

Please join us! Feedback also appreciated! Email: rxzvcs@rit.edu

Richard Zanibbi

Rochester Institute of Technology rxzvcs@rit.edu

– Goals –

Advance techniques for math-aware search and semantic analysis of mathematical notation and texts

- Collection -

Math Stack Exchange community QA forum (~1.1 million questions)

Formula Representations —

Appearance: the arrangement of symbols on writing lines.

- LaTeX
- Presentation MathML

Semantic: operators, arguments, order of operations

Content MathML

Key Dates

2019

- Release data, sample queries Nov
- Nov 5 Registration opens

2020

- Jan 15 Test queries released May Submissions close
- Aug 14 Final lab report
- Sep 22-25 ARQMath@CLEF 2020

Task 1: Finding Answers to Math Questions

Query

Topics and Runs

- Manual and automatic runs will be collected

Evaluation

- the formula(s) seem to characterize the topic on their own.
- not contribute to the judgement pool

Answer Retrieval for Questions on Math

https://www.cs.rit.edu/~dprl/ARQMath

Douglas W. Oard University of Maryland oard@umd.edu

Anurag Agarwal Rochester Institute of Technology axasma@rit.edu

Given a **posted question as a query**, search all **answer posts** and return relevant answers.

	Search Results
	No need to use Taylor series, this can be derived in a similar way to the formula for geometric series. Let's find a general formula for the following sum: $S_m = \sum_{n=1}^m nr^n.$
derive ed these	2 It is equivalent to $x(x + 1)(x + 5)(x + 6) + 96 = 0$ Now $(x^2 + 6x)(x^2 + 6x + 5) + 96 = 0$
	3 If you want a solution that doesn't require derivatives or integrals, notice that $1 + 2x + 3x^2 + 4x^3 + \dots = 1 + x + x^2 + x^3 + \dots + x + x^2 + x^3 + \dots + x^2 + x^3 + \dots + x^2 + x^3 + \dots$
8	•

• Goal: Create 100 topics using questions containing text and at least one formula • Queries may be processed using either text, math, or both text and math

• Top-k hits (e.g., top-20) + additional manual runs by organizers will be pooled • Most topics assessed once, some doubly-assessed to check agreement • Assessors will include volunteers from teams, along with hired assessors • During assessment, we propose organizing topics into three sets: (1) all topics, (2) topics where the text seems to characterize the topic on its own, and (3) topics where

• We propose using extended inferred Average Precision (xinfAP) over the three topic sets as the primary measure to support comparison with future systems that do

Query

 $\sum_{n=0}^{\infty} (n+1)x^n$

Topics and Runs

- Manual and automatic runs will be collected

Evaluation

- as the primary measure for comparing systems

- Task 2: Formula Search
- Given a formula query from a question, search formulas in question and answer posts and return relevant formulas.

	Search Results
1	$\sum_{n=0}^{\infty} (n+1)x^n$
 2	$\sum_{n=0}^{\infty} (n+1)x^n$
3	$\int_{0}^{1} \frac{\ln(x+1)}{x^{2}+1} dx$
	-
	-

• Goal: Create 50 topics using formulas extracted from topics in Task 1 • Formulas provided in LaTeX, Presentation MathML, and Content MathML • Annotators create human-readable narratives to define relevant formulas, e.g., subexpressions, alternative notation, simplification, applications in specific fields, etc.

 Top-k formulas from participants + additional manual runs by organizers will be pooled • Assessors can use formula hits + pools from Task 1 to identify similar formulas Most topics assessed once some doubly-assessed to check agreement • Assessors include volunteers from teams along with hired assessors • We propose using extended inferred Average Precision (xinfAP) over formula topics