(will be inserted by the editor)

International Journal on Document Analysis and Recognition manuscript No.

Mathematical Expression Recognition: A Survey

Kam-Fai Chan, Dit-Yan Yeung

Department of Computer Science, The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
e-mail: {kchan,dyyeung}@cs.ust.hk

Received: date / Revised version: date

Abstract. Automatic recognition of mathematical ex-
pressions is one of the key vehicles in the drive towards
transcribing documents in scientific and engineering dis-
ciplines into electronic form. This problem typically con-
sists of two major stages, namely, symbol recognition
and structural analysis. In this survey paper, we will re-
view most of the existing work with respect to each of
the two major stages of the recognition process. In par-
ticular, we try to put emphasis on the similarities and
differences between systems. Moreover, some important
issues in mathematical expression recognition will be ad-
dressed in depth. All these together serve to provide a
clear overall picture of how this research area has been
developed to date.

Key words: error detection and correction — mathe-
matical expression recognition — performance evaluation
— structural analysis — symbol recognition

1 Introduction

With the very rapid increase of Internet users in recent
years, there is a growing trend of disseminating and ex-
changing information via this popular channel. Digital
library and distance learning are becoming hot research
areas that address issues arisen from the widespread use
of the Internet. One of the key vehicles in the drive to-
wards realizing these ideas is to develop cheap and effi-
cient methods for transcribing existing knowledge in the
form of paper documents into corresponding electronic
form, which is the form that can be processed by today’s
digital computers and transmitted through the Internet.

Mathematical expressions constitute an essential part
in most scientific and engineering disciplines. The in-
put of mathematical expressions into computers is often
more difficult than that of plain text, because mathe-
matical expressions typically consist of special symbols
and Greek letters in addition to English letters and dig-
its. With such a large number of characters and symbols,
the commonly used type of keyboard has to be specially

modified in order to accommodate all the keys needed, as
done in [21]. Another method is to make use of some ex-
tra keys in the keyboard (e.g., function keys) along with
a set of unique key sequences for representing other spe-
cial symbols, as in [48]. Yet another method is to simply
define a set of keywords to represent special characters
and symbols, as in WTEX [36].

However, working with specially designed keyboards
or keywords requires intensive training and practice. Al-
ternatively, by taking advantage of pen-based comput-
ing technologies, one could simply write mathematical
expressions on an electronic tablet for the computer to
recognize them automatically. In situations where the
expressions are already in some printed form, we could
just scan in the document for the computer to recognize
the expressions directly from the image.

Mathematical expression recognition typically con-
sists of two major stages: symbol recognition and struc-
tural analysis. Character recognition, as the most com-
mon type of symbol recognition problems, has been an
active research area for more than three decades [47,60].
Structural analysis of two-dimensional patterns also has
a long history [50]. However, as emphasized in [5,11,14,
40], very few papers had addressed specific problems re-
lated to mathematical expression recognition. It is only
until recently that more researchers have started to pay
attention to this area.

So far, to the best of our knowledge, papers that pro-
vide literature survey of the area of mathematical ex-
pression recognition research are very rare. In [7], the
recognition problem is first defined and then followed by
a survey of existing work according to major sub-parts of
the recognition problem. However, comparison between
different systems with respect to different aspects is gen-
erally not provided.

In this paper, we will remedy such shortcoming by
putting more emphasis on the similarities and differ-
ences between systems. Besides, we will include more
recent papers not covered in [7]. First of all, we will dis-
cuss some typical properties of mathematical expressions
which make their recognition difficult. Then, we will give
an overview of the recognition process. Afterwards, we

2 Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

will provide a survey of existing work in mathematic ex-
pression recognition, with emphasis on comparison be-
tween systems in each major stage of the recognition pro-
cess. Finally, we will discuss other related issues and fu-
ture research directions which are then followed by some
concluding remarks.

Note that some existing systems for off-line recog-
nition of mathematical expressions deal with data that
contain both text lines and mathematical expressions in
the same document [16,29,30,42,52,61]. Extraction of
mathematical expressions and other similar objects (for
example, diagrams, graphical drawings, chemical equa-
tions, etc.) from documents requires similar techniques.
This indeed can be a large topic by itself [59]. Our sur-
vey, however, will only cover the recognition of mathe-
matical expressions. Readers who are interested in those
techniques for extracting mathematical expressions from
a document may find details in the papers mentioned
above.

2 Properties of Mathematical Expressions

In a mathematical expression, characters and symbols
can be spatially arranged as a complex two-dimensional

structure, possibly of different character and symbol sizes.

All the characters and symbols, when grouped properly,
form an internal hierarchical structure.

However, proper grouping of symbols in a mathemat-
ical expression is not trivial. Firstly, there are two types
of symbols. One type includes all basic symbols and the
other includes binding, fence and operator symbols. Each
type of symbols has its own grouping criteria. Secondly,
there are also two types of operators, namely, explicit
and implicit operators. Explicit operators are operator
symbols while implicit operators are spatial operators.
Thirdly, some symbols may represent different meanings
in different contexts. These properties together make the
recognition process very difficult even when all the indi-
vidual characters and symbols can be recognized cor-
rectly.

2.1 Grouping Basic Symbols

Undoubtedly, every symbol has its own meaning. How-
ever, in a mathematical expression, sometimes there is
a need for grouping some adjoining symbols together to
represent another meaning. The following are some gen-
eral rules:

1. Digits together usually form a unit when they are of
the same size, adjacent to each other, and written
on the same horizontal line, e.g., 210 represents an
integer value. On the other hand, the same digits
but with different sizes and positions may carry a
different meaning, e.g., 2'° consists of two units which
are 2 and 10 respectively.

2. Several letters together may form a unit, like some
trigonometric functions such as tan, sin and cos.

Before considering a group of letters as a concatena-
tion of variable names representing their multiplica-
tive product, we should first check whether they to-
gether form a function name.

3. Symbols other than letters and digits should be con-
sidered as separate units.

2.2 Grouping Binding, Fence and Operator Symbols

The presence of some symbols in a mathematical expres-
sion may invoke some special grouping methods. The
following are three types of such symbols:

1. Binding symbols, such as fraction line, ,/— and }_,
dominate their neighboring sub-expressions. For ex-

10
ample, in “ E 1 7, three sub-expressions, i.e., “10”,
=1

“ =17, and “” are bound to the symbol) which
gives meaning to the expression as the sum of 1,
2, ..., 10. However, deciding proper relationships
among binding symbols and their neighboring sub-
expressions becomes non-trivial in some nested ex-
pressions, for example,

10
0 2

? i—1
13 ” d [T n‘
Z a+b an a+b

i=1

2. Fence symbols, such as parentheses, group the en-
closed units into one single compound unit. For ex-
ample, in “a(b+c¢)”, “b+¢” is regarded as a unit that
will be evaluated first.

3. Operator symbols, such as +, —, *x and /, dominate
their operands. For example, in “a + b”, + imposes
an addition operation on its operands a and b.

2.3 Explicit and Implicit Operators

Explicit operators are operator symbols. When consec-
utive operator symbols exist in an expression, we can
apply operator precedence rules to group the symbols
into units. However, when those operator symbols are
not lined up, we have to use the concept of operator

dominance [10]. For example, in “ a + - 7, the mean-

c
ing is “a + (b/c)” due to the fact that the operator +
dominates / (where / lies in the range of +). However,
a+b

in «

”, the meaning becomes “(a + b)/c” since /

domina%es + (where + lies in the range of /) in this case.

In some mathematical expressions, there also exist
implicit operators. Implicit operators (also called spatial
operators) determine the relationships between symbols
simply by their relative positions. For example, in “a®”,
2 is the superscript of a representing the square of a.
However, in “ay”, 2 is the subscript of a representing
only a variable name. Although it is somewhat unusual,
“a2” can be used to represent the multiplication of a and
2.

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey 3

2.4 Context-Sensitive Roles

Some symbols in mathematical expressions may play dif-
ferent roles in different contexts. Here are some exam-
ples:

1. A dot in an expression can be a decimal point or a
multiplication operator depending on the position of
the dot and its neighboring symbols.

2. A horizontal line may be a fraction line or a minus
sign depending on the length of the line and whether
there are symbols above and below the line.

3. The same group of characters can sometimes have
different meanings in different contexts. For example,
“dz” is part of the integral notation in “[2?dz” but
it represents the multiplication of d and z in “cy +
dz”.

In addition, mathematical notation has many dialects.

As analogous to natural languages, it is nearly impossible
to design a universal grammar to cover all the dialects.
As a result, almost all systems are based on a subset of
the mathematical notation only.

3 Overview of the Recognition Process

Both symbol recognition and structure analysis of two-
dimensional patterns have been extensively studied for
decades. Mathematical expression recognition, which fea-
tures both of them as the two major stages of the recog-
nition process, is a good subject for studying the inte-
gration of the two areas.

Many symbol recognition techniques work under the
assumption that the symbols have already been isolated
from each other. If this assumption holds, recognition
of symbols may simply use some existing method. How-
ever, the same situation does not happen in the struc-
tural analysis phase. The two-dimensional patterns in
different domains usually have very different spatial re-
lationships. Although some techniques used for recogniz-
ing other two-dimensional patterns may in principle be
also applicable to mathematical expression recognition,
such techniques usually require substantial modifications
before they can be used. Moreover, some situations are
very specific to mathematical expression recognition and
they require specially designed methods.

When we write a mathematical expression on a tablet,
what we get is a sequence of points. On the other hand,
if we scan an expression from a printed document, what
we get is a two-dimensional array of pixels. The data in
the first case are usually regarded as on-line data while
those in the latter case are off-line data. Intuitively, if
we are able to segment the data into groups so that each
group represents a single symbol, we can then directly
apply an existing symbol recognition method to decide
its identity. Afterwards, a list of objects with associated
attributes (including location, size, and identity) is re-
turned. Finally, we then apply some structural analy-
sis techniques to obtain the hierarchical structure of the
expression. Fig. 1 depicts such an intuitive recognition
process.

Off-line data

On-line data

Symbol
recognition
phase
A list of objects
Sl SE e
Structural
analysis
phase @ Parsing or other methods
Final structure e
N (2
®X @ & @

@ X

Fig. 1. Overview of an intuitive recognition process

Although the above process is quite commonly used,
others may use different approaches in recognizing math-
ematical expressions. For example, several systems per-
form structural analysis prior to symbol recognition [5,
51], and some systems perform simultaneous segmenta-
tion and recognition of mathematical expressions [12,33,
34].

In the following sections, we will review some exist-
ing work for each major stage of the recognition process.
In particular, we will highlight the similarities and dif-
ferences between different approaches or systems.

4 Symbol Recognition

After more than three decades of research, many exist-
ing symbol recognition techniques are able to achieve
quite satisfactory results. However, many of them can
only work with isolated symbols. In a mathematical ex-
pression, there usually exist multiple symbols. Before we
can apply these symbol recognition techniques, we must
first segment the individual symbols from the expression

properly.

4.1 Segmentation of Symbols

A naive way to segment symbols is to put all physically
separate components (or called connected components)
into groups. However, some characters and symbols, such

37 637

as 1, §’, and ‘=", are composed of multiple components.

4 Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

As a result, we have to combine the corresponding com-
ponents together first before we can recognize the indi-
vidual characters or symbols correctly. In more compli-
cated situations, some symbols, like ‘\/_ ', usually con-
tain other symbols inside their effective regions. Hence,
caution must be taken when segmenting such symbols.

Faure and Wang [18] presented a modular system
for segmenting handwritten mathematical expressions.
Their system has two segmentation modules. The data-
driven segmentation module first builds a relation tree of
the given expression. In general, projections on the X and
Y axes can be used for deciding how to segment the data.
However, for symbols like * ’ and the fraction line,
this approach often fails. A mask removal operation is
thus applied to segment these symbols and their embed-
ded symbols before projection operations are carried out
for the embedded symbols. Afterwards, the knowledge-
driven segmentation module attempts to correct the re-
lation tree built by the previous module. For example, it
tries to combine different parts together for symbols like
(i?, (j? and (:7‘

Okamoto et al. [51,52] proposed to partition a given
printed expression into components by recursive hori-
zontal and vertical projection profile cutting. Some ad-
ditional checking steps are required for symbols which
contain separate elements (e.g., ‘', ‘j’ and ‘=") and sym-
bols which contain some other symbols within their re-
gions (e.g., ‘\/~ ')

Ha et al. [22] used the bounding boxes of the symbols
as the clue for extracting them from a printed expression.
Their method is called “recursive X-Y cut” in which ‘X’
refers to the horizontal cut and ‘Y’ refers to the verti-
cal cut. This method is similar to the projection profile
cutting method except for the primitive objects used for
projection (one uses pixels and the other uses bounding
boxes).

Smithies et al. [58] developed a simple progressive
grouping algorithm for on-line symbol segmentation.
Their system first generates all possible groupings for
a small number of strokes (according to a small upper
bound). It then looks for the one with the maximal con-
fidence level given by the character recognizer. This al-
gorithm is simple and fast but may sometimes introduce
errors that require manual correction.

In general, most of the algorithms work quite well.
However, just like other segmentation problems, these
algorithms often rely on the use of thresholds. In prac-
tice, threshold values cannot be chosen to work well on
all possible inputs.

4.2 Recognition of Segmented Symbols

After the segmentation step, we have a list of objects
with some known attribute values. The only missing val-
ues are the identities of symbols. In theory, we can apply
any symbol recognition method as long as it is designed
for the corresponding data type (i.e., on-line or off-line).

Over many years of research, different approaches
have been proposed for symbol recognition, including
template matching, structural, neural network and other

statistical approaches. Surveys of these approaches can
easily be found in the literature [47,60]. Here, we do not
intend to repeat what have been done. Instead, we will
just list some typical systems by category according to
the symbol recognition approach used:

1. Template matching approaches:
Several systems, such as Nakayama [49] and Okamoto
et al. [51,52], make use of some traditional template
matching methods. Others perform template match-
ing based on different measures, e.g., Fateman et al.[6,
16] and Miller and Viola [46] used Hausdorff distance.

2. Structural approaches:
Not many systems are based on structural approaches.
A few exceptions are Beldid and Haton [5] and Chan
and Yeung [8].

3. Statistical approaches:
Quite a number of systems, including Chen and
Yin [11], Fateman et al. [17], Fukuda et al. [19], Lee
et al. [39-42], and Smithies et al. [58], are based
on traditional statistical approaches. Others, such as
Dimitriadis and Coronado [14], Ha et al. [22], and
Marzinkewitsch [45] use neural networks.

4.8 Simultaneous Segmentation and Recognition of
Symbols

All methods discussed in the previous section require
the symbols to be segmented before the recognition step.
However, some methods, such as those based on hidden
Markov models (HMMs) [56], do not have this restric-
tion. The HMM approach has proven to be very effective
in the area of speech recognition. Some researchers thus
attempted to apply this approach to recognize symbols
in mathematical expressions.

As mentioned above, the on-line data of a mathe-
matical expression is simply a sequence of points. This
is analogous to the case for speech except that speech is a
sequence of acoustic signals. Hence, HMM techniques de-
veloped for speech recognition can easily be modified for
recognizing symbols in on-line mathematical expressions
and to achieve simultaneous segmentation and classifi-
cation.

Winkler et al. [32,43,64,66,67] first generated sym-
bol hypotheses net (SHN) for the handwriting input and
then used HMMs to find one or more symbol sequences
from the SHN. The final classification of the symbols is
done by finding the most probable symbol sequence. By
keeping all alternatives for the solution, decision making
can be delayed. Such technique is called a soft-decision
approach. Sakamoto et al. [57] also used the HMM ap-
proach for recognizing characters and symbols in a math-
ematical expression.

4.4 Summary of Symbol Recognition Methods Used

Besides categorizing different systems according to the
symbol recognition approach used, we may also group
the systems according to the data type required. Table 1
shows such a categorization.

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

Table 1. Categorization of symbol recognition methods used in different systems according to the data type required

| Data type | Major method | Example

On-line Structural feature extraction and decision tree Beldid and Haton [5]
classification
Flexible structural matching Chan and Yeung [8]
Feature extraction and nearest neighbor classification | Chen and Yin [11], Fukuda et al. [19],

Smithies et al. [58]

ART-based neural architecture and elastic matching Dimitriadis and Coronado [14]
Hidden Markov model Winkler et al. [32,43,64,66,67], Sakamoto et al. [57]
Three-layered backpropagation network Marzinkewitsch [45]
Traditional template matching Nakayama [49]

Off-line Template matching based on Hausdorff distance Fateman et al. [6,16], Miller and Viola [46]
Feature extraction and nearest neighbor classification | Fateman et al. [17], Lee et al. [39-42]
Feature extraction and classification through neural Ha et al. [22]
network approach
Traditional template matching Okamoto et al. [51,52]

Note that the set of symbols used in mathematical
expressions can sometimes be very large. Hence, some
researchers focus on only a subset of them. For exam-
ple, Zhao et al. [68] analyzed the structure of 94 com-
monly used mathematical symbols and discovered that
they are all based on 10 basic elements. Several tech-
niques, such as basic element ordering and reduction of
number of standard symbols, have been applied to in-
crease the recognition rate.

5 Structural Analysis

For those systems that perform symbol recognition be-
fore the structural analysis phase, we should have ob-
tained a list of objects with associated attributes, such
as their location, size, and identity. The next task is to
build a hierarchical structure for the objects. The hier-
archical structure may be represented as a parse tree or
a relation tree.

However, some nodes of the tree may be missing in
the list of objects obtained from the previous phase due
to the existence of spatial operators in mathematical ex-
pressions. Hence, we should first identify all the spatial
operators in order to build sub-structures over them and
their operands. With all the intermediate sub-structures
and the remaining objects, a final structure can then be
constructed.

Some researchers in the area of mathematical ex-
pression recognition are interested only in the structural
analysis phase. Therefore, they bypass the symbol recog-
nition step entirely by assuming that perfect results are
always available before the structural analysis phase. On
the other hand, some researchers attempt to build com-
plete systems. Some of the systems work for on-line data
while others work for off-line data.

5.1 Identification of Implicit Operators between Symbols

In mathematical expressions, the type of spatial opera-
tors between symbols is determined based on the relative

positions of symbols. In most cases, it involves all the as-
sociated attributes of a symbol, especially the center of
the symbol, which often refers to the typographical cen-
ter. Fig. 2 shows the typographical centers of three major
types of symbols.

Xcenter

Xcenter
‘Ymax \ ; I
; Ycenter

Ymin y

Xmin Xmax

—— Ycenter
Ymin -

Xmin Xmax

Ascender symbol

Xcenter Descender symbol

Ymax

Ycenter

Ymin

Xmin Xmax

Regular symbol

Fig. 2. Typographical centers for different types of symbols

Sometimes, simply based on the relative placement of
typographical centers of symbols, we can already deter-
mine their spatial relationship, i.e., in-line, subscript, or
superscript. We may further decide its corresponding as-
sociation, namely, implicit multiplication, subscripting,
or exponentiation, respectively. Such simple technique
has been widely used (e.g., in [2,11,51]).

Wang and Faure [63] proposed a method for auto-
matic labeling of spatial relationships between symbols.
The method is designed to make judgment even before
knowing the identities of the symbols involved. In other
words, it only uses information about the bounding boxes
of symbols. This method is certainly useful when the
symbol identities are unknown (either because structural
analysis is performed before symbol recognition, or due
to some ambiguous or failed results). However, in gen-
eral, using the spatial relationships without knowing the
symbol identities may not be sufficient for some cases. In

6 Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

fact, Wang and Faure have pointed out that bounding
boxes alone are in some cases ambiguous in terms of re-
vealing the spatial relationships between symbols. Fig. 3
demonstrates that the same configuration of bounding
boxes may reveal different spatial relationships. Never-
theless, work done by Wang and Faure is still useful for
deciding spatial relationships between ambiguous or un-
known symbols.

d%

Fig. 3. Are bounding boxes alone sufficient?

Identification of spatial relationships between sym-
bols is indeed quite complicated in some cases. For ex-
ample, when there exist more than two symbols in an ex-
pression, spatial relationships among symbols can only
be determined globally. In most cases, we have to lo-
cate the first symbol before other relationships can be
identified accordingly. Fig. 4 shows an example. Several
systems [18,20,29,41,42,62] have made extra effort in
dealing with these problems.

b

C

Fig. 4. Subscript and superscript relationships cannot be
determined locally

Superscript and subscript expressions usually appear
in the upper right and lower right areas of another sym-
bol. However, there are exceptions, for example, “,C}”
where a subscript expression appears in the lower left
area, and “™ []” where a superscript expression appears
in the upper left area [62]. If the domain of a recogni-
tion system includes this type of binding symbols, special
care must be taken.

5.2 Previous Work on Structural Analysis Only

Some researchers are mainly interested in the structural
analysis of two-dimensional patterns with mathematical
expressions being a special subset. As a result, they by-
pass the symbol recognition stage entirely by assuming

that all the characters and symbols have been recognized
correctly.

One of the earliest papers on mathematical expres-
sion recognition was written by Anderson [2]. He used a
purely top-down approach for parsing mathematical ex-
pressions. The algorithm starts with one ultimate syn-
tactic goal and tries to partition the problem (i.e., goal)
into sub-goals, until either all sub-goals have been sat-
isfied or all possibilities have failed. The algorithm is
syntax-directed since it is guided by some grammar rules.
However, as stated by Anderson, experiments show that
the algorithm is not very efficient due to the partition-
ing strategy used for the rules, which involve two non-
terminal symbols on the right-hand side. As a result, up
to n—1 partitions can be generated by a set of n charac-
ters, and each of these partitions may further generate
more partitions. Nevertheless, work by Anderson (espe-
cially the use of syntactic rules in guiding the recog-
nition) contributed greatly to mathematical expression
recognition in particular and to syntactic pattern recog-
nition in general.

Chang [10] proposed a structure specification scheme
for the structural analysis of two-dimensional mathemat-
ical expressions. The algorithm mainly makes use of the
ideas of operator precedence and operator dominance. It
consists of two major steps, namely, grouping operator
sequences and building the structural tree. Efficiency is
taken into consideration in the proposed algorithm. How-
ever, the scheme can only be applied to patterns whose
structures are based upon a number of operators. In ad-
dition, the algorithms described are quite tedious. It is
thus not straightforward to understand how they actu-
ally work in practice.

Faure and Wang [18] designed a modular system to
recognize handwritten mathematical expressions by
building a relation tree. There are mainly two modules,
namely, the data-driven module and the knowledge-
driven module. One special feature of the system is that
it will still work even when some symbols of the expres-
sion cannot be recognized.

Pfeiffer [55] designed a parser using generalized two-
dimensional context-free grammar to parse two-dimen-
sional structures like mathematical expressions. How-
ever, all discussions in that paper are limited to parsing
in a theoretical sense with no real examples and experi-
mental results shown.

Grbavec and Blostein [20] used a graph rewriting
approach to recognize mathematical expressions. Their
model includes four phases:

1. The build phase constructs edges to represent spatial
relationships between symbols.

2. The constrain phase applies domain knowledge to re-
move contradictions and resolve ambiguities.

3. The rank phase uses information about operator
precedence to group symbols into subexpressions.

4. The incorporate phase interprets subexpressions.

In addition, their system makes use of knowledge about
notational conventions, such as operator precedence and
operator range, to eliminate the need for backtracking.

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey 7

Twaakyondo and Okamoto [62] proposed a new
method to overcome some over-cutting problems (thus
produce incorrect segmentation results) caused by re-
cursive projection profile cutting of mathematical ex-
pressions. Two basic strategies are used to decide the
layout structure of the given expression. One strategy is
to check the local structures of the subexpressions using
a bottom-up method (specific structure processing). It
is used to analyze nested structures such as subscripts,
superscripts, and root expressions. The other strategy is
to check the global structure of the whole expression by
a top-down method (fundamental structure processing).
It is used to analyze the horizontal and vertical relations
between subexpressions. The structure of the expression
is represented as a tree structure.

Pagallo [53,54] applied constrained attribute gram-
mars to the recognition of multi-dimensional objects,
like mathematical expressions. The method first labels
some important symbols (e.g., operators) as keywords
and then applies certain relevance measure (which is sim-
ilar to operator precedence) among keywords to guide
the parsing and avoid expensive backtracking. However,
no testing results are provided.

Lavirotte and Pottier[37,38] defined a class of context-
sensitive graph grammars for mathematical expressions.
The method is based on a critical pairs approach in the
sense of the Knuth-Bendix algorithm. By adding con-
texts into the grammar rules, parsing may become more
efficient because no backtracking is needed as a result.
However, restrictive assumptions have to be made about
symbol placement, and the availability of accurate point
size information.

5.8 On-Line Mathematical Expression Recognition
Systems

Due to its potential for use as a more natural alternative
for entering mathematics into computers, on-line math-
ematical expression recognition has attracted more at-
tention recently.

Beldid and Haton [5] used two syntactic parsers, i.e.,
top-down and bottom-up, in the structural analysis phase
in order to parse the expressions in a more concise fash-
ion. After recognizing the symbols with a structural ap-
proach, top-down parsing is used to divide an expression
into sub-expressions and bottom-up parsing is then ap-
plied to combine sub-structures into a bigger structure.
However, their experiments were only performed on some
simple mathematical expressions (arithmetics and some
trigonometric functions).

Marzinkewitsch [45] used a graph reduction approach
to parse two-dimensional mathematical expressions and
translated them into their corresponding string form.
The process is guided by a context-free graph grammar.
Note that both spatial and temporal features are taken
into consideration during the process.

Chen and Yin [11] proposed an on-line handwritten
mathematical expression system with not much empha-
sis put on the structural analysis part. In order to dis-
play an expression at the end, only a symbol relation tree

that keeps all the spatial relationships between symbols
is built. Hence, the major task that the system has to
perform is symbol recognition. First, all the symbols are
classified by a traditional statistical approach (looking
for the nearest neighbor based on a different set of fea-
tures). Then, contextual information may be used for
deciding the final identity of the symbol if ambiguities
occur. In addition, an on-line editor for manual correc-
tion is provided in case there still exist ambiguous or
misclassified symbols.

Nakayama [49] developed a pen-input mathematical
formula editor to simplify the problem of entering ex-
pressions into a computer. The system allows the user
to enter characters and symbols in any order. It uses
a pattern matching algorithm to recognize the hand-
writing. Similar to the previous approach, this system
does not require parsing to recognize the structure. Ba-
sically, all information about the characters and symbols
is kept in a table. During the display of the expression,
objects are then checked from left to right, up to down
and then translated into character strings. Note that the
system imposes certain restrictions to ensure better per-
formance. For example, all characters should be written
in a size less than 32 by 32 pixels; otherwise, they will be
treated as mathematical symbols or gestures. All com-
ponents in a superscript must be above the central line.
In addition, after the symbol recognition phase, all sym-
bols will be transformed into their corresponding printed
form. Certain spacing will be inserted between symbols.

Dimitriadis et al. [14,15] also designed a mathemat-
ical editor. The system first uses a neural network ap-
proach based on adaptive resonance theory (ART) for
recognizing characters and symbols and then applies an
attribute grammar for parsing the structure. In particu-
lar, extra effort is made in detecting and correcting er-
rors as, according to the authors, no attempts were made
previously in this aspect. Another special feature of the
editor is that it can adapt to the writing habits of indi-
vidual users.

Winkler et al. [65] applied a soft-decision approach
to both the symbol recognition and structure analysis
phases. With the soft-decision approach, the system al-
ways provides the user with a set of possible solutions.
First, an approach based on HMMs is used to perform
simultaneous segmentation and recognition of symbols.
The resulting symbols are then sorted and put into groups
accordingly. Based on a directed graph which keeps all
possible relationships between symbols, a set of alterna-
tive answers is created. Finally, the user may choose to
verify the answers manually or by some existing mathe-
matical software.

Chan and Yeung [9] developed an on-line mathemat-
ical expression recognition system using a structural and
syntactic approach. The system first applies a structural
method, called flexible structural matching, to recognize
the symbols. It then uses a syntactic method, called hi-
erarchical decomposition parsing, to obtain the struc-
ture of a mathematical expression. The proposed syn-
tactic method is based on three key ideas, namely, left-
factoring, binding symbol preprocessing, and hierarchi-

8 Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

cal decomposition, for making the parsing process more
efficient.

Fukuda et al. [19] introduced the concept of “Math-
ematical Element” (ME), which is a set of several char-
acters and symbols. By using some penalty functions
based on different mutual spatial relationships between
symbols and characters, a number of penalty values are
calculated accordingly from different possible configura-
tions of MEs in the target mathematical expression. Fi-
nally, the one with the minimal penalty value will be
treated as the correct relation.

5.4 Off-Line Mathematical Expression Recognition
Systems

Mathematical expressions are often part of a document,
especially for documents in scientific and engineering dis-
ciplines. Hence, off-line mathematical expression recog-
nition must be achieved before realistic document pro-
cessing systems can be built for such disciplines.

Okamoto et al. [51,52] often emphasized that recog-
nition of a wide variety of mathematical expressions can
be done by using only the layout structures of symbols
without actually parsing them. The system first applies
recursive projection profile cutting to segment the char-
acters and symbols and at the same time build a rela-
tion tree. Afterwards, a traditional template matching
method is used for the recognition of symbols.

Lee and Lee [39,40] proposed a system for recognizing
printed mathematical expressions. First, the system uses
a traditional statistical approach to recognize individ-
ual characters and symbols. It then applies a procedure-
oriented method to translate the expressions from two-
dimensional structures into one-dimensional character
strings.

Ha et al. [22] defined an expression tree as the ab-
straction of a mathematical expression. After applying
the X-Y cut to segment the characters and symbols, the
individual objects are recognized using a neural network
approach. The construction of the expression tree can be
done through top-down (finding all primitive objects)
and bottom-up (resolving spatial relationships among
objects) processes.

Fateman et al. [6,17,16] developed a prototype sys-
tem that can properly translate noise-free typeset math-
ematical expressions into Lisp expressions. For the sym-
bol recognition part, different methods are used, such as
calculating the Hausdorff distance and computing the
gray-value of the scaled character. For the structural
analysis part, a simple recursive descent parser is em-
ployed. Experiments show that the original bottom-up
design is of limited use in the face of noisy data. Hence,
a more semantic top-down approach may later replace it
for achieving higher levels of performance.

Lee and Wang [41,42] presented a system for seg-
menting and understanding text as well as mathematical
expressions in a document. In understanding the expres-
sions, some feature extraction techniques and a nearest-
neighbor algorithm are used to recognize the characters

and symbols. A symbol relation tree is then built for rep-
resenting an expression. In addition, some heuristics are
used to correct recognition errors.

Miller and Viola [46] took a relatively new approach
for the recognition of mathematical expressions. They
used convex hulls for grouping symbols and applied A*
search to handle the exponential search space. During
the search, a probability is assigned to each interpreta-
tion of the given expression. Such a probability depends
on the character and symbol models, the context free
grammar used, and the probabilistic geometry rules. The
system then attempts to find the most probable interpre-
tation. At the end, contextual information is also used
to improve the recognition performance.

Inoue et al. [29] put quite a lot of emphasis on cor-
rectly finding the baseline of the expression. After this
important first step, other subscript area, superscript
area, and nested substructures can be identified recur-
rently.

5.5 Simultaneous Segmentation and Recognition of
Mathematical Expressions

As mentioned in Section 4.3, HMMs can be used to si-
multaneously segment and recognize symbols in math-
ematical expressions. Some researchers even attempted
to apply the techniques to the expressions directly.

Chou [12] proposed to use a two-dimensional stochas-
tic context-free grammar for the recognition of printed
mathematical expressions. His approach was designed for
handling noise and random variations. In the grammar,
each production rule has an associated probability. The
main task of the process is to find the most probable
parse tree for the input expression (an image). Note that
pixels are the only terminal symbols in this grammar.
In order to map nonterminal characters to pixels, the
system uses Hamming distance to compare rectangular
arrays of pixels at each location of the image against
templates in the font dictionary and obtain their cor-
responding probability values. At the end, the overall
probability of a parse tree will be computed by multi-
plying together the probabilities for all production rules
used in a successful parse. As a consequence, the process
is computationally quite expensive.

Note that Chou later in collaboration with Kopec ex-
tended his work to recognize documents. Their work [13,
31] has become very influential in document recognition.
However, due to the scope of this paper, we will not cover
them here. For those who are interested, please refer to
these papers for details.

Kosmala and Rigoll [33,34] also used the HMM ap-
proach to segment and recognize expressions simultane-
ously. However, they assumed that the user always writes
the expression in a certain order, e.g., when writing a
fraction, the numerator should be written first, then fol-
lowed by the fraction line, and finally the denominator.
Such requirement can easily be violated in real applica-
tions due to the high variability of writing styles between
different writers. In addition, only one level of super-
scripting or subscripting is allowed. In other words, the

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey 9

systegn cannot recognize some simple expressions such
as a’". The above constraints were lifted when a graph
grammar was later adapted to the original system [35].

5.6 Summary of Structural Analysis Methods Used

As mentioned in the previous sections, quite a number
of mathematical expression recognition systems obtained
the structure without parsing. Instead, some procedu-
rally-coded rules were used while others applied parsing
techniques with a range of variations. Table 2 shows a
summary.

However, it should be noted that most methods for
the structural analysis of mathematical expressions are
actually based on some kinds of syntax [7]. Whether to
define the syntax implicitly or explicitly is just a matter
of choice.

For simple expressions, both ways should do the job
well. The situation changes if we try to recognize more
complex expressions. Rather than adding many ad hoc
procedurally-coded rules to the system and yet still being
uncertain of the correctness of the structural analysis
module, explicit rules in a parser may provide a clearer
and more concise form for formal verification.

So far, some parsers in existing mathematical expres-
sion recognition systems work on string grammars while
others work on two-dimensional grammars, e.g., graph
grammars. Before we decide what kind of grammar to
use, we should know that the expressive power of a gram-
mar can strongly affect the complexity of its parser. In
general, graphs have higher expressive power, but they
require a more complicated parser. In contrast, the ex-
pressive power of string grammars is lower, but their
parser usually only has polynomial time complexity.

6 Other Issues

Besides those issues related to the recognition process,
many others have been raised in different papers. Here,
we will only cover some of the important ones, such as
ambiguity resolution, error detection and correction, and
performance evaluation.

6.1 Ambiguity Resolution

Mathematical notation is meant to be unambiguous.
However, ambiguities may occur when the expressions
are not typeset or written properly. This problem was
first brought up by Martin [44]. However, no solutions
were provided.

Beldid and Haton [5] suggested to use contextual in-
formation for resolving ambiguities. They further pro-
vided some positive examples where ambiguities can be
resolved, namely, multiple answers and misrecognition,
as well as some negative examples where ambiguities
cannot be resolved, such as confusion. Chen and Yin [11]
also discussed some contextual constraints that can be
used to resolve ambiguities.

Some frameworks, especially those based on proba-
bilistic models, are by nature good at dealing with am-
biguous cases. One example is the two-dimensional
stochastic context-free grammar [12]. Others include
HMMs used by Winkler et al. [32,43,64-67] and Miller
and Viola [46].

6.2 Error Detection and Correction

During the recognition of mathematical expressions, er-
rors often occur. In general, there are four types of errors,
namely, lexical, syntactic, semantic and logical errors [1].
Although error detection and correction are important
steps, very few papers in the mathematical expression
recognition literature have addressed these issues.

Dimitriadis et al. [14] claimed to be the first attempt
in detecting and correcting errors in mathematical ex-
pressions. However, the error detection and correction
methods used are quite simple. For example, some warn-
ing messages, such as “the root symbol should cover all
of its terms”, may be given when the error is not fatal.
However, some other errors, like “the function tan does
not have arguments”, require the user to correct the in-
put before the editor can proceed.

Lee and Wang [42] used some heuristic rules to cor-
rect lexical errors. For example, the expression “x =
5in 6” will be converted to “z = sin#” due to the simi-
larity between ‘5’ and ‘s’. Other heuristic rules are also
used, such as

— For every binary operator P, there must exist two
operands that will generally be of the same typeface
and size.

— There are no symbols in the subscript position of a
numeral.

— Symbols in the same operand generally possess the
same properties.

6.8 Performance Evaluation of Recognition Systems

In the past, some researchers put their emphasis purely
on theoretical aspects without any experimental results
reported. For those who did conduct experiments, their
performance evaluation methods can roughly be grouped
into three major categories:

1. Performing the test on a set of expressions and cate-
gorizing the results according to whether the expres-
sions are correctly or incorrectly recognized [5].

2. Performing the test on a set of expressions and paying
attention only to the symbol recognition rate [11,14,
33,40,42].

3. Performing the test on some typical expressions [2,
51,62]. Such expressions are usually written neatly
by one or just a few writers. As a result, all the ex-
pressions can be recognized correctly. The purpose of
this kind of testing is to show that the method works
at least for those typical expressions.

10

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

Table 2. Summary of structural analysis methods used in different systems based on the type of parsing required

| Parsing required |

Major method

Example

No parsing Procedurally-coded rules for building a relation tree Chen and Yin [11], Lee and Wang [41,42]
Projection profile cutting for building a relation tree Faure and Wang [18], Okamoto et al. [51,52]
Determining the correct relation of an expression based | Fukuda et al. [19], Inoue et al. [29]
on spatial relationships
Recursive X-Y cut for building an expression tree Ha et al. [22]
Simultaneous segmentation and recognition through Kosmala and Rigoll [33,34]
HMM approach
Procedurally-coded rules for converting 2-D Lee and Lee [39,40], Nakayama [49]
sub-structures into corresponding linear form
Fundamental and specific structure processing for Twaakyondo and Okamoto [62]
building a relation tree
Procedurally-coded rules with some probabilistic Winkler et al. [65]
measures for building a directed graph
Top-down Coordinate grammar Anderson [2,3]
parsing Simultaneous segmentation and recognition through Chou [12]
stochastic context-free grammar
Constrained attribute grammar Pagallo [54]
Bottom-up Structure specification scheme Chang [10]
parsing Attribute grammar Dimitriadis et al. [14,15]
Graph grammar Grbavec and Blostein [20], Kosmala et. al [35],
Lavirotte and Pottier [37,38],
Marzinkewitsch [45], Pfeiffer [55]
Chart parsing associated with probability vectors Miller and Viola [46]
Top-down and Description grammar Beldid and Haton [5]
bottom-up Hierarchical decomposition parsing Chan and Yeung [9]
parsing Converting 2-D sub-structures into corresponding linear | Fateman et al. [16,17]
form before performing recursive-descent parsing

7 Discussions on Future Research Directions

Research on mathematical expression recognition started
in the 1960s. However, only very few papers in this area
were published in the 1970s and 1980s. It is only until
recently that mathematical expression recognition has
attracted more attention from the research community.
Hence, there still exist a lot of research topics that de-
serve further investigation. Some of them are summa-
rized and briefly discussed here:

1. New methods or designs -
Mathematical expressions are constructed from a pos-
sibly very large set of characters and symbols and
its notation has many dialects. All current systems
have to impose some restrictions on the symbol set
and the grammar used. Recognition systems can be
developed for personal use (e.g., those installed on
personal digital assistants (PDAs)) or for public ac-
cess (e.g., those on web servers). For mobile devices,
the memory capacity needed for running the system
may become a practical concern. On the other hand,
when we relax some restrictions, change the target
user groups, or port the systems to new platforms,
it may require modifications on existing methods or
even new design to suit different needs.

2. Ambiguity resolution -
Mathematical expressions are prone to ambiguities
especially when they are not typeset or written prop-
erly. In some situations, ambiguous cases can be re-

solved. However, techniques proposed for ambiguity
resolution in mathematical expressions are still at
some early stage and it has room for further investi-
gation (probably with more sophisticated use of con-
textual information).

. Error detection and correction -

Papers on error detection and correction in mathe-
matical expression recognition are relatively rare. In
most cases, it is still at the detection level, i.e., issu-
ing warnings and reporting errors. More work should
be done on correcting errors (again with the help of
contextual information).

. Performance evaluation of recognition systems -

Mathematical expression recognition consists of two
stages. Focus has been put heavily on the symbol
recognition stage while performance evaluation of the
structural analysis stages has not received sufficient
attention. Schemes that provide a proper balance on
both stages have yet to be proposed and studied.

. Potential applications -

Applications of mathematical expression recognition
have mostly been in the form of editor programs [14,
15,49]. Only a few have attempted to design a hand-
writing interface for computer algebra systems [45].
Other potential applications, such as pen-based cal-
culator programs and pen-based intelligent tutoring
systems in mathematics for children, should be ex-
plored.

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey 11

8 Conclusion

With the recent advances in pen-based computing and
optical scanning technologies, we already have all the
necessary hardware for entering mathematical expres-
sions into computers based on either on-line or off-line
data. The key problem that remains is the automatic
recognition of mathematical expressions, which is more
on the software side.

Mathematical expression recognition consists of two
major stages, namely, symbol recognition and structural
analysis. In this paper, we have reviewed most of the ex-
isting work according to each major stage of the recog-
nition process. In symbol recognition, different methods,
including structural, neural network and other statisti-
cal approaches, have been used. In structural analysis,
some methods parse the mathematical expressions us-
ing explicit syntactic rules while others obtain the inter-
nal structure without parsing. In both stages, we par-
ticularly put our emphasis on the similarities and differ-
ences between systems. Note that several methods per-
form structural analysis before symbol recognition and
some perform both stages simultaneously. Besides, we
have also described work done regarding other impor-
tant research issues. All these together serve to provide
a clear overall picture of how this research area has been
developed to date.

Apparently, some issues in mathematical expression
recognition have not yet been fully addressed, such as re-
solving ambiguities, error detection and correction, per-
formance evaluation, and potential applications. More-
over, more practical problems will emerge when we in-
corporate such mathematical expression recognition sys-
tems into real-world applications that use them.

Acknowledgements. This research work has been supported
in part by the Hong Kong Research Grants Council (RGC)
under Competitive Earmarked Research Grants HKUST
746/96E and HKUST 6081/97E awarded to the second au-
thor.

References

1. A.V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

2. R. H. Anderson. Syntax-directed recognition of hand-
printed two-dimensional mathematics. In M. Klerer
and J. Reinfelds, editors, Interactive Systems for Exper-
imental Applied Mathematics, pages 436-459. Academic
Press, New York, 1968.

3. R. H. Anderson. Two-dimensional mathematical nota-
tion. In K. S. Fu, editor, Syntactic Pattern Recognition
Applications, pages 147-177. Springer-Verlag, New York,
1977.

4. ATCM’98. Proceedings of the the Third Asian Technology
Conference in Mathematics, Tsukuba, Japan, 1998.

5. A. Beldid and J.-P. Haton. A syntactic approach for
handwritten mathematical formula recognition. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 6(1):105-111, Jan. 1984.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

B. P. Berman and R. J. Fateman. Optical character
recognition for typeset mathematics. In Proceedings of
the 1994 International Symposium on Symbolic and Al-
gebraic Computation, pages 348-353, Oxford, UK, July
1994.

D. Blostein and A. Grbavec. Recognition of mathe-
matical notation. In H. Bunke and P. Wang, editors,
Handbook of Character Recognition and Document Im-
age Analysis, pages 557-582. World Scientific, Singapore,
1997.

K. F. Chan and D. Y. Yeung. Recognizing on-line hand-
written alphanumeric characters through flexible struc-
tural matching. Pattern Recognition, 32(7):1099-1114,
July 1999.

K. F. Chan and D. Y. Yeung. An efficient syntac-
tic approach to structural analysis of on-line hand-
written mathematical expressions. Pattern Recognition,
33(3):375-384, Mar. 2000.

S. K. Chang. A method for the structural analysis of
two-dimensional mathematical expressions. Information
Sciences, 2(3):253-272, 1970.

L. H. Chen and P. Y. Yin. A system for on-line recogni-
tion of handwritten mathematical expressions. Computer
Processing of Chinese and Oriental Languages, 6(1):19—
39, June 1992.

P. A. Chou. Recognition of equations using a two-
dimensional stochastic context-free grammar. In Proceed-
ings of the SPIE Visual Communications and Image Pro-
cessing IV, volume 1199, pages 852-863, Philadelphia,
PA, Nov. 1989.

P. A. Chou and G. E. Kopec. A stochastic attribute
grammar model of document production and its use in
document image decoding. In Document Recognition
II, SPIE Proceedings Series, volume 2422, pages 66-73,
1995.

Y. A. Dimitriadis and J. L. Coronado. Towards an ART
based mathematical editor, that uses on-line handwritten
symbol recognition. Pattern Recognition, 28(6):807-822,
1995.

Y. A. Dimitriadis, J. L. Coronado, and C. de la Maza.
A new interactive mathematical editor, using on-line
handwritten symbol recognition, and error detection-
correction with an attribute grammar. In ICDAR’91 [25],
pages 885-893.

R. J. Fateman and T. Tokuyasu. Progress in recognizing
typeset mathematics. In Proceedings of the SPIE, volume
2660, pages 37-50, San Jose, CA, 1996.

R. J. Fateman, T. Tokuyasu, B. P. Berman, and
N. Mitchell. Optical character recognition and parsing
of typeset mathematics. Journal of Visual Communica-
tion and Image Representation, 7(1):2-15, Mar. 1996.
C. Faure and Z. X. Wang. Automatic perception of the
structure of handwritten mathematical expressions. In
R. Plamondon and C. Leedham, editors, Computer Pro-
cessing of Handwriting, pages 337-361. World Scientific,
Singapore, 1990.

R. Fukuda, S. I, F. Tamari, M. Xie, and M. Suzuki. A
technique of mathematical expression structure analysis
for the handwriting input system. In ICDAR’99 [28],
pages 131-134.

A. Grbavec and D. Blostein. Mathematics recognition
using graph rewriting. In ICDAR’95 [26], pages 417-421.
F. Grossman, R. J. Klerer, and M. Klerer. A language for
high-level programming of mathematical applications. In

12

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey

Proceedings of the International Conference on Computer
Languages, pages 31-40, Miami Beach, FL, 1988.

J. Ha, R. M. Haralick, and I. T. Phillips. Understand-
ing mathematical expressions from document images. In
ICDAR’95 [26], pages 956-959.

ICASSP’95. Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, vol-
ume 4, Detroit, MI, 1995.

ICASSP’96. Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, vol-
ume 6, Atlanta, GA, 1996.

ICDAR’91. Proceedings of the First International Con-
ference on Document Analysis and Recognition, Saint-
Malo, France, 1991.

ICDAR’95. Proceedings of the Third International Con-
ference on Document Analysis and Recognition, Mon-
treal, Canada, 1995.

ICDAR’97. Proceedings of the Fourth International Con-
ference on Document Analysis and Recognition, Elm,
Germany, 1997.

ICDAR’99. Proceedings of the Fifth International Con-
ference on Document Analysis and Recognition, Banga-
lore, India, 1999.

K. Inoue, R. Miyazaki, and M. Suzuki. Optical recogni-
tion of printed mathematical documents. In ATCM’98
[4], pages 280—289.

A. Kacem, A. Beldid, and M. B. Ahmed. EXTRAFOR:
Automatic EXTRAction of mathematical FORmulas. In
ICDAR’99 [28], pages 527-530.

G. E. Kopec and P. A. Chou. Document image decoding
using Markov source models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 16(6):602-617,
June 1994.

M. Koschinski, H.-J. Winkler, and M. Lang. Segmen-
tation and recognition of symbols within handwritten
mathematical expressions. In ICASSP’95 [23], pages
2439-2442.

A. Kosmala and G. Rigoll. On-line handwritten for-
mula recognition using statistical methods. In Proceed-
ings of the Fourteenth International Conference on Pat-
tern Recognition, pages 1306-1308, Brisbane, Australia,
17-20 August 1998.

A. Kosmala and G. Rigoll. Recognition of on-line hand-
written formulas. In Proceedings of the Sixzth Interna-
tional Workshop on Frontiers in Handwriting Recogni-
tion, pages 219-228, Taejon, Korea, 12-14 August 1998.
A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pottier.
On-line handwritten formula recognition using hidden
Markov models and context dependent graph grammars.
In ICDAR’99 [28], pages 107-110.

L. Lamport. BTEX — A Document Preparation System
— User’s Guide and Reference Manual. Addison-Wesley,
Reading, MA, 1985.

S. Lavirotte and L. Pottier. Optical formula recognition.
In ICDAR’97 [27], pages 357-361.

S. Lavirotte and L. Pottier. Mathematical formula recog-
nition using graph grammar. In Proceedings of the SPIE,
volume 3305, pages 44-52, San Jose, CA, 1998.

H.-J. Lee and M.-C. Lee. Understanding mathematical
expressions in a printed document. In Proceedings of the
Second International Conference on Document Analysis
and Recognition, pages 502-505, Tsukuba Science City,
Japan, 1993.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

H.-J. Lee and M.-C. Lee. Understanding mathemati-
cal expressions using procedure-oriented transformation.
Pattern Recognition, 27(3):447-457, 1994.

H.-J. Lee and J.-S. Wang. Design of a mathematical
expression recognition system. In ICDAR’95 [26], pages
1084-1087.

H.-J. Lee and J.-S. Wang. Design of a mathematical ex-
pression recognition system. Pattern Recognition Letters,
18:289-298, 1997.

S. Lehmberg, H.-J. Winkler, and M. Lang. A soft-
decision approach for symbol segmentation within hand-
written mathematical expressions. In ICASSP’96 [24],
pages 3434-3437.

W. A. Martin. Computer input/output of mathematical
expressions. In Proceedings of the Second Symposium on
Symbolic Algebraic Manipulation, pages 78-89, Los An-
geles, CA, 1971.

R. Marzinkewitsch. Operating computer algebra systems
by handprinted input. In Proceedings of the 1991 Inter-
national Symposium on Symbolic and Algebraic Compu-
tation, pages 411-413, Bonn, Germany, July 1991.

E. G. Miller and P. A. Viola. Ambiguity and constraint
in mathematical expression recognition. In Proceedings
of the Fifteenth National Conference on Artificial Intel-
legence, pages 784-791, Madison, Wisconsin, 1998.

S. Mori, C. Y. Suen, and K. Yamamoto. Historical review
of OCR research and development. Proceedings of the
IEEE, 80(7):1029-1058, July 1992.

Y. Nakayama. Mathematical formula editor for CAI. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computer Systems, pages 387-392, Austin,
TX, Apr. 1989.

Y. Nakayama. A prototype pen-input mathematical for-
mula editor. In Proceedings of ED-MEDIA 93 - World
Conference on Educational Multimedia and Hypermedia,
pages 400-407, Orlando, FL, 23-26 June 1993.

R. Narasimhan. Labeling schemata and syntactic de-
scriptions of pictures. Information and Control, 7:151—
179, 1964.

M. Okamoto and B. Miao. Recognition of mathematical
expressions by using the layout structures of symbols. In
ICDAR’91 [25], pages 242-250.

M. Okamoto and A. Miyazawa. An experimental imple-
mentation of a document recognition system for papers
containing mathematical expressions. In H. S. Baird,
H. Bunke, and K. Yamamoto, editors, Structured Doc-
ument Image Analysis, pages 36-53. Springer-Verlag,
Berlin, 1992.

G. M. Pagallo. Method and apparatus for processing
graphically input equations. US Patent, 5,544,262, 1996.
G. M. Pagallo. Constrained attribute grammars for
recognition of multi-dimensional objects. In A. Amin,
D. Dori, P. Pudil, and H. Freeman, editors, Advances
in Pattern Recognition, pages 359-365. Springer-Verlag,
Berlin, 1998.

J. J. Pfeiffer, Jr. Parsing graphs representing two dimen-
sional figures. In Proceedings of the IEEE Workshop on
Visual Languages, pages 200-206, Seattle, WA, 1992.

L. R. Rabiner. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings
of the IEEE, 77(2):257-285, Feb. 1989.

Y. Sakamoto, M. Xie, R. Fukuda, and M. Suzuki. On-
line recognition of handwriting mathematical expression
via network. In ATCM’98 [4], pages 271-279.

Kam-Fai Chan, Dit-Yan Yeung: Mathematical Expression Recognition: A Survey 13

58. S. Smithies, K. Novins, and J. Arvo. A handwriting-
based equation editor. In Graphics Interface, pages 84—
91, June 1999.

59. Y. Y. Tang and C. Y. Suen. Document structures: A
survey. In H. Bunke, P. S. P. Wang, and H. S. Baird,
editors, Document Image Analysis, pages 85-115. World
Scientific, Singapore, 1994.

60. C. C. Tappert, C. Y. Suen, and T. Wakahara. The
state of the art in on-line handwriting recognition. IEEFE
Transactions on Pattern Analysis and Machine Intelli-
gence, 12(8):787-808, 1990.

61. J.-Y. Toumit, S. Garcia-Salicetti, and H. Emptoz. A hi-
erarchical and recursive model of mathematical expres-
sions for automatic reading of mathematical documents.
In ICDAR’99 [28], pages 119-122.

62. H. M. Twaakyondo and M. Okamoto. Structure analy-
sis and recognition of mathematical expressions. In IC-
DAR’95 [26], pages 430-437.

63. Z. X. Wang and C. Faure. Structural analysis of hand-
written mathematical expressions. In Proceedings of
the 9th International Conference on Pattern Recognition,
pages 32-34, Rome, Italy, 1988.

64. H.-J. Winkler. HMM-based handwritten symbol recog-
nition using on-line and off-line features. In ICASSP’96
[24], pages 3438-3441.

65. H.-J. Winkler, H. Fahrner, and M. Lang. A soft-decision
approach for structural analysis of handwritten math-
ematical expressions. In ICASSP’95 [23], pages 2459—
2462.

66. H.-J. Winkler and M. Lang. Online symbol segmenta-
tion and recognition in handwritten mathematical ex-
pressions. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, vol-
ume 4, pages 3377-3380, Munich, Germany, 1997.

67. H.-J. Winkler and M. Lang. Symbol segmentation and
recognition for understanding handwritten mathemati-
cal expressions. In A. Downton and S. Impedovo, ed-
itors, Progress in Handwriting Recognition, pages 407—
412. World Scientific, Singapore, 1997.

68. X. Zhao, X. Liu, S. Zheng, B. Pan, and Y. Y. Tang. On-
line recognition of handwritten mathematical symbols.
In ICDAR’97 [27], pages 645—648.

Kam-Fai Chan received his B.Sc. degree from Radford Uni-
versity, M.Sc. degree from the University of South Carolina,
and Ph.D. degree from the Hong Kong University of Sci-
ence and Technology, all in computer science. He is cur-
rently a postdoctoral research associate in the Department
of Computer Science at the Hong Kong University of Science
and Technology. His major research interests include Chinese
computing, human-computer interaction, logic programming
and pattern recognition.

Dit-Yan Yeung received his B.Sc.(Eng.) degree in electri-
cal engineering and M.Phil. degree in computer science from
the University of Hong Kong, and his Ph.D. degree in com-
puter science from the University of Southern California in
Los Angeles. From 1989 to 1990, he was an assistant professor
at the Illinois Institute of Technology in Chicago. He is cur-
rently an associate professor in the Department of Computer
Science at the Hong Kong University of Science and Technol-
ogy. His current research interests are in the theory and ap-

plications of pattern recognition, machine learning, and neu-
ral networks. He frequently serves as a paper reviewer for
a number of international journals and conferences, includ-
ing Pattern Recognition, Pattern Recognition Letters, IEEE
Transactions on Pattern Analysis and Machine Intelligence,
IEEE Transactions on Image Processing, and IEEE Trans-
actions on Neural Networks.

