
DRACULAE Version 0.3 User’s Manual
Diagram Recognition Application for Computer Understanding of Large Alegbraic Expressions

Richard Zanibbi
Diagram Recognition Laboratory

Queen’s University
Kingston, Ontario, CANADA

April 30, 2004

1 Introduction

DRACULAE implements a tree-transformation based approach to recognizing the syntax and seman-
tics of mathematical expressions [3, 5, 4], implemented in the TXL tree transformation language [1, 2].
DRACULAE was first implemented in Java in 1999. Using TXL, which has a convenient pattern-
replacement syntax for tree transformations, DRACULAE was completely re-implemented in May to
July 2000. Since that time DRACULAE has been through a number of clean-ups and alterations.

DRACULAE produces TEX and operator tree output from a list of symbols with bounding boxes.
An operator tree represents the semantics of a mathematical expression, an ordered application of
operators to operands. DRACULAE also produces intermediate data in the form of Baseline Structure
Trees [4], which describe the location of symbols and/or tokens on baselines in an expression.

There are many dialects of mathematical notation, for instance created when a person defines
new operations, which may change the syntax and/or semantics of symbols in an expression. This
distribution of DRACULAE defines only a single dialect, but in Section 4 we describe starting points
for extending DRACULAE to cope with new dialects, by taking advantage of DRACULAE’s compiler-
based architecture.

DRACULAE currently recognizes individual expressions (e.g. not spread across lines) which do not
contain tabular structures such as matrices and multiple indices on summations. The current symbol
layout analysis is simple, and is sometimes fragile as a result (you may notice that superscript/subscript
detection may be unreliable on certain inputs, for instance). Also, the expression grammar currently
used to produce operator trees is quite limited (though it may be easily extended: see Section 4).

In the remainder of this section we list contributors to DRACULAE, provide notes on copying and
distributing DRACULAE, and summarize the subdirectories of DRACULAE. In subsequent sections
we describe how to use DRACULAE, give an overview of how DRACULAE processes input, provide
notes on altering and extending DRACULAE, and finally give contact information for bugs, comments
and suggestions.

1.1 Contributors

DRACULAE’s currently has only one author, Richard Zanibbi. Version 0.1 was implemented in Java
in 1999, and this was reworked into the TXL-based Version 0.2 between May 2000 and March 2002.
Version 0.3 makes use of the now freely available TXL compiler.

1.2 Copying and Distribution

DRACULAE is distributed under the GNU General Public License (GPL). A copy of the license is
in the LICENSE file in the DRACULAE 0.3/ directory. The GPL license is also available online at
http://www.fsf.org/copyleft/gpl.html. You may freely distribute and/or alter DRACULAE in accor-
dance with the terms of the GPL.

1

1.3 Subdirectories

Here is a summary of the DRACULAE subdirectories.

bin/: contains DRACULAE executable programs, and a test script for TXL.

old/: unused Bourne Again Shell (bash) scripts for running DRACULAE in Version 0.2; kept
here for reference.

doc/: contains the DRACULAE documentation you are now reading.

examples/: contains some example files to try running the different DRACULAE scripts on, and to
provide examples of legal input files.

src/: contains the DRACULAE source code. In the src/ directory are the main programs (.Txl files)
corresponding to the DRACULAE application programs. The subdirectories of src/ contain
supporting grammars and rules for these programs:

Grammars/: context-free grammars (.Grammar files).

Rules/: rewrite functions and rules (.Rules files).

test/: simple test program and file used to test the TXL installation.

1.4 Installation

See the README. After installing TXL on your system, issue ”make install.” This will test your TXL
installation and then build DRACULAE. TXL is available from http://www.txl.ca.

2 Using DRACULAE

There are three programs provided in DRACULAE. TXL source files have the extension .Txl, while
executables have the extension .x. When successfully compiled using the provided makefile, a .Txl
program will be used to generate an executable placed in the bin/ directory.

TXL programs can be run with the txl interpreter rather than compiled if desired. See the TXL
documentation for details.

GetTeX.Txl: takes a .dat file describing expressions as lists of symbols with bounding boxes, return-
ing a TEX string corresponding to DRACULAE’s interpretation of the input.

GetSemantics.Txl: translates a Lexed Baseline Structure Tree (see Section 3) to an operator tree.

AlignSymbols.Txl: takes a single Baseline Structure Tree (BST) in a file as input and aligns and
resizes symbol bounding boxes in the BST; this is used as a reformatting operation in the
Freehand Formula Entry System (FFES) [6].

Each application may be run one of two ways. The first way is by using the TXL interpreter
directly, e.g.:

txl examples/eg symbols.dat src/GetTeX.Txl − <Command Line Arguments>

This runs GetTeX.Txl on the eg symbols.dat file in the examples/ directory.
Alternatively, the faster compiled version of the program can be used. To run the compiled version

of GetTeX.Txl (GetTeX.x) on the previous example, issue:

bin/GetTeX.x examples/eg symbols.dat − <Command Line Arguments>

We we can obtain the expression’s operator tree using the compiled TXL program bin/GetSemantics.x,
like so:

bin/GetSemantics.x examples/DRACULAE.bst

2

We recommend looking at the FFES documentation and source code if you are interested in using
AlignSymbols.x/.Txl (it makes more sense if you can see the result; this is the ‘Align’ operation of
FFES). You can try running an example by issuing:

bin/AlignSymbols.x examples/DRACULAE.bst − <Command Line Arguments>

Currently AlignSymbols.Txl aligns only an initial BST; this means for instance that the symbols of
‘cos x’ would all be evenly spaced as ‘c o s x’ on a baseline, even though the TEX output of GetTeX.Txl
would group ‘cos’ together as a single token.

Note that for GetSemantics.Txl, TXL will return a parse error if there are unrecognized structures
in the input. This is not a bug, but rather a restriction of the simple expression grammar distributed
with DRACULAE (see Section 4). Also, if you try and use an input file with an improper format with
any of the programs, TXL will report a parse error.This is because all TXL programs begin by parsing
their input using a context-free grammar. The grammar files defining input formats are described in
Section 4.

2.1 Command Line Options

GetSemantics.Txl takes no command line options. However, GetTeX.Txl and AlignSymbols.Txl
take the following arguments:

-help shows command line options (note: passes input directly to output)

-bleft indicate that the origin of the input if bottom-left (default is top-left)

-thresholdRatio <0.0-0.5> set ratio used to define symbol region thresholds (default: 1/6 (0.166667))

-centroidRatio <0.0 - 0.5> set ratio used to define symbol centroid Y-coordinates (default: 1/4
(0.25))

GetTeX.Txl/.x also takes the following two options, which are used to output the intermediate
Baseline Structure Trees (BSTs) produced by GetTeX.Txl.

-intDir <dir> set directory to write intermediate output (.bst file) (produces file DRACULAE.bst
unless filename given using the -intFile flag)

-intFile <file name> set filename of intermediate output (.bst file) (places file in the current direc-
tory unless intermediate output directory is given by -intDir flag)

3 A Quick Overview of Processing in DRACULAE

DRACULAE is structured similar to a compiler. Figure 1 shows the passes used in DRACULAE,
which we will describe briefly here. For a more complete description of DRACULAE, please consult
our research papers about DRACULAE [5, 4]. In the DRACULAE source, the Layout, Lexical and
LATEX Generation passes correspond to GetTeX.Txl, and the Expression Analysis Pass corresponds to
GetSemantics.Txl.

1. Layout Pass: a list of symbols and bounding boxes given as input are converted into a Base-
line Structure Tree (BST), describing the layout of symbols in an expression. A baseline in a
mathematical expression is a left-to-right ordered list of symbols intended to be perceived as
adjacent. The dominant baseline of an expression is the baseline containing the symbols and
operators that dominate each horizontally adjacent subexpression and the operators connecting
them. In a baseline structure tree, symbols and regions (e.g. EXPRESSION,ABOVE,BELOW)
are represented by individual tree nodes. Baseline symbols appear as left-to-right ordered child
nodes of region nodes. The dominant baseline of each region is represented as child symbol nodes
of a region node.

In Figure 1b the Baseline Structure Tree for Figure 1a is given. It contains four baselines in
four regions; the region containing the whole expression (EXPRESSION), the superscript region
relative to the A (SUPER), and the regions above and below the fraction line (ABOVE,BELOW).

3

A ^{ C } + \frac { B } { 2 } − D

(e) LaTeX String

D

EXPRESSION

+ FRACTIONSUPERSCRIPT

CA B 2

A + D

ABOVESUPER

C B

EXPRESSION

BELOW

2

LaT
eX

 G
eneration

I.
 L

ay
ou

t P
as

s

II.
 L

ex
ic

al
 P

as
s

III
.

E
xp

re
ss

io
n

A
na

ly
si

s
P

as
s

A C B 2

D

EXPONENT

INTEGER ADD

INTEGER SUBTRACT

DIVIDE

(c) Lexed Baseline Structure Tree

(b) Baseline Structure Tree (BST) (d) Operator Tree

(a) Input Expression
(Symbols and Bounding Boxes)

Figure 1: Overview of Processing in DRACULAE

The dominant baseline of the expression appears as the child nodes of the root of the tree
(EXPRESSION).

In DRACULAE’s Layout Pass, symbol positions are represented using a single point, called a
centroid. The nested regions around symbols are determined using thresholds. The location
of these thresholds and the centroid y-position can be controlled using the ‘-centroidRatio’ and
‘-thresholdRatio’ command-line arguments with GetTeX.Txl. Both centroids and regions are
assigned based on the Symbol Class that an input symbol belongs to (see Section 4).

The Layout Pass builds a Baseline Structure Tree by recursively:

(a) Locating the leftmost symbol of the dominant baseline in a region (originally the entire
expression). For example, in Figure 1a, the dominant baseline of the entire expression
begins with ‘A’, as seen in Figure 1b.

(b) Locating all remaining symbols on the dominant baseline left-to-right. In Figure 1a, the
remaining dominant baseline symbols are ‘+,-,-,D’, as shown in Figure 1b.

(c) Partitioning all symbols not on the dominant baseline into nested regions relative to the
baseline symbols. Figure 1b shows the ‘C’, ‘B’ and ‘2’ partitioned into nested regions of the
dominant baseline symbols.

(d) Recursively applying 1-3 in each nested region relative to the dominant baseline containing
more than one symbol. In Figure 1b the nested regions of the dominant baseline contain
only single symbols, so no further processing is needed.

2. Lexical Pass: lexical analysis of the tokens (e.g. symbols, function names, operators) and re-
lations (ABOVE/BELOW/etc.) in a Baseline Structure Tree is performed. Function names,
decimal numbers and compound symbols (e.g. ≥,≤,=) are grouped into single units, and struc-
tures comprised of multiple baselines are explicitly labelled (e.g. the fraction in Figure 1). This
lexical step simplifies the parsing required in the next pass, by explicitly labelling tokens and
vertical structures.

3. Expression Analysis Pass: the Lexed BST is parsed using an expression grammar, and then
transformed to produce an operator tree. The parse constructs a conventional mathematical

4

expression parse tree, in which operators and operands are located according to their precedence
and associativity. Tree rewrites are then used to pre-order the operators in the tree (e.g. ‘2 + 2’
becomes ‘+ 2 2’), and to make implicit operators explicit (e.g. ‘ab’ becomes ‘MULTIPLY a b’).

4 Altering and Extending DRACULAE

This section contains some quick pointers for people who wish to alter and/or extend DRACULAE.
Before looking at the source code, we strongly recommend you read the TXL documentation available
from http://www.txl.ca.

BST Grammar: the grammar defining legal Baseline Structure Trees and input file formats for the
Layout, Lexical and LATEX Generation passes is located in Grammars/BST.Grammar.

Layout Pass: here are some of the ways you can alter the Layout Pass (Rules/Layout Analysis.Rules):

Thresholds: the thresholds defining regions around symbols in the different Symbol Classes are
in Rules/Thresholds.Rules.

Centroid Positions: the functions that assign symbol centroid positions are located in
Rules/SymbolFunctions.Rules.

Symbol Classes: the Symbol Classes specifying how centroids and thresholds are assigned to
symbols are defined in Grammars/Symbol Classes.Grammar. You may add to, or provide
alternatives to this file to add new symbols to their appropriate symbol class, or to change
the Symbol Class of a symbol.

Layout Search Functions: if you wish to examine or alter the search functions START and
HOR used to locate baselines, start by looking at Rules/Regular Hor.Rules, NoSuper-
Sub Hor.Rules and Start.Rules, used by GetTeX.Txl.

Lexical Pass: lexing of tokens occurs before lexing of relations (regions) in DRACULAE. Token
lexing is in Rules/Token Lexing.Rules, and relation lexing is in Relation Lexing.Rules (these are
both used by GetTeX.Txl. Both are sets of fairly simple tree rewrites, and you can alter or
replace these to better recognize structures, or identify new structures.

Expression Analysis Pass: Grammars/Expression.Grammar is used by GetSemantics.Txl to parse
a Lexed BST before producing an operator tree. You may change the grammar, or create
alternative grammars, to cope with new math dialects containing structures not defined in the
current grammar. You may also need to change the rewrites in Rules/Semantics.Rules to properly
handle new dialects.

TEX Mappings: the routines producing TEX output from a Lexed BST are in TeX Output.Rules
(main function) and TeX Symbol List.Rules (defines symbol and label mappings).

Origin Mapping: Rules/MoveOrigin.Rules defines functions used to move the origin for input sym-
bols from top-left to bottom-left (standard Cartesian) and back. This has been buggy, and may
be a good place to look if you obtain really strange behaviour from DRACULAE.

4.1 Handling Dialects

In an (ideal) version of DRACULAE designed to handle multiple dialects, DRACULAE would allow
the set of rewrites and grammars to be used in each pass to be given as arguments. For example,
the user might be able to give the name of files containing the Lexical pass rewrites and expression
grammar for the Expression Analysis Pass that match the dialect of a given input, rather than being
restricted to a single language definition, which is currently the case.

5

5 Bugs, Comments and Suggestions

If you locate a bug while using DRACULAE, please send the problem input file with a message de-
scribing the bug to zanibbi@cs.queensu.ca. If this is not possible or appropriate, simply send a message
describing the bug. Please note that DRACULAE is not designed to handle tabular structures such
as matrices and multiple indices on summations etc. Also, we are already aware that the threshold
and centroid layout model used in DRACULAE is fragile (e.g. superscript/subscript detection can be
unreliable, for instance).

If you have any comments or suggestions about DRACULAE, we’re interested in hearing them.
Please send your comments and suggestions to zanibbi@cs.queensu.ca.

Acknowledgements

My supervisors Dorothea Blostein and James R. Cordy have contributed a great deal to the design
of DRACULAE, along with Steve Smithies, Kevin Novins (University of Auckland, New Zealand)
and James Arvo (California Institute of Technology). This work has been supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC).

References

[1] J.R. Cordy, I. Charmichael, and R. Halliday. The TXL Programming Language - Version 10. TXL
Software Research Inc., Kingston, Ontario, Canada, Jan. 2000.

[2] J.R. Cordy, C.D. Halpern, and E. Promislow. TXL: A rapid prototyping system for programming
language dialects. Computer Languages, 16(1):97–107, Jan 1991.

[3] R. Zanibbi. Recognition of mathematics notation via computer using baseline structure. Technical
Report ISBN-0836-0227-2000-439, Dept. Computer Science, Queen’s University, Kingston, Ontario,
Canada, August 2000.

[4] R. Zanibbi, D. Blostein, and J.R. Cordy. Baseline structure analysis of handwritten mathematics
notation. In Proc. Sixth Int’l Conf. Document Analysis and Recognition, pages 768–773, 2001.

[5] R. Zanibbi, D. Blostein, and J.R. Cordy. Recognizing mathematics notation using tree trans-
formation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(11):1455–1467,
2002.

[6] R. Zanibbi, K. Novins, J. Arvo, and K. Zanibbi. Aiding manipulation of handwritten mathematical
expressions through style-preserving morphs. In Proc. Graphics Interface, pages 127–134, 2001.

6

	Introduction
	Contributors
	Copying and Distribution
	Subdirectories
	Installation

	Using DRACULAE
	Command Line Options

	A Quick Overview of Processing in DRACULAE
	Altering and Extending DRACULAE
	Handling Dialects

	Bugs, Comments and Suggestions

