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Abstract—Accurately detecting music symbols in images of
historical, complex, dense orchestral or piano printed scores
can be challenging due to old printing techniques or time
degradations. Because segmentation problems can vary widely, a
data driven approach like the use of deep learning detectors is
needed. However, the production of detection annotations (symbol
bounding boxes + classes) for such systems is costly and time
consuming. We propose to train such model with synthetic data
and annotations produced by a music typesetting program. We
analyze which classes are relevant to the detection task and
present a first selection of music score typesetting files that will
be used for training. To evaluate our model, we plan to compute
quantitative results on a synthetic test set and provide qualitative
results on a few manually annotated historical music scores.

Index Terms—Optical Music Recognition, Deep Learning,
Symbol Detection

Introduction: Music symbol detection in historical
printed orchestral and piano scores is a challenging problem
because of the complexity, density and degradations often
present in those scores. Segmentation problems caused by lack
of space and time degradations can vary widely as shown
in Figure 1. Instead of resolving the segmentation task in a
manual fashion with expert knowledge, a better solution is to
use trainable models and recent advance in the field of deep
learning detectors makes them suitable for this task.

(a) Touching symbols (b) Broken symbols

Fig. 1: Common segmentation challenges occurring in real his-
torical piano and orchestral music scores because of engraving
or degradation problems.

Previous work [1] has shown that deep learning detectors
such as the Faster R-CNN can accurately detect handwritten
music symbols. However, the production of annotations for
such systems is costly and time consuming. We propose to
train such model with synthetic data and annotations produced
by a music typesetting software such as MuseScore. Using
synthetic data for training machine learning models is a well

known subject, as shown by the work of [2] which is able
to produce historical synthetic document. However, the use
of synthetic data and annotation for the detection of music
symbols has still not been applied to the field of Optical Music
Recognition. Our end goal is to apply a detector trained only
on synthetic data on real historical music scores.

MuseScore Synthetic Data Generation: MuseScore [3]
is an open-source music typesetting program that has recently
developed a branch for generating data annotations suitable for
training classification and detection models used in Optical
Music Recognition (OMR) pipeline. Each page of a music
score is transformed into a pair of files: an image and an
XML files containing a list of symbols present in the image.
All symbols are annotated with their class and bounding box
in the form of the top-left coordinate and width/height of
the symbol. Symbols can be nested, meaning that they are
a composite of other symbols or primitives. For example, a
nested symbol like the grace note contains elements like a flag,
stem, notehead and possible slash, all of which are annotated in
the produced XML file with their respective bounding boxes.
This opens the possibility of training classifiers and detectors
on synthetic data while having lots of flexibility on the class set
and composition used. The only limitation of the class set used
is imposed by the Standard Music Font Layout (SMuFL) [4]
which defines glyphs used in music typesetting software.

Class Set Selection: We first limit the number of classes
to the minimal amount possible and group visually similar
symbols in the same class. We use these principles to ease the
task difficulty for the detector. SMuFL defines all glyphs used
to typeset music scores. This standard is diverse and contains
around 2600 glyphs. The organization of glyphs are mainly
based on their semantic and contextual use. This means that
this standard can contain multiple glyphs with the same visual
appearance but with only a minor transformation: translation,
symmetry or scale as shown in Figure 2.

In music notation, some symbols are built from a number
of simple primitives, e.g. flags, rests or dynamics. Using the
SMuFL standard, these symbols cannot be decomposed into
primitives as they are defined as a single glyphs. Therefore, we
choose to use a different class for each different flag, rest and
dynamic symbol up to the flag64th, rest64th and third level
of dynamic like dynamicFFF. While dynamic symbols cannot
be decomposed into their letter primitives, constructs like time
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(a) Translation (b) Symmetry

Fig. 2: Visually similar glyphs with different classes in
SMuFL. 2a shows symbols articAccentAbove/Below which are
the same > symbol translated. 2b shows flag8th up and down
produced with a symmetry.

signature can be decomposed into single digits. We choose to
define nine classes corresponding to the different digits from
0 to 9. These digits can be used for the time signature, but
also for finger annotation in piano scores.

Very small and complex constructs like grace notes are left
for future work as their small size and complexity could be
too difficult to handle for a detector with a big input image
size.

We also do not consider variable sized symbols like beam,
tie, slurs or barline because of their extreme varying size ratio
and very simple shapes. Models like line detection models
should be more suitable in order to recognize these symbols.

Finally, we propose to leave as future work the definition
of meta classes like timeSig12over8 which annotates a time
signature composed of stacked digits 1, 2 and 8 with a global
bounding box around the three symbols. Again, this choice is
done in order to simplify the task of the detector. Furthermore,
meta classes can also be recognized during downstream OMR
steps using a contextual approach and a syntactical method.

Using this set of guidelines, we select a set of 55 classes
covering most commonly used symbols in orchestral and piano
scores, see Figure 3 for an overview of the most common
music symbols.

Fig. 3: Common music symbols chosen in the class set
composed of accidentals, clefs, ornaments, dynamic signs,
tuplets and note heads.

Data Augmentation: In association with the annotation,
MuseScore produce an image for each page of a music score.

However, these images will be clean, without any kind of noise
or deformation. Because our end goal is to use our trained
model on real historical scores, we plan to apply common
noise and deformation with an open-source software called
DocCreator [2]. Noise and deformations can be applied to
documents while keeping the spatial annotations like bounding
boxes synchronized with the modified document.

Detection Model: For our detection model, we use a
regular Faster R-CNN as presented and implemented by [5].
The Faster R-CNN is a two stage detector using a region
proposal network (RPN) and a region classifier. The RPN
is trained in order to predict possible regions containing an
object. The region classifier predicts the class of the object
contained in a proposed region while also refining its bounding
box. The transition between the RPN and region classifier is
done by using an ROI pooling operation which is able to crop a
sub-region of the RPN output feature map using the bounding
boxes produced by the RPN.

In order to feed the music score to the network, we will first
reuse the same strategy as [1] and crop the music score along
the stafflines. However, we would like to expand this input
size to its maximum and eventually evaluate the performance
of the detector applied to a whole page of a music score.

Dataset Description: The dataset is constituted by
searching the MuseScore database for scores matching the
creative-common zero (CC0) license (equivalent to public
domain license). We refine our search by filtering composer
known for classical or romantic music like Mozart, Vivaldi,
Beethoven or Haydn. Our training dataset is constituted of 48
scores, producing a total of 636 pages and 278797 symbols
with 46 different classes. Some previously considered classes
like the ‘fermata‘ or keyboard specific symbols are missing
and we are looking into expanding our current dataset in order
to cover more symbols. We split our dataset at the page level
into a train and test set, keeping 70% for training and 30%
for testing.

Quantitative and Qualitative Results: We plan to report
quantitative results in term of mean Average Precision on a
synthetic test set, but also produce some qualitative results
on a few real printed historical score images. We hope that
these results will show that a deep learning detector is able to
transfer its learned knowledge from synthetic music scores to
real historical music scores.
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