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Abstract

We present a new visual parsing method based on standard Convolutional
Neural Networks (CNNs) for handwritten and typeset mathematical formu-
las. The Query-Driven Global Graph Attention (QD-GGA) parser employs
multi-task learning, using a single feature representation for locating, classi-
fying, and relating symbols. QD-GGA parses formulas by first constructing a
Line-Of-Sight (LOS) graph over the input primitives (e.g handwritten strokes
or connected components in images). Second, class distributions for LOS
nodes and edges are obtained using query-specific feature filters (i.e., atten-
tion) in a single feed-forward pass. This allows end-to-end structure learning
using a joint loss over primitive node and edge class distributions. Finally,
a Maximum Spanning Tree (MST) is extracted from the weighted graph us-
ing Edmonds’ Arborescence Algorithm. The model may be run recurrently
over the input graph, updating attention to focus on symbols detected in the
previous iteration. QD-GGA does not require additional grammar rules and
the language model is learned from the sets of symbols/relationships and the
statistics over them in the training set.

We benchmark our system against both handwritten and typeset state-of-
the-art math recognition systems. Our preliminary results show that this is a
promising new approach for visual parsing of math formulas. Using recurrent
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execution, symbol detection is near perfect for both handwritten and typeset
formulas: we obtain a symbol f-measure of over 99.4% for both the CROHME
(handwritten) and INFTYMCCDB-2 (typeset formula image) datasets. Our
method is also much faster in both training and execution than state-of-the-
art RNN-based formula parsers. The unlabeled structure detection of QD-
GGA is competitive with encoder-decoder models, but QD-GGA symbol and
relationship classification is weaker. We believe this may be addressed through
increased use of spatial features and global context.



Chapter 1

Introduction

Mathematical notation is an essential source of information in many fields and
the ability to recognize them is an important module in OCR (Optical Char-
acter Recognition). Math recognition is vital for several research-based and
commercial-based applications, such as educational aids, navigational tools,
digital assistance, and any visual-language task that needs machines to under-
stand mathematical notations. The potential benefits of easier manipulation,
modification, searching and accessing formulas have drawn different research
groups’ and companies’ attention around the world to both the automatic
recognition and retrieval of mathematical notation [95].

Parsing essentially means finding the underlying structure of the data we
are given. In this work, we are interested in parsing math formulas from
handwritten strokes or images. Visual parsing of mathematical expressions
converts input images to a representation of formula structure, which in our
case is a hierarchical arrangement of symbols on writing lines. Figure 1.1
shows an example of the inputs and outputs of a parsed formula. Graphs have
been heavily used for representing spatial relationships between a given set
of components. In math parsing, these components can be strokes in hand-
written equations or connected components in images. Each stroke consists a
sequential list of points representing sampled (x,y) coordinates as each stroke
is written. Parsing a graph involves identifying a sub-graph with minimal cost
or maximum probability. For math recognition, the final subgraph is usually
a Symbol Layout Tree (SLT), see Figure 1.1.

In Figure 1.1, we introduce primitive-level graph representations used to

6
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Figure 1.1: Visual parsing of mathematical expressions from handwritten in-
put strokes or connected components in images. The input images are con-
verted to a representation of formula structure.

parse formulae. Nodes represent individual strokes or connected components
while edges represent possible relationships between primitives. These rela-
tions can identify strokes belonging to the same symbol, or spatial relationships
between symbols such as Right ( g and =) or Below (fraction and z).

Ideally, we would like to reduce the size of the search space by allowing
our input graph to have edges only between the primitives having a spatial
relationship in the original setting (perfect precision) and avoid miscellaneous
edges which add confusion to the problem. We use the Line-of-Sight (LOS)
[19, 38] graphs to represent spatial relationships between the chosen set of
visual primitives which can be handwritten strokes, symbols, lines, contours,
or image segments. Figure 1.1 shows the edges exist in a LOS for gi = δ2

z
marked with yellow.

We propose a CNN-based (Convolutional Neural Net) method to classify
nodes and edges in the input LOS graph. After assigning the class proba-
bilities to nodes (primitives) and edges (relations), the final tree is extracted
using Edmond’s algorithm which extracts the tree with the maximum score.
We introduce a Query-Driven Global Graph Attention (QD-GGA) model for
classifying nodes and edges efficiently and accurately.
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1.1 Query-Driven Global Graph Attention (QD-GGA)
parsing.

Our novel Query-Driven Global Graph Attention (QD-GGA) parser extends
traditional CNN models designed for multi-dimensional data (e.g.,images) to
graph-structured data. QD-GGA is comprised of the four modules: feature
extraction, attention, classification, and Maximum Spanning Tree (MST) ex-
traction.

Our attention module uses the input graph to query (filter) CNN fea-
tures from a single feature representation of the input image to efficiently
obtain inputs for multiple classification, segmentation, and relationship deci-
sions. Therefore, all class distributions for nodes and edges in a Line-of-Sight
(LOS) graph are predicted at each iteration.

In the following, a brief introduction is given for each of the main modules
in QD-GGA. A more detailed description of QD-GGA architecture and our
general approach is provided in Chapter 5.

Feature Extraction. We use Convolutional Neural Networks (CNNs)
equipped with query-driven trainable attention masks to detect and classify
symbols, and parse formula structure. Our two sets of inputs: the equation im-
age and the attention masks are fed into different branches. The main branch
takes the input image and generates a feature map by passing it through mul-
tiple convolutions and poolings. We use SE-ResNext [37, 91] architecture for
feature extraction in the main branch.

Attention. Our attention module uses the input LOS graph to generate
spatial attention masks and guide the model by element-wise multiplication
of each of these node/edge masks with the final feature map. So, instead of
exhaustively searching pixels in the input image to find salient areas as used
in common sequence-to-sequence models [20, 100], the proposed mechanism
dynamically brings the part of the image important for decision making to the
forefront using the knowledge given from the predefined map based on edges
and nodes of the input graph. This permits to generate query features for all
the targets in the equation (e.g., strokes and their relations in handwritten
equation) and be able to classify all targets in a single batch and count all the
errors in the equation and modified it globally similar to integrated approaches.

Learning Mechanism. Feature vectors representing nodes and edges
of an expression go into the task-specific classifiers to get predicted. We have
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three classifiers to (1) segments primitives into symbols, (2) classify primitives,
and (3) find the relation between those primitives. Inspired by Multi-Task
Learning (MTL) frameworks, these classifiers are trained simultaneously by
defining a joint loss for the model.

1.2 Thesis Statement

Fast and accurate recognition of typeset and handwritten mathematical for-
mulas can be obtained by an end-to-end CNN-based model equipped with
query-driven global graph attention.

1.2.1 Contributions

• Visual Parsing:

– Query-Driven Attention Model for Visual Parsing. A novel
attention model that queries CNN features from a single image to
efficiently obtain inputs for multiple classification, segmentation,
and relationship decisions by defining a graph on the input image.

– Joint Loss over Adjacency Matrices for Visual Parsing.
End-to-end structure learning directly from a joint loss computed
over adjacency matrices holding class distributions for primitives
(e.g., strokes, connected components) and primitive-pair class la-
bels.

– Recursive Training to Update Query Features. Introducing
the recursive training which allows primitive-level input masks to
use the segmenter information and convert into symbol level. These
updated masks query the features again. Joint loss is computed
using this new features.

– LPGA. A novel structure is proposed to add contextual visual
information with a Convolutional Neural Network that has two
branches (target/context) for symbols and relationships classifica-
tion using LOS graph-based attention [65].

– QD-GGA. A faster and more accurate generalization of LPGA: (a)
The use of a global rather than local attention model.( b) Features
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are trained for multiple tasks concurrently within an end-to-end
architecture.

• Evaluation Metric. To evaluate and compare visual structure recog-
nition using symbols and relationships directly, we introduce SymLG
(Symbolic LG) representation [66]. SymLG defines node identifiers by
the sequence of spatial relationships from the root symbol to each symbol
in the tree without requiring segmentation information.

• Support for Multiple Input Types. Our approach can be applied
directly to handwritten data from a tablet as well as raster images (e.g.,
PNG).

1.3 Overview Of This Document

The remainder of this document is organized as follows. In Chapter 2 we
present related work that inspired our approach, mentioning similarities and
dissimilarities with our proposed method and the intuition behind taking these
approach for tackling math recognition problem. This includes the traditional
techniques in online and offline math recognition, Encoder-decoders, Visual
parsing using CNNs, Multi-Task Learning, Attentions in CNNs and more. We
introduce the datasets, metrics and tools we used for evaluating our model
performance in Chapter 3. LPGA methodology and experiments are discussed
in Chapter 4. In Chapter 5, we present our QD-GGA approach including
model architecture, attention module, loss definition, training process and
implementation details. Finally, we review the design experiments in QD-
GGA and discuss the important observations in each experiment shaping our
research and benchmark our methods against state-of-the-art systems for both
handwritten and typeset formulas in Chapter 6.



Chapter 2

Related Work

In the following we provide an overview of approaches proposed for structure
parsing with a focus on methods pertinent to formula recognition. Structure
parsing has slightly different meanings in different branches of natural language
processing, computer vision, pattern recognition, and machine learning, but
the term essentially means finding the underlying structure of the data we are
given. For instance, understanding a text by detecting characters, words and
their relations in a sentence for text to speech applications or understanding a
scene by classifying the objects and finding their relations is a visual structure
parsing task. In this work, we are interested in parsing math formulas for
which symbols are classified and their relations are identified.

We review the common approaches in math expression recognition in Sec-
tion 2.2. Syntactic Methods (Constituency Parsing), Minimum Spanning Tree
extraction (Dependency Parsing), and Encoder-Decoder Models are the most
common approaches. Table 2.1 presents a summary of these models.

Section 2.4 reviews some of the general visual parsing studies using Con-
volutional Neural Networks (CNNs) as we believe math parsing can also be
done with a non-recurrent standard CNN. In these studies, structure learn-
ing is done with a CNN equipped with an attention module, or in a Multi
Task Learning (MTL) framework in which the attention module provides task-
specific features from a single global feature pool, whilst allowing for features
to be shared across different tasks. Another common approach in visual struc-
ture learning is graph-based CNNs (GCNN) which have the most similarity
to our proposed approach since convolutional features are utilized in these

11
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system for graph parsing. Table 2.2 presents a summary of these works.
In the remainder of this chapter, we first introduce different representations

that systems use to output recognized formula in Section 2.1. Next, we review
traditional math recognition methods, the state-of-the-art systems based on
encoder-decoder architectures and discuss their limitations in Section 2.2. We
review general strategies in visual structure learning, mostly based on CNNs,
that inspired our approach (Section 2.4). Finally, a summary of this chapter
is provided in Section 2.5.

2.1 Math Encodings

Recognizing math produces a formula representation from the input (e.g.,
raster images, strokes, or PDFs) that identifies symbols and their relation-
ships. Trees are one of the data structures that can be used for representing
the formulas. In fact, MathML and LATEX are actually trees with additional
formatting commands. Therefore, an expression can be presented by trees ei-
ther visually by a Symbol Layout Tree (SLT) giving symbols and their place-
ment on writing lines, or semantically by Operator Tree (OPTs) describing
mathematical content (i.e., quantities and operations [97]) as shown in Figure
2.1. One can switch from an SLT to OPT by using an expression grammar,
but in our work, we focus our attention on extracting SLTs and we do not
consider recognizing formula semantics.

Figure 2.1: Math representations: symbol layout tree and operator tree for
(a+ b)2 [95].
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2.2 Math Recognition

Visual parsing of mathematical expressions converts input images to a repre-
sentation of formula structure, which is a hierarchical arrangement of symbols
on writing lines [95]. Techniques for parsing math can be classified by the
criteria listed below.

Online vs Offline. Math expression recognition can be online or offline.
For handwritten expressions (online), it is common to use strokes, sequences
of points recorded in temporal order from pen down to pen up. For bitmap
images (offline), the equivalent structure would be connected components or
the sequence of pixels in sequential models.

Global vs Sequential. Three tasks need to be addressed when recogniz-
ing math equations: symbol detection (segmentation), symbol classification,
and structure recognition (parsing). Some models approach these tasks se-
quentially and in isolation, such that no information is used from one task to
another. However, global methods tackle this by jointly applying these three
steps. In earlier attempts for solving math recognition globally, segmentation
and recognition were addressed simultaneously. In these designs, the main
criterion to group primitives is the probability of those primitives representing
a given symbol [5, 30]. Techniques such as hidden Markov models (HMM)
and Neural Nets (NN) can perform segmentation and recognition, simulta-
neously [1, 2, 5, 43, 49]. This is followed by an structural analysis to find the
spatial relations between the symbols. In most cases to verify if the extracted
equation is valid, syntactic analysis is applied as the last step in expression
recognition.

Features. The main set of features for symbol classification are the visual
features collected by CNNs in most cases. Whereas a common set of features
used to represent the spatial relations between components (e.g., symbols) in
segmentation and parsing are geometric features. Visual features have also
been used for this task [95].

Symbol Classification. Different classifiers have been used for symbol
classification. Among which K nearest neighbors [75, 80, 84], elastic match-
ing [4,78], support vector machines (SVM) [17,46], rule-based classifiers [6,28]
require a prior segmentation, i.e., having the symbols extracted first. There-
fore one can benefit from these classifiers when approaching math recognition
sequentially. Yet, some techniques such as hidden Markov models (HMM) ,
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Convolutional Neural Nets (CNNs), or Recurrent Neural Nets can perform
segmentation and recognition simultniusely.

Relation Classification. In order to do layout analysis, the spatial re-
lationship between the primitives, which can be symbols, strokes, connected
components, or pixels, should be classified first. A number of methods have
been proposed to recover symbol layouts such as graph parsing, Stochas-
tic Context-Free Grammars (SCFG) [14], baseline extraction [5], encoder-
decoders [20,86] and adversarial learning [89,102].

Structure Parsing. Syntactic analysis is usually the last step in ex-
pression recognition to confirm that the recognized equation is valid. Two
principal approaches have been investigated in the literature: grammar or
graph based analysis usually by applying grammatical rules or extracting a
tree from the relation structures between primitives. So, the final output can
be transferred into standard presentation format such as LATEX or MathML.
In some graph-based and grammar-based methods, language constraints are
applied to reduce the computational time complexity. Graph rewriting can
also be used for syntactic analysis. In this approach a sub-graph is replaced
by a single node containing the syntax of the sub-expression [34,42,49].

In the following, we review studies focused on structure learning of math
formulae that informed our research. Table 2.1 presents a summary of the
studies we discuss in this section. In particular, sequential models have done
a good job capturing the sequential nature of online handwritten equations.
We review these techniques in 2.2.3.

2.2.1 Syntactic Methods (Constituency Parsing)

Syntactic Methods used for interpreting complex patterns in mathematical
formulas as the notation has an obvious division into primitives, a recursive
structure, and a well-defined syntax [5, 6, 9, 64]. Alvaro et al. [2, 3] presents
an online handwritten math expression recognition system using Stochastic
Context-Free Grammars (SCFG) defined at the symbol level. Segmentation is
done by scoring symbol candidates using a symbol classifier and letting SCFG
determines whether they should be merged or not based on the confidence
scores generated by the SVM classifier. The system also searches over possible
segmentations in CYK parsing algorithm. For parsing, first, lexical units
are built from the set of symbol segmentation hypotheses. Second, a set of



CHAPTER 2. RELATED WORK 15

Table 2.1: Summary of existing recognition systems for math expressions.
Note that MTL stands for Multi Task Learning.

Paper Attention MTL Input

Alvaro et al. [2, 3] - - online
HMM-based [49] - - online
Rule-based [52,88] - - online &offline
MEXREC [5] - - online
Hu et al. [38, 39] - - offline
Zhang et al. [101] tree-based BLSTM - online
LPGA [65] graph parsing parameterization(hard) CNN
IM2TEX [20] encoder-decoder RNN-based CNN
TAP [99] encoder-decoder GRU-based CNN + online features
MAN [85] encoder-decoder multi-model GRU offline & online features
Adversarial learning [89,102] encoder-decoder RNN-based CNN + spatial

production rules in the grammar guide the stochastic parsing process in order
to build a complete structure of the most probable expressions.

Figure 2.2: Lavirotte et al. proposed architecture for Optical Formula Recog-
nition (OFR) [52].

Lavirotte et al. propose a system for extracting and recognizing mathe-
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matical expressions in printed documents [52]. The syntax tree of a formula
is built with graphical information which is recognized characters and their
position. In this method character recognition, geometrical treatment, and
grammatical treatment are studied separately in a design that each step pro-
vides the necessary information to the next process as shown in Figure 2.2.
In the first step, OCR is applied to separate formulas from the rest of the
document. This operation is not very challenging as the density of characters
in formulas are not the same as text. This provides key information about
symbols present on the sheet which will be used to construct a data graph
in next step, such as recognized symbol, coordinates of the bounding box of
each characters, reference point of the character (baseline). Second, from the
result given by OCR step, a graph encoding relative positions of characters
(geometrical treatment) is built. The graph builder constructs a graph with
all recognized symbols in OCR. Each symbol is linked in all the 8 directions
(left (l), right (r), top (t), bottom (b), top-left (tl), top-right (tr), bottom-left
(bl), bottom-right (br)) with the closest symbols. A ninth type of connections
also added: inside (i) e.g., in square roots. This provides a set of possible
edges from which the ones who passed some test will remain as an edge in
the graph. These criterion to prune edges are based on type of symbol and
the manner to read or write mathematical expressions (left to right). Finally,
context dependent graph grammars are applied to parse this graph. In order
to remove ambiguities they add contexts to the rules. These ambiguities can
appear when the global context is not considered in decision making resulting
in more attention given to context.

Hidden Markov Model (HMM) based systems do not require prior seg-
mentation and can handle symbol detection and classification simultaneously.
In [49], first, HMM recognizer provides segmentation and recognition results
for online data. Second, the spatial two-dimensional arrangement of the sym-
bols are interpreted using a graph grammar approach for structure recognition.
A graph grammar perform a rewriting system in a bottom-up manner, replace
sub-graphs with a single node containing the syntax-tree of the recognized
sub-expression. In this approach, the constraints concerning the writing from
left to right and top to bottom can be relaxed.

Another work that avoids committing early to segmentation results by
Winkler et al. studies the benefits of soft decisions [88]. In this method, first a
directed graph is computed on the sorted input data from left to right in which
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each node has an incoming edge from left and an outgoing edge to the symbol
on the right. To label the unknown edges, first they define 5 relation type based
on relative position of special symbols: fraction (numerator and denominator);
summation, product and integration (upper and lower limits); root (power)
and split the surrounding area of each special symbol into different regions. To
label edges based on these spatial information, the system first identifies the
special symbols e.g., fraction line. Thereby symbols, whose position is above or
below the fraction symbol, are detected. To understand the relative positions
of neighboring symbols to the target special symbol, distance is measured and
the amount of shifting necessary for a non-ambiguous relation between the
two symbols defines the relation type. If the relation is ambiguous, the graph
is duplicated and different edges are used for describing the relation between
these two symbols. After detecting symbol groups relative to this five types,
the remaining undefined edges are either on the same line as the first symbol
(lin) or it is part of the exponent (exp) or the index (ind) of the first symbol. In
the last stage, a string containing the mathematical information is generated
for each directed graph and verified syntactically. The remaining strings are
sorted based on probabilities obtained during the symbol grouping. If more
than one string passed the verification step, user must choose the correct one.

Awal et al. introduces a global approach for handwritten math recogni-
tion [5] called MEXREC. MEXREC finds the best possible grouping of strokes
(symbol detection), identifies the symbol corresponding to each group (symbol
classification), and finally interprets the expression according to the language
model (structure analysis). These steps participate in calculating the global
cost function CE. 1) A symbol hypothesis generator produces all possible sym-
bol candidates which will be passed to symbol classifier and structure analyzer.
2) Symbol classifier assigns a recognition score and a label to each symbol hy-
pothesis. The top N candidates for each hypothesis is kept and the recognition
score is converted to a cost number by computing the negative logarithm of
the recognition score. This way it can easily contributes to the global cost
CE. The recognition scores are assigned to hypothesis generated in the last
step, so to get rid of wrong hypothesis, the classifier has a rejection class
which is considered during the training phase. 3) Geometric approach used
to evaluate the structural costs. Structural analyzer associates a structural
cost with each node calculated according to the mean square error between
the expected (ideal) positions and sizes for a given relation and the observed
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ones. The observations are computed for each node according to its baseline
position (y) and its x-height (h). 4) A relation tree is constructed by applying
grammar rules on vertical and horizontal axis and then applying a CYK parser
when reaching elementary symbols. Finally, a decision maker selects the set
of hypotheses that minimize the CE (global cost).

2.2.2 Minimum Spanning Trees (Dependency Parsing)

Mathematical expression recognition can be posed as searching for a Maxi-
mum score/Minimum cost Spanning (MST) representing symbols and their
associated spatial relationships in a graph of primitives.

An MST-Based math expression recognition system using virtual link net-
works proposed by Suzuki et. al [25]. Recognition is done by finding a spanning
tree for the network with minimum weight. There is a local score and a global
score to weight the edges. The local penalty is calculated based on the dis-
tribution of relative sizes and positions for each relation type in parent-child
links and the global penalty is based on predefined rules designed to exploit
context. The edges will be weight with the sum of these two scores.

Another MST-based math parsing method is presented by Hu et al. [39]
using Edmond’s algorithm [23] to extract a tree from a weighted Line-Of-
Sight (LOS) graph [38]. They use an LOS graph for representing the layout
of primitives and symbols in math expressions [15]. LOS graphs have a higher
expressivity than many other graph representations (e.g., Delaunay, geometric
MST, k-NN for k ∈ {1 . . . 6}), while also reducing the search space for parsing.
They also modify the shape context feature [8] with Parzen window density
estimation. These Parzen shape contexts are used for symbol segmentation,
symbol classification and symbol layout analysis.

An generalization of the work done by Hu et al. [39] is the LPGA (Line-Of-
Sight Parsing with Graph-based Attention) model [65]. In LPGA individual
CNNs are trained for segmentation, classification, and parsing. A hierarchical
approach is used to first segment nodes into symbols with a binary classifier,
and then generate a second graph on symbols and train two separate models
to learn symbol classes and spatial relationships. We describe this system in
more detail in Chapters 4 and 5 .

Zhang et al. [101] introduces another graph parsing method for recognizing
online handwritten math. In the first step, an intermediate graph is derived
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from raw inputs where each node represents a stroke and edges are added
according to several defined criteria such as visibility between the two strokes
sharing an edge (similar to LOS definition), or defining five regions for each
node to look for the potential Right, Inside, Above, Below, Supscript and
Subscript relationships between strokes. Multiple trees are extracted from this
graph and recognized using the tree-based BLSTM model in which points in
the strokes are encoded directly. The tree-based BLSTM architecture allows
for direct labeling of nodes (symbol) and edges (relationship) from a graph
modeling the input strokes.

2.2.3 Encoder-Decoder Models

State-of-the-art systems for visual math parsing use Recurrent Neural Net-
works (RNNs). RNNs were designed to work with sequence prediction prob-
lems e.g., predicting the next word in a sentence as it can memorize what has
been calculated so far and use that to make accurate predictions in the next
sequence [31,36].

IM2TEX [20], inspired by the sequence-to-sequence model designed for
image caption generation by Xu et al. [92] directly feeds a typeset formula
image generated using LATEX into a Convolutional Neural Network to extract
a feature grid, see Figure 2.3. For each row in the feature map, a Recurrent
Neural Network (RNN) is used to encode spatial layout information. The
encoded fine features are then passed to an attention-based RNN decoder
that emits the final expression string.

Another encoder-decoder model by Zhang et al. [99] uses pen traces col-
lected from handwritten strokes on a tablet for parsing. The model architec-
ture is shown in Figure 2.3. In their model, the encoder is a stack of bidi-
rectional GRUs (Gated Recurrent Units) [13] which is a gating mechanism in
RNNs, while the parser (decoder) combines a GRU-based language model and
a hybrid attention mechanism consists of a coverage-based spatial attention
and a temporal attention. Unlike the attention module in IM2TEX model,
which scans the entire input feature map at pixel level, the spatial attention
in TAP learns an alignment between input strokes and outputs. The role of
temporal attention in TAP model is to learn when to rely on the product of
spatial attention and when to just rely on the language model as there is no
spatial mapping for tokens representing spatial relationships e.g., superscript
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IM2LATEX TAP MAN

Figure 2.3: Encoder-decoder math recognition models. From left to right:
IM2TEX [20], TAP [99], and MAN [85].

‘∧’ or subscript ‘ ’.
A recent architecture in encoder-decoder networks used for math expres-

sion recognition has two input branches to encode both online and offline fea-
tures [85]. This Multi-modal Attention Network (MAN), first take dynamic
trajectories and static images for online and offline channels of the encoder
respectively as shown in Figure 2.3. The output of the encoder is then trans-
ferred to the multi-modal decoder to generate a LATEX sequence as the math-
ematical expression recognition result. This architecture is a hybrid design of
both TAP and IM2TEX models explained earlier, except the fact that they
use CNN layers in their online channel instead of using a stack of RNNs. Each
decoder has their own attention modules. For the online branch, the attention
module highlights strokes, whereas in the offline module it weights the pixels.
Once the attention weights are calculated, the multi-modal context vector can
be obtained by concatenating the single online and offline context vectors. A
recent addition to sequential models [86, 89] exploits DenseNet [40] for en-
coding images. In this work an improved attention model with channel-wise
attention is applied before spatial attention.
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Domain-Invariant Features Learning. Generative Adversarial Net-
works (GANs) have been introduced for adversarial learning by Goodfellow
et al. [33] originally for generative learning, but extensions of GANs have
been used for invariant representations in different domains [10, 76]. Gener-
ative learning is an semi-supervised task in machine learning that involves
discovering the patterns in input data in such a way that the model can be
used to generate new examples that could have been drawn from the original
dataset [76].

Zhang et al. [102] proposed an adversarial-learning-based method which
learns from prior knowledge of printed templates and improved the tradi-
tional feature extractors to learn writer-independent features. Their system
composed of three neural network components: (1) a feature extractor that
generates features from handwritten and standard printed characters, (2) a
classifier that takes the extracted features, and (3) a discriminator that guides
feature extractor to learn prior knowledge. These are jointly optimized by the
adversarial training algorithm with the goal of helping feature extractor focus
only on writer-independent features. Liu et al. [61] proposes a similar idea for
image feature learning for scene text recognition.

Another encoder-decoder architecture proposed by [89] highlights the im-
portance of domain-invariant features learning in handwritten math recogni-
tion to improve the robustness of the recognizer with respect to writing styles.
This model equipped with an attentional encoder-decoder recognizer R and a
discriminator D. Similar to previous auto-encoders, the convolutional encoder
(DenseNet [40]) encodes the input image and then the decoder parses these
feature maps into LATEX strings. The role of discriminator is guiding the rec-
ognizer to learn invariant features for making R more robust to writing-style
variations. Handwritten equations paired with their printed templates are fed
into the system as a pair. In this design, recognizer should correctly recog-
nize both handwritten and printed inputs and try to extract indistinguishable
features from the paired images and make it harder for discriminator to judge
which features are from handwritten and which ones are from typeset equa-
tions.
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2.3 Motivations for our Approach

Compared to sequential models, graphs are more natural and general for rep-
resenting math equations as trees. In our model, primitives form the nodes
of the input and output graph, while edges between primitives in the out-
put represent symbol segmentation and spatial relationships between symbols
(e.g., right, superscript). Our attention module uses this input graph to query
(filter) CNN features from a single feature representation of the input im-
age to efficiently obtain inputs for multiple classification, segmentation, and
relationship decisions.

Our system does not need to learn an alignment between input strokes/connected
components and outputs similar to encoder-decoder models, as we directly
output a graph-based hierarchical representation of symbols on writing lines
(as a Symbol Layout Tree (SLT )), and not a string. We also do not use ex-
pression grammars for language models, instead relying only upon the sets of
symbol and relationship classes along with visual statistics captured by our
CNN models. The language model in our system is data-driven and learned
through the symbol/relationship labels, and the statistics over them in the
training expressions.

2.4 Visual Parsing

Visual parsing is important for a variety of image understanding tasks, in-
cluding real-world complex vision-language problems such as image caption
generation [45, 92], visual relationship detection [16, 35, 73], scene graph gen-
eration [93], table detection, and form and table parsing [18,96].

In the following, we first provide a brief description on Convolutional Neu-
ral Networks (CNNs). We present different approaches that CNNs can benefit
from an attention module. Next, we explain how these CNNs equipped with
attention make the multi task learning possible. This is particularly interest-
ing to study as structure learning can be identified as a series of tasks to tackle,
e.g., detecting objects in a scene, classifying those objects and finding the re-
lation between them in a scene understanding problem or symbol detection
(segmentation), classification of detected symbols, and detection/classification
of relations between them in math structure parsing. Multi Task Learning
(MTL) frameworks allow for solving these tasks simultaneously. Finally, we
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review recent studies based on MTL approaches for multi-target (multi-query)
tasks as there are usually multiple targets per each task in equations e.g., mul-
tiple symbols to classify.

Table 2.2 demonstrates a summary of visual parsing methods that will
be discussed in this Section. We summarize whether these system are using
attention modules, are they trained for multi-task learning, what is the feature
extraction approach, and what is the approach constraints.

Table 2.2: Summary of visual parsing systems using CNNs. Note that MTL
is short for Multi Task Learning.

Paper Method Attention MTL Constraints

Learn to pay att. [41] ConvNets soft False designed for one query per image
MGCAM [81] ConvNets hard and soft False designed for one query per image
Valve filter [24] ConvNets hard and soft False requires ROI map
MTAN [58] ConvNets soft True requires a parallel network per task
Cross-stich Net [69] ConvNets soft True requires an individual CNN for each task
Graph R-CNN [16], [94] GCN soft True requires another network to prune graph edges
Feature Fusion [55] ConvNets - False requires resizing features which reduces the speed

2.4.1 Convolutional Neural Nets (CNN)

Convolutional Neural Networks (ConvNets or CNNs) is a machine learning
algorithm that have proven very effective in learning patterns in images, in
particular for image recognition and classification [50,53,54]. The basic build-
ing blocks in CNNs are (1) Convolution layer (2) Non Linearity operation (3)
Pooling or sub sampling (4) Fully connected layers (classifiers). The purpose
of convolution in CNNs is to extract features from the input image. Unlike
fully connected layers, that ignore the topology of the input, as each hidden
unit is connected to all other units in the previous layer, convolution layers
keep the spatial relationship between pixels by learning image features using
small squares of input data [54]. This is achieved by forcing the receptive field
of hidden units to be local.

2.4.2 Feature Fusion Methods

One common approach to detect multiple objects using a single deep neural
network is extracting features in multiple scales [7,48,55,56,59,60,74]. In case
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of having multiple targets/queries, usually not all objects are in the same size
so when using CNNs it makes sense to extract features from multiple scales
(intermediate layers) e.g., classifying a dot versus a long fraction line in an
equation image.

In literature, there are two ways to merge multi-scale feature maps: el-
ement wise summation/product or concatenation. The latter is preferred as
there is no need for feature maps to have the same number of channels. Hy-
perNet [48], Parsenet [60] and ION [7] concatenate features from multiple
layers before predicting the result. FPN [56], DSSD [29] and SharpeMask [74]
employ a top-down structure to combine the different level features together
to enhance the performance in a fast approach. These designs need multiple
feature merging processes as features are fused from top to bottom layer by
layer.

FSSD [55] is an extension of Single Shot Detection (SSD) [59] work which
extracts features from intermediate layers and concatenates them resulting in
improving performance significantly over SSD with just a little speed drop.
In the feature fusion module, Conv 1 × 1 is applied to each of the feature
maps extracted from different layers to reduce the feature dimensions. Then
features either down-sampled with max-pooling or up-sampled with bilinear
interpolation to the chosen size which is the size of conv4-3’s feature map
(38 × 38). Feature maps from different layers always have different ranges of
values, so a Batch Normalization layer applied to features after concatenation
and fed to multibox detectors to predict the final detection results.

2.4.3 Attention in CNNs

The broad term attention is used for a module in the network’s architec-
ture that is responsible for learning the association either between the input
and output elements (General Attention) or within the input elements (Self-
Attention) [72]. Including attention in CNNs can be a hard (deterministic) or
a soft (stochastic) decision. A hard decision on highlighting the relevant parts
of the input image often happens by simple parametrization such as masking
out the salient areas with binary masks, whereas the soft-attention approach is
probabilistic and can be trained by back propagation. Thus, it can be trained
along with the main branch in the CNN and make the optimization easier in a
global manner as all parameters are updating together according to the global
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cost function.
Song et al. propose a model that learns features separately from the body

and background regions for the task of Person Re-identification (ReID) [81].
First, a pair of inverse attention masks, which are essentially segmented binary
masks of target and background, are generated for each input image (hard
attention). The intuition behind that is to black out both the target and
the background in different instances and generate a pair of inverse attention
masks. Each RGB image and corresponding mask pairs are then fed into the
second module, a multi-branch CNN model, to generate three feature streams:
full-stream, target-stream and the background-stream (soft attention). There-
fore, the proposed approach have three streams: the input image(ffull), the
foreground image or positive mask (f+att), and the background image or nega-
tive mask (f−att), see Figure 2.4. The authors refer to this two-step system as
Mask-Guided Contrastive Attention Model (MGCAM). Negative stream will
add context/background information for each target. It should be mentioned
that each stream generate a 128-dimensional feature vector at the end, but
the one from general stream will be used for sample representation and the
features from the other two streams are only used to guide the feature learning
of the full stream. The input binary body masks are useful both for (1) reduc-
ing the background noise which makes the model be more robust to different
background conditions and (2) presenting body shape information which is a
very important feature for person re-identification.

Figure 2.4: Framework of Mask-guided Contrastive Attention Model (MG-
CAM) for person ReID [81].
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Another model using binary masks to guide the attention mechanism is
[24]. In this work, a single filter is trained for each binary mask while training
the main CNN model. The output feature maps from this trained filters and
the input binary masks are called relevance maps. Outline of this approach
is shown in Figure 2.5. The intuition behind introducing relevance maps for
weighting the activation maps in the network is trying to avoid removing all the
background information, which happens in the binary masks multiplication.
Trainable attention masks learns which parts of the background are actually
relevant to the classification of the target and worth keeping. The image and
the binary masks are each passed through a separate convolution layer to
generate a feature map and a relevance map respectively. The input to the
next layer would be the result of element-wise multiplication of the feature map
and the relevance map. The filter that is learned to generate the relevance
map is called valve filter and its weights are learned by the net in the same
way as image filters enabling the model to be trained end-to-end. It should be
mentioned that in the current implementation of this model, the valve filter
acts only on the first layer of the convolutional neural net, and the rest of the
net remains unchanged.

Figure 2.5: The relevance map approach for introducing binary masks as input
to the CNN.

Computing relevance maps from binary masks is one way to keep the back-
ground information which is important for the target. Alternative approaches
are (1) to black out both the target and the background in different instances
and generate a pair of inverse attention mask (f+att, (f−att)) to pass as separate
inputs to the net as used in the MGCAM model [81] or (2) to use the binary
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mask as another input for the net by concatenating it with inputs of specific
layers of the net [7, 44].

Jetley et al. in [41] demonstrate an approach to soft trainable visual at-
tention in a CNN model. This method encourages the earlier filters in the
model to learn similar mapping with the ones that generate the global image
descriptor g in the last layer by letting the intermediate feature vectors con-
tribute directly to the final decision. Therefore, intermediate feature vectors
are enforced to be more compatible with the final feature vector that goes into
the linear classification layers at the end of the pipeline. The intuition behind
this is providing the larger field of view of the last layer to the higher resolution
earlier layers in the CNN. As a result, local descriptors in the intermediate
layers can benefit from being more compatible with the global features as it
provides the larger field of view of the last layer, while keeping the higher reso-
lution, compared to the final feature map. Each of the local feature vectors (li)
are weighted by a compatibility score which shows their similarity to g. The
proposed model is used for multi-class classification. The authors demonstrate
that soft trainable attention improves performance by 7% for CIFAR-100.

Relation to our work. In the studies we reviewed so far regarding
attention in CNNs, there is always one task to do, one question to answer: e.g.,
What is this animal? who is this person? or is the vessel empty? [24, 41, 81].
This means the attention module has to highlight the relevant areas for one
specific target in the input image. Our proposed model needs to label all nodes
and edges of the input graph at each iteration simultaneously. To do that we
have 3 classifiers, each answering one of the following questions:

• Segmenter: are these connected component belongs to one symbol?

• Classifier: what is the symbol class of this connected component?

• Parser: what is the relation of these two components?

Therefore, we need our attention module to understand what are the tar-
gets in the input equations and provide a feature vector for each target by
filtering out different regions of the main feature map generated from the in-
put image. Inspired by [24], we have a stream of binary masks going into our
attention layer, which is made of a convolutional layer with 4 kernels per input
binary mask, and the relevance maps coming out will be resized and multi-
plied with the final feature map from the main network to generate features
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for multiple targets (nodes and edges). We pass our target masks (binary) to
network similar to target stream in [81]. We have explored having a negative
stream capturing the background for each taget. Results of this experiment is
reported in Chapter 6.

Unlike [24,81] relevance maps in our soft attention module are not applied
on the first convolutional layer. We apply them on the final activation map
as we would like to keep the feature set shared and avoid dividing the main
branch at the very beginning. This is helpful since we maintain most of the
weights shared between the tasks. Training for multiple tasks simultaneously
is called Multi Task Learning (MTL). Below, we review some of the major
works in MTL which informed our approach.

2.4.4 Multi Task Learning (MTL)

MTL is a machine learning term which refers to solving multiple tasks at the
same time often resulting in improving the generalization, learning efficiency
and the performance of task-specific models [11]. When learning for each task
given the shared representation, what is learned for one task can help other
tasks and this type of information can be easily ignored by being focused
on one task [11, 21, 26, 51]. This also introduces a generalization in feature
learning which prevents models from memorizing features for a specific task
(over-fitting). So, the network is encouraged to learn a general representation
to avoid over-fitting, while providing the ability to learn features tuned for
each task to avoid under-fitting. This is specially useful for those related task
that doesn’t come with a very large datasets [11].

MTL has been broadly used for transfer learning, [62, 69] or for learning
related tasks jointly such as pose estimation and action recognition, or surface
normals and edge labels in room layout [32,87]. A multi-task learning is gen-
erally used with CNNs and the proposed architecture has a shared part and a
task-specific part. Most of the studies in this area discuss one of the followings:
(1) Joint loss definition. Loss function, which weights the contributions of each
task, should enable learning of all tasks with equal importance, without al-
lowing easier tasks to dominate. (2) The attention module, which is discussed
in details in the previous section. (3) The trade-offs between different com-
binations of task-specific and shared representation in the architecture. The
parameter sharing in MTL is either hard or soft [69]. In hard parameter shar-
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ing, the network has some shared intermediate layers which then gets divided
into task-specific output layers, similar to our proposed model architecture.
In soft parameter sharing, there is a network trained for each task and there
are units that connect these networks by defining how much sharing is needed
between each block e.g., cross stitch units in [69].

In [69], Cross-stitch Networks for Multi-task Learning is proposed. There
is a trained network for each task which are all linked to each other with
Cross-stitch units, as shown in Figure 2.6. At each layer of network, cross-
stitch units learns a linear combination of the activation maps which defines
how much sharing is needed. This answers one of the most significant obstacles
in designing a multi task learning architecture which is what should be the
combination of shared and task-specific layers?

Figure 2.6: Using cross-stitch units to stitch two convolutional neural nets
in [69].

Liu et al. [58] introduces Multi-Task Attention Network (MTAN) which
is an example of a soft parameter sharing by having a single shared network
and multiple task-specific attention networks with connections to the main
network. The main branch is learning the global features from the input while
each attention module is applying a soft attention to a particular layer of
the global feature stream and passing only the features that are related to the
question they are designed to answer. Each of these attention modules, except
for the first one that only takes the shared features, takes the shared features
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from the parallel block in the main branch and the task-specific features from
the previous block. In this design, the question of how much of a network
should be kept shared and how many layers should be trained for specific tasks
is answered as these two parallel networks are connected with units defining
how much sharing is needed between each block.

The model objective is defined as shown in equation 2.1 for K tasks, input
X and task-specific labels Yi, i = 1, 2, ...,K, as,

Ltot(X,Y1:k) =
∑k

i=1 λiLi(X,Yi) (2.1)

This is the linear combination of task-specific losses Li with task weightings
λi. Training a network for multiple tasks is possible with a loss function that
can gives a balanced attention to all tasks by let the individual tasks have
equal importance in the final loss and avoid the dominance of the easier tasks.
An adaptive weighting method named Dynamic Weight Average (DWA) which
is inspired by GradNorm [12] is introduced in this work. DWA monitors the
the rate of loss change for each individual task over time and then weight the
loss using that information. Unlike GradNorm which requires the network
gradient DWA can be computed only by having the task loss as shown below.
They define the weighting λk for task k as:

λk(t) := K exp (wk(t−1)/T )∑
i exp (wi(t−1)/T ) , wk(t− 1) = Lk(t−1)

Lk(t−2) (2.2)

Here t is an iteration index, and T represents a temperature which controls
the softness of task weighting, a very large T means tasks are weighted equally
(λi ≈ 1). Note that for t = 1, 2 weights are initialzed as 1 (wk(t) = 1).

Relation to our work. In our work, sum of all the query errors con-
tributing to the final tree (all nodes and tree edges) are used to compute the
joint loss. In the proposed Tree Loss, (read more in Chapter 5) at each iter-
ation, only the edges that remains in the output tree plus the ground truth
edges contribute to the error to harvest hard negatives for training and avoid
the possible imbalance in queries in each task due to fewer nodes compared
to edges (edges are approximately 3.3 times more than nodes in Line of Sight
graphs).

The MTL studies we reviewed above each has one object per task, whereas
in our proposed system we have multiple queries per task. We have to define
all relationships between components and label all those components to be
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able to successfully recognize a math equation. Similar to our problem, to
understand an image, first, the objects in the image should be recognized and
second, all the relationship between objects should be defined. Graphs has
been used for this purpose for a long time. The following section reviews the
works that exploits graphs for understanding the spatial relations.

2.4.5 Graph Parsing

The most similar work to our known is from Dai et al. [16]. To define rela-
tionships between objects, they first do object detection in the input image.
The next step is to produce a set of object pairs from the detected objects.
With n detected objects, they form n(n−1) pairs with some unlikely relations
filtered out with a low-cost neural net. Finally, in [16] each retained pair of
objects will be fed to the joint recognition module. Taking into account mul-
tiple factors and their relations, this module will produce a triplet in the form
of (subject, predicate, object), as the output.

Inspired by this work, [94] use Graph Convolutional Networks encoder plus
Long Short-Term Memory decoder (dubbed as GCN-LSTM) architecture to
encode both semantic and spatial object relationships. The goal of this study is
exploring visual relationship for image captioning. In this work, salient image
regions (nodes) are computed using off-the-shelf object detection algorithms
e.g., Faster R-CNN [77]. Second, two directed graphs are generated on the
detected regions, one for spatial relations (e.g., inside, overlap, over, etc.) and
another one for semantic relations (e.g., riding, eating, biking, etc.). Graph
Convolutional Networks (GCN) are then exploited to encode region represen-
tations and visual relationship in both graphs. Next, the learnt relation-aware
region representations are feed into individual attention LSTM decoders to
generate the sentence. To integrate outputs of two decoders, the predicted
score distributions on words from two decoders is averaged at each time step.
The results from the two decoder are fused in an inference stage adopting
a late fusion scheme to linearly fuse the results from two decoders. The se-
mantic graph decides which relations should be established between objects,
leaving the spatial relations between image regions unused. A second graph
defining spatial regions is then generated over the detected regions. When
doing classification in the semantic graph, similar to our work, a ‘NoRelation’
class is added to the set of class labels Nsem. They compute the probability
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distribution on all the (Nsem + 1) relation classes for each object pair. If the
probability of NoRelation is less than 0.5, a directed edge connects the region
vertex of parent (subject noun) to the region vertex of child (object noun).
The relation class with maximum probability is regarded as the label of this
edge.

Yang et al. [93] also use a graph parsing approach for scene understand-
ing. Their proposed model called Graph R-CNN has three modules: (1) object
node detection (2) relationship edge pruning with a Relation Proposal Network
(RePN), and (3) graph context integration. RePN learns to compute ‘relat-
edness’ scores between object pairs which are used to prune unlikely scene
graph connections. Next, the proposed attentional graph convolution net-
work (aGCN) [47] is applied on pruned graph to encode higher-order context
throughout the graph and provide information on each object and relationship
representation based on its neighbors.

Relation to our work. Our method differs in three aspects: (1) We
use connected components from rendered handwritten strokes or images as
input generating a Line-of-Sight graph. Whereas in these studies nodes are
usually a set of detected objects and the edges defining the relation between
them are computed with an additional low-cost network. (2) We train our
model to do object segmentation, classification and relation prediction jointly
using a multi-task classification framework. (3) Unlike [93], our model handles
multiple queries (i.e., classification problems) using a soft attention module,
so that attention masks generated for each node and node pair are refined
through back propagation when training the model end-to-end.

2.5 Summary

In this chapter, we have covered related works from structure parsing in dif-
ferent areas and systems designed specifically for math parsing. We discussed
math representations used in different systems (OPT vs SLT) for presenting
the recognized equation and clarified that our system outputs Symbol Layout
Trees (SLTs).

In Section 2.2, we listed different aspects of a math recognition problem
that can be handled with different techniques such as online vs offline recog-
nition. We then discussed syntactic methods, MST extraction, and finally
encoder-decoder approaches. We mentioned the limitation of autoencoders



CHAPTER 2. RELATED WORK 33

e.g., generating string outputs, searching over all pixels in the input image,
forcing data into 2D and also explained why we think math recognition can
be solved by adapting a simple convolutional neural networks (CNN).

In Section 2.4, we have got into Convolutional Neural Nets and discussed
some of their attributes that make math parsing with CNNs possible such
as: Attention Module to generate query features and classifying all symbols
and relations in an equation in one iteration. Another CNN-related method
that we have covered is Multi Task learning (MTL) that permits training for
segmentation, classification and parsing simultaneously. We reviewed some of
the Graph Parsing studies using CNNs and provide detailed explanation on
how these systems inspired QD-GGA and how our modules differ from what
they are presenting.



Chapter 3

Evaluation Methods and
Datasets

In this chapter, we first introduce the CROHME and INFTY datasets contain-
ing handwritten formulas and scanned images of typeset formulas in Section
3.1. These two datasets are used for evaluating QD-GGA and LPGA perfor-
mance. Section 3.2 presents the tools and metrics used to evaluate our tech-
niques. We introduce SymLG that makes the comparison between systems
that generate LATEX strings and systems that output trees possible. Finally,
we talk about how the new metrics (SymLG) were used in CROHME 2019
competition [68].

3.1 Datasets

Our model can take both online (handwritten strokes) and offline (images)
datasets as inputs. We use the CROHME dataset [70] to benchmark our
model against handwritten recognition systems and InftyMCCDB-2 [15,82] to
evaluate our recognition system for typeset math equations.

CROHME. The stroke data provided in CROHME dataset is a sequential
list of points representing sampled (x,y) coordinates as each stroke is written.
The ground truth files provide segmentation information (stroke grouped into
symbols) along with the symbol classes and the symbol structure. The ground
truth files are provided in InkML format (an XML tag-based representation)

34
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and Label Graph files (LG files), which have a simpler CSV-based representa-
tion.

For our experiments on handwritten equations, we use CROHME 2019
[68] train, test, and validation sets. The dataset is collected and labelled by
Mouchère et al. [70]. Training set for CROHME 2019 is expanded by adding
previous test sets (2013, 2012) to it. These three are going to be used as a train
set which contains 9993 expressions. The validation set for CROHME2019 is
the previous test set in 2014 (986 expressions). Finally, a new test set for the
main task is provided containing 1199 expressions. This dataset includes 101
symbol classes.

InftyMCCDB-2. For our experiments on typeset equations, we use
InftyMCCDB-2, a modified version of InftyCDB-2 [82] which contains math-
ematical expressions from scanned article pages. The dataset includes 213
symbol classes and the expressions range in size from a single symbol to more
than 75 symbols, with an average of 7.33 symbols per expression. In the
original set there are 21,056 mathematical expressions, but the formulas with
matrices and grids are removed in the modified version, leaving 19,381 for-
mulas left in InftyMCCDB-2 which is divided to a training (12551 images)
and testing (6830 images) subset with approximately the same distribution of
symbol classes and relation classes.

The ground truth files provided for InftyMCCDB-2 are at connected com-
ponent level [15]. For each connected component, the bounding box and the
symbol it belongs to is provided. This information is presented in Label Graph
(LG) files [70]. A label graph file stores connected components with individual
identifiers, groupings of components into symbols with their labels, and finally
directed Symbol Layout Tree edges. There are seven spatial relationships in
InftyCDB-2: horizontal (HORIZONTAL), right/left superscript (RSUP and
LSUP), right/left subscript (RSUB and LSUB), above (UPPER) and below
(UNDER). Another modification in InftyMCCDB-2 is adding a new spatial
relationship called “PUNC” for separating punctuation relation from the base-
line structure [15]. As seen in Figure 3.1, punctuation symbols are spatially
more similar to subscripted symbols than horizontally adjacent symbols. Hav-
ing punctuation symbols on the baseline separated from symbols on the main
baseline, and placed in their own nested region relative to their parent symbol
allows horizontal relationships to be represented in a more consistent manner,
and punctuation to be associated with sub-expressions more accurately.
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Figure 3.1: Modifying SLTs for punctuation in InftyMCCDB-2. In the middle
image, punctuation is represented using horizontal relationships (red edges)
despite the marked shift in vertical positions. To avoid inconsistent ‘horizontal’
relationships, a punctuation relation (PUNC, shown in green) is defined.

3.2 Evaluation Methods

In this section, we introduce tools and metrics we use to evaluate our sys-
tems. Evaluation of structural recognition systems for math expressions is
often complex because of the interaction between input primitives, detected
symbols, and their spatial relationships. For example, when a relationship
between one correctly classified symbol and one incorrectly classified symbol
is detected correctly, can we find a tool that allows for counting the partially
correct structure (relation) and reporting the incorrect part (symbol class)
from the above example?

The evaluation tool introduced in CROHME competitions [70] called the
LgEval library allows partially correct recognition results to be located and
measured precisely. Formulae are represented by labeled adjacency graphs over
strokes (LG). This representation allows errors to be unambiguously identified
by lgEval tool. However, this requires primitive-level (stroke-level) informa-
tion and encoder-decoder systems generating string outputs cannot provide
primitive-level information (segmentation). To be able to use lgEval tool with
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these types of techniques we introduced SymLG format.
Primitive-level error analysis. LgEval metrics include formula, sym-

bol recognition rates, along with recall and precision metrics for detection
(segmentation) and detection + classification for both symbols and relation-
ships [70]. In primitive-based output representations, such as the stroke label
graph (LG) in Figure 3.2(a) [98], all primitives in a symbol share the same
spatial relationship with primitives in the related symbol (e.g., for ‘a’ and ‘+’),
and symbol segmentation is given using bidirectional edges labeled with their
associated symbol’s class (e.g., for ‘+’). Label graphs (LGs) permit detailed
error analyses. We can determine precisely which primitives were grouped
correctly or incorrectly for the target symbol and evaluate their relations even
if they are grouped incorrectly. This allows us to make new analyses using
small subgraphs in ground truth and then count the number of times different
errors are made for each. For instance, if we choose two nodes for the small
subgraph, we can count and visualize incorrect label graphs representing any
combination of classification, segmentation and relationship mislabelings for
primitives in a pair of symbols (subgraph is made of two nodes and one edge).
See Figure 6.6 in Results Section for error analysis with LgEval tool choosing
one node and two nodes in the subgraphs.

Symbol-level error analysis. For recognition systems that produce
LATEX strings, we have presented a technique that allows string and tree-based
formula structure representations to be meaningfully compared at symbol-
level [66]. In this method, LATEX strings are first converted to MathML using
pandoc.1. This transformation preserves symbols and spatial relationships
while removing formatting directives (e.g., \quad, fonts). Once we have a
MathML representation for a formula, we generate symbol identifiers using
the spatial relationship sequence (edge labels) from the root symbol, e.g.,
“RRSUP” when the symbol has two “Right” and one “SUP” relation from
the root node (see Figure 3.2(b)). Identifiers allow us to address symbols on
writing lines from different structure representations. This produces a sym-
bolic representation for recognition outputs. This new symbolic representation
is called: The symLG (symbolic LG) representation.

Figure 3.2 shows two graph representations for the same expression ‘2+3c.’
In the Stroke Label Graph (LG), there are 5 nodes (one per stroke), and edges
represent segmentation and spatial relationships between pairs of strokes (in-

1https://pandoc.org

https://pandoc.org
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cluding ‘no relationship’). For the Stroke Label Graph, node identifiers are
for individual strokes. In the Symbol Label Graph (symLG) on the right,
there are 4 nodes (one per symbol) and edges represent relationships between
symbols (no segmentation information is provided). For symLG, node iden-
tifiers are constructed from the sequence of relation labels on the path from
root to the symbol. For example, ’c’ in Figure 3.2 has the identifier ’oRRSup’
(origin/root, Right, Right, Superscript).

2
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(oRRSup)R R
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(a) Stroke Label Graph (LG) (b) Symbol Label Graph (symLG)

Figure 3.2: Different graph representations for formula ‘2 + 3c’ written using
5 strokes. Node identifiers are shown in brackets.

The symLG representation allows us to identify errors as symbol classifi-
cation errors, relationship classification errors, or structure errors. Note that
this change in representation has several impacts on the results; in particular,
segmentation information cannot be calculated - it is possible for a formula
to be recognized with the correct Symbol Layout Tree, but without correctly
segmenting symbols. This makes the expression rate less strict than at the
stroke-level. Also, because labels on relationship paths identify symbols, when
symbols do not appear at expected locations in the output they are treated
as missing (‘ABSENT’ in LgEval), which leads to an underestimate of symbol
recall. Figure 3.3 shows the results of using LgEval tools for error analysis on
SymLG outputs generated for CROHME 2019 with QD-GGA best configura-
tion. Since symbols are identified with path from root node, most frequent
errors are related to absent nodes.
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Figure 3.3: Error analysis on SymLG outputs for QD-GGA (best config) on
CROHME2019 dataset choosing one node (left) and two nodes (right) for
subgraphs. Since symbols are identified with path, most frequent errors are
related to absent nodes.

3.3 SymLG Applications

We use symLGs to evaluate the IM2TEX system by Deng et al. [20]. Previ-
ously, the system was evaluated by rendering each output LATEX string, and
then calculating the exact pixel matching with the corresponding ground-truth
formula image. Our symLG-based metrics were also used for the recent ICDAR
2019 CROHME + TFD competition [68], as they are simple to understand
and allow systems that generate primitive-level and symbol-level results to be
compared directly.

IM2TEX re-evaluation. Most of the encoder-decoder systems have been
evaluated using string-based metrics such as exact matching, string edit dis-
tances, n-gram-based metrics such as BLEU, or by computing distances be-
tween images produced after rendering TEX formulas. Deng et al. [20] use
the BLEU metric based on agreement between n-grams in the LATEX charac-
ter strings. Neither the image matching metric nor BLEU number provides
information on failure cases or error analysis.

As shown in Table 3.1, our symLG metrics provide measures for Sym-
bols Det.: correct symbol detection (i.e., symbols exist at expected spatial
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Table 3.1: symLG im2latex-100k results (9,378 test formulas). Shown are
correct symbol/relationship locations (Detection), symbol/relationship classes
(Det.+Class), formula SLT structure ignoring symbol labels, and valid struc-
ture and symbol labels (Str.+Class).

Symbols Relationships Formulas
Det. Det.+Class Det. Det.+Class Str. Str.+Class

IM2TEX 95.70 93.48 95.50 95.50 86.79 83.15

locations), Symbols Det.+ Class: correct symbol locations and labels, Re-
lationships Det.: correct relation detection, Relationships Det.+Class:
correct relation classification (labels), Formulas Str.: correct structure of
the formula, and Formulas Str.+Class: structure and symbol classification
accuracy at the expression level. Note that because spatial relationships de-
termine symbol locations, a correctly detected relationship is also correctly
classified.

Im2latex-100k data set used for evaluation of im2tex system provides
103,556 different LATEX math equations along with rendered pictures. Formu-
las are extracted by parsing LATEX sources of papers from the arXiv. Source
files are obtained from tasks I and II of the 2003 KDD cup (Gehrke, Ginsparg,
and Kleinberg 2003) containing over 60,000 papers. The extracted equation
are rendered in a vanilla LATEX environment and the rendered PDF files are
converted to PNG format. The final dataset contains 103,556 images of reso-
lution 1654× 2339 with black equations against transparent background.

We were able to convert 9,378 of the 10,355 test formulas (90.6%) from
LATEX to MathML using pandoc. Many failed conversions are caused by invalid
syntax (e.g., missing brackets). For the 9,378 formulas that were converted
successfully to MathML, we are now able to report that the percentage of cor-
rect formulas with both correct symbols and structure is 83.15%, that 93.48%
of symbols are in the proper location with their correct class, and that 95.50%
of spatial relationships are correct. The metrics previously reported by the
IM2TEX authors include BLEU (tok) at 58.41, BLEU (norm) at 87.73, exact
image-based pixel matching of 77.46, and image-based pixel matching with a
whitespace tolerance (-ws) of 79.88 [20].

Moreover, using symLGs we can provide detailed error analysis that string
and image-based representations cannot capture. The most common error is
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‘missing’ symbols (see Absent nodes in Figure 3.3). This happens because
symbols are identified by their absolute path. Therefore, errors in structure
lead to errors in symbol detection and classification. Note that this also means
that correctly detected symbols at the incorrect position in a symLG are iden-
tified as invalid.

CROHME 2019 competition. The stroke-based LG files used in previ-
ous CROHMEs allow all segmentation, classification, and structural errors to
be identified unambiguously, even when segmentations disagree [71]. However,
with the success of encoder-decoder-based systems that generate LATEX out-
put, a new representation is needed - these systems do not output information
about stroke segmentation or the location of symbols in the input, instead
producing Symbol Layout Trees directly.

To compute the similarity of two Symbol Layout Trees in our symLG rep-
resentation, we use an adjacency matrix. Labels on the diagonal define sym-
bol labels, while off-diagonal elements represent spatial relationships between
parent and child symbols. Using this representation, we can determine how
formulas in an SLT representation differ in structure and symbol labels, but
not the correspondence between symbols and relationships in a symLG file and
the input data (i.e., strokes/images). Still, the symLG representation allows
existing metrics and tools designed for evaluation of stroke-level LG files at the
symbol level to be used directly. We note that symLG is closely related to the
tree-based symbolic representation from earlier CROHME competitions [71],
but permits more detailed error analysis.

Recognition systems that produce LATEX strings or stroke-level Label Graphs
(LGs) both have their outputs converted to symLG. This allows systems pro-
ducing stroke-level and symbol-level results to be compared directly, albeit
with a loss in the stroke segmentation information provided in the stroke-
level representation. The symLG representation allows us to identify errors
as symbol classification errors, relationship classification errors, or structure
errors.

3.4 Summary

We introduced the tools and materials we use to evaluate QD-GGA and LPGA.
We have also presented a new technique that allows string and tree-based
formula structure representations to be meaningfully compared at the level
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of recognized symbols and relationships. Further, this permits fine-grained
evaluation of recognition results at the individual symbol and relationship
level, as well as at the expression level. Finally, we discussed how we used
SymLG format in evaluating IM2TEX system and ICDAR 2019 CROHME +
TFD competition, as this format is simple to understand, and provide useful
global performance metrics and automated error analyses.

In the next Chapter, we discuss LPGA system and the noteworthy be-
haviours we observed while designing this system which later on inspired de-
signing our more complex model QD-GGA.



Chapter 4

Line-Of-Sight Parsing with
Graph-based Attention
(LPGA)

In this Chapter, we briefly present a series of systems that are improved to
shape our final design QD-GGA. These systems are an extension and gener-
alization of the works done by Hu et al. [39] and Condon [15]. In Hu and
Zanibbi’s work, the math visual parsing problem is defined as converting an
input graph computed on the expression image to a Symbol Layout Tree (SLT)
as shown in Figure 4.1. Line-Of-Sight (LOS) graphs are chosen to represent
input equations as they have a higher maximum formula tree expressivity than
many other graph representations (e.g., Delaunay, geometric MST, k-NN for
k ∈ {1 . . . 6}) for CROHME dataset, while also reducing the search space for
parsing [38]. The features set in their work is a combination of geometric fea-
tures for spatial relations and visual density features e.g., the modified shape
context feature with Parzen window density estimation. These Parzen shape
contexts are used for symbol segmentation, symbol classification and symbol
layout analysis with Random Forest classifiers.

Later, Condon applies LOS parsing approach on typeset formula images
[15] using the same set of features and classifiers with a different pre-processing
methods in which typeset images are converted into trace points in contours.

These works are then extended and generalized by us using Convolutional
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Neural Nets (CNNs) for feature extraction. Line-Of-Sight Parsing with Graph-
based Attention (LPGA) was our first attempt in using CNNs for graph pars-
ing. Visual features for inputs are learned and extracted automatically by
a two channel multi-layer convolutional neural network, using the standard
VGG-16 architecture in each channel [79]. In [65], both Condon system [15],
LPGARF and our modified system, LPGACNN is described. Throughout this
document we refer to our improved system as LPGA for short.

4.1 LPGA

LPGA (Line-Of-Sight Parsing with Graph-based Attention) is a feed-forward
approach that solves tasks sequentially similar to the work presented by Hu
et al [39]. A hierarchical approach is used to first segment nodes into symbols
with a Convolution Neural Net (CNN), and then generate a second LOS graph
on symbols , see Figure 4.2. Two additional CNNs are trained to learn symbol
classes and spatial relationships in the symbol-level graph [65].

Visual features for inputs are learned and extracted automatically by a
two channel multi-layer CNN, using the standard VGG-16 architecture in each
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Figure 4.2: Hierarchical approach in LPGA. After segmentation, symbols are
connected in a second LOS graph, and the spatial relationships represented by
edges are classified. Edmonds’ algorithm then selects a maximum spanning
tree to produce a Symbol Layout Tree (SLT).

channel [79]. Figure 4.3 shows our CNN classifier for segmenting connected
components into symbols, by classifying each edge in a LOS graph over con-
nected components as ‘merge’ or ‘split’. In Figure 4.3, the input is the edge
between the two connected components in equal (=). We observed that it is
beneficial to have separate channels for input and visual context (attention).
Thus, for each target image, a parallel branch provides contextual information
around the target for better decision making. The target image contains the
merged bounding box of the parent-child pair cropped from the input image.
The context image is another cropped image which is computed by scaling
the merged box dimension with the context factor: rcontext = α× rtarget. The
context factor of 1.75, 1.5 and 4.0 produced the best results for segmentation,
parsing and classification respectively. The features from these two channels
are concatenated before being passed through a softmax layer. For segmenting
connected components and classifying spatial relationships, in addition to vi-
sual features the geometric features described above are added directly to the
final feature vector before classification (see Figure 4.3). All features values
are normalized between [-1,1].

4.2 System Design Experiments

In LPGA, for each task, an individual CNN is trained and each query (nodes or
node pairs) is cropped from the input image and passed to the corresponding
CNN. Following we are going to discuss some of the noteworthy observations
in designing different modules of LPGA system.

• Context Module: aimed to study context in feature extraction.

• ALL vs ELSE in context channel.
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Figure 4.3: LPGA segmentation example. The red edge between connected
components in the equals sign (=) is being classified for symbol segmentation.
Two independent branches based on VGG-16 architecture represent the input
(left side) and the attention context (right side). Geometric features are added
before the final dense layers.
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• Early Fusion vs Late Fusion in the main stream and the context stream.

• Multi-Resolution in Context Channel.

• Geometric Features.

A series of experiments were conducted to refine our CNN classification
model for segmentation, symbol relationships, and symbols. For each set of
experiments, parameters and structure designs which give the best result in a
5-fold cross validation were used for testing.

Context. These experiments aimed to study context in feature extraction.
Experiments showed that having context is helpful in all three tasks. It is
expected that contextual information will be beneficial for labelling edges,
but it is also useful for symbol recognition. Adding context resolves class
ambiguities for some visually similar classes as shown in Table 4.1. Symbol
classification accuracy on the test set improves from 98.13% to 99.43% when
having a second branch for context.

How much context should we use? Previous experiments by Condon in
[15] suggest that increasing histogram size to capture more visual context
from surrounding symbols improves classification accuracy. We did a grid
search to optimize the radius of the context window in the second channel
for each task. We find a radius factor (α), which is multiplied with original
target radius and produce the context radius: rcontext = α× rtarget. A radius
factor of 1.75, 1.5 and 4.0 produced the best results for segmentation, parsing
and classification respectively. It is worth noting that the input includes two
connected components or symbols for segmentation and parsing and only a
single target symbol for classification (rtarget is larger for the first two tasks);
so the chosen radius for all three tasks provide similar contextual information.

ALL vs ELSE in context channel. The next set of experiments, studied
whether we should keep the target in the context window (ALL) or just pass
everything around it (ELSE). We hypothesize that ALL should perform better,
as at some depth in the context channel the field of view will capture the target,
and since the two channels are mutually trained, the network might learn the
target shape. Hence, by not removing the target from the context channel,
the model can potentially capture some relative positions. Experiments show
insignificant difference between these two situations, e.g., less than 0.5% for
segmentation, so we decided to pass the entire image region into the context
branch.
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Table 4.1: Effect of visual context attention on classification of similar symbols.
Shown are the top-5 most frequent confusions for visually similar classes before
using context, and then after.

Errors
Ground Truth Prediction No Att. w. Att.

overline (e.g., x) minus 192 27
fractionline overline 122 10
minus overline 94 9
cdots (· · · ) ldots (. . .) 21 8
letter l one (1) 18 10

Early Fusion vs Late Fusion. We also tested alternative ways of rep-
resenting contextual information. We initially did source separation in the
inputs by having the target in one channel, and context in the other channel
(early fusion). This works well when using visual density features in LPGARF.
Instead of having one visual density histogram, there are three histograms for
parent, child, and context. In the convolutional layers of LPGACNN, the three
channels for parent, child, and context will collapse into one 2D feature map
once it convolves with the first kernel. The kernel moves along the height and
width with the defined stride and its depth is the same as the inputs, e.g.,
in first layer kernels have depth of three if the model accepts RGB images.
In other words, RGB channels of an input image are merged very early and
basically no individual weight is trained for target and context individually as
we hoped.

To have separate weights for the input and context, and in order to train
both mutually, we decided to have a separate branch for context and merge the
branches later in the pipeline. This allows the network to see the context while
focusing more on the target. It worth mentioning that another advantage of
late fusion is faster convergence during training.

We also explored a three-branch structure in which the parent and child
were fed to the system separately and a third branch to capture context, but
the performance deteriorates compared to having parent and child as target in
one channel. That could happen due to the fact that we are freezing weights in
the first four convolutional blocks in all three branches, and thereby not back
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propagating through all the layers during training. Without this, training
would not converge.

Multi-Resolution Context. Low resolution context improves the result
when using visual density in LPGARF. That encouraged us to investigate
different resolutions for the context channel. Experimental results showed that
coarser context lowers the accuracy. We investigate three different resolution,
224 pixels height and width which is the default size for VGG16, 112 × 112
pixel resolution and 48×48. Decreasing the context input resolution in symbol
classification task with a late fusion structure and context radius factor of 4
decreases the accuracy from 99.34(%) into 99.03(%) for halving the input size
and 98.24(%) for the smallest inputs (48× 48).

Geometric Features on Side Channel. For defining the relation be-
tween connected components in segmentation or symbols in parsing, relative
position of parent and child plays a key role. We studied whether embedding
the structural information extracted from the input graph into classification is
useful. We concatenate the geometric features extracted from the node pairs
in LOS graphs with the final feature vectors before passing them through the
softmax layer. Feature vectors are normalized using a tanh activation func-
tion before concatenation meaning the last ReLu function is also replaced
with tanh for domain adaptation. The result shows geometric features can
improve the performance of relation classifiers, e.g.,from 98.69% to 99.34% for
the segmentation task.

4.3 Motivation For Designing QD-GGA

Some of the limitations of feed-forward approaches are listed below: (1) Each
of these networks can predict one query per input image. Therefore, for each
expression having N nodes and E edges (N+E) target and (N+E) context
images are generated and classified through corresponding networks to score
the input graph. Our new design QD-GGA scores the input graph in one
iteration as it is capable of handling multiple queries in a multi-task learn-
ing framework. (2) Errors in previous steps are inherited by the structural
analysis as hard decisions are applied at each step in a hierarchical approach
whereas integrated approaches, like QD-GGA, do not rely on previous steps,
meaning that structural analysis interacts directly with symbol segmentation
and symbol classification. (3) Moreover, learning these tasks separately on
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isolated symbols and pair of symbols not only causes the lack of global atten-
tion and spatial information, but also is not efficient in terms of memory and
speed. Thus, by sharing the features between the tasks, training the model
end-to-end and also extracting the query features from a single input image
rather cropping, centering and re-scaling each node and edge sub-image, we
make the recognition much faster and computationally less expensive in our
latest design: QD-GGA.

4.4 Summary

We have presented a graph-parsing approach for recognizing math formula im-
ages, in which we extract convolutional features using a simple attention model
organized around a line-of-sight graph over connected components. Constrain-
ing the search space from pixels to nodes and edges of the attention graph
appears to be effective (especially for scanned typeset expressions, see Results
in Chapter 6), and we obtain strong results using relatively simple classifiers
and maximum spanning tree extraction. The contextual features used for each
of the recognition tasks helped in their classifications.

LPGA does all the recognition tasks in isolation with a predefined atten-
tion. A promising direction for improvement is training the classifiers jointly
on all edges and nodes in expressions. This could solve the errors that happen
locally by providing a global view of the entire expression. We used this insight
and design as an integrated system which is discussed in the next Chapter.



Chapter 5

Methodology

Limitation of hierarchical approaches such as relying on previous steps and
training multiple neural nets in isolation and success of global approaches
(e.g., auto-encoders) in math recognition inspired us to design a new approach
for LOS parsing which can be trained end-to-end and provide global informa-
tion from the equation. We call this approach: Query-Driven Global Graph
Attention (QD-GGA). QD-GGA predicts all node and edge classes at each
feed-forward pass with the help of a query-driven attention mechanism.

QD-GGA is capable of Multi Task Learning (MTL) and predicting multiple
queries at each iteration. Therefore, the three tasks in math recognition (seg-
mentation, classification, and parsing) trained in isolation in previous models,
can be trained simultaneously with weights get modified according to a joint
loss counting all the errors in nodes end edges of the input LOS graph. In
this design, CNN features are shared between tasks and extracted using SE-
ResNext blocks which combines Squeeze-And-Excitation [37] with a ResNext
block [91]. This grants an end-to-end training of all tasks and queries (nodes
and edges) with traditional CNNs allowing for global feature-learning. In exe-
cution, before extracting a Maximum Spanning Tree (MST) on the scored LOS
graph, segmentation results are applied converting the output primitive-level
LOS into symbol-level LOS (see Figure 5.1).

The main strategy in both LPGA and QD-GGA is computing an input
LOS graph from handwritten strokes or connected components in images.
Then, class probabilities generated by the CNN classifiers are assigned to
nodes and edges in the input graph, symbol segmentation are applied, and
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then Edmond’s arborescence algorithm [23] is used to extract a maximum
spanning tree from the weighted graph over symbols. In the remainder of this
Chapter, we overview the input graph computation in 5.1 which is similar in
both LPGA and QD-GGA. We present the main modules and architecture
of QD-GGA in Section 5.2. Finally, a summary of this Chapter is given in
Section 5.3.

5.1 Graph Representation

For dependency parsing such as done in QD-GGA and LPGA, we need to
identify a sub-graph with minimal cost or maximum probability. For math
recognition, the final subgraph is usually a Symbol Layout Tree. Ideally,
we would like to reduce the size of the search space by using a graph that
only has edges between the primitives having a spatial relationship in the
original setting (perfect precision) and avoid the miscellaneous edges which
add confusion to the problem.

A study by Hu et al. [38] on parsing handwritten formulas proposes using
Line of Sight (LOS) graphs [19], which represents whether nodes can ‘see’ one
another. LOS graphs can represent roughly 98% of CROHME 2014 dataset
formulas, while reducing the number of edges to 3.3n for n strokes, many fewer
than the n(n− 1)/2 edges in a complete graph.

In this work, we also use the Line of Sight (LOS) graphs over primitives.

Figure 5.1 shows edges in a complete graph for gi = δ2

z and the remaining
edges after computing the LOS graph. Nodes sharing an edge are marked
with yellow in the adjacency matrix and the diagonal elements of the matrix
shown in red are class labels of each primitives. The adjacency matrix A on
the input graph shows nodes and edges such that the element aij represents
the relationship between vertex i (parent) to vertex j (child). Given the n
proposed object nodes, there are O(n2) possible connections between them;
however, most object pairs are unlikely to have relationships. We use LOS
graphs to prune many edges and reduce the hypothesis space of relationships,
while preserving enough to ensure that valid expressions can be recovered
most of the time. In our initial work, we use eight possible labels: Right,
Superscript, Subscript, Above, Below, Inside, NoRelation and Merge for aij
when node i can be ‘seen’ from the bounding box center of node j and zero
when the line-of-sight between nodes i and j is blocked. We leave matrices and
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Figure 5.1: Parsing gi = δ2

z . Graph edges are yellow adjacency matrix entries;
nodes appear in red along diagonals. A primitive-level line-of-sight graph is
constructed, after which nodes are classified as symbols, and edges between
nodes classified for 1) symbol detection (merge/split), and 2) relation clas-
sification. Symbol detection decisions are applied to convert the graph into
a symbol level graph, followed by averaging symbol (node) and relationship
(edge) scores to obtain a new weighted graph. Finally, Edmond’s arbores-
cence [23] algorithm extracts a maximal symbol layout tree.

formula derivations as future work.
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5.2 Query-Driven Global Graph Attention Model
(QD-GGA)

QD-GGA utilizes a multi-task learning framework and has a graph-based at-
tention trained along with the main branch by defining a joint loss. A joint
classification loss is calculated from the output matrix, which back-propagates
through all three classifiers responsible for segmentation, classification and re-
lationships, as well as the attention layers, enabling us to train them simulta-
neously with shared features. QD-GGA model is made of four modules:

1. Feature extractor: stack of convolutional layers that takes the expres-
sion image and generate a feature map.

2. Attention module: a simple convolution block that takes binary spa-
tial masks of queries (nodes and edges of input graph) and generates
relevance maps. These relevance maps are downsized and multiplied
with the input feature map and produce a distinct feature vector for
each query from the single representation of the input expression.

3. Context module: A simple approach to expand the local context for
queries by convolving each query feature with its immediate neighbors,
previous and next queries, using a 1-by-3 filter, see Figure 5.4. This is
done for node and edge streams separately.

4. SLT generation: Extracting the final tree from the weighted graph
using Edmond’s algorithm.

The mechanism we propose requires only a single pass through the input
image to generate features, and it can be trained end-to-end. Our architecture
is modular (each module can be updated individually), independent of the
CNN feature model (any feature extractor such as VGG or ResNet might be
used), easy to implement, and faster than recurrent approaches in training
and execution (see Section to 6.7).

QD-GGA Architecture. The QD-GGA architecture is shown in Fig-
ure 5.2. The network contains a convolution block (shown in red) followed
by two SE-ResNext block groups. SE-ResNext blocks combine Squeeze-And-
Excitation [37] with a ResNext block [91]. To compute image features, each
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Figure 5.2: QD-GGA Architecture. The dimensions of the 2D features are
channel, height and width. The dimensions of the linear features are batch
size and channel. The batch size is N which is the number of binary masks
or queries (all nodes and edges) to answer (shown in gray). The final ad-
jacency matrix has class distributions for symbols on the diagonal, and two
distributions for segmentation and relationship labels for each edge.

SE-ResNext group contains six SE-ResNext blocks with the first SE-ResNext
block having a down sample layer (shown in blue).

In the following, we discuss the attention module (5.2.2, 5.2.3) that allows
for multi-query learning from one input image. We explain how the final
Symbol Layout Tree is extracted in Section 5.2.4 and finally provide details
on implementation and training in Section 5.2.5.

5.2.1 Feature Extractor

This architecture is based on ResNet. A squeeze-and-excitation (SE) block is
applied at the end of each non-identity branch of residual block. SE is an ar-
chitectural unit designed to improve the representational power and enhance
the quality of spatial encodings throughout the network’s feature hierarchy
by enabling it to perform dynamic channel-wise feature re-calibration. These
units recalibrate channel-wise feature maps by explicitly modelling interde-
pendencies between channels. This is achieved through an Squeeze operator:
global average pooling and an Excitation operator: introducing nonlinearity
with ReLU or tanh.
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Receptive field calculations. The receptive field of a convolutional
neural net is the key idea that most of the object recognition method is built
around it. It is important to pay attention to receptive fields at each layer
when designing a neural net. We care about the receptive field of our network
as it defines how much context from the input image is encoded in the final
feature map that create query features. Receptive field at each layer defines
the region in the input image that a unit at that layer depends on [63]. Areas
in the input image outside the receptive field of a unit does not affect the
value of that unit. It should be noticed that not all pixels in a receptive field
contribute equally to an output unit’s response and pixels at the center of a
receptive field have a much larger impact on an output [63]. The receptive size
of our last layer in the network is 35 pixels which is calculated as explained
below [22].

nout =
[
nin+2p−k

s

]
+ 1 (5.1)

This equation calculates the number of output features in which nin is
the number of input features, nout is the number of output features, k is the
convolution kernel size, p convolution padding size, and s convolution stride
size. For simplicity, it is assumed that CNN input is symmetric and input
image is square. In case of having non-square inputs, like our equation images,
one can calculate the feature map attributes separately for each dimension.
We did our calculation on the fixed symbol height size which is 64 pixels.

jout = jin × s (5.2)

Jump refers to the distance between two consecutive features. This calcu-
lates the jump in the output feature map (jout), which is equal to the jump in
the input map times the number of the stride size in the convolution showing
how many input features are skipped when applying the convolution.

rout = rin + (k − 1)× jin (5.3)

Equation 5.3 calculates the receptive field size of the output feature
map, which is equal to the receptive field size of the input feature map plus
the area covered by k input features.
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startout = startin +
(
k−1
2 − p

)
× jin (5.4)

Start is the center coordinate of the first feature. This equation calculates
the center position of the receptive field at a certain layer, which is equal to
the center position of the input feature plus the distance from location of the
first input feature to the center of the first convolution minus the padding
space. Note that jump of the input feature map is multiplied in both cases to
provide the actual distance/space.

The first layer is the input image, which always has n = image size, r =
1, j = 1, and start = 0.5. Applying this on our architecture we get nout = 8
for symbol height of 64, jump = 8, receptive size = 35, and start = 9.5.
That implies each point in the final feature map corresponds to a 35 × 35
region in the input image, with the minimum symbol height set at 64 pixels.
Considering in practice, the center part has the most contribution into later
units, this receptive field is not large enough to capture the global context and
we need to have a system that incorporate all nodes and edges when making
decision for each query (global context).

5.2.2 Attention Module

The attention module queries a shared CNN feature map to efficiently obtain
inputs for all classification, segmentation, and relationship decisions. As seen
in Figure 5.2, there is a side branch consists of two attention layers which
takes binary masks for nodes and edges separately as inputs and passes them
through convolution layers. We performed extensive experimental analysis
explained in Chapter 6 to understand the performance trade-offs amongst
different combinations of shared and task-specific representations in the main
and side stream. The best configuration has 3 convolutional blocks with each
block having 4 kernels of size of 7 × 7, 5 × 5, and 5 × 5. The final relevance
maps are 2D (H ×W ) similar to input binary masks, see Figure 5.3.

Spatial masks provide attention, comprised of either individual node binary
masks, or masks from pairs of nodes sharing an edge in the input graph.
The attention module takes binary masks and then generates relevance maps
(i.e., continuous masks) by convolving binary masks with kernels trained for
each task (per [24]). Figure 5.3 shows binary masks and their corresponding
relevance masks for node (single stroke) x and stroke pair (x, 6). Relevance
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Figure 5.3: Attention Masks. Input binary masks for node x and edge (x, 6)
are shown in the first row. Corresponding relevance masks applied to features
are shown in the second row.

maps are downsized and then multiplied with the global feature map. In this
way, the downsampled and normalized relevance mask weights the feature
map to focus on (‘query’) the relevant input region. Finally, the weighted
feature map is average pooled to a one dimensional feature vector which can
be regarded as the extracted feature for the primitive (stroke) or primitive
pair (stroke pair).

We normalize query features after average pooling using the 1D Instance
Norm [83] with ε = 0.001. This converts values for each feature into a measure
of standard deviations from the mean (E[x]) making each individual feature
distribution look Gaussian.

y = x−E[x]√
V ar[x]+ε

(5.5)

5.2.3 Context

We explained the role of field of view in providing local context for query fea-
tures in Section 5.2.1. To provide more context, given a sequence of primitive
feature vectors (generated by attention module from the main feature map),
the context module first concatenates the feature vectors along the length
dimension of a 1D feature tensor. Then, the module performs a 1-by-3 con-
volution along the length dimension treating each primitive as an individual
element for node stack and edge stack separately, similar to time series classifi-
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Figure 5.4: Visualizing 1-by-3 convolution in context module for stroke feature
sequence.

cation with 1D-CNNs [27]. The convolution operation consolidates features of
a primitive neighborhood by considering the i−1− th and i+1− th primitives
for the i − th primitive, see Figure 5.4. This simple way of adding context is
clearly dependent on the sequence of queries fed to the system. The node stack
is sorted based on the left to right order of strokes for online data and bound-
ing box coordinates for the offline data (images). The edge stack is sorted
based on the parent primitives with the most left one comes first and then
for each parent the children are sorted the same way from left to right. This
is our initial idea to test if more context would be helpful for segmentation,
classification and parsing.

5.2.4 SLT Generation

We use Edmond’s algorithm [23] to extract a Maximum Spanning Tree (MST)
from class distributions associated with the LOS adjacency matrix output. Ex-
periments demonstrate that it is more accurate to apply symbol segmentation
results before extracting relationships (see Figure 5.5), rather than extract an
MST directly from the stroke-level matrix.
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Figure 5.5: SLT Extraction. A primitive-level graph is converted to symbol-
level after applying segmentation results, and then an SLT is extracted using
Edmond’s arborescence algorithm. Red patches show primitives to be merged
into symbols. Blue patches show edges that should be updated after merging
nodes. Merged probabilities for symbols and symbol relationships are averaged
over constituent stroke-level elements.

Algorithm 1 provides the steps in converting a stroke-level graph to a
symbol-level graph. First, primitives that belong to a single symbol are merged
based on the segmenter predictions. Symbol class distributions are computed
by averaging symbol classifier probabilities over all primitives belonging to a
single symbol. Then, all incoming and outgoing edges attached to primitives
grouped into a symbol are merged into one incoming and one outgoing edge.
Again, probabilities over merged edges are averaged to generate the symbol-
level edge probability distributions.

SLT generation is illustrated in Figure 5.5. In the example, primitives
belong to i and = are merged into symbols. All edges connected to these four
primitives, shown with blue patches, should be updated in the symbol-level
graph. Average probabilities for stroke-level edges provide the distributions
for symbol-level merged edges.

5.2.5 Implementation and Training

Loss. The loss designed for an Multi-Task Learning (MTL) model should
allow tasks contribute to training equally, without letting the easier tasks
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Algorithm 1 SLT Extraction from Adjacency Matrix

1. Use ‘Merge’ edges to group primitives into symbols
2. Classify symbols by max. mean score for member primitives
3. Score symbol relationships by avg. stroke pair distributions
4. Apply Edmond’s algorithm to obtain maximal SLT

dominate the learning. We use the cross entropy loss (CE) with a softmax
layer to normalize the network outputs. The final loss is the sum of all the
errors in segmenter, parser and symbol classifier. The loss function δ is defined
in equation 5.6. Here N is the stroke set (nodes), and E is the set of line-of-
sight edges in the adjacency matrix. D is the set of detection ground truth
labels for edges, R is the set of relationship ground truth labels for edges, and
S is the set of ground truth symbol labels for nodes.

δ(N,E) =
∑|E|

e=1 (CE(e,D) + CE(e,R)) +
∑|N |

n=1CE(n, S) (5.6)

Tree Loss. To reduce the effect of edges not contributing to the final
tree we introduce “tree loss,” where only ground truth edges and false positive
edges in the final SLT are counted in loss calculations. Therefore, only hard
negatives mistaken for real relations in the output are include in the loss
computation. We tried other loss designs, e.g., harmonic mean of individual
loss types, weighted combinations of individual losses, loss defined on MST
edges, but experiments showed that the tree loss and the linear combination
loss (Eq. 5.6) work better. For our main experiments described in Chapter 6
the linear combination loss has been used (since this worked well, we did not
consider more sophisticated alternatives).

Training process. Since math expressions have different sizes, we replace
the conventional batch normalization layers with group normalization [90] for
all the blocks, as this is more robust for small batch sizes. Group Normalization
divides the channels (in feature maps) into groups and computes the mean
and variance within each group for normalization making the computation
independent of batch sizes, and its accuracy stable for a wide range of batch
sizes.

The QD-GGA CNN has 13,854,478 parameters. We use an SGD (Stochas-
tic Gradient Descent) optimizer to learn the parameters. The batch size was
set to 1, momentum to 0.9 and the learning rate was initially set to 10−2,
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and then decreased by a factor of 10 when the validation set accuracy stopped
improving. The training was regularized by weight decay set to 0.004. The
system is built using PyTorch and experiments were run on an 8GB Nvidia
1080 GPU. Experiments were run on a server with an Intel Xeon E5-2667
processor (3.20 GHz per core), and 512 GB RAM was available. The time
complexity of our model is O(|N |+ |E|) for an input graph with E edges and
N nodes. In the worst case (complete graph) |E| = |N | × (|N | − 1). It should
be mentioned that for tree extraction with Edmonds’ algorithm, the complex-
ity is O(N3) in the worst case [23]. Training our network does not include the
tree extraction, but we use Edmonds’ algorithm in execution.

Recurrent Training. In QD-GGA, classifiers are trained with primitive
level inputs. For instance, the symbol classifier is trained with the visual
information extracted from the strokes making an ‘x’ separately rather that
seeing the whole symbol at once. This is due to the fact that we would like to
train all tasks simultaneously without allowing the segmentation to be applied
earlier as in traditional hierarchical approaches.

In order to exploit the symbol level information, inspired by hierarchi-
cal approaches, we proposed a multi-step training in which the segmentation
predictions in the first step are used to update the attention masks, hence
generate new query features. This technique keeps input/output space in
primitive level, but provide symbol level attention and features. This model
has the ability to calculate the loss based on what system predicted as symbols
at each iteration without changing the input space. We call this a recurrent
training method. Operating this in 2-steps has the obvious benefit of convert-
ing primitive attention masks into symbol attention masks as shown in Figure
5.6, but one can do that for more than two step recursively. We experimented
with two and three steps (see Chapter 6).

The equation image goes into the main branch and the binary stroke (N)
and pair (E) masks go into the attention layers similar to the previous designs
making the input dimension: H×W×(1+N+E). The input image generates
the global feature map ((H/8,W/8, 512)), shown in blue in Figure 5.6, and
the stroke masks output the relevance maps of the same size (H,W,N) in the
stroke attention layer. Pair masks also go through the similar process in the
edge attention layer. Next, the relevance maps are resized into the shape of the
main feature map (H/8,W/8). The resized maps generate the query features
by multiplying with the main feature map, shown in pink. We stack node
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Figure 5.6: QD-GGA recurrent mechanism. Segmentation results at each it-
eration can be used to update stroke-level attention masks into symbol-level
attention masks. These updated masks can query new features from the global
feature map. The red arrows shows the operations added at the end of the net-
work that can be repeated recursively (see Algorithm 2). The final predictions
are used to calculate the loss.
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Algorithm 2 Pseudo code for n-step training approach (n ≥ 1).

i = 0
symref , segref , relref = Net(images)
while i < n and Merge in segref do
updated images = UpdateMasks(images, segref )
symnew, segnew, relnew = Net(updated images)
symref , segref , relref = symnew, segnew, relnew
i = i+ 1

end while
loss = CE(symref , sym) + CE(relref , rel) + CE(segref , seg)
loss.backward

and edge features separately and make sure they are keeping their incoming
sequence as we want them to correspond to the ground truth labels. Each
stream goes into a 1-by-3 convolutional layer, to add local context for each
target query. Edge stack goes into the segmenter and parser, node stack goes
into the symbol classifier. We refer to the predictions at this step as First
predictions. At this step, instead of computing the loss and do a backward
propagation, we apply the segmentation results and update the input masks.

To update masks, first we group the primitives that belong to the same
symbol, and then for all those primitives we update their input binary mask
to be a symbol level mask containing all the primitives in the group, see the
examples of masks in first and second steps in Figure 5.6. These new masks
are generated by getting the maximum of all the primitive masks. So if in the
input equation we have a 7 made of two strokes and the segmenter in the first
step predicts they have to be merged into one symbol, both stroke masks will
be updated to be the maximum value of stroke masks belong into a symbol.
For pair masks, we use the updated masks for parent stroke and child stroke:
Sym Pair Masks = max(updated parent , updated child). These updated
masks and the original image make a new input (H×W × (1 +N +E)) which
is passed through the model again to produce the second step predictions.
This time the predictions are used to compute the loss.

Algorithm 2 describes the recurrent training in which n can be a value
above 1 for multi-step approach training. In the first step (i = 0), we get
our reference predictions from the network. If n = 0, then the loss will be
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computed with these predictions. But if n ≥ 1 and there are Merge cases in
the reference segmentation, these predictions are used to update the masks
and compute new predictions. The reference prediction are updated as they
are going to be used for loss calculation and the next step operations.

5.3 Summary

In our proposed approach, nodes and edges in the input graph get scored at
each iteration with probabilities generated by a CNN-based model allowing
to extract a directed tree from the weighted graph. The class probabilities
generated by the CNN classifiers are assigned to nodes and edges as weights. In
LPGA, vgg16 is used for feature extraction and classification in a hierarchical
approach while QD-GGA utilizes SE-ResNext architecture and is equipped
with an attention module allowing for classifying all nodes and edges in LOS
graph in a single iteration.

We introduced recurrent training in which the primitive masks that filter
the feature map will be updated to symbol level masks, for both nodes and
edges, per segmenter decisions at each iteration.

In the next Chapter, we overview the experiments designed for QD-GGA
approach and benchmark our system for both handwritten and typeset recog-
nition.



Chapter 6

QD-GGA Experiments

This chapter overviews the design experiments in QD-GGA, including Graph
Representation, Attention Module, Feature Extraction, Context Module, CNN
Classifiers, and Tree Extraction. These experiments are designed to answer
the research questions we would like to study in support of our thesis hypoth-
esis: fast and accurate recognition of typeset and handwritten mathematical
formulas can be obtained by an end-to-end CNN-based model equipped with
query-driven global graph attention. Table 6.1 shows the mapping between
some of these research questions and experiments and Table 6.2 summarizes
the experiments that are presented in this chapter and provide a brief descrip-
tion for each.

We group experiments based on the research question they are designed
to answer and present the results on CROHME 2019 test set [68]. Results
are compiled using the LgEval library [70] created for the CROHME com-
petitions. We report recognition rates for formulas indicating how many of
equations recognized with zero errors (in symbols and relations) given all the
equations in the test set. F-scores are reported for detection and classification
of symbols and relationships. Results for correct symbol/relationship locations
(Detection), correct symbol/relationship detections and classes (Det.+Class),
unlabeled SLT structure, and SLT structure with correct labels (Str.+Class)
are presented for each experiment to better understand the behavior. Please
note that symbol and relationship detection results are reported across all
formulas in CROHME, while formula recognition rates are reported for com-
plete formulas (i.e., input files) in these Tables. For better comparisons, Table

66
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Table 6.1: Summary of the main experiments designed to answer research
questions arises in support of the thesis statement.

Research Questions Experiments

Input Graph
Graph representation for training
(e.g., Complete vs LOS )

Attention & Context
Attention module (soft vs hard)
Global context

Features & Tasks

Directed edge feat.
Multi-scale feat.
Task-specific vs shares feat.
Tasks design

Generalization Typeset math recognition (e.g., Infty)

Table 6.2: Description of the experiments designed to answer the research
questions supporting the thesis statement.

Experiments Description

Graph Representation
studying input graphs (e.g., Complete vs LOS).

Attention Module
Studying the best way to query features at each iteration.

Features
Studying the context and resolutions of shared features
for different tasks.

Classifiers
Defining the tasks we want to train in the MTL framework.

Context
Exploring different approaches for including global context.

Tree Extraction
Methods on extracting the final tree from the Adj. matrix.

Recursive Training
A new method for updating primitive masks into symbol
masks (local context).

Typeset Formulas
Evaluation Qd-GGA on typeset math recognition datasets
(e.g., Infty).

Isolated Symbol Classification
studying the symbol classification tasks from primitives.

LPGA Design Experiments
Listing important observation in designing the baseline
system.

6.3 presents all design experiments. Please note these rates cannot be used
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directly for comparing performance across the table as the experiments were
conducted under different configurations rather to understand what method
works better under each sub-experiment and to discuss the logic behind our
design. Detailed information on configuration of each experiment are provided
in their corresponding sections.

Finally, we benchmark our system against state of the arts in Section
6.7 for both CROHME and INFTY datasets and suggest a plan for further
investigation in the future based on the results and error analysis.

6.1 Input/Output

These experiments concern the input graph and the output tree representa-
tions.

6.1.1 Graph Representations

We would like to study whether we can improve structure learning from ad-
jacency matrices over primitives by incorporating parse results directly in a
modern CNN learning framework. We propose to define input formulas by
graphs. Score nodes and edges of the input graph with CNN classifiers and
extract the maximum spanning tree from the scored directed graph. Thus,
the first step in our approach is computing a graph on formula primitives.

This sets of experiments aimed to study the input graph representations.
Experiments designed for this purpose should essentially investigate the fol-
lowings: Do we need to have all the elements in the adjacency matrix scored
to be able to extract a valid tree? This means all the possible relationships
between the primitives should be labelled (complete graph). Can we prune
miscellaneous relations and reduce the input queries to CNN classifiers without
sacrificing the performance?

In the previous studies on handwritten math recognition, [38] Line-Of-Sight
(LOS) graph has shown promising results. Results on our baseline model using
LOS graphs [65] support this observation. However, error analysis in both
models shows that the most frequent relation classification errors are due to
missed edges in the LOS graph, e.g., a long superscript may block the field of
view of two symbols with a connection and cause a missing ground-truth edge
in LOS graphs.
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To address this, we experimented with complete graphs. Table 6.3 shows
our results. We believe LOS graphs are better representations since the com-
plete graph contains more edges, resulting in more variation in features and
a larger search space for spatial relationships. It is intuitive that having a
larger search space makes the decision making harder, whereas applying some
pre-filtering method to reduce the search space, like pruning the miscellanies
edges with LOS, is making the task easier for classifiers. In some of the spatial
parsing studies, a similar idea implemented with a side low-cost CNN in [93].
This small network is responsible for removing the miscellaneous edges and
pass a smaller subset for classification to main network which support our
observation. According to [38] LOS recall rate on CROHME2014 dataset is
98%. In the future, one might make this rate improved by training a small
network for it. We stick to LOS in this study as it is faster to compute and
its behavior is predictable.

Another case to consider is using only the edges given in the ground truth
for training. This way “NoRelation” will be removed from the sets of ground
truth relations as all the samples in training set are a valid spatial relation.
Table 6.3 shows the results. The test results shows the best input graph
representation is still LOS. Training the system with only positive examples
from the ground truth tree cause the model to perform poorly on “NoRelation”
edges in execution time.

In future, another interesting idea to explore for the input representation
is computing undirected graphs rather than directed edges we studied so far.
In this case, the final output would also be an undirected tree and some rules
must be applied to find the parent-child relations. This will decrease the
input edges to half as we only need to label either upper or lower triangle
in the adjacency matrix (allowing to work with complete graphs). Also, we
would have one edge per primitives pair, so we do not need to concatenate the
pair masks with the parent mask to introduce a visual difference for different
directions of an edge.

The results shown for these experiments are computed on the CROHME
2019 test set using a CNN that has three classifiers for symbol classification,
symbol detection, and relation classification. For edge features, parent mask
in each pair is concatenated with the edge mask.
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Table 6.3: Results of experiments studying QD-GGA modules computed on
the CROHME 2019 test set. F-scores are reported for Symbols and Relation-
ships. The highest rates are shown in bold for each task. Our best system
achieves 37.38 recognition rate which can be boosted to 38.81 by transfer
learning on INFTY.

Symbols Relationships Formulas Config*
Detection Det.+Class Detection Det.+Class Structure Str.+Class

Input Graph
Complete graph 97.89 87.27 84.41 83.21 46.10 24.81 B-00-2-3-p
LOS graph 97.81 87.35 89.55 88.16 58.84 31.35 B-00-2-3-p
GT tree 95.75 80.94 35.17 34.92 19.72 14.27 B-00-2-3-p

Output Tree
Primitive LOS 82.21 73.68 41.78 40.83 14.53 8.24 B-00-2-2-Np
Symbol LOS 73.38 66.18 51.25 50.13 24.06 13.5 B-00-2-2-Np

Classifiers
2 class. 73.38 66.18 51.25 50.13 24.06 13.5 B-00-2-2-Np
2 class. + p 82.21 74.54 66.99 66.19 40.15 23.30 B-00-2-2-p
3 class. + p 97.81 87.35 89.55 88.16 58.84 31.35 B-00-2-3-p
4 class. + p 97.94 87.01 90.02 88.66 59.09 29.92 B-00-2-4-p

Att. Module
Binary Masks 97.81 87.35 89.55 88.16 58.84 31.35 B-00-2-3-p
1block-1kernel 98.49 89.00 91.35 90.03 62.45 35.21 T-11-2-3-p
1block-4kernel 98.70 89.13 92.23 90.73 63.12 35.21 T-14-2-3-p
1block-8kernel 98.06 86.55 88.84 87.11 58.68 31.01 T-18-2-3-p
2block-1kernel 98.49 89.00 91.35 90.03 62.45 35.21 T-21-2-3-p
3block-1kernel 98.61 89.44 92.14 90.58 63.87 35.21 T-31-2-3-p
3block-4kernel 97.43 88.72 91.18 89.83 62.53 36.13 T-34-2-3-p

Att. Layers
2Branch 97.43 88.72 91.18 89.83 62.53 36.13 T-34-2-3-p
3Branch 97.73 89.10 90.74 89.27 61.94 36.88 T-34-3-3-p

Query Feat.
Task-specific feat. 98.44 88.38 93.12 91.7 67.39 35.37 T-11-2-3-p
Multi-scale feat. 95.59 87.10 87.46 85.81 55.49 33.19 T-34-2-3-p
Rel-specific feat. 97.42 88.77 92.57 91.09 66.81 37.38 T-34-3-3-p
Transfer learning 97.30 89.09 92.19 90.76 65.55 38.81 T-34-3-3-p
Geometric feat. 96.67 87.93 90.84 89.46 63.87 34.12 T-34-3-3-p

Context
Opposite Masks 83.68 48.35 40.79 37.89 10.39 7.89 B-00-2-3-p

Recurrent train
2-step training 99.44 89.90 92.20 90.51 64.96 36.13 T-31-2-3-p
Adj. Matrix Class. 99.45 87.85 92.83 91.07 65.63 32.44 T-31-2-3-p
3-step training 99.36 89.19 92.28 91.10 66.31 36.21 T-31-2-3-p

Config: a string is used to encode the network configuration for each experiment which is described in Table 6.4.
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Table 6.4: The config strings in Table 6.3 are made of five parts described
below.

Description

Attention
B/T If the attention masks are binary (B) or trainable (T)
NN The number of convolution blocks and kernels in the attention module
N The number of layers in the attention module (2 or 3)

Classifiers
N The number of output classifiers

Parent Feat.
p/Np If the edge features are concatenated with parent feature (p) or not (Np)

6.1.2 Tree Extraction

Experiments depict extracting a tree directly from primitive-level LOS is not
providing a consistent tree all the time. Using Edmond’s algorithm for MST
extraction does not guarantee that all the Merge edges would get chosen for
the final tree (Table 6.3). This results in missing relations in the final tree.
So we need an extra step to take care of this by either (1) finding nodes that
have a “Merge” relation to the nodes of the final tree and group them or
(2) applying segmentation prediction results on the primitive-level adjacency
matrix and convert it to symbol level as shown in Figure 5.5. We employ the
later to ensure the output trees are consistent. The edges connected to those
primitives merged into symbols in the new graph need to be updated. The
scores of the updated edges would be the average of old scores.

Table 6.3 shows the results of extracting a tree directly from adjacency
matrices over primitives and extracting a tree from a converted symbol level
adjacency matrix. As we expected, extracting a tree directly from primitive
level matrix does not always generate a valid output and causes a lower recog-
nition rate. Results here are reported on CROHME 2019 test set using a two
classifier CNN taking nodes and edges from earlier designs of QD-GGA.

6.2 CNN classifiers

In LPGA, we trained three classifiers to do segmentation, symbol classification,
and symbol parsing. In QD-GGA, we do not have a separate step to first
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segment input primitives to symbols as in traditional hierarchical approaches.
Therefore, in the initial designs, we had two classifiers one responsible for
classifying nodes and the other one for classifying edges, with “Merge” and
“NoRelation” be in the same relation pool. Results are shown in the third
section of Table 6.3.

In this set of experiments, we explore separating decisions by assigning new
classifiers to them. In the first experiment, we add a third classifier responsible
for symbol detection (segmentation). It is intuitive that merge/split decisions
are easier to make in comparison to classifying spatial relations altogether. To
do that, the edges once are fed to a segmenter for a binary classification and
also fed to a parser for relation classification. Separating the “Merge” relation
from spatial relations and training a separate classifier that only collects infor-
mation regarding this decision improves the segmentation results as shown in
Table 6.3. The three classifiers we have in this configuration are (1) detecting
symbols with a segmenter (2) classifying symbols (3) classifying relations for
all LOS edges. We include “NoRelation” labels in our set trying to detect true
spatial relationships from miscellaneous edges.

Observing the improvement in the previous experiment leads us into assign-
ing a fourth detector for the binary task of detecting true relations (Edge/NoEdge).
We hypothesize that it would be beneficial as it breaks the process of finding
relations into two steps: detecting the correct edges and classify them, similar
to what we were already doing in node classification. So the four tasks to solve
in this experiment would be: (1) detecting symbols (2) classifying symbols (3)
detecting relations (4) classifying relations.

Table 6.3 shows the result on dividing the main two tasks (node classifi-
cation and edge classification) into more specific tasks using new classifiers.
By applying the relation detection results before SLT generation similar to
what we do for nodes (first applying segmentation results), the recognition
rates dropped to 29% and no improvement was observed regrading relation
detection and classification. We hypothesize this behaviour could be a result
of our Symbol Layout Tree (SLT) extraction approach. Applying the relation
detector decisions to prune early and not considering edges that are detected
as miscellaneous in the SLT generation step inserts the binary rel detector
errors directly to the results. We decided to not eliminate any of the edges
before tree extraction and keep the fourth detector to introduce a better sep-
aration of features while training. Last row of Classifiers section in Table 6.3
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presents the results of this approach.
Separating segmentation task by introducing a binary classifier to collect

information regarding “Merge” or “Split” of edges improves the performance,
substantially. However, dividing the relation classification into two steps in
the same manner, did not help the model performance. If the binary rel
detector results are not applied directly, the relation detection and structure
learning slightly improve. We choose the three classifier configuration for
future experiments as the overall performance is better. The results shown
below are computed on CROHME 2019 test set. It should be mentioned that
the system used for evaluation was equipped with a binary attention module.

6.3 Features

We propose a multi-task framework which learns to predict nodes and edges
in one feed-forward pass. We would like to study if the proposed design with
shared features between tasks improves the learning and makes it more ac-
curate than individually trained detectors (while also making it faster)? To
answer this, we discuss three key aspects in designing a multi-task-learning
model: Attention 6.3.1, Query Features 6.3.2, and Context 6.3.3. The follow-
ing presents the experiments we conduct to design each module.

6.3.1 Attention Module

Attention module produces feature vectors for nodes and edges (query fea-
tures) from a single global feature map generated from the input formula
image. To do that, we first use the graph information and generate spatial bi-
nary masks for all nodes and edges. Node masks have a single stroke and edge
masks have the two nodes sharing an edge on them. In the preliminary de-
sign, the attention module takes the global feature map and the query binary
mask as inputs and do an element-wise multiplication generating a new feature
map with zeros everywhere except for the target query. In this method, the
downsampled and normalized binary mask weights the feature map to focus
on the relevant (‘query’) input region. This filtered out feature maps will then
be used to generate query features. This is called a hard attention approach.
Results of this experiment is shown in the first row of At. Module section in
Table 6.3.
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Figure 6.1: QD-GGA Architecture with two layers in the attention module
taking node and edge masks separately.

We try both static binary masks (hard attention) and trainable attention
masks (soft attention). Trained masks are more flexible and can learn where
else to look in the feature map in order to gather more information for each
query as they are trained end-to-end with the main branch in the QD-GGA.

Soft attention module contains two convolutional branch; one taking node
masks and the other one taking edge masks. Each binary mask goes into
the corresponding branch to get convolved and generates a relevance map as
shown in Figure 6.1. This approach is inspired by [24]. Relevance maps are
the convolved binary masks coming out of the attention layers which are later
downsized to the shape of the global feature map. The downsized relevance
maps are applied to the final feature map and the resulting query features are
fed into their corresponding classifiers.

To improve the relevance maps contribution, we try different convolutional
blocks and kernels in attention layers. After experimenting with different com-
binations shown in Table 6.3, we observed that having more than 3 convolution
layers and 4 kernels per layer is not beneficial, so we use this as the best con-
figuration in the attention layers. It should be mentioned that F-measures are
calculated on CROHME 2019 test dataset using a CNN model with three out-
put classifiers. Attention module contained of two identical layers that learn
weights for nodes and edges separately.

As we generate three sets of features for symbol detector, symbol classifier,
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Figure 6.2: Attention Masks. Input binary masks for node x and edge (x, 6)
are shown in the first row. Corresponding relevance masks applied to features
are shown in the second row.

and relation classifier, we decided to treat their input binary masks separately
by adding another layer to the attention module. In this new configuration,
weights in attention layers are not shared between the tasks. results are shown
in Table 6.3 under Att. Layers. Each branch has the best convolutional
configuration from earlier experiments regarding attention module (3 blocks
and 4 kernels).

It is interesting that with only training one kernel (7×7) per binary mask,
shown in second row of Att. Module section in Table 6.3, formula recognition
rates are boosted by almost 4%, and symbol classification and relationship
detection both are improved. Additional experiments reported in Att. Module
section of this table show that the attention module with three convolution
blocks provides the best configuration for attention layers, and stacking more
blocks does not improve the performance.

Relevance Maps. We visualized the relevance maps to study what at-
tention layers learn to query node and edge features better. Figure 6.2 shows
binary masks and their corresponding relevance masks for node (single stroke)
x and stroke pair (x, 6). We observed the kernels trained for nodes are acting
like a dilatation operation and the ones trained for edges are operating similar
to contouring. We hypothesize this might happen as it tries to reach for far
edges to extract more information on the two target nodes that appear at each
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Figure 6.3: Concatenating parent features with edge pairs to introduce visual
difference for directed edges shown with their corresponding binary masks.

edge mask.

6.3.2 Query Features

In the first setup, we did not differentiate features generated for directed edges
between nodes (i.e., visual features for (A,B) matched those for (B,A)). Since
features were identical for both edge directions, we decided to add features to
signal which node is the parent for each edge, by concatenating the stroke pair
masked features with the parent stroke masked features when classifying edges.
Figure 6.3 shows that each feature vector for edges is concatenated with the
features generated by parent mask. The feature vector for edge classification
then becomes 1024 elements, while the remaining 512 elements become for the
node classifier. This makes the parsing more accurate as seen in the first two
rows of Classifiers section in Table 6.3. In this experiment the system had 2
classifiers (early designs). P in the table shows that the parent features are
added for edge features.

Task-Specific Features. The query features are all extracted from the
main feature map of the input image and all three classifiers use the same
feature set originally. This means features are shared between tasks and no
task-specific features are developed. In the next experiment, we designed an
additional convolutional block for each task that takes query features sep-
arately. This allows for kernels in the final convolutional block to extract
additional task-specific features at top level. Results in Table 6.3 - Query
Feat. section show these features are mostly helpful with relation detection
and classification tasks. We hypothesize having a larger field of view (context)
provided by the new layer is more informative in case of edge features. By
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going deeper, resolution is reduced and receptive field is increased. In symbol
classification, resolution is important in learning the shape of symbols, there-
fore the additional block with lower resolution feature maps did not improve
symbol classification. On the other hand, when deciding the spatial relations
the shape of each node is not important rather their relative positions. It
should be mentioned that we had trainable attention modules (3block-4kernel)
made of two branches in this configuration.

We used this insight and designed another experiment extracting relation-
specific features. In this design, the edge features go into an extra convolution
block. This is the strongest result we got on CROHME 2019 dataset. The
model is equipped with a three-branch attention module.

Multi-Scale Features. To find the correct balance of resolution and
context in shared feature for different tasks, we implemented the multi-scale
feature extraction approach. We hoped that the features from earlier layers
(higher resolution) will contribute more in symbol classification and features
from the last layer (larger context) will contribute more on relation detection.

We extract the features after each layer; the first feature map is extracted
after the first convolutional layer and the other two are extracted after each
SE group (total of three extracted feature maps). The output feature map
dimensions are: (128, h/2, w/2), (256, h/4, w/4), (512, h/8, w/8) with h and
w be the height and width of the input image. Masks from attention layers are
resized to the shape of each feature map and mask the target in three scales.

There are mainly two ways to merge different feature maps together: con-
catenation and element-wise summation. Element-wise summation requires
feature maps to have the same dimensions which means we have to convert
the feature maps to have the same number of channels. Also according to
FSSD [55] concatenation can get a better result than element-wise summa-
tion. So we use concatenation to combine the features. The features from
different layers are concatenated and passed through the classifiers. The de-
tails of implementation is explained below:

1. Apply 1× 1 convolution to reduce the feature dimensions.

2. Choose a fixed size for features to upsample ( bilinear interpolation) and
downsize (pooling) feature maps to it. We choose 256 (from the middle
layer).



CHAPTER 6. QD-GGA EXPERIMENTS 78

3. Apply batch normalization as features from different scales have different
ranges (0.7% mAP improvement in FSSD [55]).

In Section 6.5, we observed that having the temporal layer in this con-
figuration decreases the recognition rate by 5% for isolated symbol classifica-
tion experiments, whereas removing it provides the similar performance. This
means the context provided by multi-scale feature extraction can replace the
temporal layers. So we removed the temporal layers meaning no additional
module adds more context to the features.

As shown in results table, we could not prove this is the case for all three
tasks trained simultaneously. This experiment showed that although having
the multi-scale features without temporal layers could get the same symbol
classification rate in isolation, the overall formula recognition rates is not as
good.

Geometrical Features. Although visual features are helpful, geometrical
features play a key role in parsing and structure learning. In this experiment,
we propose to extract geometrical features for edges using bounding box infor-
mation of pairs. We use the same set of geometric features used in [39]. These
features include distance measures, area overlaps and differences, size ratios,
and angles, distances and differences based on the bounding boxes around
each stroke/CC. These distances include: distance between center points, dif-
ference in vertical position of bounding box tops and bottoms, difference in
horizontal positions of left and right edges, difference in area, and amount of
overlapping area. These spatial features are normalize and concatenated to
the visual features before going into the classifiers.

Results show that adding geometric features for edges is not informative in
QD-GGA design, especially for segmentation. The lower segmentation F-score
(96.67) causes lower relation and symbol classification rates. This might be
due these features are designed carefully for a different processing in which
each target pair is cropped, centered and scaled into a fixed size so distance
measures can be compared meaningfully across all samples, whereas, we avoid
such preprocessing in our system.

Transfer Learning. In another experiment, we used INFTY dataset
(scanned typeset formulas) and pre-processed images differently to be used as
additional data in handwritten formula recognition. We extracted the skeleton
of each character as shown in Figure 6.4. The model pre-trained on these
samples and re-trained for CROHME. This improved the recognition rate to
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Figure 6.4: Extracting skeleton of typeset formulas in INFTY to pre-train a
model for handwritten recognition.

38.81 % which is the best results we got so far. This should be noted that the
most improvement is in symbol recognition.

6.3.3 Context

These experiments aimed to study local and global context in feature extrac-
tion. Having context always shown to improve the performance [15,24,38,65].
Experiments in the baseline approach (LPGA model) showed that having con-
text is helpful in all three tasks [65]. Context in symbol classification helps
networks to differentiate between characters that are visually very similar,
e.g., minus and hyphen. In this work, although all nodes and edges are pre-
dicted together and weights of the network get updated based on a joint loss
introducing a global view to the network, context is not included in feature
extraction directly. Using binary/relevance masks to generate the query fea-
tures from the main global feature map is basically removing everything else
except for the target.

Local Context. It should be mentioned that each pixel in the final feature
map is looking at a larger area in the input image (receptive field) providing
some context for the query features. We also apply a 1 × 3 convolution,
to convolve each query feature with its immediate neighbors providing more
local context which improved the results substantially. Moreover, in Section
5.2.5, we explain how 2-step training can provide even more local context by
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updating initial stroke/cc masks into symbol level masks.
Global Context. We would like to provide a simple global context for

each query feature. In this experiment, we generate a negative binary mask
(opposite masks) for each target binary mask and multiply the main feature
map with both of these templates and finally concatenate the results and feed
it to the classifiers. As shown in Table 6.3, including context in this way
is not helpful for our model and adds more confusion, especially in symbol
classification, as the context masks are cluttered. This approach is mostly
helpful for tasks containing one class label per image, meaning the negative
mask will provide back ground context for one target in the image. For the case
of labelling nodes and edges, the negative masks are very similar to the target
itself as it contains other nodes and edges in the expression. We explored some
variation of the same idea, e.g., weighting feature maps generated from the
target masks differently than the ones from the context masks, but again the
general idea is not suited for multiple target images and results in crowded
background masks.

In another attempt to include the global context given by the input graph
for individual queries, we decided to embed the whole adjacency matrix for all
three classifiers. We classify all queries for all classifiers meaning the symbol
detector and relation detector that previously was fed with edge features, will
take node features as well and similarly the symbol classifier that previously
would label the node features, will take edge features as well. In this design,
the parent label is the desired predicted label for edges going into the symbol
classifier. For nodes that go into symbol detector and relation classifier the
ground truth label would be “Merge” and “NoRelation” respectively. Results
shown in Table 6.3 computed with a 2-step training method (see Chapter
5), hence the high segmentation rate, on the CROHME 2019 test set. We
group this experiment under recurrent training section in the table so it can
be compared meaningfully.

A common approach to give the network more global context is a temporal
layer, which is the key part in RNN-based models and Graph-CNNs. Tempo-
ral attention modules usually keep a memory of previous/next sequences and
consider those decisions when making a prediction. Our model can benefit
from having a knowledge of what are the previous nodes and edges. To exper-
iment that we propose adding a sequential layer which allows for walking the
graph and predicting nodes and edges at each step while keeping a memory of
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previous nodes and edges, instead of batch prediction.

6.4 Loss and Training

Recurrent Training. We proposed a training method allowing to use in-
termediate segmentation results (first step) to update the input binary masks
to symbol level and use those masks in a second round to generate updated
features for primitives (e.g., strokes). This recurrent training can be done for
more than two steps. We explored going another step using the second step
segmentation results and generate a new symbol level masks for a third round.
The symbol level masks from the second step would be mostly similar to the
symbol masks we updated according to segmentation results in the first step
as the segmentation decisions are similar in most cases, see Table 6.3.

Results of this experiment are shown in Table 6.3. The system descrip-
tion: a three classifier (no binary rel detector) CNN equipped with a trainable
attention module made of three convolutional layers (1 kernel per layer). Al-
though the difference is not significant in the overall recognition rate and we
have reached a higher rate with one step training and three branch attention,
segmentation rates are improved in this design due to selective updates in local
context. We hypothesize that updating the symbol masks and adding local
context helped mostly in segmentation as it is more reliant on local informa-
tion. It is improving the symbol recognition rate as well, but could not solve
the most frequent errors which is confusing the visually similar classes, e.g.,
(S,s), (X,x), (2,z). To solve these kinds of confusions and make the symbol
classification better we need to exploit the global context better.

6.5 Isolated Symbol Classification Task

Symbol classification is the bottleneck of our design, so we decided to study
it further individually.

Results of having only a single classifier in QD-GGA with trainable at-
tentions are shown in the first row of Table 6.5. We pre processed the stroke
points by (1) removing the duplicated points, (2) adding missing points, and
(3) applying Catmull smoothing. This produces similar results to the baseline
experiment as the smoothing step added decimal values which finally converted
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to integers when drawing the input images (pixel values). We also tested the
system by cropped and centered stroke images which reduces the context and
increases the resolution. Cropping symbols eliminates the spatial information
of strokes in the original setting. This results in decreasing the recognition
rate as it makes it even harder to identify visually similar classes.

Another attempt to exploit higher resolution features was Early Masking.
In this setup, attention masks are applied into intermediate feature maps
instead of the last one. Then query features goes into the rest of the layers.
We applied the masks on the feature maps from the first convolutional layer.
Early masking reduces the context given by network field of view and filter the
feature map in higher resolution. Results from Table 6.5 depicts that, similar
to cropped strokes experiment, higher resolution cannot compensate for the
lost context.

Table 6.5: Stroke classification results.

Accuracy (%)

Isolated Strokes 89.23
Pre-processing 89.01
Cropped Strokes 76.09
Early Masking 71.27
Multi-scale Masking 85.61
Multi-scale Masking + noTemp 89.29

Therefore we designed experiments allowing the network to learn from both
the higher resolution features from earlier layers and the later features that
have more information from the input equation by multi-scale masking. The
details of implementing these experiments are explained above. Important ob-
servation in Table 6.5 is removing the 3×1 convolutions (temporal layer) when
having the multi-scale features provide a higher rate compared to having both
multi-scale features and temporal layers. This also proved that the amount
of context provided by temporal layer can be replaced by extracting features
from different layers.
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Table 6.6: Results of recognizing typeset formulas in INFTY with top QD-
GGA architectures. The attention module has three blocks in all configura-
tions.

Symbols Relationships Formulas
Detection Det.+Class Detection Det.+Class Structure Str.+Class

Binary Masks 99.07 97.03 95.29 95.01 89.38 81.84
1kernel 99.44 97.64 95.33 94.97 88.78 81.68
4kernel 99.50 97.82 95.71 95.43 89.46 82.27
4kernel-3branch 99.53 97.85 95.39 95.10 89.37 82.84
Pre-process 99.25 97.83 95.69 95.39 90.03 83.75
Pre-process + recursive train. 99.71 97.69 97.06 96.73 92.56 85.94

6.6 Typeset Formulas

QD-GGA can be used with images (offline recognition). We believe our
method can be used for other visual parsing tasks, e.g., scene understand-
ing, chemical diagrams, table extraction, etc. as long as the input data can
be defined by graphs.

All the experiments so far were designed and evaluated on handwritten
formulas from CROHME dataset. In this experiment we recognize scanned
typeset formulas from INFTY dataset without any major changes. For raster
images, the input LOS graph is computed on connected components instead
of strokes in handwritten formulas. The input masks are ordered from left
to right when passing into the attention module. If two boxes have the same
horizontal location, we sort them from top down. The output layers are also
modified for the INFTY dataset classes. 101 symbol classes in CROHME to
207 classes in INFTY and 7 relation classes into 9 relations in INFTY (RSUP,
HORIZONTAL, RSUB, UNDER, LSUB, UPPER, LSUP, NoRelation, and
PUNC).

This set of experiments are focused on testing if our method can be gener-
alized on images of scanned typeset formulas in INFTY. The only parameter
that is changed in training is the learning rate which is decreased from 0.01
to 0.001. Table 6.6 shows all the configurations tested for this dataset. We
explored binary masks filtering the features directly and then tried the best
configuration of attention modules (4 kernel, 3branch and 4 kernel). We then
applied the pre-processing steps Condon suggested in [15] to use the smooth
image contours which was helpful. In the pre-processing step, (1) single CC
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per image is generated by applying CC bounding box information from the
ground truth, (2) each CC image is converted into contours, (3) contours are
treated as traces in the handwritten data and re-scaled to 64-pixel symbol
height. This improves results slightly. Finally, we train the model in two steps
with symbol masks updating (Section 5.2.5) which provides the best results
for INFTY.

6.7 Benchmark

We benchmark our proposed model against state-of-the-art systems. Table
6.7 shows the results of the best configuration of our model (Relation-Specific
features in Table 6.3) against state of the arts on CROHME 2014 and 2016
datasets. In this configuration we have three output classifiers (segmenter,
classifier, parser), a three branch attention module and edge features go into
and additional convolutional layer (early symbol feature extraction). Since
encoder-decoder networks generate LATEX string outputs, in most of these
systems, they need to apply constraints in the decoder to make sure the output
string is a valid tree. Our simple design gets comparable results with encoder-
decoder systems that does not apply grammar rules (e.g IM2TEX). It should
be mentioned we trained our system using only CROHME 2019 train set
whereas, IM2TEX, WAP, TAP, and MAN trained or pre-trained on much
larger datasets. It is important as we observed the effect of larger dataset when
pre-training our system on skeletons extracted from INFTY dataset (Section
6.3). The QD-GGA achieves almost 10% higher recognition rate compares to
LPGA supporting the idea of feature sharing and multi-task learning.

We present recognition rates and structure rates on CROHME 2019 test
set in Table 6.8. Results show that the structure rates (unlabeled) in QD-GGA
using only visual features is comparable to state-of-the-arts in which temporal
and spatial attention and grammars are applied on the output strings. This is
aligned with our observations on symbol classification task which is currently
the most challenging task for our system. Improvement in symbol classifi-
cation can be obtained by optimizing the features and exploiting the global
information.

Table 6.9 compares our results on CROHME 2019 against the winners of
the competition. Please note that recognition rates are not comparable with
the other two tables as these results are computed using SymLG [66] format.
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Table 6.7: Comparison against State-of-the-art math recognition models on
CROHME 2014 and 2016. Expression rates are reported for comparisons.

CROHME 2014 CROHME 2016
System ExpRate ≤ 1 ≤ 2 ExpRate ≤ 1 ≤ 2 Spatial att. Temporal att. Grammar

IM2TEX 35.90 - - - - - Yes Yes No
TAP 48.47 63.28 67.34 44.81 59.72 62.77 Yes Yes Yes
WAP 48.38 66.13 70.18 46.82 64.64 65.48 Yes Yes Yes
MAN 54.05 68.76 72.21 50.56 64.78 67.13 Yes Yes Yes
LPGARF 26.88 36.63 42.50 - - - Yes No No
QD-GGA 37.23 51.27 58.39 36.84 50.39 58.16 Yes No No

Table 6.8: Comparison against State-of-the-art math recognition models. Ex-
pression rates are reported for comparisons.

CROHME 2019
System ExpRate ≤ 1 ≤ 2 StruRate

TAP 44.20 58.80 62.72 63.64
WAP 48.12 63.47 67.22 67.97
OnSCAN 46.46 62.47 66.14 66.31
OffSCAN 47.62 63.14 67.06 67.81
QD-GGA 37.38 51.71 59.09 66.81

Evaluation metrics are explained in Chpater 3.

Table 6.9: Benchmarking QD-GGA against CROHME 2019 participating sys-
tems. Models evaluated using SymLG metrics.

Structure + Symbol Labels Structure
CROHME 2019 ExpRate ≤ 1 ≤ 2 Correct

USTC-iFLYTEK 80.73 88.99 90.74 91.49
Samsung R&D 79.82 87.82 89.15 89.32
MyScript 79.15 86.82 89.82 90.66
QD-GGA 43.40 63.09 67.81 66.96

The training time reported for Tap [99] system is 780 sec/epoch for the base
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model and it is even longer to train the ensemble models, whereas the training
for our best configuration takes 254 sec/epoch. Execution time reported on
CROHME2014 for TAP model is 377 sec, the WAP system [100] and the
ensemble of TAP+WAP each takes 196 and 564 sec respectively. The execution
time for QD-GGA on the same dataset is 59 sec which is much faster. These
results display that our approach is computationally less costly and training
and execution both are faster in our system due to our simpler approach.

Our system is built using PyTorch and experiments were run on an 8GB
Nvidia 1080 GPU. Experiments were run on a server with an 8-core Intel Xeon
E5-2667 processor (3.20 GHz per core), and 512 GB RAM was available. For
TAP model, the experiments are all implemented with Theano 0.10.0 and an
NVIDIA Tesla M40 12G GPU is used.

Figure 6.5 presents recognition results on CROHME 2019 including cor-
rectly recognized equations along with the examples of the most frequent er-
rors. Most structure recognition failures are caused by missing edges in LOS
graphs, or incorrect baseline detection as a result of size variations in hand-
written characters, e.g., the “subscript” relation between a and β is classified
as “right.” Most symbol classification errors are among visually similar classes
such as (X,x), (m,n), (α, a), (d,a), (z,2), etc. Lastly, the second row shows one
of the few segmentation errors in which two strokes in an X did not merge and
each is recognized as parenthesis individually. We noticed that the correctly
recognized equations can be more complex than some of the occurring errors.
We hypothesize that although images are denser, since strokes are closer the
attention masks may capture more context locally. We are figuring out how to
better use the context provided by the attention masks which is a key challenge
to improve QD-GGA performance.

Recurrent training error analysis. In Figure 6.6, we present confu-
sion histograms generated with LgEval tool to visualize the effect of recurrent
training on 1-node and 2-node subgraphs. We tried to focus on symbols made
of one stroke vs multiple strokes (e.g., m, n vs x, i). Please note for each type
of errors, shown in blue columns, only the most frequent misclassifications are
shown, hence some have three, some have less or more. Figure 6.6-a, shows
both multi-stroke and single-stroke symbol errors are happening for visually
similar classes (m,n), (i,j), (X,x). Similar behaviour observed in 2-step train-
ing (Figure 6.6-b) meaning the additional local context provided by updated
symbol masks in recurrent training does not really help with confusion in vi-
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Figure 6.5: Example QD-GGA Results for CROHME 2019. Column at left
shows the typical error cases; large subscripts mistaken with baseline (first
row), visually similar symbols classified incorrectly (d instead of a and z instead
of 2).
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sually similar classes and a more global operation is needed to help with these
cases.

Infty MCCDB-2. We present QD-GGA preliminary results on Infty
MCCDB-2 dataset against LPGA systems. This should be mentioned that the
only learning parameter modified for this dataset is the learning rate (from
0.01 to 0.001) and additional grid search for tuning learning parameters for
this dataset might improves the results. We achieved higher segmentation rate
with the recurrent training and the structure detection rate is comparable.

Context is included in these two systems differently. In LPGA, context
region is cropped for each query meaning the surrounding is encoded directly
for each node and edge. However, the context module in QD-GGA encodes
neighboring queries for each target query (previous and next queries in the
stack) without considering their spatial positions in the input image. We hy-
pothesize that the dependency of the context module on the order of incoming
feature streams in QD-GGA system might cause the lower recognition rates
for images.

Table 6.10: InftyMCCDB-2 test set results for correct symbol/relationship
locations (Detection), correct symbol/relationship classes (Det.+Class), unla-
beled formula SLT structure, and structure with correct labels (Str.+Class).
Percentage of correct formulas are shown.

Symbols Relationships Formulas
Detection Det.+Class Detection Det.+Class Structure Str.+Class

QD-GGA 99.71 97.69 97.06 96.73 92.56 85.94
LPGARF 99.34 98.51 97.83 97.56 93.81 90.06
LPGACNN 99.35 98.95 97.97 97.74 93.37 90.89

6.8 Summary

We have presented an approach for recognition of handwritten and typeset
math formulas. Features in our approach are shared between classifiers and
the query features for all strokes/CCs and their relations are computed in one
iteration. It is worth to mention that our initial experiments suggested that
it is better to have individual kernels for each task in the attention module (3
attention layer) and individual classifiers assigned to symbol detection, symbol
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and relation classification. We compared the accuracy of our approach to the
state of the arts and obtained comparable results with other approaches given
the fact our method is much faster and does not apply grammar constraints.
The structure detection (unlabeled) in QD-GGA is competitive to encoder-
decoder models.

The main experimental results show that Line-Of-Sight Parsing with Query-
Driven Global Graph Attention (QD-GGA) is effective for math expressions
recognition and needs further improvement in symbol classification to be both
faster and more accurate than sequential approach. This can be obtained by
optimizing the features and exploiting the global information.
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1 node 2 nodes

(a) Frequent patterns in 1-step training errors

1 node 2 nodes

(b) Frequent patterns in 2-step training errors

Figure 6.6: Comparing Frequent errors in single-stroke vs multiple-stroke sub-
graphs for 1-step training (a) against 2-step training (b). Error analysis is done
for CROHME 2019 test set. Note that for each error type (yellow references),
only the frequent misclassifications are shown.



Chapter 7

Conclusion

Through all of our research work we could observe that a simple model based
on convolutional neural networks tends to be enough to produce satisfactory
results for math expression recognition, Chapter 6. Our proposed approach is
faster compared to sequential models both in training and execution and is able
to do very accurate segmentation through recurrent execution. The structure
detection in QD-GGA is comparable with encoder-decoder systems trained
on much larger datasets. Adding a temporal attention, enhancing symbol
classification through a better use of global context and spatial features, or
using a larger dataset can make QD-GGA results competitive to state-of-the-
art systems while keeping it faster.

7.1 Contributions

In this work, we introduced a Query-Driven Global Graph Attention (QD-
GGA) parsing model, a new CNN-based variant of graph-based visual parsing.
A summary of our contributions is listed below.

• LPGA: a new structure is proposed to add contextual visual informa-
tion with a two branch CNN that takes target and context images for
segmentation, classification and parsing. The LPGA architecture and
methodology is discussed in Chapter 4. We benchmarked LPGA system
on both CROHME and InftyMCCDB-2 datasets in Chapter 6.

91



CHAPTER 7. CONCLUSION 92

• QD-GGA: this approach generalizes our previous work using CNN-
based features [65], with features and attention modules trained concur-
rently for multiple tasks as described in Chapter 5. our novel graph-
based attention module allows multiple classification queries for nodes
and edges to be computed in one feed-forward pass resulting in faster
training and execution, see Chapter 6. By using a Multi Task Learning
(MTL) framework, it is possible to train our CNN for different tasks
simultaneously from an output adjacency matrix containing class dis-
tributions at each entry. This provides generalization for feature repre-
sentations, and a more global view for classifiers through a shared joint
loss.

• Graph-Based Attention in QD-GGA: the input graph used both
for parsing the formula and query the features through attention mod-
ule. We introduce an attention module that queries CNN features from
a single image to efficiently obtain inputs for multiple classification, seg-
mentation, and relationship decisions by defining a graph on input image,
see Section 5.2.2 for more details on attention module.

• Recurrent updating of masks in QD-GGA: segmentation results
at each iteration is used to update primitive-level masks to symbol-level
masks. This method keeps the input and output spaces on primitive
level but makes it possible for query features to access symbol level
information. The additional local information provided through this
approach makes the segmentation task very strong, see Table 6.3.

7.2 Future Work

In the future, we would like to improve symbol and relation classification
tasks by adding a graph sequential learning [93, 94] module instead of the
simple 1-by-3 convolution. This provides a memory of seen nodes and edges
and therefore adds a more global view to the system. So, the input graph is
used both for having a memory of all nodes and edges as well as guiding a
spatial and temporal attention model. This setup will eliminate the impact of
both the input sequence in the current context module and the hard decision
making on how many neighbors should contribute (e.g., two neighbors) for
each target query. In this method, the surrounding characters are included
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for each target if the input graph has an edge connecting them that addresses
the lack of encoded surroundings in QD-GGA. The sequential attention can
be applied on query features meaning it learns how much of other neighbors
should contribute for each target query (by convolution) or it can be applied
on the adjacency matrix. In the latter, the scores of nodes and edges will
be fed into a GCN that can learn to extract a tree from the weighted graph.
The advantage of extracting a tree in this way instead of MST extraction with
Edmond’s algorithm is that all the four modules can be trained end-to-end
and weights will be back propagated through the network based on the final
tree.

In another attempt to better exploit the global information in this inte-
grated approach, we would like to expand our primitive studies on embedding
to include adjacency matrix probabilities in feature extraction. For this pur-
pose, each input binary mask is multiplied with all the class probabilities, e.g.,
the 1-D masks are transforms to 101-D masks based on the symbol classifier
probabilities in handwritten recognition. The input spatial masks are used to
represent embedding masks by getting multiplied with class probabilities. For
instance, each binary node mask is converted into 101 masks with background
pixels being zeros but the pixel values multiplied with probability of each class.
Next, the binary mask stacks with 101 channels are collapsed to a single stack
by getting the maximum pixel values across the channels. These embedding
masks are normalized across the channels and then encoded into a lower di-
mension (e.g., 101 symbol classes to 3) using 1-by-1 convolution. These new
embedding masks with lower dimensions will be passed to the network in the
next iteration to query global features from our general feature map. Note
that in the first iteration, the embedding masks are all zeros.

We would also like to study undirected graphs as input representations. In
this case, the final output would also be an undirected tree and rules must be
defined to find the parent-child relations. This will decrease the input edges
to half as we only need to label either upper or lower triangle in the adjacency
matrix. We are interested to experiment with undirected graphs as it allows
to work with complete graphs but having a smaller search space. In terms of
features, we would have only one edge per primitives pair (no direction), so we
do not need to concatenate the pair masks with the parent mask to introduce
the visual difference in different directions of the edge.

Another future direction to study the input representations is taking care
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of the missing edges in LOS graph by training a small network which decides
which edges are miscellaneous. The purpose of this low-cost network would
be reducing the edges in the input graph and provide a smaller search space
similar to what Line-Of-Sight Graph is responsible for in the current QD-GGA
architecture.

We would like to study the joint loss and explore if the training can be
improved with a different definition for shared tasks. We particularly would
like to study if a weighted combination of the three loss could make the training
faster/better as the edge samples and node samples are not balanced and the
difficulty of the tasks varies. Focal Loss [57] is another candidate that can
weights the edges differently in calculating the errors. Instead of removing the
non-contributing edges in tree loss we can make soft decisions with focal loss.

Finally, we would like to apply QD-GGA to similar visual parsing problems
e.g., parsing chemical diagrams. As our approach can be utilized for any visual
parsing task in which inputs and outputs may be defined using directed graphs.
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