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Abstract. We present a processing pipeline for math formula extrac-
tion in PDF documents that takes advantage of character information
in born-digital PDFs (e.g., created using LATEX or Word). Our pipeline
is designed for indexing math in technical document collections to sup-
port math-aware search engines capable of processing queries containing
keywords and formulas. The system includes user-friendly tools for vi-
sualizing recognition results in HTML pages. Our pipeline is comprised
of a new state-of-the-art PDF character extractor that identifies precise
bounding boxes for non-Latin symbols, a novel Single Shot Detector-
based formula detector, and an existing graph-based formula parser (QD-
GGA) for recognizing formula structure. To simplify analyzing struc-
ture recognition errors, we have extended the LgEval library (from the
CROHME competitions) to allow viewing all instances of specific errors
by clicking on HTML links. Our source code is publicly available.

Keywords: math formula recognition · document analysis systems ·
PDF character extraction · single shot detector (SSD) · evaluation

1 Introduction

There is growing interest in developing techniques to extract information from
formulas, tables, figures, and other graphics in documents, since not all infor-
mation can be retrieved using text [3]. Also, the poor accessibility of technical
content presented graphically in PDF files is a common problem for researchers,
and in various educational fields [19].

In this work, we focus upon improving automatic formula extraction [21].
Mathematical expressions are essential in technical communication, as we use
them frequently to represent complex relationships and concepts compactly.
Specifically, we consider PDF documents, and present a new pipeline that ex-
tracts symbols present in PDF files with exact bounding box locations where
available, detects formula locations in document pages (see Fig. 1), and then
recognizes the structure of detected formulas as Symbol Layout Trees (SLTs).
SLTs represent a formula by the spatial arrangement of symbols on writing lines
[23], and may be converted to LATEX or Presentation MathML.
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ν1(SO(odd)) = δ0, and it turns out that ν2(SO(odd)) = ν1(Sp). Note that Sp is
unique in having the density of ν1 vanish (in fact to second order) at s = 0. This
shows that the eigenvalues of a typical A in a large USp(2N) are repelled by 1.

We end this section by remarking that the same questions for the most reducible
of the compact symmetric spaces, T N = U(1)×U(1) . . .×U(1), have very different
answers. Note that T N with the measure dx1

2π
dx2
2π . . . dxN

2π corresponds to choosing
x1, x2, . . . xN independently at random (or if we think of these as matrices, then
we are choosing a random diagonal matrix). The local spacing statistics for these
have been much studied in the probability literature. It is well known [FE] that the
local spacings for this model approximate a Poisson process as N → ∞. The k-th
consecutive spacing measures converge to µk(T ) = sk−1e−s ds/(k−1)! (note that µ1

has no repulsion at zero), while the limiting pair correlation R2(T ) is simply the
density dx on R.

3. Function fields

One can get much insight into the source of the Montgomery Odlyzko Law by
considering its function field analogue. Replace the field of rational numbers Q
by a field k which is a finite extension of the field Fq(t) of rational functions in t
with coefficients in Fq, the finite field of q elements. In analogy with the Riemann
Zeta Function, Artin [AR] introduced a zeta function ζ(T, k). It is defined by the
product over all places v of k (see [WE2] )

ζ(T, k) =
∏
v

(1− T deg(v))−1.(32)

One can also think of ζ(T, k) as the zeta function of a nonsingular curve C over
Fq whose field of functions is k. For example, let C/Fq be a plane curve given by
an equation

f(X1, X2, X3) = 0(33)

where f is nonsingular and homogeneous of some degree and has coefficients in Fq.
For each n ≥ 1 let Nn be the number of projective solutions to (33) in Fqn . The
zeta function of the field of functions k of C is the same as the zeta function of the
curve C over Fq which is defined as

ζ(T, C/Fq) = exp

( ∞∑
n=1

NnT n

n

)
.(34)

This geometric point of view is very powerful. For example, the Riemann-Roch
Theorem on the curve C plays the role of the Poisson summation formula [SCH]
and shows that

ζ(T, C/Fq) =
P (T, C/Fq)

(1 − T ) (1− qT )
(35)

where P ∈ Z[T ] is of degree 2g, g being the genus of the curve C. It also gives
the functional equation P (T ) = qgT 2gP (1/qT ). The Riemann-Hypothesis for these
zeta functions, which was put forth and tested in many examples by Artin, asserts
that all the zeroes lie on |T | = 1/

√
q. This was proven by Weil. By now there

are several different proofs: Weil [WE3], [WE4], elementary proofs by Stepanov
[ST] and Bombieri [BO], and proofs by Deligne [DE] which have the advantage of
applying much more generally. One reason for being able to proceed in the function
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Fig. 1. Detection of symbols and expressions. The PDF page shown in (a) contains
encoded symbols shown in (b). (c) shows formula regions identified in the rendered
page image, and (d) shows symbols located in each formula region.

There are several challenges in recognizing mathematical structure from PDF
documents. Mathematical formulas have a much larger symbol vocabulary than
ordinary text, formulas may be embedded in textlines, and the structure of
formulas may be quite complex. Likewise, it is difficult to visualize and evaluate
formula structure recognition errors - to address this, we present an improved
evaluation framework that builds upon the LgEval library from the CROHME
handwritten math recognition competitions [14,12,10]. It provides a convenient
HTML-based visualization of detection and recognition results, including the
ability to view all individual structure recognition errors organized by ground
truth subgraphs. For example, the most frequent symbol segmentation, symbol
classification, and relationship classification errors are automatically organized
in a table, with links that take the user directly to a list of specific formulas with
the selected error.

The contributions of this work include:
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1. A new open-source formula extraction pipeline for PDF files,1

2. new tools for visualization and evaluation of results and parsing errors,
3. a PDF symbol extractor that identities precise bounding box locations in

born-digital PDF documents, and
4. a simple and effective algorithm which performs detection of math expres-

sions using visual features alone.

We summarize related work for previous formula extraction pipelines in the
next Section, present the pipeline in Section 3, our new visualization and eval-
uation tools in Section 4, preliminary results for the components in the pipeline
in Section 5, and then conclude in Section 6.

2 Related Work

Existing mathematical recognition systems use different detection and recogni-
tion approaches. Lin et al. identify three categories of formula detection meth-
ods, based on features used [7]: character-based (OCR-based), image-based, and
layout-based. Character-based methods use OCR engines, where characters not
recognized by the engine are considered candidates for math expression elements.
Image-based methods use image segmentation, while layout-based detection uses
features such as line height, line spacing, and alignment from typesetting infor-
mation available in PDF files [7], possibly along with visual features. Likewise, for
parsing mathematical expressions, syntax (grammar-based) approaches, graph
search approaches, and image-based RNNs producing LATEX strings as output
are common.

This Section summarizes the contributions and limitations of some existing
math formula extraction systems, and briefly describes our system’s similarities
and differences.

Utilizing OCR and recognition as a graph search problem, Suzuki et
al.’s INFTY system [18] is perhaps the best-known commercial mathematical for-
mula detection and recognition system. The system uses simultaneous character
recognition and math-text separation based on two complementary recognition
engines; a commercial OCR engine not specialized for mathematical documents
and a character recognition engine developed for mathematical symbols, followed
by structure analysis of math expressions performed by identifying the minimum
cost spanning-trees in a weighted digraph representation of the expression. The
system obtains accurate recognition results using a graph search-based formula
structure recognition approach.

Using symbol information from PDFs directly rather than applying
OCR to rendered images was first introduced by Baker et al. [2]. They used a
syntactic pattern recognition approach to recognize formulas from PDF docu-
ments using an expression grammar. The grammar requirement and need for
manually segmenting mathematical expressions from text make it less robust

1 https://www.cs.rit.edu/∼dprl/software.html

https://www.cs.rit.edu/~dprl/software.html
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than INFTY. However, the system was faster by avoiding rendering and analyz-
ing document images, and improved accuracy using PDF character information.
In later work, Sorge et al. [16] were able to reconstruct fonts not embedded in a
PDF document, by mapping unicode values to standard character codes where
possible. They then use CC analysis to identify characters with identical style
and spacing from a grouping provided by pdf2htmlEX, allowing exact bounding
boxes to be obtained. Following on Baker et al.’s approach to PDF character ex-
traction [2], Zhang et al. [24] use a dual extraction method based on a PDF parser
and an OCR engine to supplement PDF symbol extraction, recursively dividing
and reconstructing the formula based on symbols found on the main baseline for
formula structure analysis. Later, Suzuki et al. improved the recognition rate in
INFTYReader [18], by also utilizing extracted PDF character information from
PDFMiner [19].

Some PDF characters are composed of multiple glyphs, such as large braces
or square roots (commonly drawn with a radical symbol connected to a horizon-
tal line). These ‘compound’ characters were identified by Baker et al. [2] using
overlapping bounding boxes in modern PDF documents containing Type 1 fonts.

Image-based detection using RNN-based recognition was first pro-
posed by Deng et al. [4], inspired by RNN-based image captioning techniques. A
more recent example of this approach is Phong et al.’s [15], which uses a YOLO
v3 network based on a Darknet-53 network consisting of 53 convolutional layers
for feature extraction and detection, and an advanced end to end neural network
(Watch, Attend and Parse (WAP)) for recognition. The parser uses a GRU with
attention-based mechanisms, which makes the system slow due to the pixel-wise
computations. Also, error diagnosis in these recurrent image-based models is
challenging, since there is not a direct mapping between the input image re-
gions and the LATEX output strings. To address this issue for the CROHME
2019 handwriten math competition, evaluation was performed using the LgEval
library, comparing formula trees over recognized symbols (e.g., as represented
in LATEX strings), without requiring those symbols to have assigned strokes or
input regions [10]. This alleviates, but does not completely resolve challenges
with diagnosing errors for RNN-based systems.

This paper. We introduce algorithms to create a unified system for detect-
ing and recognizing mathematical expressions. We first introduce an improved
PDF symbol extractor (SymbolScraper) to obtain symbol locations and identi-
ties. We also present a new Scanning Single Shot Detector (ScanSSD) for math
formulas using visual features, by modifying the Single Shot Detector (SSD) [8]
to work with large document images. For structure recognition, we use the ex-
isting Query-driven Global Graph Attention (QD-GGA) model [9], which uses
CNN based features with attention. QD-GGA extracts formula structure as a
maximum spanning tree over detected symbols, similar to [18]. However, un-
like [18], the system trains the features and attention modules concurrently in
a feed-forward pass for multiple tasks: symbol classification, edge classification,
and segmentation resulting in fast training and execution.
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Fig. 2. Mathematical Expression Extraction Pipeline. Symbol Extraction outputs sym-
bols and their bounding boxes directly from drawing commands in the PDF file, avoid-
ing OCR. However, formula regions and formula structure are absent in PDF, and so
are identified from rendered document pages (600dpi).

Some important distinctions between previous work and the systems and
tools presented in this paper include:

1. Our system focuses solely on formula extraction and its evaluation.
2. Grammars and manual segmentation are not required (e.g., per [2])
3. Recognition is graph-based, with outputs generated more quickly and with

more easily diagnosed errors than RNN models (e.g., [15]).
4. Symbol information from born-digital PDFs is used directly; where absent,

characters are recognized from connected components (CCs) in images.
5. Structure recognition errors can be directly observed in graphs grounded in

input image regions (e.g., CCs), and the LgEval library [13,20,22,10] has been
extended to visualize errors both in isolation, and in their page contexts.

3 Formula Detection Pipeline Components

We describe the components of our formula processing pipeline in this Section.
As seen in Fig. 2, the extraction pipeline has three major components: 1) symbol
extraction from PDF, 2) formula detection, and 3) formula structure recognition
(parsing). The final outputs are Symbol Layout Trees (SLTs) corresponding to
each detected mathematical expression in the input PDF documents, which we
visualize as both graphs and using Presentation MathML (see Fig. 5).

3.1 SymbolScraper: Symbol Extraction from PDF

Unless formula images are embedded in a PDF file (e.g., as a .png), born-digital
PDF documents provide encoded symbols directly, removing the need for char-
acter recognition [2]. In PDF documents, character locations are represented by
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(a)

(b) (c)

Fig. 3. Symbol extraction from PDF. (a) Symbol locations in a PDF formula from
various tools. (b) correcting bounding box translations from glyph data. (b) Compound
character: a large brace (‘{’) drawn with three characters.

their position on writing lines and in ‘words,’ along with their character codes
and font parameters (e.g., size). Available systems such as PDFBox, PDF Miner,
and PyMuPDF return the locations of characters using the drawing commands
provided in PDF files directly. However, they return inconsistent locations (see
Fig. 3(a))(a).

We resolve this problem by intercepting the rendering pipeline, and using
the character outlines (glyphs) provided in embedded font profiles in PDF files.
Glyphs are vector-based representations of how characters are drawn using a
series of lines, arcs, and ‘pen’ up/down/move operations. These operations detail
the outlines of the lines that make up the character. Glyphs are represented by a
set of coordinates with winding rules (commands) used to draw the outline of a
character. The glyph along with font scaling information is used to determine a
character’s bounding box and relative position in the PDF. Our symbol extractor
extends the open-source PDFBox [1] library from Apache.

Character Bounding Boxes. For high-quality page rendering, individual
squares used to represent the character outlines (i.e., glyphs) are known as ‘em
squares.’ The em square is typically 1000 or 2048 pixels in length on each side,
depending upon the font type used and how it is rendered.2 Glyphs are repre-
sented by vector drawing commands in the em square ‘glyph space,’ which has
a higher resolution (e.g., a 1000 x 1000) than that used to render the character
in page images (in ‘text space’). To obtain the bounding box for a character on
a page, we need to: 1) convert glyph outline bounding boxes in glyph space to
a bounding box in ‘text space’(i.e. page coordinates), and 2) translate the box
based on the varying origin location within each glyph’s em square represen-
tation. The difference in origin locations by glyph reflects the different writing

2 You can see the various ways we obtain the em square value by looking at the
getBoundingBox() method in our BoundingBox class
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line positions for symbols, and allows the whole box to be used in representing
character shapes (maximizing their level of detail/resolution).

Glyph outlines are translated to page coordinates using character font size
and type information. A scaling matrix for the character, defined by the font size,
text scaling matrix, and current transformation matrix is used for the conversion.
PDF files provide a baseline starting point coordinate (bx, by) for characters
on writing lines, but this provided coordinate does not take character kerning,
font-weight, ascent, descent, etc., into account, as seen in Fig. 3(a). To produce
the appropriate translations for character bounding boxes, we use the textline
position of the character provided within the em square for each glyph (in glyph
space). We use displacement (δx, δy) of the bottom left coordinate within the
glyph em square to obtain the corrective translation. Next, we scale the glyph
space coordinates to text space coordinates and then use coordinate list G from
the character’s glyph, and find the width and height using the minimum and
maximum coordinates of G.

The extracted character bounding boxes are very precise even for non-latin
characters (e.g.,

∑
) as seen in Fig. 3(a) at far right. Likewise, the recognized

symbol labels are accurate. Some documents contain characters embedded in
images, in which case these characters must be identified in downstream process-
ing. We currently use font tables provided by PDFBox for mapping characters
to glyphs. Using these font tables, we have been able to retrieve glyphs for the
following font families: TrueType, Type 1, Type 2, and CID. Font information
is extracted using the getFont() method in the PDFBox TextPosition class.
There are cases where the bounding boxes do not align perfectly with characters,
due to the use of rarer font types not handled by our system (e.g., Type 3, which
seems to be commonly used for raster fonts in OCR output). We hope to handle
Type 3 in the future. a rare type of fonts, not handled by the current

Compound Characters. Compound characters are formed by two or more
characters as shown for a large brace in Fig. 3(c). For simplicity, we assume
that bounding boxes for sub-character glyphs intersect each other, and merge
intersecting glyphs into a single character. As another common example, square
roots are represented in PDF by a radical symbol and a horizontal line. To
identify characters with multiple glyphs, we test for bounding box intersection
of adjacent characters, and intersecting glyphs are merged into a compound
character. The label unknown is assigned to compound characters other than
roots, where the radical symbol is easily identified.

Horizontal Lines. Horizontal lines are drawn as strokes and not characters.
To extract them, we override the strokepath() method of the PageDrawer class
in the PDFBox library [1]. By overriding this method, we obtain the starting and
ending coordinates of horizontal lines directly. Some additional work is needed to
improve the discrimination between different line types, and other vector-based
objects could be extracted similarly (e.g., boxes, image BBs).
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Patches Pooling

Input Page Detected Formulas

Fig. 4. ScanSSD architecture. Heatmaps illustrate detection confidences with gray ≈ 0,
red ≈ 0.5, white ≈ 1.0. Purple and green bounding boxes show formula regions after
stitching window-level detections and pooling, respectively.

3.2 Formula Detection in Page Images

We detect formulas in document page images using the Scanning Single Shot
Detector (ScanSSD [11]). ScanSSD modifies the popular Single Shot Detector
(SSD [8]) to work with sliding windows, in order to process large page images (600
dpi). After detection is performed in windows, candidate detections are pooled,
and then finally regions are selected by pixel-level voting and thresholding.

Fig. 4 illustrates the ScanSSD workflow. First, a sliding window samples
overlapping page regions and applies a standard 512× 512 Single-Shot Detector
to locate formula regions. Non-Maximal Suppression (NMS) is used to select the
highest confidence regions from amongst overlapping detections in each window.
Formulas detected within each window have associated confidences, shown using
colour in the 3rd stage of Fig. 4. As seen with the purple boxes in Fig. 4, many
formulas are found repeatedly and/or split across windows.

To obtain page-level detections, we stitch window-level detections on the
page, and then use a voting-based pooling method to produce output detections
(green boxes in Fig. 4). Details are provided below.

Sliding Windows and SSD. Starting from a 600 dpi page image we slide
a 1200× 1200 window with a vertical and horizontal stride (shift) of 120 pixels
(10% of window size). Windows are roughly 10 text lines in height. The SSD
is trained using ground truth math regions cropped at the boundary of each
window, after scaling and translating formula bounding boxes appropriately.

There are four main advantages to using sliding windows. The first is data
augmentation: only 569 page images are available in our training set, which
is very small for training a deep neural network. Our sliding windows produce
656,717 sub-images. Second, converting the original page image directly to 300×
300 or 512× 512 loses a great deal of visual information, and detecting formulas
using sub-sampled page images yielded low recall. Third, windowing provides
multiple chances to detect a formula. Finally, Liu et al. [8] mention that SSD
is challenged when detecting small objects, and formulas with just one or two
characters are common. Using high-resolution sub-images increases the relative
size of small formulas, making them easier to detect.
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The original SSD [8] architecture arranges initial hypotheses for rectangular
dections unfiromly over grids at multiple resolutions. At each point in a grid,
aspect ratios (width:height) of {1/3, 1/2, 1, 2, 3} are used for initial hypotheses,
which are translated and resized during execution of the SSD neural network.
However, many formulas have aspect ratios greater than 3, and so we also include
the wider default boxes sizes used in TextBoxes [6], with aspect ratios of 5, 7,
and 10. In our early experiments, these wider default boxes increased recall for
large formulas.

The filtered windowed detections are post-processed to tightly fit the con-
nected components that they contain or intersect. The same procedure is applied
after pooling detections at the page level, which we describe next.

Page-Level Detection Pooling. SSD detections within windows are stitched
together on the page, and then each detection region votes at the pixel level (see
Fig. 4). Detections are merged using a simple pixel-level voting procedure, with
the number of detection boxes intersecting each pixel used as a coarse detection
confidence value. Other confidence values, such as the sum of confidences, aver-
age confidence, and maximum confidence produced comparable or worse results
while being more expensive to compute.

After voting, pixel region intersection counts are thresholded (using t ≥ 30),
producing a binary image. Connected components in the resulting image are
converted to bounding boxes, producing the final formula detections. We then
expand and/or shrink the detections so that they are cropped around the con-
nected components they contain and touch at their border. The goal is to capture
entire characters belonging to a detection region, without additional padding.
Before producing final results, we discard large graphical objects like tables and
charts, using a threshold for the ratio of height and area of the detected graphical
objects to that of the document page.

Identifying Extracted Symbols in Formula Regions. We identify over-
lapping regions between detected formula regions and extracted symbol bound-
ing boxes, discarding symbols that lie outside formula regions as shown in
Fig. 1(d). We then combine formula regions and the symbols they contain, and
write this to tab-separated variable (TSV) file with a hierarchical structure. The
final results of formula detection and symbol extraction are seen in Fig. 1(d).

3.3 Recognizing Formula Structure (Parsing)

We use QD-GGA [9] for parsing the detected mathematical formulas, which in-
volves recognizing a hierarchical graph structure from the expression images. In
these graphs, symbols and unlabeled connected components act as nodes, and
spatial relationships between symbols are edges. The set of graph edges under
consideration are defined by a line-of-sight (LOS) graph computed over con-
nected components. The symbol bounding boxes and labels produced by Sym-
bolScraper are used directly in extraction results, where available (see Fig. 5),
avoiding the need for character-level OCR. Otherwise, we use CCs extraction
and allow QD-GGA [9] to perform symbol recognition (segmentation and clas-
sification).
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Output: Symbol Layout Tree (SLT)

\(\zeta\left( {{T,}\left. k \right)} \right.\)

SLT in LATEX

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
    <mi xml:id="0:">ζ</mi>
    <mrow>
        <mo xml:id="1:">(</mo>
        <mrow>
            <mrow>
                <mi xml:id="2:">T</mi>
                <mo xml:id="3:">,</mo>
            </mrow>
            <mrow>
                <mi xml:id="4:">k</mi>
                <mo xml:id="5:">)</mo>
            </mrow>
        </mrow>
    </mrow>
</mrow>
</math>

SLT in Presentation MathML

Fig. 5. Parsing a formula image. Formula regions are rendered and have characters
extracted when they are provided in the PDF. QD-GGA produces a Symbol Layout
Tree as output, which can be translated to LATEX and Presentation MathML.

Symbol segmentation and classification are decided first, using provided loca-
tions and labels where available, and for connected components in the LOS graph
defined by binary ‘merge’ relationships between image CCs, and then choosing
the symbol class with the highest average label confidence across merged CCs. A
Maximum Spanning Tree (MST) over detected symbols is then extracted from
the weighted relationship class distributions using Edmond’s arborescence algo-
rithm [5] to produce the final formula interpretation.

QD-GGA trains CNN-based features and attention modules concurrently
for multiple tasks: symbol classification, edge classification, and segmentation
of connected components into symbols. A graph-based attention module allows
multiple classification queries for nodes and edges to be computed in one feed-
forward pass, resulting in faster training and execution.

The output produced is an SLT graph, containing the structure as well as
the symbols and spatial relationship classifications. The SLT may be converted
into Presentation MathML or a LATEX string (see Fig. 5).

4 Results for Pipeline Components

We provide preliminary results for each pipeline component in this section.
SymbolScraper. 100 document pages were randomly chosen from a collec-

tion of 10,000 documents analyzed by SymbolScraper. Documents were evalu-
ated based on the percentage of detected characters that had correct bounding
boxes. 62/100 documents had all characters detected without error. An addi-
tional 9 documents had over 80% of their characters correctly boxed, most with
just one or two words with erroneous bounding boxes. 6 documents were not
born-digital (producing no character detections); 10 were OCR’d documents,
represented entirely in Type 3 fonts that SymbolScraper could not process, and
9 failed due to a bug in the image rendering portion of the symbol extractor. The
remaining 4 documents had fewer than 80% of their character bounding boxes
correctly detected.
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Table 1. Formula Detection Results for TFD-ICDAR2019

IOU ≥ 0.75 IOU ≥ 0.5
Precision Recall F-score Precision Recall F-score

ScanSSD 0.774 0.690 0.730 0.851 0.759 0.802

RIT 2 0.753 0.625 0.683 0.831 0.670 0.754
RIT 1 0.632 0.582 0.606 0.744 0.685 0.713
Mitchiking 0.191 0.139 0.161 0.369 0.270 0.312

Samsung‡ 0.941 0.927 0.934 0.944 0.929 0.936

‡ Used character information

For documents with more than 80% of their text properly extracted, the num-
ber of pages with character extractions without error is 94.7% (71 of 75). We
compare our SymbolScraper tool against PDFBox, PDFMiner and PyMuPDF.
As shown in Fig. 3(a), only SymbolScraper recovers the precise bounding boxes
directly from the PDF document. SymbolScraper is much faster than other tech-
niques that obtain character bounding boxes using OCR or image processing. In
our preliminary experiments, running SymbolScraper using a single process on
a CPU takes around 1.7 seconds per page on a laptop computer with modest
resources.

ScanSSD. The top of Table 1 shows formula detection results obtained by
ScanSSD along with participating systems in the ICDAR 2019 Typeset For-
mula Detection competition [10]. Systems are evaluated using a coarse detection
threshold with IoU ≥ 50%, and a fine detection threshold with IoU ≥ 75%. We
use the implementation provided by the competition [10] to calculate intersec-
tions for box pairs, as well as precision, recall and f-scores.

ScanSSD outperforms all systems that did not use character locations and
labels from ground truth in their detection system. Relative to the other image-
based detectors, ScanSSD improves both precision and recall, but with a larger
increase in recall scores for IOU thresholds of both 0.75 (fairly strict) and 0.5
(less strict). The degradation in ScanSSD performance between IOU thresholds is
modest, losing roughly 7% in recall, and 7.5% precision, indicating that detected
formulas are often close to their ideal locations.

Looking a bit more closely, over 70% of ground truth formulas are located at
their ideal positions (i.e., with an IOU of 1.0). If one then considers the charac-
ter level, i.e., the accuracy with which characters inside formulas are detected,
we obtain an f-measure of 92.6%. The primary cause of the much lower formula
detection rates are adjacent formulas merged across textlines, and splitting for-
mulas at large whitespace gaps (e.g., for variable constraints). We believe these
results are sufficiently accurate for use in prototyping formula search engines ap-
plied to collections of PDF documents. Examples of detection results are visible
in Figs. 1 and 6.

Running the test set on a desktop system with a hard drive (HDD), 32GB
RAM, an Nvidia RTX 2080 Ti GPU, and an AMD Ryzen 7 2700 processor, our
PyTorch-based implementation took a total of 4hrs, 33 mins, and 31 seconds
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MathSeer Pipeline Results Visualization

Pdf name: Katz99

Page: 10

Expression
name Expression Image MathML Output LG Output

Katz99_P10F026

Katz99_P10F027

Katz99_P10F028

Katz99_P10F029

Katz99_P10F030

Katz99_P10F031

ζ(T , k)

C

C/1

q

f

k

f(X

1

, X

2

, X

3

= 0

tcrZ
Nai�
�

IcerOZo
Nai0
0

CNPHUNLR5I R
Nai1
1

CNPHUNLR5I

bmkkZ
Nai2
2

OTLA

j
Nai3
3

CNPHUNLR5I
PhfgrOZo
Nai4
4

CNPHUNLR5I

0
COb�
�

B
Nah�
�

qjZqe
Nah0
0

CNOHUNLS3I nlb
Nah1
1

CNOHUNLS3I o
Nah2
2

ORTA

b
1Of 
 �0

j
0Ob�
�

e
Nah 
 

IcerOZq
Nah0
0

CNPHXNLS9I U
Nah1
1

CNPHXNLS9I

cotZj
Nah0 
0 �00

wcqn
Nah00
01

CNPHXNLS9I

nmc
Nah2
2

PRTA

bnllZ
Nah3
3OTLB

U
Nah4
4

CNPHXNLS9I

run
Nah5
5PRTA

bnllZ
Nah6
6

OTLB

U
Nah7
7

CNPHXNLS9I

CNPHXNLS9I

rfqcc
Nah8
8

PRTA

Firefox http://localhost:8001/GTDB_full_test/html-output/pdf_htmls/Katz99_Page10.html

1 of 1 02/02/2021, 11:11 PM

Fig. 6. HTML visualization for formulas extracted from a sample PDF page with
detected formula locations (left), and a table (right) showing extracted formulas and
recognition results as rendered MathML and SLT graphs.

to process 233 pages including I/O operations (average: 70.4 secs/page). While
not problematic for early development, this is too slow for a large corpus. We
identify possible accelerations in the conclusion (see Section 6).

When using an SSD on whole document pages in a single detection window
(e.g., 512 × 512), very low recall is obtained because of the low resolution, and
generally bold characters were detected as math regions.

QD-GGA. We evaluated QD-GGA on InftyMCCDB-23, a modified version
of InftyCDB-2 [17]. We obtain a structure recognition rate of 92.56%, and an
expression recognition rate (Structure + Classification) of 85.94% on the test set
(6830 images). Using a desktop system with a hard drive (HDD), 32GB RAM,
an Nvidia GTX 1080 GPU, and an Intel(R) Core(TM) i7-9700KF processor,
QD-GGA took a total of 26 mins, 25 seconds to process 6830 formula images
(average: 232 ms/formula).

5 New Tools for Visualization and Evaluation

An important contribution of this paper is new tools for visualizing recognition
results and structure recognition errors, which are essential for efficient analysis
and error diagnosis during system development and tuning. We have created
these in the hopes of helping both ourselves and others working in formula
extraction and other graphics extraction domains.

Recognition Result Visualization (HTML + PDF). We have created
a tool to produce a convenient HTML-based visualization of the detection and
recognition results, with inputs and outputs of the pipeline for each PDF docu-
ment page. For each PDF page, we summarise the results in the form of a table,
which contains the document page image with the detected expressions at the

3 https://zenodo.org/record/3483048#.XaCwmOdKjVo

https://zenodo.org/record/3483048##.XaCwmOdKjVo
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(b)

Fig. 7. Error analysis (errors shown in red). (a) Main error table organized by decreas-
ing frequency of errors. (b) Specific instances where ‘l’ is misclassified as ‘one,’ seen
after clicking on the ‘10 errors’ link in the main table.

left and a scrollable (horizontally and vertically) sub-table with each row show-
ing the expression image, the corresponding MathML rendered output, and the
SLT graphs (see Fig. 6).

We created HTMLs for easy evaluation of the entire pipeline, to identify
component(s) (symbol extraction, expression detection, or structure recognition)
producing errors on each page. This makes it easier to diagnose the causes of er-
rors, identify the strengths and weaknesses of different components, and improve
system designs.

Improved Error Visualization. The LgEval library [13,14] has been used
for evaluating formula structure recognition both for recognition over given input
primitives (e.g., strokes) and for output representations without grounding in
input primitives [10] . We extend LgEval’s error summary visualization tool,
confHist, to allow viewing all instances of specific errors through HTML links.
These links take the user directly to a list of formulas containing a specific
error. The tool generates a table showing all error types for ground truth SLT
subtrees of a given size, arranged in rows and sorted by frequency of error, as
shown in Fig. 7(a) (for single symbols). Each row contains a sub-table with
all primitive level target and error graphs, with errors shown in red. Errors
include missing relationships and nodes, segmentation errors, and symbol and
relationship classification errors - in other words, all classification, segmentation,
and relationship errors.

New links in the error entries of the HTML table open HTML pages, contain-
ing all formulas sharing a specific error along with additional details arranged
in a table. This includes all expression images containing a specific error along
with their SLT graph showing errors highlighted in red Fig. 7(b). The new tool
helps to easily identify frequent recognition errors in the contexts where they
occur. For example, as seen in Fig. 7(b), we can view all expression images in
which ‘l’ is misclassified as ‘one’ by clicking the error entry link (10 errors) in
Fig. 7(a) and locate the incorrect symbol(s) using the SLT graphs.

Both visualization tools load very quickly, as the SLT graphs are represented
in small PDF files that may be scaled using HTML/javascript widgets.
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6 Conclusion

We have presented a new open-source formula extraction pipeline for PDF doc-
uments, and new tools for visualizing recognition results and formula parsing
errors. SymbolScraper extracts character labels and locations from PDF docu-
ments accurately and quickly by intercepting the rendering pipeline and using
character glyph data directly. The new ScanSSD formula detector identifies for-
mulas with sufficient accuracy for prototyping math-aware search engines, and
very high accuracy at the character level. The existing QD-GGA system is used
to parse formula structure in detected formula regions.

In the future, we would like to design an end-to-end trainable system for both
formula detection and parsing, and also extend our system to handle more PDF
character encodings (e.g., Type 3 fonts). Future work for SymbolScraper includes
improved filtering of horizontal bars, integrating compound characters classifica-
tion within the tool, and faster implementations (e.g., using parallelization). For
detection using ScanSSD, we are looking at ways to accelerate the non-maximal
suppression algorithm and fusion steps, and to improve the page-level merging
of windowed detections to avoid under-segmenting formulas on adjacent text
lines, and over-merging of formulas with large whitespace gaps (e.g., caused by
variable constraints to the right of a formula).

We believe that our pipeline and tools will be useful for others working on
extracting formulas and other graphics type from documents. Our system will
be available as open source before the conference.
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