiding such
errors is shown in Figure 3.

and graphs have been devised to encode aspects of that meaning.

We consider one semantic encoding for text, the Abstract Meaning

Representation (AMR) graph.

Unfortunately, current AMR parsers do not interpret formulas

correctly, as illustrated for a BART-based parser
1
in Figure 1. To

address this, we unify AMR and OPT representations to capture the

meaning of a formula in its context, whichwe callMathAMR.2 Using
the ARQMath Formula Retrieval task (Task 2 [22]), we show that

reranking using MathAMR representations improves effectiveness

for both state-of-the-art isolated formula search techniques, and

retrieval models that fuse text and formula retrieval results.

2 RELATEDWORK
Abstract Meaning Representation (AMR) is a semantic encoding

for text introduced in 1998 by Langlade and Knight in the Nitrogen

system [15] to map meanings onto word lattices. Banarescu et al.

[2] later used PropBank [4] notation, and defined AMR annotations

as rooted Directed Acyclic Graphs (DAGs) with nodes representing

core concepts as either words (typically, adjectives or stemmed

nouns and adverbs), or frames extracted from Propbank. Labeled

directed edges represent semantic relationships (see Figure 1).

We consider three categories of AMR parser:

(1) Graph-basedAMRparser.Construct AMRgraphs by search-

ing for Maximum Spanning Connected Subgraphs (MSCGs)

from an edge-labeled directed graph of all possible relations.

The first AMR parser was of this type (JAMR [8], in 2014).

(2) Dependency-based AMR parser. Parsers such as CAMR

[31] generate a dependency parse for a sentence, and then

transform it into an AMR graph using transition rules.

1xmf-bart model from the amrlib python library

2
MathAMR source code: https://github.com/BehroozMansouri/MathAMR

https://doi.org/10.1145/3511808.3557567
https://github.com/BehroozMansouri/MathAMR
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Figure 2: Text, tree, and embedding-based formula search approaches using 𝑎 + 𝑏 (left side) and 𝑏 − 𝑎 (right side) as examples.

(3) Neural AMR parser. Viewing the problem as a machine

translation task, these models directly convert raw text into

linearized AMR representations. For example, the SPRING

parser [3] translates text to a depth-first linearization of AMR

graphs. SPRING leverages a BART transformer model [16]

by modifying its tokenizer to handle AMR tokens.

AMRs are commonly used for tasks such as summarization [17, 18],

question answering [12, 32], and information extraction [10, 35].

For example, Liu et al. [18] summarized text by generating AMRs for

individual sentences in a document, and then merging the AMRs by

collapsing named and date entities. Next, a summary sub-graph was

generated using integer linear programming, after which summary

text was generated from that sub-graph using the JAMR graph-

based AMR parser [8].

Formula Representation. Two tree representations are com-

monly used for formula search: Symbol Layout Tree (SLT) and

Operator Tree (OPT). In SLT, nodes are formula elements (e.g.,

symbols, roots, fraction lines) and edge labels indicate spatial rela-

tionships. In OPT, edge labels show operator argument (operand)

order. For an ordered operation such as subtraction (e.g., ‘b - a’),

the first operand is the initial value, and the second is the quantity

to subtract. For commutative operators such as ‘+’, edge labels are

identical. In the middle of Figure 2, the SLT and OPT for 𝑎 + 𝑏 and

𝑎 − 𝑏 are shown. In SLT, because the formula elements are located

horizontally adjacent to one another, the edge label ‘n’ (‘next’) is

used. For OPT, ‘+’ is commutative, so both edge labels are ‘0’.

Formula Search. Depending upon a user’s goals, relevance for

retrieved formulas may be defined differently. For example, a user

might search for a formula to see what other applications it has,

in which case exact matches are highly relevant. Exact matches

were also considered highly relevant for the formula browsing

task in NTCIR-12 [33], where relevance was decided by comparing

formulas in isolation. As a different example, a user may issue a

formula query to find formulas for accomplishing a specific task.

For instance, in ARQMath-2 [22] formula queries were taken from

math question posts in Math Stack Exchange, and the relevance

of returned formulas was decided by whether material associated

with a formula is likely to help answer the original question.

There have been threemain approaches to formula search. Figure

2 illustrates how two formulas are compared in each approach.

(1) Text-based models. LATEX or linearized MathML represen-

tations used with traditional text retrieval models such as

TF-IDF (e.g., MIaS [30]). Text-based approaches lose the hi-

erarchical structure of formulas, and may fail to characterize

formula structure well.

(2) Tree-based models. SLT and/or OPT representations are

compared using subtrees and/or paths. For example, Ap-

proach0 [36] retrieves formulas using paths from operator

trees generated by parsing LATEX with a relatively small ex-

pression grammar. Candidates are scored using up to three

best-matching sub-trees.

(3) Embedding-based models. Formulas are represented by

𝑑-dimensional vectors, and vector similarity measures (e.g.,

cosine) are used for ranking. Embedding models such as

Tangent-CFT [20] ignore surrounding text, while in Math-

BERT [26] each formula is represented by its tokens, associ-

ated text, and OPT representation.

In addition to MathBERT, there are other approaches that also take

advantage of text near a formula. Ng et al. [25] combined retrieval

results from Tangent-L [9] and BM25+. In the work of Krstovski

et al. [14], equation embeddings generated unified representations

by linearizing formulas as tuples, and then treating them as tokens

in the text. These embeddings used context windows around for-

mulas and applied a word embedding model [24] to build vector

representations for formulas.

In this work, we introduce a new unified representation of math

and text, MathAMR, and apply it to contextualized formula search.

3 MATHAMR
The application of operations represented by an operator tree is very

similar to how text semantics are represented by Abstract Meaning

Representation (AMR) graphs, which can roughly be understood

as representing “who is doing what to whom.”
3
AMR graphs and

operator trees also share similar edge labelings: in AMR ‘opx’ edge

labels indicate node ordering, where ‘x’ is an integer enumerator

(e.g., op0, op1).
Unfortunately, as we saw in Figure 1, current AMR parsers are

not able to interpret formulas correctly. For some domains (e.g.,

biomedical), there are specialized pre-trained AMR parsers [23], but

not for mathematical text. To address this, we introduce MathAMR,

in whichmath formulas are represented using operator trees. Figure

3 uses an example topic to illustrate the steps used to generate

MathAMR, which we describe below.

(1) Select the context window. As AMR was designed for

sentences, we use Spacy
4
to split paragraphs into sentences

and choose the sentence the formula appears in. It is common

to see sentence punctuation inside formula regions, so before

3
https://github.com/amrisi/amr-guidelines/blob/master/amr.md#part-i-introduction

4
https://spacy.io/

https://github.com/amrisi/amr-guidelines/blob/master/amr.md##part-i-introduction
https://spacy.io/
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Figure 3: Generating MathAMR for “Find 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 general solution” (ARQMath-2 topic B.289). (a) AMR tree with formula
replaced by formula id (b) OPT formula representation. (c) OPT root replaces formula id. Part of the OPT is not shown in (c).

using Spacy we move any punctuation (. , ! ?) from the end

of formula regions to after the final formula delimiter. For

example, in LATEX $a+b=c.$ becomes $a+b=c$.

(2) Replace formulas by identifier tokens. To avoid AMR

parsing problems, we replace each formula in the input sen-

tence by a single token. For the example shown in Figure 3,

the LATEX formula 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 is replaced by EQ:ID, where
ID is an integer identifier (for this example, EQ:766).

(3) Generate AMR graph. We use an embedding-based AMR

parser to generate the sentence’s AMR graph, the AMRLib
5

“model_parse_xfm_bart_large” model [16]. We introduce a

new edge label ‘math’, used to connect a formula’s place-

holder node to its parent (see Figure 3 (a)).

(4) Replace formula token by formula OPT. AMR formula

id nodes are replaced by the corresponding root nodes of

formula OPTs, creating theMathAMR graph. This is shown in
Figure 3 (c) for the OPT shown in Figure 3 (b). To follow AMR

conventions, OPT edge labels are renamed from numbers to

‘opX’, where ‘X’ is the integer from the original OPT.

This is our first attempt at a unifying text and formulas in AMR

graphs, so we have kept our model simple. For example, we use

only OPT formula representations, even though prior research has

shown that also using SLT representations can be helpful [20, 21].

4 MATHAMR SENTENCE-BERT EMBEDDINGS
For retrieval, we embed linearized MathAMR graphs. MathAMR

graphs are linearized using a depth-first traversal, ignoring edge

labels for simplicity. For Figure 3(c) using the full OPT from Figure

3(b), the linearized MathAMR string is:

find-01 you thing general-02 solve-01 equal-01

math plus SUP z n SUP y n SUP x n imperative

MathAMR strings are embedded using Sentence-BERT [27], and

retrieval performed using Sentence-BERT’s cosine similarity imple-

mentation. To train Sentence-BERTmodels, we used the pre-trained

all-distilroberta-v1 model, with ARQMath-1 [34] topics and

the training topics from ARQMath-2 [22] used for fine-tuning.

Formula search results in ARQMath are scored as high, medium,

low, or not-relevant. For training, we assigned a relevance score of

1 for high and medium, 0.5 for low, and 0 for non-relevant. Training

5
https://github.com/bjascob/amrlib

data contained triplets of the form: (query formula, candidate
formula, relevance score).

For training, we employ a model and multi-task learning frame-

work in Sentence-BERT
6
used previously to detect duplicate Quora

questions by first minimizing the distance between positive pairs

and maximizing the distance between negative pairs using a con-

trastive loss function [5]. Then, the multiple negatives ranking loss

function [11] is used, which considers only positive pairs, minimiz-

ing the distance between positive pairs out of a large set of possible

candidates, making it well-suited to ranking tasks.

During training, in each epoch we compute the Spearman corre-

lation between the embedding cosine similarity and the label score

on the validation set. After training the model with a fixed number

of epochs, the model with the lowest validation loss is selected.

5 EXPERIMENTS
Test Collection and Training Data. For training we use all 74

assessed ARQMath-1 topics, along with the 12 training topics from

ARQMath-2. This provides a total of 21,411 training triples of the

form described in the previous section.

To create a validation set, we separated the triples for each rele-

vance rating (high, medium, low, non-relevant) into sets, and then

divided each triple set randomly, using a 90%/10% split. The 10%

splits were then combined and used as our validation set during

training. This validation set contained 2,160 triples, with 535 having

high relevance, 142 medium relevance, 141 low relevance, and 1,342

non-relevant. The remaining 90% of triples from each relevance

level comprised our training set, with relevance degree distribution:

{ high: 531, medium: 134, low: 134, non-relevant: 1340 }.

Our results are reported on the 58 ARQMath-2 test topics that

were not used for any training purposes.

Sentence-BERT parameters. Sentence-BERT was trained for

50 epochs, choosing the model with an epoch obtaining the min-

imum training loss on a validation set. For candidate formulas,

the average token length in linearized MathAMR strings was 53.2

(𝜎 = 52.8) and for RawText with OPT was 96.3 (𝜎 = 141.6). As a

result, we used batch size 16 and maximum sequence length 128

for all representations other than RawText with OPT, for which we

used 256 tokens.

6
https://www.sbert.net; distilbert-base-nli-stsb-quora-ranking model.

https://github.com/bjascob/amrlib
https://www.sbert.net
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Table 1: ARQMath-2 Formula Search Results for Single Sen-
tence Embeddings (Sentence-BERT, Assessed formulas). w.
OPTText: formulas included as linearized OPTs.

Context Evaluation Measures
Representation nDCG

′
@5 nDCG

′
@10 P

′
@5 P

′
@10

AMRText w. OPTText 0.58 0.56 0.51 0.47
AMRText w. LATEX 0.38 0.39 0.35 0.34

RawText w. OPTText 0.54 0.51 0.48 0.43

RawText w. LATEX 0.43 0.42 0.40 0.37

OPTText 0.35 0.32 0.30 0.24

Table 2: Results for Original ARQMath-2 runs, runs
Reranked by MathAMR, and RRF of Original & Rerank. *Ap-
proach0 is amanual run. �MathDowers used text & formulas.

nDCG
′
@10 P

′
@10

Model Original Rerank RRF Original Rerank RRF

*Approach0 0.59 0.57 0.63 0.49 0.48 0.54
DPRL 0.60 0.59 0.62 0.54 0.51 0.52

�MathDowsers 0.54 0.55 0.58 0.45 0.44 0.48
XY-Phoc 0.51 0.54 0.55 0.43 0.45 0.45
NLP_NIST 0.26 0.33 0.46 0.20 0.26 0.40
TU-DBS 0.25 0.28 0.41 0.22 0.23 0.35

Evaluation Measures.We used nDCG
′
[29] and P

′
, at cutoffs

of 5 and 10. These measures are nDCG@k and P@k for k={5,10}

after removing unjudged results from the ranked lists. Following the

ARQMath evaluation protocol, to calculate P
′
@k, we treat only high

and medium ratings as relevant, and all measures are calculated

after deduplication. Retrieved formula instances are deduplicated

using ARQMath identifiers for visually distinct groupings.

Context Representation Results (Table 1). To study the ef-

fectiveness of the MathAMR representation, we consider four other

representations similar to MathAMR. For simplicity, we compared

these models using only assessed formula hits; this may produce

a bias, as all relevant formulas are in the ranked set. Our baseline

uses only linearized OPTs (‘OPTText’), ignoring surrounding text.
‘AMRText w. OPTText’ corresponds to Figure 3 (c). For the model

‘AMRText w. LATEX’, we produce AMRs as shown in Figure 3 (a), and

replace the formula placeholder node with the original formula

LATEX. The final two representations use raw text with the origi-

nal LATEX or linearized OPTs. Note that the tokenizer for RawText

can correctly handle formula operators (e.g., ‘𝑎 +𝑏 = 𝑐’ is tokenized

as: [𝑎, +, 𝑏,=, 𝑐]). A single Sentence-BERT setting is used for all

conditions other than ‘RawText w. OPTText’ (see above).
ARQMath-2 Reranking Results (Table 2). To evaluate Math-

AMR’s utility for contextual formula search, we rerank runs with

the highest effectiveness from each participating team in ARQMath-

2: Approach0 [37], MathDowsers [25], TU-DBS [28], DPRL [19],

XY-Phoc [1], and NLP_NITS [6]. Approach0 was a “manual” run

that included human intervention, and only MathDowers used both

text and formulas. Table 2 shows the effectiveness using cosine

similarity of MathAMR embeddings (AMR w. OPTText) and then

combining original scores with MathAMR embedding similarities

by score-weighted Reciprocal Rank Fusion (RRF) [19].

Discussion. Table 1 compares effectiveness measures for Math-

AMR representations and other context representations. MathAMR

(i.e., AMRText with OPTText) does best in all measures averaged

over the 58 ARQMath-2 test topics. The closest competitor is the

RawText with OPTText condition. With the exception of the Raw-

Text with OPTText condition, MathAMR results were significantly

better than other representations by all four measures (p < 0.05,

two-tailed paired 𝑡-test with Bonferroni correction).

Stratifying our analysis using high/medium/low complexity topic

labels distributed with the test collection, we see that both the Raw-

Text with OPTText and AMRText with OPTText conditions have

identical P
′
@10 for low complexity topics, and that MathAMR’s

superior results comes entirely from a better average P
′
@10 on

medium and high complexity topics. For several topics, MathAMR

achieves better results due to its selective focus on text in the sen-

tence containing the formula, rather than the whole input text.

For example, for the formula query in the sentence, “How to show

(𝑎1𝑎2 . . . 𝑎𝑛)
1

𝑛 ≤
∑𝑛

𝑖=1 𝑎𝑖
𝑛 ”, P

′
@10 increases from 0.1 for RawText

with OPTText to 0.9 for MathAMR, as many candidates occur in

sentences with uninformative words that AMR ignores, and that

RawText includes in Sentence-BERT input.

Table 2 shows P
′
@10 and nDCG

′
@10 for the best ARQMath-2

run submitted by each team toARQMath-2021 [22]. Using linearized

MathAMR embeddings to rerank candidates using the cosine simi-

larity sometimes decreases P
′
@10, partly because there can be sev-

eral formulas in one sentence, all of which share a single MathAMR

similarity score. For this reason, a score-weighted Reciprocal Rank

Fusion of the original and MathAMR-reranked results performs

better than reranking alone. nDCG
′
@10 is significantly improved

over the original rankings for all systems other than DPRL (p<0.05,

𝑡-test with Bonferroni correction). The one case where RRF did not

help (DPRL) likely results from its use of tree-edit distance for final

matching, which makes top results often very similar to the query.

However, if we consider all retrieved instances, nDCG
′
@1000 in-

creases from 0.57 to 0.76 when using RRF to combine DPRL and

MathAMR; so even here there is a benefit, it is just seen lower in

the ranking.

6 CONCLUSION
MathAMR is a new semantic representation for sentences that inte-

grates Abstract Meaning Representation graphs with Operator Tree

formula representations. We have made a first study of formula

search using linearized MathAMR graphs for single sentences that

are embedded using Sentence-BERT. Compared to raw text em-

beddings, MathAMR achieved better results, and using MathAMR

embeddings to rerank results from other formula search techniques

yielded improvements. In future work, we plan to explore using

MathAMR without employing linearization, and to study the utility

of MathAMR for ARQMath’s Answer Retrieval task (Task 1). Also,

the current MathAMR representation can be improved: for example,

in future work we may consider using/adding other math formula

representations such as symbol layout trees (SLTs).
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