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Abstract. ColBERT is a highly effective and interpretable retrieval
model based on token embeddings. For scoring, the model adds cosine
similarities between the most similar pairs of query and document token
embeddings. Previous work on interpreting how tokens affect scoring pay
little attention to non-text tokens used in ColBERT such as [MASK]. Us-
ing MS MARCO and the TREC 2019-2020 deep passage retrieval task,
we show that [MASK] embeddings may be replaced by other query and
structural token embeddings to obtain similar effectiveness, and that [Q]
and [MASK] are sensitive to token order, while [CLS] and [SEP] are not.
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1 Introduction

The ColBERT [4] retrieval model uses BERT [2] to produce token embeddings
for document and query passages. Typically, candidate documents are retrieved
using dense retrieval on embedded tokens [15, 17], and then re-scored using the
sum of maximum cosine similarities between each query token embedding and
its most similar document token embedding via the MaxSim operator. Rescoring
improves retrieval effectiveness, and is more interpretable than dense retrieval
models that use single vectors (e.g. the BERT [CLS] token), because query to-
kens contribute individually to document rank scores [3], and token embeddings
can be analyzed directly.

Interestingly, not all tokens used in ColBERT’s scoring are text tokens. Some
are structural tokens that mark locations and segments in a token sequence. Col-
BERT employs a modified BERT model to create contextualized embeddings for
every document and query token, including structural BERT tokens. Structural
tokens include [CLS], which appears at the input start, followed by [Q] or [D]
to signify whether a passage is from a query or a document. Text tokens from
the query are next, followed by [SEP] after the final text token. Query token
sequences shorter than the input size are padded with [MASK] tokens,1 and doc-
ument token sequences are padded with [PAD] tokens. Below are example query
and document passage tokenizations with input sizes of 32 and 180 tokens, re-
spectively. Subscripts are used to indicate token position in the input.
1 [MASK] was originally devised for BERT to represent a “hidden” input token in its

masked token prediction training task.
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Fig. 1. PCA embeddings for the MS MARCO query “cost of endless pools swim spa”.
[MASK] tokens (red points) cluster around query words and structural tokens (black).

Q: [CLS]1 [Q]2 cost3 of4 endless5 pools5 swim6 spa7 [SEP]8 [MASK]9 [MASK]10
[MASK]11 . . . [MASK]30 [MASK]31 [MASK]32

D: [CLS]1 [D]2 prices3 . . . swim12 spa13 .14 [SEP]15 [PAD]16 [PAD]17 [PAD]18
. . . [PAD]178 [PAD]179 [PAD]180

Figure 1 shows the token embeddings for the query above.2 As seen in Figure 1,
[MASK] tokens tend to cluster around other query tokens, giving them additional
weight [4, 13]. The original ColBERT paper suggests [MASK] tokens provide a
form of query augmentation through term re-weighting and query expansion.
Wang et al. [12, 13] study a version of ColBERT that performs query expansion
using pseudo-relevance feedback, and find that [MASK] tokens generally do not
expand the query by matching terms outside the query, and instead need to add
them explicitly. In this way, [MASK] tokens primarily weight query tokens by
matching query text tokens in documents. Wang et al. [14] also find that for
many ColBERT based models, using only query structural tokens for retrieval
([CLS], [SEP], [Q], [MASK]) is nearly as effective as using all token embeddings
for retrieval, and outperforms using only low IDF query token embeddings.

Previous studies of ColBERT’s retrieval behavior have focused on text tokens.
In considering why ColBERT’s ranking mechanism outperforms standard lexi-
cal models such as BM25, Formal et al. [3] focus on query text tokens, and find
that tokens with high Inverse Document Frequency (IDF) produce more exact
matches in ColBERT query/document token alignments (e.g. (Q:pool,D:pool))
while low IDF terms produce more inexact matches (e.g. (Q:is,D:and)). Low
IDF token embeddings also tend to shift position more, and removing high IDF
tokens perturbs ranking more than removing low IDF tokens. MacAvaney et al.
2 Interactive version: https://cs.rit.edu/~bsg8294/colbert/query_viz.html
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[5] also found a sensitivity for text tokens in ColBERT, with misspellings harm-
ing retrieval more than in lexical models. Curiously, they also find ColBERT
increasing document scores when non-relevant tokens are appended to a docu-
ment token sequence, while appending relevant terms decreases rank scores even
after controlling for document length. Perhaps appending relevant terms pro-
duces an ‘unnatural’ token sequence for the embedding language model which
interferes with token embedding/contextualization and MaxSim scoring.

In this paper, we extend inquiries into how tokens impact retrieval in Col-
BERT by shifting focus to structural tokens, and [MASK] in particular. In the
next Section we present experiments to address the following research questions:

RQ1. Do [MASK] tokens perform more than just term weighting?
RQ2. How sensitive are [CLS], [SEP], [Q], and [MASK] to query token order?

2 Methodology and Experimental Designs

For our experiments, we use the ColBERT v1 model integrated within PyTer-
rier [6]. The state-of-the-art ColBERT v2 [9] model adds index compression and
training with hard negatives and distillation to improve rank quality. Index com-
pression and embedding modifications may alter retrieval candidates and token
cosine similarities, and we plan to check this in future work. However, we wish
to first study the simpler, original ColBERT model. We also believe insights
into the workings of ColBERT v1 and models inspired by it (e.g. the text/image
model FILIP [16]) will be beneficial for the research community.

Implementation, Datasets, and Metrics. We use a ColBERT v1 checkpoint from
the University of Glasgow trained on passage ranking triples for 44k batches,3
and run experiments on a server with 4 Intel Xeon E5-2667v4 CPUs, 4 NVIDIA
RTX2080-Ti GPUs, and 512 GB RAM. For our experiments, we use two datasets:

1. MS MARCO [7]’s passage retrieval dev set (8.8 million documents, 1 million
queries, binary relevance judgements). Each query has at most 1 matching
document. We use this dataset for query statistics (e.g. cosine distances
between query embeddings).

2. A dataset combining test queries from the TREC 2019 [11] and 2020 [1] deep
passage retrieval task (99 queries, graded relevance judgements). Collection
documents are the same as MS MARCO. We use this dataset for experiments
focused upon retrieval quality.4

For the TREC 2019-2020 collection, the relevance scale is between 0 and 3 with a
score of 2 considered relevant for metrics using binary relevance (e.g. MAP). We
examine relevance scores thresholded at 1, 2, and 3 to see the effect of binarizing
at different relevance grades. We use MRR@10 to characterize effectiveness for
3 http://www.dcs.gla.ac.uk/ craigm/ecir2021-tutorial/colbert_model_checkpoint.zip
4 Running the TREC test queries takes roughly 15 minutes to complete using a mul-

tithreaded Rust program: https://github.com/Boxxfish/IR2023-Project
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top results, MAP to characterize effectiveness for complete rankings, and to
complement MAP we use nDCG@k measures (k ∈ {10, 1000}) to utilize graded
relevance labels from the TREC data.

RQ1: Do [MASK] tokens perform more than just term weighting? Figure 1 illus-
trates how [MASK] token embeddings cluster around query terms, which was con-
sistent for MS MARCO queries we examined. As mentioned previously, [MASK]
tokens have been identified as having two roles in scoring: (1) query term weight-
ing through matching document terms to [MASK] tokens with embeddings similar
to non-[MASK] query tokens, and (2) query expansion through [MASK] embed-
dings shifting toward potentially relevant tokens outside of the query.

In this experiment, we test whether the clustering of [MASK] tokens around
query tokens indicates that term weighting is the only role [MASK] tokens ac-
tually play in ColBERT scoring. To do this, we replace structural token em-
beddings in a query with text token embeddings from the same query. This
forces ColBERT to perform term weighting: replacing structural token embed-
dings by their nearest text embeddings cannot introduce new terms or perform
“soft weighting” by increasing the weight of multiple query tokens. We use the
TREC 2019-2020 collection, and compare four token remapping conditions: (1)
no remapping, (2) remapping [MASK] tokens to text tokens, (3) remapping all
structural token embeddings ([CLS], [SEP], [Q], and [MASK]) to text tokens,
and finally (4) remapping each [MASK] to its most similar embedded text token
or non-[MASK] structural token (i.e. [CLS], [SEP], or [Q]). We hypothesize that
replacing [MASK] embeddings by non-[MASK] embeddings in queries will reduce
effectiveness by preventing matches with terms that do not appear in the query
(i.e. by preventing query expansion).

RQ2: How sensitive are [CLS], [SEP], [Q], and [MASK] to query token order? As
shown in the example above, ColBERT begins every query token sequence passed
to BERT with the structural tokens [CLS] and [Q], followed by the text tokens
and the structural token [SEP] marking the end of the text tokens, and finally
zero or more [MASK] tokens to fill out the fixed-size input (e.g. 32 tokens). [CLS]
is included in BERT’s training objective function, and aggregates context across
entire query and document passages resulting in a “summary” representation. We
thus expect queries with similar wording and intent to produce similar [CLS]
embeddings, even when the query word order changes. We expect the same
pattern to hold for [SEP] which terminates every query and document passage.
In contrast, we expect [MASK] embeddings to vary more than [CLS] and [SEP]
tokens when words are re-ordered, because of their observed clustering around
query terms and resulting weighting of individual terms in scoring. We expect
[Q] embeddings to also vary more than [CLS] and [SEP], because [Q] is absent
in the original BERT training objective.

To study how query word order influences contextualization for query struc-
tural tokens, we reorder query text terms prior to contextualization similar to
Rau et. al [8]. Randomly shuffling query tokens may alter the meaning of a query,
so we limit the permutations considered. Specifically, we transform queries of the
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Table 1. Replacing structural token embeddings with other query token embeddings
(TREC 2019-2020, RQ1). Maximum values are in bold; significant differences from
“None” are shown with a dagger (p < 0.05, Bonferroni-corrected t-tests).

Structural Token Remapping

Metric None All [X] →
Text

[MASK] →
Text

[MASK] →
Str. & Text

Binary Relevance
MAP(rel≥1) 0.447 0.454 †0.462 †0.462
MRR(rel≥1)@10 0.930 0.924 0.929 0.923
MAP(rel≥2) 0.450 0.444 0.454 0.457
MRR(rel≥2)@10 0.851 0.820 0.835 0.837
MAP(rel≥3) 0.366 0.362 0.373 0.372
MRR(rel≥3)@10 0.557 0.560 0.563 0.563

Graded Relevance
nDCG@10 0.689 0.685 0.691 0.694
nDCG@1000 0.680 0.673 0.683 0.684

form “what is ...” into “... is what”, moving the first two text tokens to the end of
the query in the opposite order. To further avoid accidental semantic shifting, we
only examine queries that are 3-8 tokens long. 12,513 queries in the MS MARCO
dev set fit this criteria. As a baseline, we also apply the same reordering pattern
to all queries 3-8 tokens long, without requiring the first two tokens to be “what
is”. 68,318 queries in the dev set fit this criteria. For the reasons given above, we
hypothesize that [Q] and [MASK] embeddings will change more than [SEP] and
[CLS] under this reordering. We use the cosine distance to quantify the shift in
token embeddings after reordering the query text tokens.

3 Results

RQ1: Do [MASK] tokens perform more than just term weighting? In Table 1 we
see replacing embeddings for all structural tokens with their closest text token
embedding produces non-significant reductions in metrics other than MRR@10
(rel≥3). The two conditions mapping only [MASK] have very similar metrics,
but surprisingly produce slight increases in MAP and nDCG@10/@1000 over
both the “None” and “All” conditions. For MAP(rel≥1), the increase is signif-
icant (1.5%). MRR@10(rel≥3) is also slightly higher than standard ColBERT
(but not significantly so). These small increases are likely from incorporating ad-
ditional context through the [CLS], [Q], and [SEP] tokens (especially [CLS]).
This contradicts our hypothesis that remapping [MASK] embeddings would harm
performance, and is also interesting because [MASK] tokens comprise most of
the input for short queries. In other words, its appears that strong retrieval
performance with ColBERT is possible even when using only a few text token
embeddings, provided that term weighting is taken into account.

RQ2: How sensitive are [CLS], [SEP], [Q], and [MASK] to query token order?
In Figure 2(a), [QUERY:3] is the third token and first text token (always “what”)



6 B. Giacalone, G. Paiement, Q. Tucker, and R. Zanibbi

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
sin

e 
Di

st
an

ce

CLS Q QUERY:3 QUERY:5 SEP MASK:13 MASK:32

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(a) “what is ...” → “... is what” (b) All queries: “1 2 ...” → “... 2 1”

Fig. 2. Distribution of cosine distance (1 − cos(e, e′)) for token embeddings before
and after query token reordering (MS MARCO, RQ2). For brevity not all tokens are
shown, but the general trend of higher variance holds for all [MASK] tokens. Left:
Cosine distances for queries starting with “what is”. Right: Cosine distances without
requiring queries to start with “what is”. [QUERY:3] and [QUERY:5] are the first and
third text tokens, respectively; [MASK:13] represents the [MASK] token at position 13,
and [MASK:32] represents the final [MASK] input token at position 32.

while [QUERY:5] is the fifth token containing the text token after “what is.” We
see distinct differences in how cosine distances are distributed for [CLS], [SEP],
[QUERY:3], and [QUERY:5] versus [Q], [MASK:13], and [MASK:32]. The first
group shows barely any shift, while the latter group shows large shifts, with
higher variation. Figure 2(b) shows results for queries reordered similarly, but
without requiring them to start with “what is”. For example, “airplane flights to
florida” produces the somewhat unnatural query “to florida flights airplane”. All
tokens show larger representational shifts in this condition; however, we again
find that [CLS], [SEP], and the [QUERY:3/5] text token embeddings vary far
less than the [Q] and [MASK] embeddings.

Despite our efforts to avoid it, some “what is” queries have their meaning
altered by our reordering. For example, “what is some examples homogeneous”
becomes “some examples homogeneous is what”, which may change the query
from a request for examples to asking for a definition. When we filtered out
queries containing the word “example”, the variance of [QUERY:3] dropped from
8.53 · 10−4 to 7.73 · 10−4, while the variance of [Q] had less of a proportional
drop (2.07 · 10−2 to 2.06 · 10−2), indicating some of the variance of non-[Q] or
[MASK] embeddings may be due to these edge cases.

4 Discussion and Conclusion

To our surprise, replacing [MASK] token embeddings in queries with either their
most similar text token embedding in the same query, or the most similar text
or non-[MASK] structural token embedding from the query yielded similar effec-
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tiveness to standard ColBERT for the TREC 2019-2020 dataset. There is even
a small significant increase in MAP when weakly-relevant documents are con-
sidered relevant (i.e. MAP(rel≥1)). The differences between mapping [MASK] to
only text tokens or to both text and non-MASK structural tokens was statisti-
cally insigificant for all metrics observed. So if [MASK] tokens have effects other
than term weighting in scoring, their role appears to be minor (RQ1).

This suggests a possible optimization. We can multiply each non-[MASK]
query token embedding’s score contribution by the number of [MASK] token em-
beddings most similar to it. Regarding interpretability, using [MASK] only to
weights tokens in this manner simplifies the ColBERT scoring model both con-
ceptually and computationally. For short queries, most of the input to ColBERT
is [MASK] tokens, and so the number of query tokens to match against document
tokens with MaxSim may be a fraction of the full token input size. A related
approach is described by Tonellotto et al. [10], where query embeddings are
dropped after contextualization based on frequency statistics. However, rather
than pruning a set number of tokens based on collection frequency, we would use
all token embeddings to retrieve candidates, and then weight non-[MASK] query
tokens using fewer nearest neighbor lookups during scoring.

However, the question of [MASK] tokens’ role in retrieving candidates still
remains, as this paper has focused on the final scoring step; all query tokens
were used to retrieve candidates in our experiments. How might limiting or
removing the use of [MASK] tokens in the first-stage dense retrieval impact
performance? We wonder about the small statistically insignificant improve-
ments seen in MAP and MRR for highly relevant documents (rel≥3), as well as
nDCG@10, nDCG@1000, and MAP. Are these stable and/or significant in other
collections? To better understand [MASK], one possible experiment is appending
different numbers of [MASK] tokens to each query. This may reveal whether hav-
ing fewer [MASK] tokens causes them to move closer to non-[MASK] embeddings,
and whether having more [MASK] tokens might improve term weighting.

Regarding the effect of token ordering on contextualized embeddings (RQ2),
our findings are consistent with our original hypothesis: [CLS] and [SEP] em-
beddings do not vary greatly for similar queries with a different token ordering,
while [Q] and [MASK] do. The shift in [Q] is the most interesting result here; the
model may be treating [Q] similar to another [MASK] token. Some early analysis
suggests that a query [CLS] tends to match a document [CLS], a query [SEP]
tends to match ending punctuation, and [MASK] tends to match tokens other
than [CLS] or [SEP] (see our interactive visualization for ColBERT scoring2).
We have not observed [Q] matching to any specific document tokens.

In the future we would also like to validate our results using ColBERT v2. We
believe that our results should hold for the newer model – if [MASK]s continue to
cluster around query word embeddings, we expect [MASK]s will continue to act as
term weights, and the training process in ColBERT v2 should not alter how [Q]
is processed. We would also like to extend our evaluation to additional datasets,
since we have only focused on MS MARCO and the MS MARCO-derived TREC
2019-2020 datasets in our experiments.
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