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Abstract

Detecting text in images presents the unique challenge of finding both
in-scene and superimposed text of various sizes, fonts, colors, and textures
in complex backgrounds. The goal of this system is not to recognize specific
letters or words but only to determine if a pixel is text or not. This pixel
level decision is made by applying a set of weighted classifiers created using
a set of high pass filters, and a series of image processing techniques. It is
our assertion that the learned weighted combination of frequency filters in
conjunction with image processing techniques may show better pixel level text
detection performance in terms of precision, recall, and f-metric, than any of
the components do individually. Qualitatively, our algorithm performs well
and shows promising results. Quantitative numbers are not as high as is
desired, but not unreasonable. For the complete ensemble, the f-metric was

found to be 0.36.
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Chapter 1

Introduction

1.1 Motivation

A Completely Automated Public Turing test to tell Computers and
Humans Apart (CAPTCHA) is a challenge-response test used to distinguish
humans from computers. This test is very commonly presented as a warped
image containing text that is easy for a human to understand but difficult
for a machine to understand. Much research has been done, however, in using
machines to break CAPTCHA challenges and emulate a human response. And
so, this growing ability for machines to produce the same response as humans
has necessitated the evolution of CAPTCHA, and the advancement of the
challenge that is presented. In an effort to balance usability with security,
Kurt Kluever explored using Video CAPTCHA [20]. Currently, random videos
taken from YouTube are presented to the user, unaltered. The user then types
three words describing the video, as is shown in Figure 1.1. These words are
compared with the video’s tags and with the tags of some related videos. The
challenge is passed successfully if one of the words typed by the user is in the
video tag word list. Many of these videos contain text, and it seems likely

that this text may be used to pass the challenge. To prevent this potential
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Type 3 words that best describe this video: Type 3 words that best describe this video:

dogs costume halloween vancouver winter olympics

Figure 1.1: Left: Video CAPTCHA without text[20]. Right: Video
CAPTCHA with text.

vulnerability it may be possible to preprocess videos, detect the text, and mask

it before displaying it as a CAPTCHA.

Two distinct problems are encountered, detection and segmentation of
text in video, and removal of this text in an elegant, unobtrusive manner. We

are concerned with the first problem: detection of text in video.

1.2 Overview

Detecting text in images presents the unique challenge of finding both
in-scene and superimposed text of various sizes, fonts, colors, and textures
in complex backgrounds. In-scene text is text in an image which has been
captured from the natural scene by the imaging system. Superimposed text

is text which has been added to an image during post processing. Ideally a



system can be constructed which is able to find all text in images, regardless

of the specific properties of any given text sample.

The goal of this system is not to recognize specific letters or words
but only to determine if a pixel is text or not. This can then be used in
conjunction with a standard OCR algorithm to recognize words, word level
bounding boxes can be constructed, or it can be used for other applications.
Our motivation for creating a text detector is to enhance the security of video
CAPTCHA. Finding text in the video and removing it with inpainting or a
similar technique before presenting it to the user greatly reduces this security

risk.

Seeking to accomplish this task, we focus on still images and single
frames of video. Unlike all of the other methods surveyed in Chapter 2, our
method attempts to perform text detection at the pixel level to recover in-
dividual characters. All other methods researched work instead at the word
level; that is a bounding box is constructed around all characters which have
been determined to be in a single word. Because of this, both our ground

truth and our scoring metrics differ slightly from that of others.

Starting with a public dataset with word level bounding box ground
truth, pixel level ground truth was manually created using an interactive tech-
nique. Images were color quantized and background colors were manually
selected for removal until only foreground text pixels remained, creating a

pixel level ground truth mask.



Images are converted to grayscale by converting to the YCC color space
and extracting the luminance component. A series of high pass filters are
applied in the DCT frequency domain. Our method makes use of the Hedge(3)
algorithm [13], a variant of the Weighted Majority algorithm [30]. Weights are
assigned to a set of classifiers constructed by thresholding these filters using
the Weighted Majority algorithm. Classifiers which maximize the f-metric of
precision and recall, based on pixel level ground truth, are assigned a high
weight. The final binary classification mask is constructed for any given image
by applying each classifier, assigning each pixel selected by the classifier the
value of the weight of that classifier, summing the classification results, and
thresholding at 0.5; that is pixels receiving a majority vote from the weighted

classifiers are used as the final classification mask for that image.

False positives are reduced in a multi-step post processing procedure.
Starting with the classifier output, the ratio of the Eigenvalues of the coordi-
nate covariance matrix of each connected component is used to remove objects
which are too linear and therefore more likely to be high frequency artifacts
instead of being text characters. Connected components are simply groups
of pixels which are neighboring each other. They may be text characters or
false alarms. Components are morphologically filled in and color consistency
within each filled connected component is used to remove objects which are
not consistent in color, and therefore not likely to be text characters. By filling

in connected components we are also reducing false negatives, since interior



pixels which may have been labeled background may now be labeled as text
in the final output. Threshold values for linearity and color consistency are

extracted from the training data.

Working with the grayscale image, the Canny edge detector is used
to perform segmentation. The same connected component linearity and color
consistency rules applied to the classifier output are applied here as well. Ad-
ditional constraints are applied to connected components which are nested
within other components. These constraints help avoid incorrect filling of

background and the interior of letters.

The intersection of the processed classifier results with the Canny seg-
mented results determines the final output. Filled connected components from
the edge detection process remain in the final result only if they are present
in the classifier output. During training, post processing is run within the
Weighted Majority algorithm to determine which classifiers maximize the f-

metric after the entire chain has been run on a given image.

Text in images can be extracted to different levels of success by us-
ing frequency domain filtering and image processing techniques which exploit
specific constraints, including color consistency and the linearity of text char-
acters, among other possible methods. It is our assertion that the learned
weighted combination of frequency filters in conjunction with image process-
ing techniques may show better pixel level text detection performance in terms

of precision, recall, and f-metric, than these components do individually.



The remainder of this document is organized as follows. Chapter 2
covers background information, including related work and features used by
our algorithm. Chapter 3 describes our methodology, detailing the specifics of
our algorithm. In Chapter 4, results are presented. A discussion is given in

Chapter 5, followed by a conclusion and future work, in Chapter 6.



Chapter 2

Background

Although the end goal of this technique is application to video, develop-
ment has focused exclusively on still images due to the availability of data and
time constraints. Similarly, much related work in the area of text detection in
video focuses on still frames and still images; with only a handful of algorithms
taking full advantage of video. Table 2.1 indicates which algorithms explicitly

use video and which do not.

Text that is displayed in a video often provides a useful context re-
garding the content of the video, which can then be used for understanding,
retrieval, and search. The nature of readable text may make it more easily
segmented and correctly identifiable than other objects, perhaps even correctly
identifiable as specific characters or words. Temporal information provided by
video is also useful and can be exploited for this task, assuming text is present

in more than one frame of video.

Two types of text may be present in a frame of video, such as that
shown in Fig 2.1. Artificial text, or superimposed text, is regarded by most
researchers of video text detection techniques as the most common. This type

is superimposed on the video during the editing process and is usually used
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Figure 2.1: Video clip of a hockey game taken from YouTube which contains
both in-scene and superimposed text.

for captions or titles. In-scene text, on the other hand, is text which is present
during the filming of the video, such as sponsor banners placed around the

rink at a hockey game.

Much work has been done in the past decade on text detection in nat-
ural images. Research has focused on both still imagery and video. Two
comprehensive surveys of text detection [17, 18] reveal three approaches which
can be taken to solve the text detection problem. These are region-based
methods, including the use of color, connected components, and edges; texture-
based methods, including Gabor filters, wavelets, the discrete cosine transform
(DCT), and the Fourier transform; as well as other approaches, including adap-
tive thresholding, model based approaches, and motion based approaches when
video is used. Some algorithms are able to pick out in-scene text to an extent,

but the majority focus on artificial text. With the exception of Epshtein et



al. [11], in the reviewed algorithms, testing was not done on artificial text and
scene text independently so the extent to which any given algorithm performed
on one task in comparison to the other is unknown quantitatively. Epshtein

et al. focus on in-scene text only.

It is common to segment text using edge detection [6,29] for simplicity
and speed. Other more exotic methods have also been proposed which use
multiscale wavelet features [52] or discrete cosine transform coefficients [36].
To avoid as many false positives as possible, classification of detected regions
can also be performed. Ye et al. use only a support vector machine (SVM) [52],
Chen et al. use a neural network and an SVM [6], while Lienhart and Wernicke
use a neural network for their approach [29]. Each technique suggests different
features to use for classification, some more intuitive than others. In contrast,
Qian et al. and Lienhart and Effelsberg do not perform a classification to
improve segmentation, instead focusing on approaches to segmentation which
produce results that standard OCR software can use to perform the final text
recognition task [28,36]. Likewise, Crandall et al. also rely only on image

processing information and do not perform any classification techniques[8].

In a more recent paper, Ephstein et al. introduce the Stroke Width
Transform for detecting in-scene text [11]. The researchers present their work
as a region-based text detection approach similar to connected components.
The dataset used for training and testing our proposed algorithm, [1], was

used by Ephstein et al., allowing for direct comparison.



Table 2.1:

Overview of reviewed algorithms

Ref Segmentation Features Classifier Post processing Video
Edge, Gradients,

[6] Morphological DCT Coefficients SVM, MLP  OCR No

[29] Edge, Raw Data MLP Temporal Heuristics  Yes
Projection Profiles
Wavelet, Wavelet,

[52] Morphological, Crossing Count SVM Multiscale Merging No
Projection Profiles Histogram
DCT, Contrast,

[36]  Morphological, - - Text Tracking Yes
Projection Profiles
Color, Contrast,

[28] Motion, Heuristics OCR Yes
8] DCT, Morphological, B B Text Tracking, Yes
Heuristics Temporal Heuristics
1] Canny Edge, B B Filtering, No

Stroke Width Transform Heuristics

it is difficult to generalize an algorithm into a few words, the table provides a

Table 2.1 provides an

overview of several techniques reviewed. While

guide for the segmentation, features chosen, classifier used with the chosen fea-

tures, post processing run after classification, and if the algorithm is designed

specifically for motion video.

Segmentation refers to the means by which each frame of video was

divided into regions of interest which are likely to contain text. Edge detection,

wavelet coefficients, discrete cosine transform coefficients, projection profiles,

and other information is often combined with morphological image processing

and some type of heuristics for this task. Morphological processing allows

10



for the growing or shrinking of regions, many times with the goal of closing

selected pixels into a solid shape, expanding the selected region.

Features used are specific to each paper and include gradient maps,
DCT coefficients, wavelet coefficients, using the raw data itself, and using
other customized features. Note that [8,28, 36] did not explicitly use a feature
set other than the binary result of segmentation. For their methods if a region
of interest was segmented, it was classified as text. Also note that these
papers did not explicitly train classifiers for the same reason, and the region
was labeled text if it was segmented. Other authors used more conventional
classifiers including neural networks and support vector machines to decide if

a segmented region of interest was text or not based on the features provided.

In the post processing phase, one of three options were chosen for re-
jecting any false alarms that may have made it past classification. A third
party OCR was used, the redundancy of temporal information was exploited,
or in the special case of [52], multiple scales produced by the wavelet transform

were merged.

2.1 Transform Functions

The discrete cosine transform, the wavelet transform, and the MPEG
encoding process are often leveraged for text detection in video. To better un-
derstand these topics, brief background information is provided. This material

is referenced from [14].

11



2.1.1 Discrete Cosine Transform

The discrete cosine transform (DCT) expresses a function as the sum
of cosine functions of varying frequency. Many variations exist, however DCT-
IT is the most commonly used for image processing applications. DCT-II is
shown in Equation 2.1 using the notation of [47] where a(k) is \/1/_2 for k=0

and 1 otherwise.

XM (k) = \/%a(k) i z(n) cos (W) O0<E<SN-1  (21)

n=0
In the equation, N is the total number of pixels in the sample window

being processed, n is the index of a pixel in the spatial domain, and k is the

index of a pixel in the DCT domain. This is the 1-D form of the equation.

A common use of the DCT is in lossy JPEG and MPEG compression.
Typically, the DCT is computed over a finite size window. JPEG and some
types of MPEG use an 8x8 window size, however any N X N window is
valid. The goal of using a window is to find regions in the image which are
nearly uniform and represent those with less data than regions contain more
information. The DCT of a window with little variation contains many low
coefficient values which can be set to zero and thus thrown away, while the
DCT of a window with a significant amount of variation would not contain

many low coefficient values and very little information is likely to be removed.

12



Fig 2.2 illustrates the effect of throwing away higher and higher val-
ues after taking the DCT with an 8x8 window. At first there is very little
difference, however as more values are removed each of the entire 8x8 re-
gion becomes represented by their largest value, introducing strong blocking

artifacts.

Original »\ery Lossy

Figure 2.2: Visibility of the underlying 8 x8 DCT increases as more coeflicients
are removed from each block.

Assuming compression has not been too severely imposed on an image
or video, these DCT coefficients provide valuable information regarding fre-
quency information in an image. DCT coefficients have been used directly by
many researchers for text detection, however our approach uses the DCT to
accomplish a different goal. As discussed in Chapter 3, we have chosen to use

the DCT for frequency filtering instead.

13



2.1.2 Discrete Wavelet Transform

Similar to the Fourier transform which, leverages sinusoids as basis
functions, the wavelet transform makes use of an alternate set of basis functions
with which to represent information which may be more suited for a given
problem. Both the continuous and the discrete wavelet transform (DWT)
exist, however only the discrete transform will be discussed here due to its

direct application to digital image processing.

The basis functions used are not specific to the transform, but rather
are selected based on the problem. Common basis functions include the Haar
basis functions, the Daubechies basis functions, the CDF 5/3, and the CDF 9/7
basis functions. As an example, the JPEG 2000 image compression standard
uses the CDF 5/3 based wavelet for lossless compression and the CDF 9/7
based wavelet for lossy compression. Regardless of the specific set of basis
functions used, two properties must be true. First, there are only two basis
functions for any given set, and second, one acts as a low pass filter while the
other acts as a high pass filter. The Haar and Daubechies basis functions are

orthogonal, however this is not necessarily a requirement.

Given an input function and a set of basis functions, the discrete wavelet
transform can be computed. The basis functions are applied as high and low
pass filters to the original signal resulting in twice as much data out as data in.
These outputs are downsampled by two, resulting in the same amount of data

in as data out. The output are the coefficients which map the input function

14



into wavelet space. This process is shown in Fig 2.3.

2x Down Output

Filter Bank Sampling  Coefficients

Lowpass Approximation

Input Function _.. - @_.
x(n)
T (2 )]

Highpass Detai

Figure 2.3: Block diagram of the DWT

While a single filtering pass is interesting and useful, wavelets become
far more useful through iteration. Given a lowpass, downsampled image, the
same highpass and lowpass filters can again be applied and the results down-
sampled by two. Since in the practical case, the input data is finite, this itera-
tion can occur until only a single element of data remains or until a threshold
is reached. Thus by recursively applying the discrete wavelet transform, we
produce multiresolution imagery, or imagery which contains several different
scales. This is useful when incorporating scale invariance into an algorithm, or
when an application may require several different scales of data. The recursive

discrete wavelet transform is diagramed in Fig. 2.4.

Regarding computational complexity, the discrete wavelet transform
can be implemented as the fast wavelet transform, which has linear complex-
ity. Regarding the inverse transform, assuming the coefficients have not been

altered, the original function can be perfectly reconstructed.

15
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Figure 2.4: Block diagram of two scales of the DWT

2.2 Segmentation

Given a sequence of video frames, potential regions of interest must
be segmented. Methods of segmentation include edge detection, color and
contrast segmentation, thresholding discrete cosine transform coefficients, and

thresholding wavelet transform coefficients.

2.2.1 Edge Detection

The Canny edge detector is the most widely used edge detection algo-
rithm among the text detection algorithms reviewed here, and is used in our
algorithm. This standard image processing algorithm is described in full detail
in [45]. The algorithm is optimal according to the following three criterion:
detection, localization, and one response. That is the detector seeks to not
miss important edges, it seeks to minimize the distance between the resulting
line and the actual edge, and it seeks to produce a single line per edge. This is

accomplished by first slightly blurring the image with a Gaussian smoothing

16



filter. Next local normal directions are calculated and used to locate edges
using non-maximal suppression. The magnitude or strength of the edges are
computed and thresholded using a high and low threshold. If desired, the
process can be repeated with different Gaussian filters and combined using

feature synthesis.

For their technique, Chen et al. in [6] extract regions of interest from
each frame of video based on vertical and horizontal edges produced by a
Canny edge filter. Dilation of the extracted edges is performed using empiri-
cally derived rectangle kernels of size 1x5 for the vertical direction and 6x3
for the horizontal direction. When comparing the regions selected to ground
truth text regions, assuming a region is correctly located if there is an 80%
overlap between the two, this method extracted 9,369 text lines but produced
7,537 false alarms from the test data. This results in a precision of 55.4%.
Regions of interest that were selected can be fed into a classifier for further

refinement.

Chen et al. further refine their text selection by using a baseline detec-
tion algorithm previously developed by Chen, Bourlard, and Thiran[5]. Ad-
ditionally, final selections are constrained to be between 75 and 9,000 pixels
in area, with a horizontal-vertical aspect ratio of 1.2 and a height between 8
and 35 pixels. No reason is given for these criteria, however the authors do
note that text can vary greatly in size and a scaled image pyramid, or simply

a series of images down sampled by a factor of two, could allow this algorithm
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to work on larger text regions.

2.2.2 Color and Contrast Segmentation

Digital images are typically captured and stored in the RGB color space.
In this space, quantitative color differences have little meaning in terms of hu-
man color perception. Instead, it is advantageous to make use of the CIELAB
1976 color space where we are able to compute such differences meaningfully.
It is not possible to directly convert RGB to CIELAB, however by making as-
sumptions about illumination, the observer, and the calibration of the imaging
system, we are able to make a good approximation. Given these assumptions,
the just noticeable difference, that is the difference between two colors required
for the standard observer to notice the difference, is between 2 and 3. Further

information on CIELAB 1976 and other color spaces is given in [2].

Lienhart and Wernicke use region growing to create bounding boxes for
the selected text regions. Profile projections in both horizontal and vertical
directions were used in an iterative process to further refine bounding boxes
by merging overlapping regions or deleting some selections which were under
threshold intensity values. The number of iterations as well as the thresholds
used for bounding boxes were determined empirically. Color information was

used to group text and remove as many background pixels as possible.

To segment individual characters and remove the background, text se-

lections are first scaled to have a height of 100 pixels by using a bilinear inter-
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polation. Next pixels of the same color as those just past the bounding box are
removed from within the bounding box, as they are assumed to be background.
For video, temporal information is used to assist in the background removal
process as it is assumed the text changes very little from frame to frame, while
the background can change significantly, assuming text is superimposed and

not in-scene.

Similar to the approach of Lienhart and Wernicke, our technique makes
use of color, however, rather than actively grouping regions, we discount re-
gions which contain too large a color difference. To accomplish this, we make
use of the CIELAB color space. Specific transformations and assumptions

used for our method are detailed in Chapter 3.

2.2.3 Discrete Cosine Transform Coefficients

Crandall et al. in [8] perform connected component analysis on detected
text blocks followed by a procedure similar to morphological dilation. Blocks
which are larger than 8 pixels in width and length are kept as localized regions

of text.

Crandall et al. perform text detection by analyzing texture features
provided by the Discrete Cosine Transform (DCT). An 8x8 block-wise DCT is
performed on each video frame, producing a set of DCT coefficients. A specific,
empirically determined subset of these coefficients, are used to characterize

“text energy” in the horizontal and vertical directions. A dynamically chosen
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threshold, driven by an empirically derived formula based on the contrast of
the entire video, is used to determine whether or not each block contains text.
Since an 8x8 block size is used, subsampling is performed to detect text of
different sizes. The author cites [10] for an efficient way of subsampling in the

DCT domain.

2.2.4 Wavelets for Segmentation

Ye et al. compute the wavelet transform of each video frame using
the Daubichie basis functions. Wavelet coefficients are used with an energy
function as a feature to locate potential text regions in the coarse detection
step of this algorithm. Text is assumed to produce large wavelet coefficients
and therefore have a higher energy than non-text regions. A dynamic threshold
based on the energy histogram of each image is used to select which energy
value is sufficient for text detection. The morphological close operation is used
to combine nearby pixels of text into clusters. Projected profiles are then used
to separate individual lines. Finally, any clusters smaller than eight pixels in

height, or with a width-to-height ratio of less than one, are discarded.

2.3 Features
2.3.1 Wavelet Features

For Ye et al. fine detection is accomplished using four collections of

wavelet features and a support vector machine classifier. Features used include
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wavelet moment; histogram; co-occurrence features including energy, entropy,
inertia, local homogeneity, and correlation; and crossing count histogram. A
total of 225 features from each line of text are generated using this information.
Since a large number of features may hinder the overall performance of a
classifier, a forward search algorithm was used to reduce the number of features
used to just 32. Of the original features, wavelet moment and the crossing
count histogram appear to be the most important based on the results of the

forward search.

Large text produces a relatively low frequency signal, while small text
produces a relatively high frequency signal. In the wavelet domain, low fre-
quency information produces a stronger response in a deep scale, after only a
few iterations of the wavelet transform, while high frequency information pro-
duces a stronger response in a shallow scale, after many iterations. These two
responses will be similar, thus multiscale text detection is possible by choosing

different scales from which to extract features.

2.3.2 Other Features

Other researchers who used the DCT coefficients for classification or
the raw image intensity values did no further processing of this information
before training a classifier. Half of the works reviewed did not explicitly use
a classifier, instead focusing on the segmentation task, assuming that good

segmentation eliminates the need for further classification.
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2.4 Classification of Regions
2.4.1 Support Vector Machine

Chen et al. chose to verify text regions by making use of a support
vector machine (SVM) trained on four feature types. Grayscale spatial deriva-
tives, a distance map, constant gradient variance, and discrete cosine transform
coefficients are the features used. Constant gradient variance was developed
by the authors but is fairly straightforward. Given a nine by nine region of
pixels, a local mean and variance are computed. This local information is
then compared with a global gradient variance for the whole image, and the
gradient magnitude for a given pixel. In this way, changes in contrast can be

exploited as a feature.

A confidence threshold was set for determining what was text and what
was not based upon the four features used. On the training data, the SVM us-
ing the constant gradient feature had an error rate of 1.07%. For the grayscale
spatial derivatives the error was 3.99%, for the distance map, 2.56%, and for
the discrete cosine transform, 2.00%. Using the same test data previously used
by Chen et al. in Section 2.2.1, 7255 of the 7537 false alarms were removed by
classification, and 23 true text lines were removed. Overall the authors report

that this produces a 97% precision rate and a 0.24% rejection rate.

Ye et al. also trained an SVM, using their selected wavelet features
with boosting, to improve performance. Specific details about the kernel used

are not provided by the authors.

22



2.4.2 Neural Network

Lienhart and Wernicke employ gradient maps as features which are
fed into a neural network. Image gradients, or gradient maps are the two-
dimensional derivative of the image. They a complex-valued feed-forward neu-
ral network containing 200 total neurons arranged in one input layer and two
hidden layers. Training was conducted on a set of data containing 6,000 text
patterns and 5,000 non-text patterns. A validation set was used to further

tune the network before testing.

2.5 Post Processing

2.5.1 Binarization

The binarization performed by Crandall et al. is composed of three
steps: preprocessing, logical level thresholding, and character candidate filter-
ing. Preprocessing rotates any non-horizontal localized text regions into the
horizontal orientation, and doubles the resolution via a linear interpolation.
Contrast is enhanced by histogram equalization, and ten frames are used with
a rigid text tracker for temporal averaging. Logical level thresholding is ap-
plied to the image after a conversion to CIELAB color space, using only the
luminance channel, with an empirically determined threshold value. This color
space consists of light-dark, red-green, and yellow-blue opponent channels and
seeks to be perceptually accurate to the average human observer. Standards

have been published which allow for the conversion from the more familiar
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RGB (red, green, blue) color space into CIELAB space. This step is applied
to the original image, and its inverse, to account for the text being lighter
or darker than the background. Once again, connected component analysis
is performed and any characters that do not meet certain criteria set by the
authors are discarded. A voting strategy is used to determine if the original or
inverse image should be kept. Taken into account for each character are height
similarity, width similarity, horizontal alignment, aspect ratio, clean spacing,

and periodicity of vertical projection.

Lienhart and Wernicke perform binarization by using a simple threshold

which is halfway between the average background and foreground color.

2.5.2 Temporal Heuristics

For video, Lienhart and Wernicke exploit temporal redundancy to help
remove false alarms, reduce noise, and improve text segmentation accuracy.
In order to reduce complexity, video was sampled every second, and if text
was found each frame available from one second before and one second after
was then analyzed for text content. Profile projections were used as signatures
for text, allowing text to be tracked from frame to frame assuming very little
variation in the text from frame to frame. Due to noise, compression artifacts,
and other issues it is difficult to track text from frame to frame perfectly. Thus
a dropout threshold is used to allow tracking to continue even if a few frames

are skipped. Text which occurs for less than a second or is present in less than
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25% of the frames in a sequence is ignored.

2.5.3 Text Tracking

Crandall et al assume text tracking is rigid; that is, text moves with a
constant velocity and in a linear path. Motion vectors provided by the MPEG
compression process are used to predict text motion [34,35]. By using only
macroblocks with more than four edge pixels, as computed by the Sobel edge
detector, motion vectors can be more useful over short video sequences. The
authors note that MPEG motion vectors are computationally efficient as the
work has already been done, however they are often too noisy to use directly as
a tracker, depending on the quality of MPEG encoding used. A comparative
technique is used to augment motion vectors for the text tracking task. Frame-
by-frame comparisons of connected components are used with a threshold to

determine if a localized text region exists in multiple frames.

2.6 Published Results

Two standard datasets for word level text detection, including standard
metrics to use have been published [18,46], however the number of researchers
using these and publishing results is limited. No known dataset has been
published which focuses on pixel level text detection, as we are working with.
Whether these data or self-created data are used, it is important to be aware

of limitations and potential issues. If the task of a researcher was to draw a

25



bounding box around the text instances in several thousand frames of video,
it would not be unreasonable to expect variation in where the box is placed
around the text and other similar errors. Likewise the algorithm may have
successfully found the text but the box it draws is too large or shifted or
skewed in some way compared with the ground truth. To account for these
issues, a threshold for percent overlap can be set to decide when two regions
are “close enough” to be called the same. What this value depends on is
a researcher’s personal preference. Alternately, boxes could only be counted
when they exactly overlap, as done by [8], however, it seems that exact overlap

will push scores lower than they need to be.

Other issues in comparing results include a lack of common data, and
different sizes of the sets of data used. Some groups chose thousands of frames
of video over which to score their techniques, while others chose only a small
number of frames. To properly compare these methods, each would need to
run on the same data using the same percent overlap of bounding box when
reporting correct results. Nevertheless, since we do not have the ideal condi-
tions, results are reported here as they have been reported by their respective

researchers.

Three metrics are commonly used to report results: recall, precision,
and false alarm rate. Recall, shown in equation 2.2, is simply the number of
correct detects over the total number of targets in the ground truth. A perfect

score for Recall is 100%. Precision, shown in equation 2.3, is the number of
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correct detects over the total number of detects reported by the algorithm.
Ideally this would also be 100%. Finally false alarm rate is the number of false
alarms over the number of correct detections, shown in equation 2.5. Ideally
this would be zero. It is also common to combine recall and precision into a

single metric called the f-metric or f-measure, shown in equation 2.4.

correct detects
Recall = _ (2.2)
correct detects + missed detects

. correct detects
Precision = (2.3)
correct detects 4 false alarms

1

f—metric = 05—_'_05 (24)

precision recall

Epshtein et al. using the same ICDAR dataset which we use reported

precision of 73%, recall of 60%, and an f-metric of 0.66%.

Crandall et al. tested their algorithm on two datasets of MPEG videos
totaling over 11,000 frames at a 320x240 pixel resolution. Precision and recall
were computed. On the first dataset, the proposed algorithm achieved a recall
of 46% and a precision of 48% for detection and localization of caption text.
On the second dataset, for the same task, a precision of 74% and a recall of

74% were achieved.

Ye et al. performed experimental testing on a dataset of 221 images,

each of size 400x328 pixels. Ground truth was marked by hand, and a de-
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tection was marked successful if more than 95% of the ground truth box was
contained in more than 75% of the detected rectangle. Based on this definition
of a correct detection, recall (Equation 2.2) and false alarm rate (Equation 2.5)

were computed.

False Al
False Alarm Rate = it armjs (2.5)
Correct Detections

Based on these metrics, the authors report a recall rate of 94.2% and a false

alarm rate of 2.4% for their testing dataset.

Lienhart and Wernicke use a relatively small testing set of only 23
videos. Videos ranged in size from 352x240 to 1920x1280. If the detected
bounding box overlapped the ground truth by 80% a detection was labeled
correct. For individual images, a 69.5% hit rate, 76.5% false hit rate, and
a 30.5% miss rate was found. For video, significant improvements were seen

with a 94.7% hit rate, 18.0% false hit rate, and a 5.3% miss rate.

2.7 Summary

Surveyed work focused on edge information, frequency information,
and specific properties about text. Edge information may be extracted us-
ing the Sobel operator, Canny edge detector, or other methods. Frequency
information is captured using the DCT, Fourier transform, or Wavelet trans-

form. Commonly color, aspect ratio, and other properties of text were also
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exploited. Researchers used simple segmentation only techniques, complex
neural networks, and combinations of these and other approaches to classify

text in images.

Similar to previous work, our algorithm makes use of frequency based
features for classification and edge and color information for post processing.
We learn a weighted ensemble of classifiers constructed from the raw feature
data. A small number of statistically determined parameters are applied in
post-processing. The post-processing step makes use of the Canny edge de-
tector, color consistency, and aspect ratio. Unlike other definitions of aspect
ratio, we use the ratio of eigenvalues of the covariance matrix of the coordi-
nates of each connected component. Our approach is explained in detail in

Chapter 3.
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Chapter 3

Methodology

Using themes from related work, we selected to use frequency based
features captured using the discrete cosine transform, edge information cap-
tured using the Canny edge detector, an aspect ratio threshold, and a color

consistency threshold.

3.1 Dataset

For the original task of text detection in video, we were unable to locate
a dataset of video with ground truth. However, since we have simplified the
problem and are only dealing with still images, two datasets were acquired.
The first, published by the Linguistic Data Consortium and promoted by Kas-
turi et al. [18], featured keyframes of videos, mainly of news broadcasts. These
were useful, however most of the text was not in-scene text, but rather super-
imposed text. Further, this dataset is not as diverse as is desired, potentially

causing problems for the learning algorithm.

The second dataset we were able to obtain is available free of charge

from ICDAR [39, 46]. This set features images taken by many different authors,
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using different cameras in a variety of illumination conditions, and in different
resolutions. In total there are 500 images, 250 set aside as testing and 250 as
training. This data has been used by other researchers, including Epshtein et

al. in [11], allowing for easy comparison for the word level task.

Throughout this chapter an image from the training dataset which we
have titled “Osborne Garages” will serve as an example with which each step

of the algorithm is illustrated. The original image is shown in Figure 3.1.
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Osborne Garages

Figure 3.1: Example image from the training data in its original form.
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3.1.1 Ground Truth

Since word level ground truth regions often contain a large amount
of background with the desired foreground text regions, it was determined
that more accurate ground truth was needed to enhance the performance of
the learning algorithm. Originally, working with word level ground truth, we
found the presence of background introduced a significant amount of error in
learning which was reduced by opting to use pixel level ground truth instead.
Additionally, creation of pixel level ground truth allows us to score the perfor-
mance of our algorithm on the pixel level. This fine-grained pixel level of detail
is a unique contribution to this area of research and has not been previously

seen in the literature on the subject.

Creating true pixel level ground truth for the data is not practical due
to time constraints. Instead a semi-automated approach was taken which
reduced the amount of manual labor needed for ground truth creation. Color
quantization was applied to training images, reducing them from millions of
colors to only 16 colors. Each image was converted to the CIELAB 76 color
space. A histogram of colors was created, sorting colors from most popular to
least popular. Starting with the most popular color, the next most popular
color was selected which has a color difference greater than the just noticeable
difference of 2.5. Once 16 colors have been selected which are both popular and
noticeably different, these colors are assigned to existing colors in the image

such that the color difference between the original color and the color in the
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palette is minimized.

These color quantized training images are masked using the word level
ground truth provided. The resulting boxed regions are shown one at a time
to the person creating pixel level ground truth. The user has the ability to
turn on and off each of the colors and attempts to select colors which contain
foreground, while removing colors containing background. In this way pixel
level ground truth is created, without manually selecting each pixel in the text
of each image. Original bounding box level ground truth is compared with our
pixel level ground truth in Fig. 3.2. Our ground truth will be made available

on our lab website: http://www.cs.rit.edu/~dprl.

PRO xtraX ‘ H I
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Figure 3.2: Top: Original image. Bottom Left: Pixel level ground truth.
Bottom Right: Word level ground truth.

For the “Osborne Garages” example, pixel level ground truth is shown
in figure 3.3. Note that the text in the lower right corner of the image is not
in the ground truth. This was not in the word level ground truth, so it has

not been propagated into the pixel level ground truth either.
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Osborne Garages

Figure 3.3: Pixel level ground truth for our example image.
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3.2 Algorithm Overview

The approach taken makes use DCT frequency filters, edge detection, a
linearity filter, and a color consistency filter. Figure 3.4 illustrates the process.
Each step is described in detail below. After training has been completed, the
algorithm is slightly modified to produce binary classification masks, as shown

in figure 3.6.

3.2.1 Feature Selection

Consistent with previous work, we have chosen four features with which
to perform text detection. The discrete cosine transform (DCT) is used in
conjunction with frequency filters and the Weighted Majority (WM) learning
algorithm to classify text on the pixel level. The Canny edge detector is used
independently of the DCT to perform segmentation, followed by morphological
filling of connected components. Our linearity and color features serve as
constraints to the previous two; preventing anything which is too linear or not

color consistent from being selected.

Spatial frequency information captured by the DCT is used as our
primary feature; and it is the only feature on which the WM learning algorithm
is used. Given an image, it is first converted to grayscale by converting from
RGB to the YCC color space, and retaining only the intensity (Y) channel.
The result of converting our example image into grayscale using this method

is shown in figure 3.7. The image is then segmented into 8 x 8 blocks on
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Figure 3.4: Training algorithm. High pass filtered images are created from
a grayscale input image. These are thresholded to create 18 total classifiers
which are weighted by WM. Post processing is carried out in parallel and used
within the WM step. WM is detailed in figure 3.5.
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Figure 3.5: Training algorithm. Each highpass filtered image is thresholded
three times to create a total of 18 classifiers (6 filters, 3 thresholds each).
Weights for these classifiers are initially equal. Loss is computed and weights
are normalized. Successive runs start with the previously calculated weight
value for each classifier and continue updating weights until there are no ad-
ditional input images. We have selected to randomly shuffle the input images
10 times and continue WM to allow for additional training.
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Figure 3.6: Classification algorithm. Weights computed using weighted major-
ity are applied to each classifier. Weighted classifiers are summed and thresh-
olded at 0.5; retaining pixels which have received a majority vote.
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which DCT-II is computed. This block size was selected as it is the standard
block size for JPEG encoding. Since not all images are divisible by 8 in both

directions, edges are zero padded when needed.

LA A AR AN

Figure 3.7: Y channel of our example image converted from RGB to YCC.

Six 8 x 8 Gaussian highpass filters with ¢ = 0.5,1.0,1.5,2.0,2.5,3.0
have been selected for frequency filtering. Since we are working with 8 x 8
windows, these filters have been selected as they are each able to provide
useful information without being more redundant than is desired. This is

determined by observing the discrete filter values exhibit very little change
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when increasing o past ¢ = 3.0. These 2D filters are shown in figure 3.8.

These filters are applied independent of each other, resulting in 6 feature
images produced for every one input image. Frequency filtering is done directly
in the DCT domain using the technique of Viswanath et al. described in [47].
For consistency with this work, we use Viswanath’s notation here. Asthe DCT
is 2D separable, we are able to work with 1D equations. First, 8 x 8 windows of
the original image are computed using the type-II DCT as described previously,
and as is expressed in Equation 3.1. In the Equation, a(k) = \/1_/2 for k=0

and 1 otherwise.

X}f,v)(k) = \/%a(k:) 2 x(n) cos (W) O0<kE<N-1 (3.1

n=0
Next, the type-I DCT is used to transform each filter into DCT space. This
version of the DCT is expressed in Equation 3.2, where (k) = 1/2 for k =0

and £k = N and is 1 otherwise.

HI(N)(]C) = \/%ﬁ(k) nzzoh(n) cos (T%IC) LO0<k<N (3.2)

These coefficients are then rearranged into a matrix as shown in Equation 3.3.

aMo0) o o0 - 0
(V)
pra |0 D00 (33)
0 0 0 HM(N = 1)
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Figure 3.8: Highpass Gaussian filters. Top left to lower right, o increases from
0.5 to 3.0 in increments of 0.5.
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Filtering in the DCT domain can then be expressed as:

Y,V = ptn x () (3.4)

1 7

Where in equation 3.4, XZ-(N) and Yi(N) are the input and output of type-II
DCT blocks.

Continuing our example, the result of filtering the grayscale version of
the “Osborne Garages” image with a kernel where 0 = 0.5 is shown in figure

3.9.

3.2.2 Creation of Classifier Ensembles

Highpass frequency filtering of grayscale images produces real-valued
outputs which is normalized to be in the domain [0,1]. To function as a
classifier, these filters need to be binarized, creating masks such that the pixel
value 1 indicates text and pixel value 0 indicates background. To find the
threshold, training set images were thresholded from in the range [0,1] at
increments of 0.1. The mean and standard deviation of the f-metric score
was calculated across the training set data and plotted as shown in figure
3.10. Note that the threshold value 0 indicates all pixels in the image have
been selected. From the figure it is apparent that the first three threshold
values produce a better result than including all pixels in the image, but
that additional thresholds beyond the first three perform worse than the zero

threshold. For this reason, the first three thresholds have been selected from
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Figure 3.9: Gaussian highpass filter with ¢ = 0.5 applied to our example
image.

43



which to create binary classification masks from the DCT filters, resulting in
a total of 18 classifiers being created. That is for each of the 6 DCT filters, 3

threshold are applied to each filter, for a total of 18 classifiers.
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Figure 3.10: f-metric mean scores for all filters across the training set. FEach
of the 6 filters are represented by a different color.

Using the filtered image from figure 3.9 and applying three thresholds

results in the three classifiers shown in figures 3.11-3.13.
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Ceborne Garag

Figure 3.11: Applying three thresholds, we create three classifiers from one
filtered image. This is the first of three thresholds.
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Figure 3.12: Applying three thresholds, we create three classifiers from one
filtered image. This is the second of three thresholds.
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Figure 3.13: Applying three thresholds, we create three classifiers from one
filtered image. This is the third of three thresholds.
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3.2.3 Weighted Majority

Working with the classifiers produced by applying our threshold selec-
tion process to our features, the Weighted Majority algorithm (WM) [22] is
applied. Starting with uniform weights, loss is calculated and the weight of a
classifier is updated accordingly. Classifiers which perform poorly carry less

weight than those which perform better.

We modified the original WM algorithm described in [22] such that
individual loss, lf is no longer simply 1 for misclassification and 0 for correct
classification. In our modification, lg ranges in [0, 1] according to the pixel
level f-metric, such that if precision and recall are high, loss is low, and if

precision and recall are low, loss is high.

Additionally, the post processing step which includes edge detection,
a linearity filter, and a color consistency filter are applied prior to the loss
calculation to allow WM to select the optimal combination of classifiers to use

in conjunction with these steps.

The output of this weighting process is normalized and a threshold of
0.5 is applied such that values which have received a majority (greater than
0.5) vote by the ensemble remain, while those which have received less than a

majority vote are removed.

Weighted Majority is run 10 times, randomly shuffling the input data

for each run. The total cumulative loss for each run is computed and used to
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Given:
e Classifier ensemble, D = {Dy,...,Dp}

e Labeled dataset, Z = {z1,...,zn}

1. Initialize the parameters

e Pick 3 €0,1] to be 0.9

e Set weights
wh = [wl’ T ’wL]’wil € [07 1}7 Zfil wzl =1 (Usually wzl = %)

e Set cumulative loss A =0
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e Find the individual losses:

— compute pixel level recall,
r = |{true positive}|/|{true positive + false negative}|

— compute pixel level precision,
p = [{true positive}|/{true positive + false negative}|

— compute f-metric, f = 2pr/(r + p)
— compute individual loss, I =1 — f

e Update the cumulative loss, A, and individual losses, A
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3. Calculate and return A, );, and pZNH, i1=1,...,L.

Figure 3.14: Weighted Majority algorithm
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compare the results of each run. The final weights selected correspond to the

run with the lowest total cumulative loss.

3.2.4 Line Removal

Given a binary mask, each connected component is analyzed for lin-
earity. This applies to both the result of the DCT classification and to the
edge detection step discussed later. The spatial coordinates in the image of
each pixel in a given connected component are extracted and the covariance
matrix of this is computed. Next we calculate the eigenvalues of the covariance
matrix and take the ratio of the largest and second largest elements. These
eigenvalues represent the spread of the data in each of its two principal direc-
tions. The ratio is bounded by [0,1] such that zero indicates a straight line
and one indicates a perfect circle. To ensure the ratio is bounded by [0,1], the
eigenvalue which corresponds to the direction of greatest variation must be
used as the denominator. Since we know this value is the largest, as the shape
becomes more linear the denominator becomes larger, and the ratio goes to
zero. On the other hand, if the variance in both directions is the same, the
ratio becomes one. This accounts for the aspect ratio of a character, allowing

us to filter out excessive lines produced by highpass and edge filtering.

The threshold value was determined by computing this ratio on each
character in the training data and finding the mean value. A histogram of

the ratio of connected components in the ground truth is shown in Figure
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3.15. The mean is 0.39 and the median is 0.36. The shape of this histogram
indicates that the threshold value should perhaps be lower. The histogram
peaks at 0.04. Sample results of using 0.04 as the threshold value, as well
as additional insight into threshold selection are discussed in Chapter 5. A

sample image is shown in Figure 5.1.

Aspect ratio of ground truth connected components
160 T T T T T

count

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
aspect ratio

Figure 3.15: Histogram of aspect ratios computed for ground truth connected
components.

Applying line removal to each of the three classifiers shown in figures

3.11-3.13 above, we see the results shown in figures 3.16-3.18, respectively.
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Figure 3.16: Eigenvalue line filter applied to the classifier shown in figure 3.11.
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Figure 3.17: Eigenvalue line filter applied to the classifier shown in figure 3.12.

53



Figure 3.18: Eigenvalue line filter applied to the classifier shown in figure 3.13.
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3.2.5 Color Filtering

Given a filled connected component, we first quantize colors down to 16
using the same method described previously for semi-automated ground truth
creation. Colors are sorted according to their popularity in the component,
colors which have a color difference greater than 2.5 are kept until 16 colors
are accumulated. These colors are assigned to pixels in the connected compo-
nent based on minimum color difference from available colors with the original
color. Next we compute the average color difference between each color in the
component with all other colors in the component. If that average difference
is below a threshold, the component is considered to be consistent in color and
therefore more likely to be a character. If, on the other hand, color across the

component is not consistent, it is removed.

The threshold value was determined in much the same way as the line
removal threshold. Working with the ground truth data, the average color
difference for each individual connected components was determined. A his-
togram of the ratio of connected components in the ground truth is shown
in Figure 3.19. The mean is 13.3 and the median is 13.5. The shape of this
histogram indicates that the threshold value should perhaps be lower. The
histogram peaks at 2. Sample results of using 2 as the threshold value, as well
as additional insight into threshold selection are discussed in Chapter 5. An

example of using 2 as a threshold is shown in Figure 5.2.

Similar to line removal, color filtering is used as a constraint for both the
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Figure 3.19: Histogram of average color differences computed for ground truth
connected components.
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DCT classifier and the edge detection procedure. Applying color filtering to
our continuing example classifiers, we get the results shown in figures 3.20-3.22.
For this particular example, the results are subtle, however some connected
components have been removed when compared with the results of line filtering

shown in figures 3.16-3.18.

Figure 3.20: Results of the color consistency filter being applied to the previous
step in the post processing chain for this classifier, shown in figure 3.16.
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Figure 3.21: Results of the color consistency filter being applied to the previous
step in the post processing chain for this classifier, shown in figure 3.16.

58



Figure 3.22: Results of the color consistency filter being applied to the previous
step in the post processing chain for this classifier, shown in figure 3.16.
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3.2.6 Edge Detection

Setting aside the DCT classification results, the edge detection post
processing step makes use of the original Y channel intensity image. The
Canny edge detector is applied using Matlab’s default parameters, o = /2
for the Gaussian filter, and high and low threshold values are automatically
chosen. While it may be possible to achieve better results by modifying these
parameters, keeping them fixed reduces the number of parameters needed by
the overall system. The result of running the Canny edge detector on the

“Osborne Garages” example is shown in figure 3.23.

Next the linearity filter is applied, removing any connected components
which are below the set threshold. Prior to morphologically filling in closed
connected components, a tree is created to represent nesting of components.
We cannot simply fill in all connected components. The component which
contains all other components in the image is labeled background. If a com-
ponent is the parent of three or more other components, it is considered to be
a container and is discarded. This is the case where a sign contains several
letters and we are only interested in the letters, not the sign. Next we look at
those components which contain one or two other components. If the interior
components are within the threshold for color consistency of the background
outside their parent, they are labeled background and are not filled in. In
this way we are able to avoid over filling regions which should be background,

including closed signs and the interior of letters. Color consistency is used to
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Figure 3.23: Canny edge detector applied to the grayscale version of the “Os-
borne Garages” image.
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e Find all connected components
e For each connected component
— If this component contains three or more other components, remove
it
— If this component contains two or one connected components, fill it

x If interior component is not within the threshold for color con-
sistency with its containing component, don’t fill it.

x Else, fill it

— If this component contains no other components, fill it

Figure 3.24: Morphological filling of connected components

remove any additional components which are above the threshold for average
color difference within a component. Pseudocode for this process is shown in

Figure 3.24

Applying the linearity filter to our example results in figure 3.25. This
image is morphologically filled according to the process outlined above, and

the color consistency filter is applied, resulting in figure 3.26.

The mask which results from edge detection and region filling is inter-
sected with the mask produced by the DCT classifier. Components which exist
in both images are labeled text, however overlap is often small and usually does
not include entire letters. Since edge detection provides a reasonable segmen-
tation, filled connected components from the edge detection are included in

the final classification mask where the two masks intersect. Note that this
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Figure 3.25: Result of running the linearity filter on the Canny edge detection
image.
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sborne Garages

Figure 3.26: Morphologically filling the image shown in figure 3.25, according
to the connected components tree method outlined above, followed by color
consistency filtering.
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process occurs within the WM step of our approach as it is applied to each

classifier.

Returning to our running example, intersecting the second classifier
after linearity filtering and color consistency filtering have been applied, with
the edge detection result after the same filters have been applied we get the
image shown in figure 3.27. This is done for each of the classification images,
all of which are then summed together and thresholded at 0.5, retaining pixels
which have received a majority vote from the weighted classifiers. This result
is again compared with edge detection result. Connected components are
retained in the final result if the result of weighted majority contains pixels in
those components. The final result of this process for this example is shown

in figure 3.28.
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Figure 3.27: The intersection of the edge detection results and a classifier.
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sborne Garages

Figure 3.28: The final result. WM combination of intersection results is used
to turn on or off connected components from the edge detection image.
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Chapter 4

Experimental Results

Our algorithm was trained and tested using the dataset found in [31, 46].
Provided with the data is a word level precision, recall, and f-metric for scoring
purposes. Ground truth provided for the dataset only captures the bounding
boxes of words in the images. Since our goal is to perform text detection at the
pixel level, we created new pixel level ground truth for training and testing our
algorithm. Similarly, we measure precision, recall, and f-metric at the pixel
level rather than at the word level. Because of this it is not possible to directly
compare our results with the results of other researchers. Unlike many other
scoring metrics, we do not include any overlap or tolerance. Since pixels in
the result must exactly match pixels from the ground truth, this may slightly

lower our scores than if we allowed for some tolerance in scoring.

In order to test our hypothesis that the weighted combination of filters
followed by post processing shows better performance than any component
does individually, the precision, recall, and f-metric of individual components
and the entire system were computed. The Weighted Majority algorithm was
trained using 250 training images. Similarly, those training images were used

to compute thresholds used in post processing. These values were then used on
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a separate testing set of 250 images for scoring purposes. The scores reported

are the results from the testing data.

Table 4.1 shows quantitative results for the entire system, as well as
individual components. The complete ensemble is the weighted combination
of all 18 DCT feature based classifiers, followed by post processing. Post pro-
cessing represents only the post processing component; that is the Canny edge
detector, linearity filter, color filter, and morphological connected component
filling. Individual classifiers are single DCT feature based classifiers, followed
by post processing. Note that the overall f-metric for the complete ensemble
is higher than any other component, but that the precision of post processing

only is higher than that of the complete ensemble.

Data from table 4.1 is visualized in the following graphs, shown in
figures 4.1-4.3. In the graphs, classifiers 1-18 from left to right are individual
classifiers with post processing. Classifier 19 is post processing only. Classifier

20 is the complete ensemble.

Histograms for each metric were computed for the testing set for the
complete ensemble and for post processing reveal further information regarding

the large variance observed. These are shown in figures 4.4-4.9.
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Table 4.1: Classifier comparison; Individual DCT-based Classifiers

mean precision mean recall

mean f-metric

complete ensemble
post processing only
classifier 1
classifier 2
classifier 3
classifier 4
classifier 5
classifier 6
classifier 7
classifier 8
classifier 9
classifier 10
classifier 11
classifier 12
classifier 13
classifier 14
classifier 15
classifier 16
classifier 17
classifier 18

0.31
0.47
0.24
0.17
0.12
0.25
0.17
0.13
0.25
0.18
0.13
0.26
0.19
0.14
0.26
0.19
0.14
0.27
0.19
0.14

70

0.44
0.24
0.21
0.22
0.23
0.21
0.23
0.23
0.21
0.23
0.23
0.21
0.23
0.24
0.21
0.23
0.24
0.21
0.23
0.24

0.36
0.32
0.22
0.19
0.16
0.23
0.20
0.17
0.23
0.20
0.17
0.23
0.21
0.18
0.23
0.21
0.18
0.24
0.21
0.18
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Figure 4.1: Precision for individual components. From left to right: classi-
fiers 1-18 are individual classifiers with post processing; classifier 19 is post
processing only; classifer 20 is the complete ensemble.
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Recall for individual components
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Figure 4.2: Recall for individual components. From left to right: classifiers 1-
18 are individual classifiers with post processing; classifier 19 is post processing
only; classifer 20 is the complete ensemble.
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F-metric for individual components
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Figure 4.3: f-metric for individual components. From left to right: classi-
fiers 1-18 are individual classifiers with post processing; classifier 19 is post
processing only; classifer 20 is the complete ensemble.
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Histogram of Precision for testing images
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Figure 4.4: Histogram of precision metric on testing data for the complete

ensemble.
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Figure 4.5: Histogram of precision metric on testing data for post processing
only.
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Histogram of Recall for testing images
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Figure 4.6: Histogram of recall metric on testing data for the complete ensem-
ble.
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Figure 4.7: Histogram of recall metric on testing data for post processing only.
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Histogram of f-metric for testing images
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Figure 4.8: Histogram of f-metric on testing data for the complete ensemble.
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Figure 4.9: Histogram of f-metric on testing data for post processing only.
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Given these metrics, in particular the f-metric, it is apparent that the
combination of DCT based classifiers and post processing does outperform
any individual component. However, when looking at precision and recall
independently, the results are not as straight forward. Further, give the large
amount of variation in the data, the performance improvement in terms of f-
metric of the complete ensemble compared with only post processing may not
be statistically significant. Post processing alone outperforms the combination
in terms of precision, but the entire ensemble outperforms just post processing
in terms of recall. Further, when looking at the performance of individual
images rather than the mean of the set, the complete ensemble has a large
number of images which fail completely, as compared with post processing
alone which has more uniform distributions. These results indicate that while
combining individual classifiers with Weighted Majority is successful, there
may exist a better means of integrating post processing which allows for a

more optimal combination of the two.

Example result images are provided to illustrate a fairly correct clas-
sification, figure 4.10, a partially correct classification, figure 4.11, and an
incorrect classification, figure 4.12. In general, results tend to have greater
numbers of missed detections than false alarms, with a few exceptions. False
alarms are typically smaller objects or objects which are character-like but are

not characters, such as icons or logos.
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Figure 4.10: Example mostly correct image. Notice some incorrectly filled
letters and the incorrect selection of the plus sign. Precision: 0.75 Recall: 0.97
f-metric: 0.85
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Figure 4.11: Example of a partially correct image. Some text is missing and
a significant amount of non-text is incorrectly labeled as text. Precision: 0.36
Recall:0.29 f-metric: 0.32
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Figure 4.12: Example of a significantly incorrect image. None of the text
has been selected, and some non-text has been incorrectly labeled as text.
Precision: 0.00 Recall: 0.00 f-metric: 0.00

80



Chapter 5

Discussion

5.1 Features and Classifiers

Selection of features was motivated by related work as well as the intu-
ition that filtering based on frequency information may allow for the extraction
of text characters which are regularly spaced and contain a high concentration
of edges. Initially the Sobel edge detector was also used to create classifiers,
however, it was found to provide little additional information compared with
that provided by DCT based frequency features. The use of bandpass fil-
ters may provide better results and was attempted, however this approach
required too many parameters and was difficult to tune. Initially several addi-
tional highpass filters were used, but it became clear that they did not provide

useful additional information than the final six selected.

After applying filters and generating six feature images, creation of clas-
sifiers from these filters is challenging. To reduce the number of parameters
our system needed to learn, the f-metric was used to select reasonable thresh-
olds based on performance. It is possible to use many additional thresholds,
allowing the learning algorithm to decide how many provided useful informa-

tion, however, the benefit of taking a brute force approach may not be worth
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the significant increase in computation time required. As a first attempt, it
seemed more reasonable to limit the number of thresholds and thus reduce

computation time required to produce results.

Figure 5.3 shows evolution of the classifier weights as new training
data is introduced. While the weights of some classifiers end close to zero,
others remain fairly even with each other. It is this behavior that allows the
combination of classifiers to outperform any individual classifier. In the figure,
the top four weights, accounting for nearly 95% of the weight of all classifiers
correspond to the highpass filters, in order from least to most significant,
where 0 = 1.5, 0 = 2.0, 0 = 2.5, and ¢ = 3.0, each with a threshold value of
0.2. Interestingly, the lowest of the highpass filters, with o = 3.0, is weighted
higher than the other filters. This indicates the original f-metric criterion for
choosing filters may need to be modified, and perhaps filters of size larger than

& x & should be tested.

Also note from the figure that the final weights selected are weights
which correspond to the lowest cumulative error for a set of weights. Weighted
Majority has been run 10 times, and for each time the cumulative loss is
computed. The final weights resulting from each run are stored, and the
weights associated with the lowest cumulative loss are selected. Alternately
this step can be omitted and the weights resulting from all 10 runs combined

can be used.

Although this figure shows the results after ten iterations through the
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data, it is unclear if additional training runs or additional data will improve
these weights or lead to overfitting. However, all of the weights except for
the highest one seem to have leveled off or started declining, hinting that
this is a good stopping point. Nevertheless, as the highest weight seems to
still be increasing, additional runs may be needed. To address the concern of
overfitting, it would perhaps be more beneficial to train on additional training

data or a validation set rather than to continue to iterate on this set.

Altering post processing thresholds was attempted to see if there may
be a quick solution to finding a good threshold for both the linearity filter
and the color consistency filter, other than using the mean. Using thresholds
corresponding to the most popular value from the training data, we get the
results shown below. As shown in Figure 5.1 and Figure 5.2, these values
seem too strict compared with using the mean. For the next iteration of this
algorithm, a simple classifier or some other similar approach should be taken

to identify better thresholds for these important features.

5.2 Weighted Majority Algorithm

The use of the Weighted Majority algorithm was motivated by several
factors. Since classifiers are created prior to learning and we are interested in
their relative performance, this algorithm is the natural choice. Additionally,
WM is an online algorithm, that is after training data has been used, it is not

needed in again in the future for further training. Instead, if new training data
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Figure 5.1: Applying a linearity threshold of 0.04 to our sample image results
in a significant loss in the text selected.
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Figure 5.2: Applying a color consistency threshold of 2 to our sample image
removes all text.
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Figure 5.3: Change in classifier weight during training.
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is available, the existing weights can be adjusted accordingly. This is partic-
ularly useful for training a text detection algorithm were data with ground
truth is hard to come by. In the event of additional data being available, it is
trivial to retrain the system to learn from this new information. On the other
hand, more advanced approaches including adaptive boosting have been shown
to produce impressive results when trained on seemingly trivial information.
A potential improvement to our system is to explore other more advanced

learning algorithms to gauge their utility for the text detection problem.

5.3 Post Processing

The post processing procedure resulted in the need to find a way to
reduce the number of false positives as well as false negatives produced by
the weighted combination of classifiers. Here we make assumptions about the
aspect ratio and color consistency of text. Many false positives are due to the
inclusion of small objects and fine lines, which are easily removed by a mini-
mum size requirement and the requirement that letters are not too linear. In
addition, to reduce the number of larger more circular objects from remaining,
a color consistency constraint is applied. Unfortunately, some letters which
are quite linear have a higher tendency of being rejected, as do letters which
either intentionally contain several colors or appear to be multicolored due to

llumination.

Earlier forms of our post processing did not include the Canny edge
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detector, instead relying on morphological processing to close gaps in letters.
Due to the nature of a frequency based approach, the interior of a letter, which
has relatively low frequency, is not likely to be selected by a series of highpass
filters. This results in the need to fill in letters, however it was found that
the majority of letters were only partially found by the classifiers, making a
simple filling operation impossible. To overcome this problem, the Canny edge
detector is used to segment letters more completely, which can then be filled
in. On its own, the edge detector recovers all edges in an image, not just those
associated with text, requiring the use of additional information. This extra
information comes from the classifiers, and in those regions where both agree,

pixels are labeled text.

Room for improvement exists in the way in which post processing is
merged with results from the classifiers. By simply finding regions which
intersect and opting to use filled in regions from the edge detection process, we
assume the edge detection process worked perfectly. The Canny edge detector
is a complex algorithm with many parameters available to tune. To keep things
simple, these were fixed for our implementation. A potential improvement to
the system would be to use multiple Gaussian filters in the Canny detector
and to adjust the high and low thresholds used. Ideally these values would
be extracted from the data, either by a statistical approach, or by a learning

algorithm.

One key to using the Canny edge detector and region filling successfully
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turned out to be the ability to determine the nesting of connected components.
If a region contains several components, it is more likely to be a sign or some
other form of uniform background than text. On the other hand some text
characters do contain interior regions, such as the letters “A”, “O”, and “P”.
To account for this color consistency was used to determine if an interior
region was more consistent with background or foreground. Overall it seems
that this process worked quite well and provided a significant improvement in

our results.

5.4 Analysis of Results

Looking at the numbers, it seems that our approach did not perform
as well as is desired. While this is true to some extent, it is important to keep
several things in mind when interpreting the numbers and comparing them to
other text detection algorithms. First, unlike any other algorithm we could
find, we focus on the pixel level and not on the word level. Since ground truth
needed to be created for this task, but it is not practical to label every pixel
in a 500 image dataset, we opted to use a semi-automated approach. While
quite effective, this approach isn’t perfect and introduced some error in the
ground truth. Also, since we started with the word level ground truth, we
must assume that is correct. This is not actually the case. Since word level
ground truth was created by hand, it too contains errors, including missing

words, and incorrectly selected logos which are not selected in other images.

89



If we assume that the ground truth is correct, it is important to note
that our metrics are pure precision, recall, and f-metric on the pixel level.
It is quite common to compensate for ground truth errors by allowing some
tolerance when computing results. Often metrics consider words found in by
an algorithm to be correct if some percentage of overlap with a ground truth
word is present. Although this approach can be justified, it can also lead to
over inflating scores, especially when comparing to scores which have not been

computed to include any tolerance.

If we assume that the ground truth and scoring metrics are correct, one
final note to make is that this is quite a difficult problem, sometimes even for
humans. Several example images and our classification results are provided
below to illustrate this point. Due to the large variety of text, especially in-
scene text, it is very difficult for any simple system to perfectly solve this
problem. That said, many newer algorithms which have begun to appear over
the last year continue to make advances in solving this task. Qualitatively,
our results look quite promising and show interesting potential as well as some

room for improvement.

5.5 Comparison With Other Algorithms
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YOU ARE HERE/

Figure 5.4: In this example, much of the text is correctly selected, however
some letters are missing and the “O” is incorrectly filled in. This is a case
where the extraction of word level bounding boxes may help performance.
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Figure 5.5: Similar to the previous example, many letters are correctly selected
with only a few exceptions.
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POGKET FLASH READER

Figure 5.6: Unfortunately no text was successfully recovered from this ex-
ample. Here our assumptions about the color consistency of text characters
breaks down. Since color consistency is a fundamental assumption in our sys-
tem, text is not successfully recovered. Figure 5.7 reveals further insight into
the problem.
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Figure 5.7: Top: sample classifier. Bottom: post processing. Notice the
classifier does not correctly identify the text on the monitor, while the post
processing does not correctly segment the words “pocket flash reader.”
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Figure 5.8: For this example, nearly all of the text is successfully detected,
with only a minimal amount of incorrect detections.
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Figure 5.9: Notice the inability of the system to recover “52”7, “53”, “54”, and
“55”. Figure 5.10 provides further insight into the problem.
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Figure 5.10: Top: sample classifier. Bottom: Canny edge detection results.
Due to the complex background, the edge detector is unable to correctly seg-
ment the numbers “527-“54”. Letters in words are lost by the classifiers.

97



Figure 5.11: Interestingly, the system correctly identifies the location of the
text in this image, but is unable to segment only letters, instead returning the
entire region. If we were doing word level detection, this would be a successful
result.
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Figure 5.12: In this example the numbers “4.5” are partially missed, while
other numbers are detected. Figure 5.13 shows a sample classifier and edge
results to help explain this issue.
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Figure 5.13: Both the sample classifier and the Canny edge detector perform
quite well on this image. The issue instead resides in additional post processing
steps. This may be corrected by improving post processing and reducing the
number of static thresholds used.
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Figure 5.14: This example shows a very difficult image for our algorithm.
Since this is a photo of a painting, lighting and texture causes changes in
color within characters. Interiors are filled in some cases, and some letters are
intentionally drawn in different colors. Neither the post processing step nor
the classification step was able to successfully detect text in this image.
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Figure 5.15: Although the classifiers performed well on this image, the Canny
edge detector breaks down completely. Adjustment of Canny’s parameters may
help avoid this issue in the future. Figure 5.16 shows individual components
to provide greater detail.
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Figure 5.16: Top: sample classifier. Bottom: Canny edge detector. In this
example, the edge detector fails to find the letters, causing the complete system
to miss the text.
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TRNTY STREET

Figure 5.17: Here we see more typical behavior, some letters being selected
and others missed, with an extra “letter like” region incorrectly labeled as
text. Figure 5.18 shows further detail.
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Figure 5.18: Here the edge detector (bottom) performs very well, however
the DCT based classifiers (sample classifier, top) do not, resulting in missed
letters.
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Figure 5.19: Similar to earlier examples, detection on the word level may
improve this result, given that many characters are successfully detected, but
most full words are not. 106
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Figure 5.20: In this final example, we see the majority of letters are correctly
selected, however there are quite a few false alarms. Adjustment of post pro-

cessing or the inclusion of OCR may help address this situation.
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Chapter 6

Conclusions and Future Work

We assert that the weighted combination of DCT based frequency filter
classifiers and the addition of a post processing step produces better text
detection results than any of the individual components do on their own. This
appears to hold true when comparing the results of individual classifiers to
the complete ensemble, but when comparing only the post processing step
to the complete ensemble, results are mixed. For overall f-metric and recall,
the complete ensemble outperforms only post processing, but post processing
alone performs better in terms of precision. This result suggests there may
be a better way of merging the classifiers with the post processing to create a
complete ensemble which outperforms individual components according to all

of the metrics.

Overall results, in particular the qualitative results, show that this ap-
proach is promising, but still leaves some room for improvement. Possible areas
of improvement include integrating the system with OCR, improved threshold
selection, and improved integration of classifiers with post processing. Exten-
sions of this work include applying it to video and integrating a text removal

technique for the video CAPTCHA application.
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The integration of OCR with the system may reduce false alarms and
help segment entire words more effectively. Likewise, by expanding the system
to make use of video, redundant information between frames may be used to
reduce false alarms. It is unclear how to increase the number of correct detec-
tions, however this may be possible by improving the selection of thresholds
throughout the system. Currently many thresholds were chosen statistically,
however it may be possible to use a learning algorithm to find better thresh-

olds.

Potential improvements and changes aside, future work should also
include application of this technique to video CAPTCHA since this was the
original motivation for the project. Work needs to be done on extending the
technique into video for detection, as well as in the area of text removal.

Inpainting and other similar algorithms appear promising for this purpose.

This technique has shown interesting results so far. Qualitatively, it
does a reasonable job on a wide range of images for the text detection task.
Quantitatively, numbers are not as high as is desired, however word level met-
rics should be computed to get a better sense of relative performance to other
algorithms. Areas where this approach shows difficulties can be further inves-
tigated and improved. Ideally with some minor modifications, this approach

will be ready for its original task, text detection in video.
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