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I. INTRODUCTION

Evaluating visual structure recognition for math expressions
is complex due to the interactions between input primitives,
detected symbols, and their spatial relationships. Visual struc-
ture is expressed using trees describing the arrangement of
symbols on writing lines, and the hierarchical spatial arrange-
ment of these writing lines (see Figure 1(b)). LATEX formulas
represent this information along with additional formatting
directives (e.g., for fonts, symbol sizes, and spacing).

Formula recognition comprises three major tasks: detecting
symbols, classifying symbols, and determining spatial relation-
ships between symbols. With the correct tools, symbols and
relationships can be evaluated separately, and specific errors
compiled using confusion matrices and confusion histograms
that tabulate and count specific errors for given sub-trees in
ground truth formulas [1]. As a simple illustration, if the
expression ‘xy+1’ is recognized as ‘2a+b,’ the output can be
considered as having the correct spatial relationships/structure
(i.e., five symbols on one writing line), but only one symbol
is shared between the two formulas (‘+’).

A number of state-of-the-art systems were inspired by
automated image captioning, avoiding explicit symbol seg-
mentation and producing LATEX output [2], [3]. By representing
structure only over detected symbol classes, we lose the
correspondence of input primitives (e.g., handwritten strokes
in Figure 1(a)) to symbols in the output. So far, LATEX outputs
have been evaluated using string-based metrics such as exact
matching, string edit distances, or n-gram-based metrics such
as BLEU, or by computing distances between images pro-
duced after rendering TEX formulas. Unfortunately, different
LATEX strings can represent identical formulas, or produce
differences in spacing or formatting for the same underlying
expression. These measures approximate rather than directly
capture differences in visual structure at the level of symbols
and relationships seen in Figure 1(b).

II. VISUAL STRUCTURE REPRESENTATION (SYMLG) AND
SYMBOL-LEVEL EVALUATION METRICS

To allow us to evaluate and compare visual structure recog-
nition using symbols and relationships directly, we convert
LATEX and other structure representations to Symbol Label
Graphs (symLGs, see Figure 1(b)). In a symLG, each symbol
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Fig. 1: Different representations for formula ‘a + 6b’ written
using five strokes. Node identifiers are shown in brackets.

has an identifier. Identifiers are defined by the sequence of
spatial relationships from the root symbol to each symbol in
the tree. The adjacency matrix for a symLG contains symbol
class labels on the diagonal (for symbol self-edges), and
spatial relationships between symbols in off-diagonal entries.
Using this, we can then directly compare formulas based on
the agreement between adjacency matrix entries, even when
symbol identifiers are missing in one of the graphs [1].

To obtain symLGs, we first need to produce a uniform
symbol-level structure representation, for which we have used
Presentation MathML. We convert TEX formulas to MathML
using pandoc.1 This transformation preserves symbols and
spatial relationships while removing formatting directives
(e.g., \quad, fonts). For primitive-based output representa-
tions, such as the stroke label graph in Figure 1(a) [4], we use
a simple transducer to produce MathML. In a label graph, all
strokes in a symbol share the same spatial relationship with
strokes in the related symbol (e.g., for ‘a’ and ‘+’), and symbol
segmentation is given using bidirectional edges labeled with

1https://pandoc.org



TABLE I: symLG im2latex-100k results (9,378 test formulas).
Shown are correct symbol/relationship locations (Detection),
symbol/relationship classes (Det.+Class), formula SLT struc-
ture ignoring symbol labels, and valid structure and symbol
labels (Str.+Class).

Symbols Relationships Formulas
Det. Det.+Class Det. Det.+Class Str. Str.+Class

IM2TEX 95.70 93.48 95.50 95.50 86.79 83.15

their associated symbol’s class (e.g., for ‘+’).
Once we have a MathML representation for a formula,

we generate symbol identifiers using the spatial relationship
sequence from the root symbol (see Figure 1(b)). Identi-
fiers allow us to address symbols on writing lines from
different structure representations. This produces a symbolic
representation for recognition outputs, one that ignores the
correspondence of output symbols to input data [1].

Symbol-Level Metrics. Once we have our symLG represen-
tation, we compute symbol-level metrics using evaluation tools
from the CROHME handwritten math recognition competi-
tions [1], [4], [5] originally designed for stroke-level evaluation
(the LgEval library). LgEval metrics include formula and
symbol recognition rates, along with recall and precision for
detection and detection + classification of both symbols and re-
lationships [1]. The symLG representation allows us to identify
specific relationship classification errors, structure errors, and
symbol classification errors (when symbol locations/identifiers
are correct; see Section IV).

Related Work. Symbolic evaluation has been considered
previously, e.g., EMERS [6] is a tree edit distance using
an Euler string representation to quantify partially correct
recognition for MathML trees. Symbol errors are weighted
inversely proportional to their distance from the main writing
line (baseline) of the expression, to decrease the impact of
errors inside branches. A form of symbolic evaluation based
on unlabeled trees was used in early CROHME competitions
[1]. The IMEGE metric [7] is a pixel-based image distance
metric, which has been used for evaluation by rendering an
image from output LATEXstrings [2].

III. CASE STUDY

We use symLGs to evaluate the IM2TEX system by Deng
et al. [2]. As shown in Table 1, our symLG metrics provide
measures for correct symbol detection (i.e., symbols exist
at expected spatial locations), correct symbol locations and
labels, correct relationships, and structure and symbol classi-
fication accuracy at the expression level. Note that because
spatial relationships determine symbol locations, a correctly
detected relationship is also correctly classified.

For the im2latex-100k data set, we were able to convert
9,378 of the 10,355 test formulas (90.6%) from LATEX to
MathML using pandoc. Many failed conversions are caused
by invalid syntax (e.g., missing brackets).

For the 9,378 formulas that were converted successfully
to MathML, We are now able to report that the percentage

of correct formulas with both correct symbols and structure
is 83.15%, that 93.48% of symbols are in the proper lo-
cation with their correct class, and that 95.50% of spatial
relationships are correct. The metrics previously reported by
the IM2TEX authors include BLEU (tok) at 58.41, BLEU
(norm) at 87.73, exact image-based pixel matching of 77.46,
and image-based pixel matching with a whitespace tolerance
(-ws) of 79.88 [2].

Moreover, using symLGs we can provide detailed error
analysis that string and image-based representations cannot
capture (omitted for space). The most common error is ‘miss-
ing’ symbols. This happens because symbols are identified
by their absolute path - therefore, errors in structure lead to
errors in symbol detection and classification. Note that this
also means that correctly detected symbols at the incorrect
position in a symLG are identified as invalid.

IV. CONCLUSION

We have presented a technique that allows string and tree-
based formula structure representations to be meaningfully
compared at the level of recognized symbols and relationships.
Further, this permits fine-grained evaluation of recognition
results at the individual symbol and relationship level, as
well as at the expression level, addressing limitations with the
previous use of string-based and image-based metrics used to
evaluate LATEX output. In future work, we hope to use more
robust methods for converting from LATEX to MathML.

Our symLG-based metrics were used for the recent ICDAR
2019 CROHME + TFD competition [8], as they are simple
to understand, and provide useful global performance metrics
and automated error analyses.
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