

TXLTXL

The

TXL
Programming
Language

Version 10

January 2000

James R. Cordy
Ian H. Carmichael ¥ Russell Halliday

James R. Cordy et al.

The TXL Programming Language
Version 10

© 1995-2000 Legasys Corp.

Legasys Corporation
366 King Street East

Kingston, Ontario K7L 6Y3
Canada

+1 (613) 545 9454 ¥ legasys@legasys.on.ca

Table of Contents

1. Introduction 1

2. Overview 1

3. The Parsing Phase 1

3.1 Grammar Definition 2
3.2 Predefined Nonterminal Types 3
3.3 Nonterminal Modifiers 6
3.4 The Universal Nonterminal [any] 7
3.5 Limiting Backtracking 7
3.6 The Keys Statement 7
3.7 The Compounds Statement 8
3.8 The Comments Statement 8
3.9 The Tokens Statement 9
3.10 Token Patterns 10

4. The Transformation Phase 13

4.1 Transformation Functions 13
4.2 Transformation Rules 14
4.3 The Main Rule 15
4.4 Parameters 16
4.5 Variables 17
4.6 Patterns 17
4.7 Replacements 18
4.8 Pattern and Replacement Refinement 20
4.9 Deconstructors 20
4.10 Conditions 22
4.11 Constructors 23
4.12 Global Variables, Import and Export 24
4.13 Working with Global Variables 25
4.14 Limiting the Scope of Application 29
4.15 One-pass Rules 30
4.16 Built-in Functions 31
4.17 External Functions 34
4.18 Condition Rules 35
4.19 Complex Conditions 36
4.20 Polymorphic Rules 36
4.21 Working with Polymorphism 37

5. The Unparsing Phase 41

5.1 Formatting of Unparsed Output 41
5.2 Attributes 42

6. TXL Programs 44

6.1 Comments 44
6.2 Include Files 44
6.3 Preprocessor Directives 44
6.4 Predefined Global Variables 47
6.5 Version Compatibility 48

Appendix A. Formal Syntax of TXL 48

Appendix B. Detailed Semantics of opt, repeat, list and attr 55

Index of Terms 57

1. Introduction

This document describes the syntax and informal semantics of TXL, a programming language designed
to support transformational programming. The basic paradigm of TXL involves transforming input to
output using a set of transformation rules that describe by example how different parts of the input are to
be changed into output. Each TXL program defines its own context-free grammar according to which the
input is to be broken into parts, and rules are constrained to preserve grammatical structure in order to
guarantee a well-formed result.

2. Overview

Many programming problems can be thought as transforming a single input string into a single output
string. Sorting a list of numbers, processing data to generate statistics, formatting text, or even compiling
a program to machine code can be thought of in this way. This is the basic model we use with TXL.

Every TXL program operates in three phases. The first of these is the parsing phase. The parser takes the
entire input, tokenizes it, and then parses it according to the TXL program's grammar definitions to
produce a parse tree. The second phase in a TXL program is the phase that does all of the "work". It
takes the parse tree of the input, and transforms it into a new tree that corresponds to the desired output.
The final phase simply unparses the tree produced by the transformer, producing an output string.

Parse
Input
Text

Parse

Tree

Trans-
formed

Parse
Tree

Output
Text

"blue fish" "mar l in"

f ish

blue

[words]

[words][word]

[word] [empty]

[words]

[word] [empty]

marlin

Transform Unparse

Figure 1. The Three Phases of TXL

3. The Parsing Phase

The parsing phase is responsible for parsing the input to the TXL program according to the given
grammar. The grammar is specified in a notation similar to Extended Backus-Nauer Form (BNF). The
parser itself is a top-down, fully backtracking parser that can handle any context-free grammar. General
left-recursion is handled using by the simple but inefficient solution of artificially bounding the recursive
depth of the parser, and direct left-recursion is handled using an efficient hybrid bottom-up heuristic.
Although TXL uses several such heuristics to avoid inefficient parsing, grammars that liberally use deep
left-recursion can, particularly for invalid input, occasionally require a long parsing time.

1

We are often asked why it is that TXL does not use a more provably efficient parsing strategy. The
answer is simple - practical efficiency. While is it theoretically possible to use efficient general algorithms
such as Earley's, in practice the N2 space and N3 time required by these algorithms to parse using the
ambiguous grammars that TXL exploits is not useful for realistic inputs.

3.1 Grammar Definition

The basic unit of a TXL grammar is the define statement. Each define statement gives an ordered set of the
alternative forms for one nonterminal type, corresponding roughly to the set of productions for a single
nonterminal in a BNF grammar. Each alternative form is specified as a sequence of terminal symbols
(items that form part of the required syntax of the grammatical form, such as brackets, special characters,
keywords, etc.) and nonterminals (other grammatical forms from which the new one is built). The vertical
bar, '|', is used to separate alternatives.

For example, the TXL nonterminal definition:

define expression
[number]

| [expression] + [number]
| [expression] - [number]

end define

specifies that an item of type expression consists of either a number, or something that is already an
expression followed by a plus sign followed by a number, or an expression followed by a minus sign
followed by a number. For example, 2, 12+4 and 2+17Ð11+3 are all expressions according to the definition.

Nonterminals appearing in the body of a define statement must be enclosed in square brackets [].
Symbols not enclosed in brackets are terminals, representing themselves. Some symbols, such as the
square brackets themselves, the vertical bar |, and the keywords of TXL (see Appendix A) must be
quoted (preceded with a single quote, e.g. '[) if they are intended to be terminals in a nonterminal
definition. For example, the square brackets used for array subscripting in the C language would have to
appear as '[and '] respectively in a TXL grammar for the syntax of that language. Any terminal symbol
may be quoted if desired; it is considered good TXL style to quote all terminal symbols.

By convention, the nonterminal type [program] is the goal symbol (the type as which the entire input must
be parsed) for every TXL program. Every TXL program must contain a definition for program.

The general form of a define statement is

define name
alternative1

| alternative 2
| alternative3

.

.
| alternativeN

end define

Where each alternative is any sequence of terminal symbols and nonterminal types enclosed in square
brackets []. Each define statement introduces a nonterminal type of the given name. The defined type
can be used anywhere in the TXL program; defines need not appear in any particular order (however, by
convention, the definition for program often appears first).

2

Previously defined nonterminal types can be overridden using the redefine statement. A redefine statement
gives a new definition for a previously defined nonterminal name. For example, if the redefine statement

redefine expression
[number]

| [expression] + [expression]
| [expression] - [expression]

end redefine

appeared later in the TXL program than the define statement shown in Figure 2, then this new definition
would override the original, and all references to the nonterminal type [expression] would refer to this
new type, even if the reference appeared before the override. Overrides are most useful when defining
grammars for dialects of existing languages, in which some features may have a new or extended syntax,
while the majority of others retain their original definition.

Previously defined nonterminals may also be extended using a redefine. An extension is simply an
override that begins or ends with an ellipsis ... followed by any number of additional alternatives
separated by or bars |. For example, we could extend the definition for [expression] above to allow
multiplication and division by including the redefine statement

redefine expression
...

| [expression] * [expression]
| [expression] / [expression]

end redefine

later in the TXL program.

The general form of a redefine statement is the same as the define statement, except that the ellipsis may
be used as either the first or the last alternative form. In both cases, the ellipsis represents the alternative
form(s) of the previous (re-)definition of the nonterminal. There may be any number of redefines of the
same nonterminal in a program; each redefine overrides or extends the textually previous (re-)definition.

In contrast to other parsing tools, the ambiguity associated with the above nonterminal definitions being
both direct left-recursive and direct right-recursive is typical of TXL grammars. In general, the simplest
possible grammar is the best one for use with TXL. Ambiguity (or rather the lack thereof) is not an issue,
and in many cases can be exploited to simplify a transformation.

When parsing input using such a grammar, TXL resolves ambiguities by choosing the first alternative of
each nonterminal definition that can match the input, backtracking to try the next alternative if necessary.
Alternatives are always considered in the order that they are given in the original grammar, and TXL will
always choose to parse using the first matching alternative. Thus TXL grammars are ordered grammars.

3.2 Predefined Nonterminal Types

Certain predefined nonterminal types match the basic grammatical classes of input items. By default,
TXL recognizes the following set of input item types. In every case, the longest possible sequence of
input characters is matched to the type. Once matched to a type, an input item is permanently typed and
its type cannot be changed. Input items are classified by attempting matches to the types in the order
given below. In cases of ambiguity, the first matching type is used.

3

Type Matches

[id] Any identifier beginning with a letter or underscore and
continuing with any number of letters, digits and underscores.
 e.g., ABC, abc, a9b56, aBc, AbC, a_7bc, Ab_C_,

_abc, _22, _
The character set to be recognized in identifiers can be extended
using the Ðidchars command line option, e.g. Ðidchars '$#' will
cause both $ and # to be accepted in identifiers.

[number] Any unsigned integer or real number beginning with a digit
and continuing with any number of digits, an optional decimal
point followed by at least one more digit, and an optional
exponent beginning with the letter E or e and followed by an
optional sign and at least one digit.
 e.g., 123, 12.34, 123.45e22

[stringlit] Any double quoted string beginning and ending with a double

quote (") and consisting of any number of characters between.
Any character is allowed in a string except the character " itself,
which must appear escaped as \", and the ASCII character NUL
(Hex 00). e.g., "Hi there", "Hello \"There\"", ""

[charlit] Any single quoted string beginning and ending with a single
quote (') and consisting of any number of characters between.
Any character is allowed in a string except the character ' itself,
which must appear escaped as \', and the ASCII character NUL
(Hex 00). e.g., 'Hi there', 'Hello \'There\'', ''

[comment] Any input language comment as defined in the comments
section of the TXL program (see "Comments Statement" below).
Comment tokens are ignored by TXL unless the Ðcomment
command line option is used, in which case they are accepted as
input items. If comments are to be accepted as input items, then
the grammar defined by the TXL program must be prepared to
accept them wherever they may occur in the input.

Any input item that is not an [id], [number], [stringlit], [charlit] or [comment] as defined above represents
a literal terminal symbol. Normally such items consist of the next non-blank single character of input
unless the character begins an input language compound token as defined in the compounds section of
the TXL program (see "Compounds Statement" below). Most punctuation and special characters fall into
this category.

Input identifiers that are explicitly listed in the keys section of the TXL program (see "Keys Statement"
below) are not accepted as [id]'s, but rather represent literal terminal keyword symbols.

Except insofar as it serves as a delimiter, all white space in the input is normally ignored except when
embedded in a [stringlit], [charlit] or [comment]. By default TXL treats spaces, newlines (ASCII CR
and/or LF), tab characters (ASCII HT) and form feeds (ASCII FF, Ctrl-L) as white space, and all other
characters as input. The character set to be ignored as white space can be extended using the Ðspchars
command line option, e.g. Ðspchars ';,' will cause all semicolons and commas to be ignored as white
space.

4

The -char command line option changes the default behaviour by making all white space characters and
line boundaries significant, so that all input characters become part of the input to be parsed. When -char
is specified, the following additional predefined nonterminal types are recognized:

Type Matches

[space] A white space token - that is, any sequence of blank (ASCII SP)
and tab (ASCII HT) characters. If white space is to be
accepted as input, then the grammar defined by the TXL
program must be prepared to accept [space] tokens wherever
they may occur in the input.

[newline] A newline token - that is, an NL (ASCII LF) character in Unix,
an NL (ASCII CR) character in MacOS, or an end of line (ASCII
CR LF) in Windows. If line boundaries are to be accepted as
input, then the grammar defined by the TXL program must be
prepared to accept [newline] tokens wherever they may occur in
the input.

In addition the the basic nonterminal types, TXL implements a number of predefined types that further
constrain the characters in the input items to be recognized. When used in a grammar, these types act
like the corresponding basic types except that only input items matching the constraints are accepted.

Type Matches

[upperlowerid] Any [id] beginning with an upper case letter.
e.g., AbCdE, ABCDE, A_bcd

[upperid] Any [id] containing only upper case letters.
e.g., ABCDE

[lowerupperid] Any [id] beginning with a lower case letter.
e.g., aBcDe, abcde, a_BCde

[lowerid] Any[id] containing only lower case letters.
e.g., abcde

[floatnumber] Any [number] with an explicit exponent.
e.g., 12.3e22, 12345E22, 1e2

[decimalnumber] Any [number] with an explicit decimal point.
e.g., 123.45, 1.

[integernumber] Any [number] with no exponent and no decimal point.
e.g., 12345, 95, 2

The special nonterminal [empty] always matches regardless of the input and never accepts anything. It is
most useful in crafting grammars with optional or deleteable items.

Type Matches

[empty] Always recognized regardless of input, but
consumes no input items.

5

Although not of interest to the majority of users, sophisticated TXL programmers may find the following
additional type classes to be useful in achieving special effects.

Type Matches

[key] Any input language keyword as defined in the keys
section of the TXL program (see "Keys Statement" below).
Normally keywords appear in the grammar as literal terminal
symbols representing themselves. This nonterminal on the
other hand accepts any keyword of the input language at all,
and is not normally used in any but the most sophisticated
TXL programs.

[token] Any input item which is not a keyword as defined in the keys
section of the TXL program (see "Keys Statement" below).
This nonterminal accepts any input item at all, including all
[id]'s, [number]'s, [stringlit]'s, [charlit]'s, [comment]'s, and literal
terminal symbols, and is not normally used in any but the most
sophisticated TXL programs.

The set of input nonterminals recognized by TXL can be extended to include other types of input items or
modified to recognize the predefined nonterminal types differently using the tokens statement (see "The
Tokens Statement" below).

3.3 Nonterminal Modifiers

Any nonterminal type name enclosed in square brackets may be modified by a nonterminal modifier.
The five possible modifiers are opt, repeat, list, see and not. If the type name is preceded by 'opt', (e.g.
[opt elseClause]), then the item is optional.

If the nonterminal is preceded by the word 'repeat', (e.g. [repeat id]), then zero or more repetitions of the
nonterminal are matched. A repeat will always match something since, if nothing else, it will match zero
repetitions (i.e., an empty string). If at least one item is required, the modifier '+' can be placed after the
repeated type name (e.g. [repeat statement+]).

If the nonterminal is preceded by the word 'list', (e.g. [list formalParameter]), then a possibly empty,
comma-separated list of the nonterminal is matched. As for repeats, if at least one item is required in the
list then the modifier '+' can be placed after the type name. For example, the syntax of the formal
parameters of a Pascal procedure might have a nonterminal definition like this one:

define formalProcedureParameters
([list formalParameter+])

| [empty]
end define

If the item to be modified is an explicit identifier or terminal symbol, then it must be quoted with a
leading single quote. For example, [opt ';] denotes an optional semicolon, whereas [opt ;] is illegal.

Each opt, repeat or list modified nonterminal is translated by TXL into a predetermined set of internal
nonterminal definitions. The structure of these is documented in detail in Appendix B, "Detailed
semantics of opt, repeat and list".

6

The nonterminal modifiers see and not are used to specify lookahead constraints on the input. [see X]
succeeds if an [X] can be matched in the prefix of the remaining input at this point in the parse, and fails
otherwise. [not X] fails if an [X] can be matched in the prefix of the remaining input at this point in the
parse, and succeeds otherwise. In both cases, if the lookahead succeeds, then the parse continues,
otherwise the parser backtracks to see if there is another parse of the previous nonterminals that can
change the input such that the lookahead succeeds.

The lookahead modifiers only test the input for a match, they do not actually accept any input.
Lookahead modifiers are most useful in implementing robust parsers, in which unrecognized input must
be flushed until a recognized form is seen. For example:

define flush_until_END
[repeat anything_but_END]

end define

define anything_but_END
[not 'END] [token_or_key]

end define

define token_or_key
[token] | [key]

end define

3.4 The Universal Nonterminal [any]

The special nonterminal type [any] is a universal nonterminal that matches any nonterminal type when
used as a pattern or replacement (see "Polymorphic Rules" in section 4 for details). Items of type [any]
appearing in the grammar can never match input and always cause a syntax error if they are required
(that is, if there are no other alternatives allowed). They can however be used in the grammar to allow
insertion of arbitrary parse trees by type-cheating rules and functions. See "Polymorphic Rules" in
section 4 for details.

3.5 Limiting Backtracking

The special nonterminal type [!] can be used to limit backtracking in a highly ambiguous grammar to
speed detection of syntax errors. [!] is used in a sequence of one or more nonterminals to indicate a point
at which the parse of the sequence should be committed. If the parser backtracks to a [!], the entire
sequence is rejected without retrying the previous nonterminals in the sequence, and the parse proceeds
to the next alternative immediately. If there is no other alternative, the nonterminal in which the [!]
appears fails, and backtracking continues as usual at the point where it was used in the parse.

3.6 The Keys Statement

It is possible to specify particular identifiers to be treated as keywords. Keywords differ from other
identifiers only in that they are not matched by the predefined nonterminal [id] and its variants. Input
keywords are only matched by explicit literal occurrences of the keyword in a nonterminal definition or
pattern and by the special predefined nonterminal [key] (see "Predefined Nonterminal Types" above).
Keywords are defined using the keys statement. A keys statement simply lists the identifiers to be
treated as keywords. For example:

7

keys
program procedure function
repeat until for while do 'end

end keys

Any number of keys statements may appear anywhere in a TXL program, although they normally appear
at the beginning of a grammar or program. If a keyword of TXL itself (e.g. end) is to be a keyword of the
TXL program's grammar, it must be quoted every time it occurs in the program (e.g., 'end) including
inside the keys statement (as shown above).

It is also possible to specify literal tokens other than identifiers as keywords in the keys statement. This is
used to specify that the tokens should not be accepted by the [token] nonterminal (and should be
accepted by the [key] nonterminal), and has no other effect.

3.7 The Compounds Statement

By default the TXL input scanner treats each special (punctuation) character in the input as a separate
literal terminal symbol. For example, it would treat ':=' as a sequence of the two symbols ':' and '='.
Normally this does not matter in the course of a transformation task, but it is annoying in the output of
TXL to see spaces between the characters, for example, ' x : = y; '. For this reason, it is possible to
specify which sequences of special characters should be compounded together as single terminal symbols
(also known as 'compound tokens').

Compound tokens are defined using the compounds statement. A compounds statement simply lists the
sequences of characters to be treated as compound tokens. For example:

compounds
:= <= >= -> <-> '%=

end compounds

Any number of compounds statements may appear anywhere in a TXL program, although they normally
appear at the beginning of a grammar or program. If the TXL comment character '%' is part of a
compound token, then that token must be quoted everywhere it appears in the program (e.g. '%=),
including inside the compounds statement itself (as shown above).

3.8 The Comments Statement

The comments statement is used to describe the commenting conventions of the input language so that
TXL can either ignore comments (the default) or recognize them as [comment] nonterminals (if the
command line option Ðcomment is used). The comments statement lists the comment brackets of the input
language, one pair per line. For example, the C++ language conventions, which allow both '//' to end of
line and C- style '/* */'comments, would be described as:

comments
//
/* */

end comments

If only one comment symbol appears on a line, for example the '//' above, then it is taken to mean that
comments beginning with that symbol end at the end of line. If two comment symbols appear on a line,
for example '/* */' above, then they are taken to be corresponding starting and ending comment brackets.

8

Any number of comments statements may appear anywhere in a TXL program, although they normally
appear at the beginning of a grammar or program. Several different commenting conventions may be
given, specifying that several different kinds of comments are to be accepted in the input. Comment
brackets consisting of more than one character are automatically considered to be compound tokens (see
"The Compounds Statement" above).

TXL normally ignores all comments when parsing the input language, unless the Ðcomment command line
option is used. When Ðcomment is specified as a command line option, comments in the input are not
ignored, but rather are treated as input items of the nonterminal type [comment] which are to be parsed
as part of the input to the program. The main use of this feature is the preservation of comments when
implementing pretty-printers or other formatters in TXL. Care must be taken to insure that the grammar
allows comments to appear in all the expected places - inputs with comments unexpected by the
grammar are treated as syntax errors when the Ðcomment option is used.

3.9 The Tokens Statement

The tokens statement is used to extend or modify the recognition of input item types ("tokens") to reflect
the lexical conventions of the input language to be processed. The tokens statement can be used to add
new user-defined input item types as well as to extend or modify the predefined nonterminal types of
TXL. Any number of tokens statements may appear in a TXL program, each adding its new input token
types to the set of recognized types.

The tokens statement lists the new input item types one per line, each line consisting of an identifier
naming the new type and a string literal giving a regular expression pattern for the sequences of input
characters to be recognized. For example, the following tokens statement adds the user-defined input
item type [hexnumber] to the set of recognized input items:

tokens
hexnumber "0[Xx][\dABCDEFabcdef]+"

end tokens

The identifier on the left defines the nonterminal name to be used in the grammar to refer to input items
of the type, in this case [hexnumber] . The string literal gives a regular expression pattern for the
sequences of characters to be recognized as input items of the type. In this case the pattern requires that
items begin with the character 0 (zero) followed by either an upper- or lower-case X and a sequence of at
least one or more digits or upper- and lower-case letters A through F. The complete syntax of regular
expression patterns is given in the section "Token Patterns" below.

The standard lexical conventions of the TXL predefined nonterminal types apply to user-defined input
types as well. In every case, the longest possible sequence of input characters is matched to the type, and
white space is ignored except insofar as it serves as a delimiter or is explicitly specified in the regular
expression pattern for an input item type. Once matched to a type, an input item is permanently typed
and its type cannot be changed. See the section "Predefined Nonterminal Types" for details.

Input items are classified by attempting matches to the regular expression patterns of defined token types
in the order given in the tokens statements of the TXL program. In cases of ambiguity, where more than
one input token type may match an input item, the first matching type is used. If no user-defined input
type's regular expression matches, then the input item is typed using the standard TXL input typing
described in the section "Predefined Nonterminal Types".

9

If the name given for a token pattern is the name of a predefined nonterminal type or a previously user-
defined token type, then the new definition overrides the old. For example, the following tokens
statement overrides the [hexnumber] token type of the previous example to allow Z as well as X as the
hexadecimal indicator, and overrides the predefined nonterminal type [number] to restrict it to
unsigned integer numbers only.

tokens
hexnumber "0[XxZz][\dABCDEFabcdef]+"
number "\d+"

end tokens

Several different alternative patterns for the same token type may be given, separated by the or bar | .
For example, we could define the X and x alternatives for the [hexnumber] type separately, as follows:

tokens
hexnumber "0X[\dABCDEFabcdef]+"

 | "0x[\dABCDEFabcdef]+"
end tokens

Tokens statements can also be used to extend the definition of the predefined nonterminal types or
previous user-defined input types using an ellipsis ... followed by the or bar | to indicate that the
definition is an extension of a previously defined input type rather than an override.

For example, the following tokens statement extends our original definition for the [hexnumber] type to
allow Z or z as well as X or x, and additionally extends the predefined nonterminal [id] to allow $, @
and & as the first character in an identifier.

tokens
hexnumber ... | "0[Zz][\dABCDEFabcdef]+"
id ... | "[$@&]\i*"

end tokens

The ellipsis ... indicates that we want to preserve the previous patterns for the input type, and the or
bar | indicates the beginning of an additional alternative pattern for inputs of that same type.

In order to insure that user token definitions do not interfere with the lexical conventions of TXL itself,
the source of the TXL program is processed using only the predefined token types [id] , [number] ,
[charlit] and [stringlit] , and the user's overrides and extensions to them. Care must be taken
when overriding the definition of [id] to allow TXL keywords to continue to be recognized as
identifiers, and not to allow the TXL metacharacters [,] , | and ' as identifier characters. If user defined
tokens are to appear in the TXL program, they must be quoted using a single leading quote ' .

3.10 Token Patterns

Regular expression patterns for user-defined tokens are built from the following set of metacharacters
and operators. Any single character that is not one of the pattern metacharacters [,] , (,) , \ or # and is
not immediately preceded by a \ or # simply represents itself. For example, the regular expression
pattern "x" allows only the literal character x . A metacharacter preceded by \ or # defeats any special
meaning and simply represents the character itself. For example, the regular expression pattern "\(x\)"
allows only the sequence of characters (x) . Similarly, the string literal quote " is represented as \"
when required as part of a token pattern.

10

Single character patterns - when used in a regular expression pattern, the following match a single input
character of the indicated class.

\d a digit, i.e. any one of 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9.
 \a an alphabetic character, i.e., any one of a-z or A-Z.

\u any alphabetic character or _ (underscore)
\i an identifier character, defined as: an alphabetic character, an _ (underscore),

a digit, or any character specified using the Ðidchars command line option
(see the section "Predefined Nonterminal Types")

\A any uppercase alphabetic character
\I any uppercase identifier character
\b any lowercase alphabetic character
\j any lowercase identifier character
\s any special character, defined as: a non-white space character that is

not an identifier character, bracket or parenthesis
\n the newline character(s) of the host system
\t a tab character
\c any character at all (be careful using this!)
#C any character that is not the character C, where C is not \
#\ C any character that is not in character class C, where C is one of

d, a, t, i, A, I, b, j, s, as listed above

#\ M where M is one of the metacharacters [,], (,), \ or # or a string quote ",
means any character but the literal character M

\ M where M is one of the metacharacters [,], (,), \ or # or a string quote ",
means the literal character M itself

C where C is not a metacharacter or string quote, means the literal
character C itself.

Regular expression operators - the single character patterns can be combined with the following pattern
operators to build regular expression patterns of arbitrary complexity.

[PQR] any one of P, Q, or R where P, Q and R are regular expression patterns
(PQR) the sequence P followed by Q followed by R where P, Q and R are regular

expression patterns (parentheses are required only for grouping the
sequence for use with other operators)

P* zero or more repetitions of pattern P
P+ one or more repetitions of pattern P
P? zero or one of pattern P (i.e, P is optional)

Perhaps the most interesting examples of regular expression patterns are the actual patterns for the
predefined nonterminal types of TXL. These patterns precisely specify the input items recognized by the
predefined nonterminal types.

[id] "\u\i*"
[number] "\d+(.\d+)?([eE][+-]?\d+)?"
[stringlit] "\"[(\\\c)#\"]*\""
[charlit] "'[(\\\c)#']*'"

The first pattern, for [id] , specifies an alphabetic character or underscore (\t) followed by any number
of identifier characters (\i*). The more complex pattern for [number] specifies one or more digits (\d+)
followed by an optional fraction part (.\d+)? consisting of a decimal point and at least one or more
digits (\d+), optionally followed by an exponent part ([eE][+-]?\d+)? consisting of either an e or an

11

digits (\d+), optionally followed by an exponent part ([eE][+-]?\d+)? consisting of either an e or an
E ([eE]), an optional plus or minus sign ([+-]?) and at least one or more digits (\d+).

The regular expression patterns for [stringlit] and [charlit] are identical except for the quotes
used. In the case of [stringlit] , the pattern begins with a string quote (\"), followed by any number
of characters [(\\\c)#\"]* that are either escaped, i.e. consist of the sequence \ followed by any
character (\\\c) or are not a string quote (#\"), and ending with a string quote (\").

When the -char command line option is specified, the following additional predefined nonterminal types
are defined by the patterns:

[space] "[\t]+"
[newline] "\n"

The regular expression pattern for [space] allows 1 or more repetitions of either a blank (ASCII SP)
character or a tab (ASCII HT) character. The expression for [newline] allows only the newline
character(s) of the host system.

12

4. The Transformation Phase

Once the input to a TXL program has been parsed into a parse tree according to the given grammar, the
next phase is responsible for transforming the input parse tree into a parse tree for the desired output.
The transformation is specified as a set of transformation functions and rules to be applied to parse trees.
We will begin by describing basic transformation functions and rules, followed by the more sophisticated
features and special classes of functions and rules.

4.1 Transformation Functions

Each TXL function must have, at least, a pattern and a replacement. A function looks like this:

function name
replace [type]

pattern
by

replacement
end function

where name is an identifier, type is the nonterminal type of parse tree that the function transforms (the
target type), pattern is a pattern which the functions's argument tree must match in order for the function
to transform it, and replacement is the result of the function when the tree matches.

The semantics of function application is consistent with other pure functional languages. If the argument
tree matches the pattern, then the result is the replacement, otherwise the result is the (unchanged)
argument tree. For example, if the following function is applied to a parse tree consisting solely of the
number 2, then the result is a tree containing the number 42, otherwise the result is the original tree.

function TwoToFortyTwo
replace [number]

2
by

42
end function

TXL functions are always homomorphic - that is, they always return a tree of the same type as their
argument. This guarantees that transformation of an input always results in a well-formed output
according to the grammar defined in the TXL program. Because they explicitly return the original tree if
it does not match the pattern, TXL functions are also always total - that is, they produce a result for any
argument of the appropriate type.

A TXL function is applied in postfix form, using the function name enclosed in square brackets following
the first argument. For example, the function application f(x) is written x[f] in TXL. When a function is
applied to an argument tree, we call this tree the scope of application or simply the scope of the function,
and we speak of the function replacing its scope with its result.

For example, if X is the name of a tree of type [number] whose value is the number 2, then the function
application:

X [TwoToFortyTwo]

will replace the reference to X with the tree [number] 42.

13

Several functions may be applied to a scope in succession, for example:

X [f][g][h]

The interpretation is function composition. That is, f is applied first, then g to the result of f, then h to the
result of g. In more conventional functional notation the composition above would be written h (g (f (X)).

"Searching" functions search their scope of application for the first match (leftmost shallowest in the scope
tree) to their pattern, and replace (only) the matching subtree with the replacement, leaving the rest of the
scope tree untouched. A searching function is denoted by a * following the keyword replace.

For example, if we change the function TwoToFortyTwo to a searching function:

function FirstTwoToFortyTwo
replace * [number]

2
by

42
end function

The resulting function can be used to replace the first occurrence of the number 2 in the scope tree with
the number 42. For example, if X is the name of a tree of type [repeat number] whose value is the
sequence of numbers 1 3 5 7 9 2 4 6 8 2 9 4, then the function application:

X [FirstTwoToFortyTwo]

will result in the [repeat number] tree 1 3 5 7 9 42 4 6 8 2 9 4.

Technical details of the search are described in the section on transformation rules below.

4.2 Transformation Rules

A TXL transformation rule has the same basic syntax as a function, except that the keyword function is
replaced with rule.

rule name
replace [type]

pattern
by

replacement
end rule

The difference is that a rule searches the scope tree it is applied to for matches to its pattern (like a
searching function), and replaces every such match (rather than just the first one). For example, if we
change the function TwoToFortyTwo to a rule:

rule EveryTwoToFortyTwo
replace [number]

2
by

42
end rule

14

and if X is the name of a tree of type [repeat number] containing the number values :

27 33 2 5 78 2 89 2

 the rule application

X [EveryTwoToFortyTwo]

yields a [repeat number] result tree containing the values :

27 33 42 5 78 42 89 42

That is, every subtree of type [number] with value 2 in the scope has been replaced by a subtree with
value 42 in the result.

Technically, a rule searches its scope of application (the tree to which it is applied) for nodes that are of
the type of the rule. The search is always a preorder search, examining first each parent node in the tree
and then each of its children, from left to right, recursively.

Each time a node of the rule's type is found, the tree rooted at that node is compared to the pattern to see
if it matches. If no nodes can be found whose subtrees match the pattern then the rule terminates without
changing the scope tree.

If a pattern match is found at a node, then the rule builds a replacement tree, and substitutes this for the
node whose subtree was matched, yielding a new scope tree in which the replacement has been made.
This new scope is then searched again, the first match in it replaced, and so on, until no more matches can
be found.

Because the rule automatically searches the entire new scope tree after each subtree replacement, the
replacement can itself create the next pattern match. For example, the rule:

rule AddUpNumbers
replace [repeat number]

N1 [number] N2 [number] MoreNs [repeat number]
by

N1 [+ N2] MoreNs
end rule

when applied to the [repeat number] input tree 5 7 6 1 3, will first match 5 to N1, 7 to N2 and 6 1 3
to MoreNs, yielding the new scope 12 6 1 3. It then searches this new scope, matching 12 to N1, 6 to N2
and 1 3 to MoreNs, yielding 18 1 3, and then 18 to N1, 1 to N2 and 3 to MoreNs, yielding 19 3, and
finally 19 to N1, 3 to N2 and [empty] to MoreNs, yielding a final [repeat number] result tree containing
only the number 22.

In the remainder of this document the term 'rule' refers to both rules and functions except as noted.

4.3 The Main Rule

Every TXL program must have a rule or function named main. Execution of a TXL program consists of
applying this rule to the entire input parse tree. If other rules are to be applied, then the main rule must
explicitly invoke them.

15

For example, if rules R1, R2 and R3 are all to be applied to the entire input, then the main function would
look like this:

function main
replace [program]

P [program] % i.e., the entire input parse tree
by

P [R1][R2][R3] % apply R1, then R2, then R3 to it
end function

4.4 Parameters

Rules may be parameterized by one or more parse tree parameters. The general syntax of a
parameterized rule is:

rule name parameter 1 [type 1] parameter 2 [type 2] ...

replace [type]
pattern

by
replacement

end rule

where each parameteri is an identifier, and each typei is the nonterminal type of the parameter. The
parameter names may be used anywhere inside the rule to refer to the corresponding trees passed as
actual parameters to each application of the rule.

Parameterized rule applications must specify the names of the actual argument trees which are to be
passed to the parameters. The type of an actual parameter tree must be the same as the the type of the
corresponding formal parameter. For example, the following parameterized rule is like the old
TwoToFortyTwo example except that it replaces all occurrences of the [number] 2 in its scope of
application with the specified number N.

rule TwoToN N [number]
replace [number]

2
by

N
end rule

When this rule is applied, an actual parameter tree corresponding to N must be given in the application.
For example, if Five is the name of a tree of type [number] containing the value 5, and X is any tree
containing [number] subtrees with value 2, then the rule application:

X [TwoToN Five]

will replace every [number] 2 in X with 5. (Note: This application could also be written as X [TwoToN 5]
since the terminal symbol 5 always represents the [number] tree of value 5.)

16

4.5 Variables

Parameters are one kind of TXL variable. Variables in TXL are names that are bound to (sub-) trees of a
particular type which is explicitly given when the variable is introduced (for example, in a rule's formal
parameter list, e.g. N [number] in the example above). New variables may be introduced either as
formal parameters, as part of a pattern (see "Patterns" below), or using an explicit constructor (see
"Constructors").

All TXL variables are local to the rule in which they are introduced. Once introduced, a variable is used
simply by name (e.g. N). In a pattern, the use of a bound variable means that we intend that part of the
pattern to match the current value of the variable exactly (see "Patterns"). In a replacement, the use of a
variable indicates that the tree bound to the variable is to be copied into the replacement tree.

The anonymous variable '_' represents a nameless TXL variable. Anonymous variables play the role of
placeholders in a pattern - they are always explicitly typed (i.e., are newly introduced variables) and
cannot be referenced. Any number of anonymous variables may appear in a pattern, with the
interpretation that each is a unique new variable. Anonymous variables can be constructed using an
explicit constructor (e.g., to achieve the side effects) but cannot be referenced.

4.6 Patterns

The pattern for a rule is defined using a sequence of terminal symbols and variables. The first occurrence
of each new variable in the pattern is explicitly typed with a type following it (e.g., X [expression]).
Subsequent uses of variables and formal parameters previously introduced in the rule must not be typed
again.

The pattern defines the particular type and shape of the (sub-)tree that the rule is to match. TXL builds a
pattern parse tree by parsing the pattern, considering variables to be terminal symbols of their
nonterminal type. The type of the pattern tree is the type of the rule. When a parameter or a subsequent
use of a variable occurs in a pattern then the current subtree bound to that variable is substituted into the
pattern in place of the variable before matching. For example, in the rule:

rule foo T [term]
replace [expression]

T + T
by

...
end rule

if foo is given a parameter which is a parse tree for the term '5', then the pattern tree will be the expression
'5 + 5'. If foo is passed a tree for the term '3 * 4', then the pattern tree for that rule application will be the
expression '3 * 4 + 3 * 4'.

When a pattern is compared to a tree, it matches only if every intermediate nonterminal node and every
terminal symbol in the tree and the pattern match exactly, and each new (i.e., explicitly typed) variable in
the pattern is matched to a subtree of the variable's type. Subsequent references to the variable, if any,
must be matched to identical subtrees for the pattern match to succeed.

17

For example, if we apply the rule:

rule foo
replace [expression]

T1 [term] + T2 [term]
by

...
end rule

to the parse tree corresponding to the expression '5*6+9' we get a match at the root of the tree. The
variable T1 will be bound to the subtree corresponding to the term '5*6', and the variable T2 will be
bound to the subtree corresponding to the term '9'.

A pattern may contain references to variables that are introduced earlier in the same pattern. For
example, the pattern in the following rule looks for expressions of the form 'N+N' where N is any
number, and replaces them by 'N*2'. Notice that the first occurrence of N in the pattern is explicitly
typed, indicating that it is introducing a new variable, while the second reference to N is not typed,
indicating that it is a reference to an already bound variable.

rule collapse
replace [expression]

N [number] + N
by

N * 2
end rule

4.7 Replacements

Like the pattern, the replacement of a rule is defined using a sequence of terminals and variables.
However, because all references to variables in a replacement are subsequent uses of variables previously
introduced either as formal parameters or in the pattern of the rule, they must not have explicit types.
TXL creates a replacement parse tree by parsing the replacement, considering variables to be terminal
symbols of their nonterminal type.

Each variable reference in the replacement may have one or more subrules applied to it. When a
replacement tree is built, each variable reference is replaced with a copy of the subtree to which the
variable is bound. If the variable has rules applied to it, they are applied before evaluating the rest of the
replacement.

The syntax for rule application is to list each rule or function in square brackets following the variable
name. The parameters to each rule appear within the square brackets. In general, only variables are
passed as parameters to a rule, although terminal symbols may be passed if explicitly quoted.

As an example, consider the following rule, taken from a program that evaluates vector dot products:

rule evaluateAdditions
replace [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end rule

18

The replacement in this rule will be built by applying the built-in function + with parameter N2 to the tree
matched by N1.

Rule applications involving parameters that are lists or repeats can be modified using the modifier each.
The each keyword is inserted as an extra parameter and has the effect of reapplying the rule for each
element of the following actual parameter, which must be a list or repeat. The type of the corresponding
formal parameter of the rule must be the same as the element type of the list or repeat.

For example, the replacement of the following rule applies the subrule expandConstant once for each
[statement] element of the [repeat statement] tree ConstDefs.

rule expandConstants
replace [repeat statement]

Block [repeat statement]
construct ConstDefs [repeat statement]

Block [deleteNonConstDefs]
by

Block [expandConstant each ConstDefs]
end rule

rule expandConstant ConstantDefinition [statement]
deconstruct ConstantDefinition

const ConstName [id] = ConstValue [expression] ;
replace [primary]

ConstName
by

(ConstValue)
end rule

Each may appear only once in a parameter list, and all parameters following the each are affected. (Note:
In the present implementation of TXL, at most two parameters are allowed following each.) All affected
parameters must be lists or repeats, and the rule is applied once for each pair of corresponding elements.
For example, the replacement of the following rule applies the rule substituteActual once for each pair of
corresponding Formals and Actuals.

rule expandInlineFunction FunctionName [id] Formals [list id]
 FunctionExpn [expression]

replace [primary]
FunctionName (Actuals [list expression])

by
(FunctionExpn [substituteActual each Formals Actuals])

end rule

rule substituteActual FormalName [id] ActualExpn [expression]
replace [primary]

FormalName
by

(ActualExpn)
end rule

19

4.8 Pattern and Replacement Refinement

This section describes the optional components of rules that give them more sophistication and power.
These three components are deconstructors, constructors, and conditions. Any number of each of these may
appear in a rule either before the pattern, or between the pattern and replacement. When more than one
appears, they are interpreted in sequential order. Those that appear before the pattern (i.e., the replace or
match clause of the rule) are interpreted (only once) before the scope of application is searched for the
pattern. Those that appear after the pattern are reinterpreted each time the pattern is matched.

Because deconstructors and constructors have, in themselves, patterns and replacements, we will use the
phrases main pattern and main replacement to make it clear that we are talking about the pattern and
replacement of the rule when just using the pattern or the replacement would be ambiguous.

When we add in all of these optional parts, the syntax for a rule definition becomes:

rule ruleName parameterList
parts
replace [type]

pattern
parts
by

replacement
end rule

where parameterList is zero of more of:

parameterName [type]

and where each parts is any number of deconstructors, constructors and conditions as defined below.

4.9 Deconstructors

Deconstructors are used to break variables (and parameters) apart into smaller pieces using a more
refined pattern. They may appear at any point before the replacement in a rule body. A deconstructor
takes the form:

deconstruct varName
pattern

where varName is a subsequent reference to a variable previously defined in the rule, and pattern is a
pattern like the main pattern of a rule.

The nonterminal type of the deconstructor's pattern is implicitly the type of the variable being
deconstructed. The deconstructor pattern is compared to the entire tree bound to the variable. If the
pattern matches, then any new variables in the deconstructor pattern are bound accordingly.

If a deconstructor pattern does not match, then the rule is considered to have not matched its pattern
(i.e., the main pattern match is discarded and a new match is searched for). If a deconstructor appearing
before the main pattern (i.e., a deconstruct of a formal parameter) does not match, then the rule is
considered to have failed and no search for the main pattern is done. The rule matches and a replacement
can be made only if the main pattern is matched and all of the deconstructors match as well.

20

As an example of how we might use a deconstructor, consider the following rule that takes a sequence of
numbers as parameter. The deconstructor splits this parameter sequence into its head (the first number
in the sequence) and its tail (the rest of the numbers in the sequence). The rule can then go on to use these
pieces in its pattern and/or replacement. In this case, the number at the head of the parameter list (Head)
is passed as a parameter to the subrule ruleThatUsesANumber.

rule takesASequence MySequence [repeat number]
deconstruct MySequence

Head [number] Tail [repeat number]
replace [repeat number]

OldList [repeat number]
by

OldList [ruleThatUsesANumber Head]
end rule

Searching deconstructors can be used to search for and take apart a subtree of the deconstructed tree. In
this case, the deconstructor finds the first (leftmost shallowest) embedded subtree of the tree bound to the
deconstructed variable that matches the pattern. A searching deconstructor takes the form:

deconstruct * [type] varName
pattern

where varName and pattern are as before, and type is any nonterminal type name. The [type] is optional
and defaults to the type of the deconstructed variable if omitted.

The pattern of a searching deconstructor must be of the given type. The deconstructor searches the tree
bound to varName for the first subtree that matches the pattern, and binds the pattern variables
accordingly.

Searching deconstructors can be useful as guards in rules that are only interested in applying a set of
rules to a tree when a given property is present in the tree. For example, the following rule applies the
subrule fixUpIfStatements to a procedure body only if the procedure actually contains an if statement:

rule fixUpIfStatementsInProcedures
replace [procedure_declaration]

procedure P [id]
Body [repeat statement]

'end P
% deep deconstruct Body to see if it has an if statement in it
deconstruct * [statement] Body

IfStmt [ifStatement]
by

procedure P
Body [fixUpIfStatements]

'end P
end rule

The scope of a searching deconstructor's search can be limited to the higher levels of a tree in the same
way that we limit the scope of application of a rule. The syntax is to insert the keyword skipping, followed
by the type of the subtrees to be removed from the search, immediately before the keyword deconstruct.

For example, if we are interested only in outer-level expressions that are not nested inside another
expression, then we can use the deconstructor:

21

skipping [expression]
deconstruct * [expression] Scope

Expn [expression]

The sense of a deconstructor or searching deconstructor can be negated using the keyword not following
deconstruct:

deconstruct not varName
pattern

deconstruct not * [type] varName
pattern

In this case the rule is considered not to have matched its pattern (i.e., the main pattern match is
discarded and a new match is searched for) if the deconstructor does match its pattern. That is, the rule
continues with its main pattern match only if no match can be found for the pattern of the deconstruct.
Because the rule continues in this case only if the deconstructor does not match its pattern, no variables
are bound by a deconstruct not.

4.10 Conditions

A condition is a sequence of rules that are applied to a single variable solely to yield success or failure.
The condition must succeed for the rule to continue with a match. A condition takes one of the forms:

a. where
conditionalExpression

b. where not
conditionalExpression

c. where all
conditionalExpression

d. where not all
conditionalExpression

where a conditionalExpression is a sequence of rules applied to a single variable, for example:

where
X [containsANumber] [containsAnIdentifier]

A condition of form (a) succeeds if and only if at least one of the rules applied finds a match to its pattern
(or in the case of form (b), if and only if none of the rules applied finds a match to its pattern). Thus the
condition above can be read as "where either X contains a number or X contains an identifier or both",
assuming that the rules [containsANumber] and [containsAnIdentifier] check what their names imply.

A condition of form (c) succeeds if and only if all of the rules applied find a match to their pattern (or in
the case of form (d), if and only if at least one of the rules applied does not find a match). Thus the
condition :

where all

22

where all
X [containsANumber] [containsAnIdentifier]

can be read as "where X contains a number and X contains an identifier".

Conditions, like deconstructors, are considered to be refinements of the rule's pattern. If, for a particular
main pattern match, any of the conditions fail, then we consider the main pattern not to have matched,
and continue searching for another match. A tree matches a rule's pattern, then, only when it matches the
rule's main pattern, and all of the rule's deconstructors match, and all of the rule's conditions succeed.
The rules that are applied in a condition must all be condition rules, that is, rules that do not do a
replacement but simply try to match a pattern (see "Condition Rules" below).
There are several built-in functions that are intended to be used in conditions, including =, < and >. For
example, the following rule will (bubble-)sort a sequence of numbers:

rule sort
replace [repeat number]

N1 [number] N2 [number] Rest [repeat number]
where

N1 [< N2] % [<] is a built-in function that matches
by % iff the numeric value of N1 < N2

N2 N1 Rest
end rule

Built-in functions are discussed in section 4.16.

The sort rule relies on the fact that every trailing subsequence of a [repeat number] sequence is itself a
[repeat number] sequence and hence can be matched by the pattern of the rule. Thus the rule continues
transforming, matching trailing subsequences until there are no pairs of misordered adjacent numbers
left in the result.

This kind of "trailing subsequence" pattern is a standard paradigm of TXL programming, and one worth
remembering. It is interesting to consider what would happen if the trailing subsequence were not
allowed in the pattern - that is, if the pattern of the sorting rule did not allow for Rest. In that case, the
pattern would only be able to match a sequence of exactly length two - normally only the last pair of
numbers in a sequence. The rule would sort only that pair and never match any other pair in the scope.

Assertions are identical to conditions except that they must succeed. The syntax of assertions is identical
to conditions except that the the keyword where is replaced with assert. For example:

assert
X [hasNoSubscript]

Assertions are used primarily in development, to check that assumptions under which the program was
developed actually hold true during execution. If an assertion fails, the TXL run immediately ends with
an error message.

4.11 Constructors

Constructors are used to build intermediate subtrees for use later in a rule. A constructor explicitly
introduces a new variable name and binds the constructed tree to it. Constructors may appear at any
point before the replacement in the rule body. Constructors that appear before the main pattern are
evaluated once for each rule invocation; constructors appearing after the main pattern are re-evaluated
for each pattern match. A constructor takes the form:

23

construct varName [type]
replacement

where varName is the name of the new variable, type is the nonterminal type of the tree to be constructed
and replacement has the same syntax as a main replacement. The special variable name '_' denotes the
nameless anonymous variable, which can be constructed for the side effects of its replacement. Any
number of anonymous variables may be constructed in a rule, but they cannot be referenced.

The replacement of a constructor is evaluated in exactly the same way as the main replacement in a rule,
except that it doesn't replace anything. The constructed tree is bound to the variable and can be used in
the subsequent patterns and replacements in the rule.

Constructors are frequently used to allow application of a subrule to a replacement built out of many
parts. For example, the rule:

rule addToSortedSequence NewNum [number]
replace [repeat number]

OldSequence [repeat number]
construct NewSequence [repeat number]

NewNum OldSequence
by

NewSequence [sort]
end rule

constructs a sequence called NewSequence in the middle of the rule. We can then invoke the sort rule on
the new sequence we have built to sort the new number into its proper place in the result.

4.12 Global Variables, Import and Export

Rules can import and export global variables. Global variables are bound when a rule exports them, and
their current value is accessed when a rule imports them. TXL uses a "bulletin board" model of global
variables - rules "post" variable bindings to the bulletin board using export, and "read" variable values
from the bulletin board using import. No explicit declaration of global variables is required - a global
variable comes into existence when it is first exported from a rule, and retains its binding until a variable
of the same name is exported from another rule. Import of a global variable is legal only if the variable
has been previously exported by some rule.

The name of a global variable is visible in a rule only if the rule either imports or exports the variable.
Inside the importing or exporting rule, the variable acts like a locally constructed variable. Global
variable names not explicitly imported or exported from a rule can be used as local variable names
independent of any global variable of the same name.

Like all TXL variables, global variables are strongly typed. The type of a global variable is permanently
determined by the first export of the variable, and the type must be identical in every subsequent import
and export of the variable.

Global variables are created and bound using an export clause. Inside the rule, an export acts exactly like
a constructor, that is, it introduces a new local variable name and binds the constructed tree to it. Like
constructors, exports may appear at any point before the replacement in a rule body. Export clauses take
the form:

export varName [type]
replacement

24

where varName is the name of the new variable, type is the nonterminal type of the tree to be constructed
and replacement has the same syntax as a main replacement.

The exported global variable is bound on each execution of the export clause to the newly constructed
tree. Other rules, including subrules of the exporting rule, can import the global variable to access its
new binding. The exported binding of the global variable remains on the bulletin board until another
export clause for the same variable name is executed by this or some other rule.

Local variables, including imported variables, that have already been bound in a rule can also be
exported. Because previously bound local variables already have a type, no type is given in this case.
Export of a previously bound local variable takes the form:

export varName
replacement

where varName is the name of the local variable and replacement has the same syntax as a main
replacement. In this form the replacement is optional. If no replacement is given, then the variable is
exported with its current binding. If a replacement is given, then the variable is bound to the newly
constructed tree and exported with its new binding.

Access to global variables from other rules is provided by the import clause. An import clause acts like a
constructor that introduces a new local variable of the global variable's name and binds it to the current
binding of the global variable. Like constructors, imports may appear at any point before the
replacement in a rule body. Import clauses take the form:

import varName [type]
pattern

where varName is the name of a bound global variable, type is the nonterminal type of the variable, and
pattern has the same syntax as a main pattern. The pattern is optional. If a pattern is given, the semantics
are identical to that of a deconstruct of the imported variable (see "Deconstructors").

The imported global variable is re-evaluated to the current binding of the global variable at each
execution of the import clause. A previously imported or exported variable may be (re-)imported later in
the rule to explicitly force a re-evaluation. Because previously bound local variables already have a type,
no type is given in this case. Import of a previously imported or exported variable takes the form:

import varName
pattern

Imported variables may be used exactly like other local variables. In particular, they may be exported
later in the rule, either with their original binding (which sets the global variable back to its binding at
import time regardless of any intervening new bindings), or with an explicitly constructed new binding.
If an imported variable is exported, no type is given in the export clause.

A global variable may imported or exported from the same rule any number of times, with the semantics
that the global variable is bound at each execution of an export clause, and re-evaluated to the global's
current binding at each execution of an import clause. The current binding of an imported global variable
seen by a rule is affected only by the import and export clauses of that rule.

For example, if a subrule called in a constructor or replacement of a rule exports a new binding for a
global variable previously imported into the rule, then the binding for that variable name seen by the rule
remains unchanged until the next execution of an import or export clause for the variable in the rule.
Thus the binding seen by a rule for any global variable can only be changed by the rule itself.

25

4.13 Working with Global Variables

Global variables are a rich and powerful feature that can be used for many distinct purposes, including
global tables, multiple results from a rule, "deep" parameters, and message-passing communication
between rules in a rule set.

Global tables of information can be set up using an export clause before the replace clause in the main rule
of a program. For example,

define table_entry
[stringlit] '-> [stringlit]

end define

function main
export Table [repeat table_entry]

“Veggie” -> “Celery”
“Fruit” -> “Apple”
"Fruit" -> “Orange”
“Fruit” -> “Pear”
“Veggie” -> “Cabbage”

replace [program]
P [program]

by
P [R1] [R2] [R3]

end function

Global tables created in this way can be accessed from any rule in the program using the following import
clause before the replace clause of the rule:

import Table [repeat table_entry]

Global tables can be easily queried using searching deconstructors. For example, if we wish to know
what kind of thing "Orange" is, after importing Table we can use the deconstructor:

deconstruct * [table_entry] Table
Kind [stringlit] -> "Orange"

If Table had the original binding shown in the main rule above, then the binding for Kind will be the
[stringlit] "Fruit". If no match were to be found, then the deconstructor would fail.

Global tables can be modified by exporting a new binding for the table based on the imported original
binding. For example, the following function, when applied to a scope of type [table_entry] , adds
the new entry to the global table of the example above:

function addTableEntry
import Table [repeat table_entry]
match [table_entry]

 NewEntry [table_entry]
export Table

Table [. NewEntry]
end function

Note however that modification of global tables is likely to be an expensive operation if the table is used
extensively in the program, because the old value of the table must be preserved for previous imports of
the variable that are still visible in other rules (whose value is not changed by the export!).

26

Multiple results from a rule can be achieved by exporting results other than the changed scope to global
variables that are immediately imported by the calling rule. The additional result is exported
immediately before the replacement of the called rule, so that it takes effect if and only if the rule
succeeds in replacing its scope (i.e., if it returns a main result also). For example, the following simple
rule returns all but the first element of a sequence of numbers as its main result, and the first element as
its secondary result, in the global variable HeadTailFirst :

function headTail
replace [repeat number]

HeadTailFirst [number]
HeadTailRest [repeat number]

export HeadTailFirst % additional result
by

HeadTailRest % main result
end function

The calling rule should call from within a constructor, and then follow the constructor with an import of
any additional results, for example :

construct RestX [repeat number] % main result
X [headTail]

import HeadTailFirst [number] % additional result

Any number of results can be returned from a rule simply by exporting additional global variables.

Deep parameters allow the passing of parameters down to the bottom of a long chain of rule calls without
explicitly handling the parameters in the intermediate rules. This clerical overhead of passing a
parameter through all the intermediate levels of subrules until it finally gets down to the rule that
actually needs the parameter can be annoying and error-prone. Using global variables, parameters can be
passed directly from a rule to rules at levels of call far below its immediate subrules. The parent rule
simply exports a global variable which is imported by the deep subrule that needs it.

For example, the following rule makes its entire original scope available to its deeply embedded subrule,
even though the subrule itself actually works on only a tiny part of it :

function parentRule
replace [repeat number]

AllNumbers [repeat number]
export AllNumbers
by

AllNumbers [transformEqualPairs]
end function

rule transformEqualPairs
replace [repeat number]

N1 [number] N2 [number] Rest [repeat number]
deconstruct N1

N2
by

N1 N2 [replaceByZeroIfEqual N1]
 [replaceByInfinityIfNotZero]

 Rest
end rule

27

function zeroIfEqual N [number]
% replace the second number of an equal pair by zero
replace [number]

N
% but only if the whole set of numbers doesn't have
% a zero in it already
import AllNumbers [repeat number]
deconstruct not * [number] AllNumbers

0
by

0
end function

function replaceByInfinityIfNotZero
replace [number]

N [number]
deconstruct not N

0
by

999999999
end function

Communication between parent and subrules : Global variables can be used to set up a message
communication link between a parent rule and its subrules. In the following example, the subrule
exports a flag to tell whether or not it actually did anything, indicating whether its result is meaningful:

rule SingleStepBubbleSort
replace [repeat number]

Numbers [repeat number]
export Swapped [yesno]

‘no
construct NewNumbers [repeat number]

Numbers [SwapSomeMisorderedPair]
import Swapped [yesno]
deconstruct Swapped

‘yes
by

NewNumbers
end rule

function SwapSomeMisorderedPair
replace [repeat number]

N1 [number] N2 [number] Rest [repeat number]
where

N1 [> N2]
export Swapped

‘yes
by

N2 N1 Rest
end function

28

Before calling the subrule, the parent rule exports the default value no for the global variable Swapped.
The subrule then exports a new value yes for Swapped if and when it actually is able to make a
replacement. In this way, the parent rule can efficiently check whether the subrule actually made a
change without the computational overhead of comparing the original with the result. In the example
above, the parent rule will halt when the subrule fails to find a replacement to make.

Communication between sibling subrules : Global variables can also be used to set up a message
communication link between two or more subrules of a common parent rule. This can be useful when
making sure that exactly one subrule of a set of subrules applies. For example, the following simple
example rule has subrules that replace 1 by 2, and 2 by 3, without interference :

function shiftByOne
replace [number]

Number [number]
by

Number [replaceOneByTwo] [replaceTwoByThree]
end function

function replaceOneByTwo
export Flag [id]

'not_found
replace [number]

1
export Flag

'found
by

2
end function

function replaceTwoByThree
import Flag [id]
deconstruct Flag

'not_found
replace [number]

2
by

3
end function

The deconstruct of Flag in function [replaceTwoByThree] insures that it will not overwrite any work
done by [replaceOneByTwo], even though its pattern matches the result of [replaceOneByTwo]. This
is a trivial example of the much broader general problem of avoiding interference between subrules.

4.14 Limiting the Scope of Application

Sometimes we would like to limit the application of a rule to the higher levels of a tree. For example, we
may want a rule to sort the declarations before the statements in the body of a particular procedure, but
not in any nested sub-procedures of an input program. We do this by removing subtrees identified by a
particular nonterminal type from the scope of application. When we say "remove a subtree from the
scope of application", we mean that the subtree should not be searched for pattern matches - not that the
tree cannot be changed.

29

The syntax is to insert the keyword skipping, followed by the type of the subtrees to be removed from the
search, immediately before the keyword replace. For example, a single level sort of declarations before
statements can be written as:

rule sortDeclarationBeforeStatements
skipping [declaration]
replace [repeat declaration_or_statement]

S [statement]
D [declaration]
RestOfScope [repeat declaration_or_statement]

by
D
S
RestOfScope

end rule

When applied to the code in the body of a procedure, this rule will sort the declarations before the
statements in the body of the procedure itself, but will never search for matches inside any nested
[declaration] in the procedure body, and hence will not sort the bodies of any nested sub-procedures.

4.15 One-Pass Rules

Because the semantics of rule application requires that the rule is re-applied to the result of each
replacement, certain kinds of rule can be difficult to write. For example, the following rule, which
outwardly appears to be correct, will never terminate in TXL because every replacement it makes
matches its original pattern, and it will go on replacing X with X forever.

rule anonymizeIdentifiers
replace [id]

OldId [id]
by

'X
end rule

The problem is that while TXL rules are in general intended to be applied recursively in order to find
every match, including those created as part of the transformation, this kind of rule is intended to be
applied to each matching item exactly once. In TXL we call this kind of rule a one-pass rule.

TXL has a special notation to specify that a rule should be one-pass. One-pass rules are specified by a $
following the keyword replace. For example, the rule above can be written as the one-pass rule:

rule anonymizeIdentifiers
replace $ [id]

OldId [id]
by

'X
end rule

The $ specifies that the rule is to be applied to each matching subtree of the original scope exactly once.
This strategy is implemented by limiting the application of the rule to one pass of the scope tree in which
the rule is applied only to the subtrees of each replacement, and not to its root. In this way each potential

30

match is examined exactly once. Note that it is still possible to make a non-terminating one-pass rule, if
the replacement of the rule always creates a new instance of the rule's pattern.

One-pass rules are often significantly faster than regular rules, and can be used in tuning TXL programs
for speed (once they are debugged). However, when tuning in this way, care must be taken to insure that
rules changed to be one-pass retain their originally intended semantics.

For example, the following rule, which reduces any sequence of repeated instances of same numbers in a
sequence of numbers, will not behave correctly if changed to be one-pass, because the replacement may
itself be a new instance of the pattern that we intend to be processed.

rule removeRepetitions
replace [repeat number]

N [number] N Rest [repeat number]
by

N Rest
end rule

4.16 Built-in Functions

Built-in functions provide a set of common operations that are difficult, awkward or inefficient to
implement directly in TXL. TXL predefines the following built-in functions.

 Arithmetic Operations (N1, N2 must be of type [number] or any other numeric type)

N1 [+ N2] numeric sum N1 + N2
N1 [- N2] numeric difference N1 - N2
N1 [* N2] numeric product N1 * N2
N1 [/ N2] numeric quotient N1 / N2
N1 [div N2] integer numeric quotient N1 / N2
N1 [rem N2] integer numeric remainder N1 / N2

 Text Operations (T1, T2 must be of type [stringlit], [charlit], [id] or any other identifier
 or user token type, N1, N2 of type [number] or other numeric type)

T1 [+ T2] concatenation of the text of T1 and T2
T1 [: N1 N2] substring of the text of T1 from char N1 through char N2 inclusive

 (1-origin)
N1 [# T1] length of text of T1
N1 [index T1 T2] index of the first instance of the text of T2 in T1, or zero if none found

 Operations on Identifiers (ID1 must be of type [id] or any other identifier type)

ID1 [_ ID2] identifier concatenation of ID1, underscore, and ID2
ID1 [!] unique new identifier beginning with ID1,

e.g. if ID1 is 'Bob', the result may be 'Bob27'

 Operations on Sequences (R1 must be of type [repeat T] for some type [T],
 R2 must be either of the same type [repeat T] or its element type [T],
 N1, N2 must be of type [number], and X1 can be of any type at all)

R1 [. R2] replaces R1 with the sequence concatenation of R1 and R2

31

R1 [^ X1] replaces R1 of type [repeat T] with a sequence consisting of every
subtree of type [T] contained in X1

N1 [length R1] replaces N1 with the length of the sequence R1

R1 [select N1 N2] replaces R1 with the subsequence of R1 from element N1 through N2
inclusive (1-origin)

R1 [head N1] replaces R1 with the subsequence of R1 from element 1 through N1
inclusive (1-origin)

R1 [tail N1] replaces R1 with the subsequence of R1 from element N1 to the end of R1
inclusive (1-origin)

 Operations on Lists L1 must be of type [list X] for some type [X],
L2 must be either of the same type [list X] or its element type [X]

L1 [, L2] replaces L1 with the list concatenation of L1 and L2

N1 [length L1] replaces N1 with the length of the list L1

L1 [select N1 N2] replaces L1 with the sublist of L1 from element N1 through N2
inclusive (1-origin)

L1 [head N1] replaces L1 with the sublist of L1 from element 1 through N1
inclusive (1-origin)

L1 [tail N1] replaces L1 with the sublist of L1 from element N1 to the end of L1
inclusive (1-origin)

 Numeric Comparisons (N1, N2 must both be of type [number] or other numeric type)

N1 [= N2] succeeds if N1 is numerically equal to N2
N1 [~= N2] succeeds if N1 is numerically not equal to N2
N1 [> N2] succeeds if N1 is numerically greater than N2
N1 [>= N2] succeeds if N1 is numerically greater than or equal to N2
N1 [< N2] succeeds if N1 is numerically less than N2
N1 [<= N2] succeeds if N1 is numerically less than or equal to N2

 Text Comparisons (T1, T2 must both be of type [stringlit], [charlit], [id]
 or any other identifier or user token type)

T1 [= T2] succeeds if the text of T1 is identical to the text of T2
T1 [~= T2] succeeds if the text of T1 is not identical to the text of T2
T1 [> T2] succeeds if the text of T1 is alphanumerically greater than the text of T2
T1 [>= T2] succeeds if the text of T1 is alphanumerically >= the text of T2
T1 [< T2] succeeds if the text of T1 is alphanumerically less than the text of T2
T1 [<= T2] succeeds if the text of T1 is alphanumerically <= the text of T2

 General Comparisons (X1, X2 must both be of the same type,
 which is not a built-in or user token type)

X1 [= X2] succeeds if X1 is treewise alphanumerically identical to X2
X1 [~= X2] succeeds if X1 is not treewise alphanumerically identical to X2

32

 Substring Search (T1, T2 must both be of type [stringlit], [charlit],
 [id] or any other identifier or user token type)

T1 [grep T2] succeeds if the text of T2 is a substring of the text of T1

 Fast Ground Substitute (Y1, Y2 must both be of any same type, X1 can be any other type)

X1 [$ Y1 Y2] result is X1 with Y2 substituted for every occurrence of Y1
 (i.e., a fast one-pass substitution of Y2 for Y1)

 Type Conversions (T1 must be of type [stringlit], [charlit], [id] or any other identifier
 or user token type, S1 must be of type [stringlit] or [charlit],
 and X1, X2 can be any type at all)

T1 [quote X1] appends the output text of X1 to the text of T1 (same as [unparse])

T1 [unquote S1] replaces the text of T1 with the unquoted text of S1

X1 [parse T1] replaces X1 of any type [T] with a parse of the text of T1 as a [T]

T1 [unparse X1] appends the output text of X1 to the text of T1 (same as [quote])

X1 [reparse X2] replaces X1 of any type [T] with a parse of the leaves (terminal symbols)
 of X2 as a [T]

 Input/Output Operations (S1 must be of type [stringlit], [charlit], [id] or any other identifier type,
 F1 must be of type [stringlit] or [charlit], X1 can be any type)

X1 [read S1] replaces X1 of any type [T] with a parse of the text file S1 as a [T]

X1 [write S1] writes the output text of X1 as the text file S1 (which is opened or created
if necessary, written and closed)

X1 [get] inputs one line of text from the standard input and replaces X1 of any
type [T] with a parse of the input text as a [T]

X1 [fget F1] inputs one line of text from file F1 (which is opened if necessary) and
replaces X1 of any type [T] with a parse of the input text as a [T]

X1 [getp S1] outputs the text of S1 as a prompt on the standard error stream, then
inputs one line of text from the standard input and replaces X1 of any
type [T] with a parse of the input text as a [T]

X1 [put] appends the text of X1 to the standard error stream

X1 [fput F1] appends the text of X1 to file F1, which is opened or created if necessary

X1 [putp S1] appends the text of S1 to the standard error stream, with the output text
of X1 inserted at the point of the first "%" character in S1

X1 [fputp F1 S1] appends the text of S1 to file F1, with the output text of X1 inserted at the
point of the first "%" character in S1

X1 [fclose F1] closes file F1 - only necessary if the file is to be reopened

33

 Debugging Aids (X1, X2 can be any type at all)

X1 [message X2] outputs the output text of X2 to the standard error stream;
 if X2 is of type [stringlit] or [charlit], it is unquoted

X1 [print] outputs the output text of X1 to the standard error stream;
 if X1 is of type [stringlit] or [charlit], it is unquoted

X1 [printattr] outputs the output text of X1 to the standard error stream with
attributes visible; if X1 is of type [stringlit] or [charlit], it is unquoted

X1 [debug] outputs the internal tree format of X1 to the standard error stream

X1 [breakpoint] temporarily halts execution until a carriage return character is
 received from the standard input

 Execution Control (S1 must be of type [stringlit] or [charlit], N1 must be of type [number]
 or other numeric type, X1 can be any type)

X1 [pragma S1] interpret the TXL command line options specified in S1
 to dynamically change TXL options during execution

X1 [quit N1] immediately abort TXL execution with return code N1

 System Interface (S1, S2 must both be of type [stringlit] or [charlit],
 X1 can be any type at all)

X1 [system S1] invoke /bin/sh to run the text of S1 as a shell command line;
 X1 is ignored and unchanged
(most useful when used in conjunction with [write] and [read]
 to manipulate data in files)

S1 [pipe S2] invoke /bin/sh to run the shell command
echo "text of S1" | text of S2

and replace the text of S1 with the first line of the result

4.17 External Functions

An external function is one that is implemented externally in some other language (usually C) and used
in a TXL program. External functions can be used to provide additional semantics that are awkward or
impossible to implement directly in TXL. The syntax for declaring an external function is:

a. external function ruleName parameterList

b. external rule ruleName parameterList

Where ruleName is an identifier, and parameterList is a list of typed identifiers (as in a function definition).
The choice of whether an external function is declared to be a function or a rule is arbitrary and has no
effect. This is because the semantics of the external, and hence the question of whether it searches or
repeats, is independent of TXL.

External functions are implemented by the user by modifying the file 'user.c' and re-linking TXL; see the
comments in the file 'user.c' for details. See also the built-in functions [system] and [pipe] in the section
"Built-in Functions" above.

34

4.18 Condition Rules

Rules and functions used in conditions (where clauses) are required to be of a special kind called condition
rules. Condition rules test for a match to their pattern and do nothing else. Syntactically, a condition rule
is exactly like a regular rule or function except that the replace keyword is replaced by match and no
replacement (by clause) is allowed.

For example, the following rule eliminateRedundantDeclarations removes all redundant variable
declarations from a program. A declaration is redundant if there are no references to the variable in its
scope of declaration. The condition that there be no references to the variable is tested by inverting the
success of the condition rule references.

rule eliminateRedundantDeclarations
 replace [repeat statement]

var X [id] : T [type_spec]
RestOfScope [repeat statement]

 where not
RestOfScope [references X]

 by
RestOfScope

end rule

% a condition function to test if there are any references to X
function references X [id]
 match * [id]

X
end function

Transformation rules can be used as condition rules by prepending a ? onto the name of the rule in the
rule application. For example, the following rule will never stop since it will continue to match its pattern
forever regardless of what subrule R does:

rule doRuleR
 replace [repeat statement]

Scope [repeat statement]
 by

Scope [R]
end rule

What was intended is that the rule should continue as long as rule R continues to so something to the
scope. This can be expressed using the condition:

 where
Scope [?R]

The rule invocation [?R] invokes replacement rule [R] as a condition rule - thus it only tests to see if it can
match its pattern, and does no replacing. If its pattern matches, then it succeeds and the condition passes,
so the invoking rule continues, otherwise the condition fails and the invoking rule will stop.

Condition rules can also be used in place of transformation rules in order to achieve a useful side-effect.
For example, the following debugging function can be called in any context to print a debugging message
if the identifier "OOPS" appears anywhere in its scope:

35

function checkForOOPS
match * [id]

'OOPS
construct PrintMessageDummy [id]

_ [message "Found an OOPS!"]
 [breakpoint]

end function

4.19 Complex Conditions

Arbitrary Boolean conditions can be built up using combinations of where clauses. The or of a set of
conditions is represented by the semantics of the where clause itself, which succeeds if any of the sequence
of condition rules applied succeeds, and the and of a set of conditions can be represented using the where
all form, which succeeds only if all of the sequence of condition rules applied succeeds.

For example, if we want to specify the condition that a number N is less than or equal to another number
M, we can specify the condition:

where
N [< M] [= M] % less than M or equal to M

The and of two conditions can be represented either by using the where all form:

where all
N [< M] [> K] % less than M and greater than K

or perhaps more elegantly by using two where clauses in a row, which together succeed only if both
conditions succeed.

For example, if we want to specify the condition that a number N is less than another number M and
greater than a third number K as above, we can also use the two conditions:

where
N [< M] % less than M

where
N [> K] % and greater than K

Complex conditions can be built up by combining these forms with the use of not, for example, the
condition that M be less than or equal to N and not greater than K can be expressed as:

where
N [< M] [= M] % less than M or equal to M

where not
N [> K] % and not greater than K

4.20 Polymorphic Rules

Rules and functions can implement a limited form of universal polymorphism using the universal
nonterminal type [any]. The nonterminal type [any] has some obvious properties, and some not-so-
obvious ones. The main thing to know is that [any] matches any tree at all, so the pattern:

36

match [any]
Any [any]

will match any parse tree of any type at all. The matched tree retains its own nonterminal type and
structure, even though it has been matched using [any]. A TXL variable X of any particular type [T] can
be recast as an [any] using the deconstruct:

deconstruct X
AnyX [any]

This deconstruct never fails, no matter what X is, and always matches all of X, that is, the tree bound to
AnyX is exactly the same as the tree bound to X.

Because a tree matched by [any] retains its internal structure, we can still use deep deconstructs to match
internal parts of that structure. For example, if we want to constrain ourselves to only those matches of
trees that contain a subtree of type [T], we can write:

match [any]
Any [any]

deconstruct * [T] Any
X [T]

The deconstruct will succeed if and only if the tree matched by the [any] pattern is itself a [T] or contains
a [T] embedded somewhere in it. The deconstruct must be a searching deconstruct, that is, it must have a
'*', because the type [any] provides no fixed grammatical structure by which TXL can parse the pattern of
the deconstruct. For this reason, there is no way to constrain the matched [any] to be entirely a tree of a
certain type [T]. (Of course, this can already be written as "match [T] X[T] ".)

Because there is no fixed grammatical definition of the structure of the type [any], it is not possible to
construct a variable of type [any] directly. Thus the construct statement:

construct A [any]
replacement

is always an error, unless the replacement consists exactly of a reference to a single bound variable already
of type [any].

Instead, the paradigm for constructing arbitrary trees to be used as type [any] is the following:

construct B [T]
replacement

deconstruct B
AnyB [any]

Because the deconstruct cannot fail no matter what the type and structure of B, this has the effect of
allowing us to construct any tree at all as an [any].

This construction is most useful when making a replace rule or function of type [any]. Because TXL
constrains us to use a replacement of the same nonterminal type as the pattern, the type of the
replacement in a rule or function whose pattern is of type [any] must also be [any]. Thus the usual
paradigm for such a rule or function is:

37

function replaceAnyTree
replace [any]

AnyTree [any]
% Constraints on the matched tree go here
construct NewTree [newtreetype]

% The intended replacement tree goes here
deconstruct NewTree

AnyNewTree [any]
by

AnyNewTree
end function

"Replace" rules and functions of type [any] are very dangerous, and always get a warning message.

4.21 Working with Polymorphism

Rules using [any] can (obviously) lead to unexpected results. Since the trees resulting from a replace rule
or function targeting type [any] need not be structured according to the language grammar, the patterns
of subsequent rules, functions and deconstructs may fail unexpectedly on the resulting trees. This is
because TXL parses all patterns according to the language grammar at compile time, creating pattern
trees structured according to the grammar. A tree not structured in exactly the same way, even if its
terminal contents (leaves) are the same, cannot match the pattern tree.

This phenomenon can happen in TXL even without use of [any], if the program exploits ambiguity in the
grammar by using explicit constructs to create trees that use alternative (second or subsequent
alternative) parses. However, this technique is relatively uncommon and in general is done intentionally
to prevent subsequent pattern matches. In the case of replace rules and functions of type [any], it is much
more likely to happen unintentionally and lead to unexpected pattern match failures and thus
unexpected results.

For this reason, it is recommended that polymorphic replace rules and functions be avoided except when
absolutely necessary. They are simply too error prone for common practice. TXL will warn about every
use of a replace rule or function of type [any], and this warning cannot be turned off.

On the other hand, replace rules and functions of type [any] can be very powerful, and can conveniently
achieve some otherwise awkward or difficult transforms when used with discipline. Condition rules and
functions of type [any] are never dangerous, and can be very useful as well. In this section we explore
some paradigms for the disciplined use of rules and functions of type [any] that are very powerful and
relatively benign.

Generic property testing functions : The safest useful thing that can be done with [any] is to write generic
property testing functions, avoiding the necessity of writing many functions of the same shape. The
following example tests for containment of any object of any type in any other object of any type:

function contains Object [any]
match * [any]

Object
end function

On the face of it, this function is much like a searching deconstruct. It's only when used with each that we
really see its usefulness:

38

% Does this declaration contain any of these attributes?
construct InterestingAttributes [repeat attribute]

'int 'int2 'int4 'nat 'nat2 'nat4 'real 'real8
where

Declaration [contains each InterestingAttributes]

% Does this procedure use any of these built-in functions?
construct StringBuiltinIdentifiers [repeat id]

'substr 'length 'index
where

Procedure [contains each StringBuiltinIdentifiers]

Rule set abstraction : It's also safe to use [any] to write abstraction functions that gather a set of rules that
are to be applied together to the scope, when the scope can vary in type. Again, this avoids the necessity
of writing multiple functions of the exact same shape for different scope types.

function applyMyRules
replace [any]

Scope [any]
by

Scope
[myRule1]
[myRule2]
[myRule3]
[myRule4]

end function

Of course, if this abstraction is to be effective, each of the subrules must be a rule or searching function.

These first two paradigms are always safe because they both preserve grammatical structure. The next
paradigm of use is not quite so restrictive, because it does violate grammatical structure, but it preserves
behaviour for most rule sets.

Nested factoring : The basic idea of this paradigm is that the changes we make are constrained to include
the unchanged original structure inside the changed structure when modifying the tree. By constraining
ourselves in this way, we insure that all searching functions, rules and searching deconstructs with
patterns that used to target the original structure will continue to do so, hopefully minimizing the effect
of the [any] cheat on the rest of the program.

The best example of this technique is generic markup. In generic markup, we define a generic markup
type that can mark up any nonterminal, and then use it to do all our markups, preserving the original
item inside the markup at all times so that it can be found by other markup rules and functions.

define markup
% The [any] here allows us to mark up anything at all
'< [id] '> [any] '</ [id] '>

end define

Markup rules can then use this type to mark up anything at all, saving us the chore of changing the
grammar every time we choose to make a markup rule for a new nonterminal.

39

function markupWith Tag [id]
replace [any]

Any [any]
% Make a marked-up copy of the scope ...
construct Markup [markup]

'< Tag '> Any '</ Tag '>
% ... and recast it as an [any] so that it can replace it.
deconstruct Markup

MarkupAny [any]
by

MarkupAny
end function

If tomorrow we decide we need to mark up [statement]'s, then we can do so without changing either the
grammar, the overrides, or the [markupWith] rule:

rule markupStatementsMentioning Ids [repeat id] Markup [id]
% Don't re-mark anything we have already marked up
skipping [markup]

% Find every statement once
replace $ [statement]

Stmt [statement]

% Mark up the statement only if it uses at least one of the Id's
% (We re-use the generic [contains] function defined above)
where

Stmt [contains each Ids]
by

Stmt [markupWith Markup]
end rule

Because we always preserve the entire tree structure of the marked-up [statement] intact in the result,
other rules in the program will in general not be affected by this use of [any].

40

5. The Unparsing Phase

The unparsing phase is the simplest of the three phases of TXL. The unparser simply does an inorder
(left subtree, this node, right subtree) walk of the transformed parse tree, writing the leaves to the output,
to give an unparsed string representation of the result of the transformations.

5.1 Formatting of Unparsed Output

TXL normally tries to format the unparsed output in approximately 80 characters of width, with a two
character indent for each continued line. The formatting of output can however be explicitly controlled
using the built-in formatting nonterminals [NL], [IN] and [EX] to automatically produce pretty-printed
output. [NL], [IN] and [EX] can be placed anywhere in a grammar and have no effect on either the parse
or the transformation, but direct the formatting of unparsed output in the following way:

[NL] force a new line of output

[IN] indent all following output lines by four (more) spaces

[EX] exdent all following output lines by four (fewer) spaces

[IN_ NN] indent all following output lines by NN (more) spaces

[EX_ NN] exdent all following output lines by NN (fewer) spaces

As an example, the following definition causes output procedure declarations to be formatted in the
standard Pascal pretty-printed way, while parsing exactly the same inputs as the same define with no
formatting nonterminals.

define procedure_declaration
procedure [id] [formal_parameter_list] ; [NL][IN]

[declarations] [EX]
begin [NL][IN]

[statements] [EX]
'end [id]

end define

Grammars can also contain explicit tabbing using the built-in formatting nonterminal [TAB], which
explicitly directs the formatting of output as follows:

[TAB] start the next output item at the next ANSI standard tab stop -
standard tab stops are set in intervals of 8 columns starting at column 1

[TAB_ NN] start the next output item in column NN by adding spaces -
if the current output column is already >= NN, then output continues
in column NN of the next line, unless the Ðnotabnl command line option
is given, in which case exactly one space is added to the current line

By default TXL uses a predefined spacing strategy for output that is appropriate for most Pascal- and C-
like languages. It is also possible to take total control of output format by using the Ðraw command line
option. When Ðraw is given as a command line option, no spacing at all is done in the output unless it is
explicitly specified in the grammar using the built-in nonterminal [SP], or the [TAB] directives shown
above.

[SP] append a space to the output

[SP_ NN] append NN spaces to the output

41

For example, the following definition, when used with -raw, specifies that the output is to have a spaces
around '+' operators but none around '*' operators in the output.

define binary_operation
% make spaces around additive operators in the output but
% none around multiplicative

[value] [SP] + [SP] [value]
| [value] [SP] - [SP] [value]
| [value] * [value]
| [value] / [value]

end define

[SP] can also be used when the Ðraw option is not on, to add explicit additional spacing to output.

When character-level input is specified using the Ðchar command line option, Ðraw is on by default. If two
adjacent identifiers appear in Ðraw output, then they are separated by a space to distinguish them, unless
Ðchar is on, in which case they are concatenated instead.

Local spacing of output can also be explicitly controlled by the TXL program using the built-in
nonterminals [SPOFF] and [SPON], which dynamically turn default output spacing off and on
respectively during output.

5.2 Attributes

TXL also allows a grammar definition to have attributes associated with it. Attributes act like optional
nonterminals, but normally do not appear in the output. Attributes are not required in the input, but
may be added to the parse tree during transformation. Attributes are denoted in the grammar by the
nonterminal modifier attr, which can be added to any nonterminal type.

For example, the following definition of typed_id describes an identifier with a type as an attribute. The
type can be int or string, with untyped identifiers represented by an empty attribute.

define type
'int | 'string

end define

define typed_id
[id] [attr type] % [attr] means that the [type] is an optional

% attribute
end define

This could be used in a situation where the type of an identifier needs to be inferred from the its
associated value expression, as in the following example:

function inferTypeFrom Expn [expression]
replace [typed_id]

Id [id]
deconstruct Expn

% checks to see whether the expression is a
% binary operation acting on two numbers
First [number] Op [binary_operator] Second [number]

42

by
Id 'int

end function

Subsequent rules can then deconstruct the [typed_id] to get its inferred type attribute. In all other
respects the type [typed_id] acts exactly like [id], including being output as the [id] without the attribute.

Attributes can be of arbitrarily complex nonterminal types containing any amount of information. Thus
transforms requiring the collection and reuse of complex attributes such as those often stored in symbol
tables can be encoded directly in the parse tree.

Attributes can be forced to print in the output, for example for debugging purposes, using the Ðattr
command line option. When Ðattr is given as a command line option, all attributes are printed in the
output. See also [printattr] in the section "Built-in Functions".

43

6. TXL Programs

A TXL program combines a set of nonterminal type definitions with a set of rules and functions. The
nonterminal types are defined using define, keys, compounds, comments and tokens statements, and the rules
are defined using rule, function and external rule statements. In general the order of statements is not
important, other that if a name is multiply defined, the last occurrence of the name is taken to be the
defining occurrence.

Every TXL program must contain a definition for the nonterminal program, which is the name of the goal
nonterminal of the TXL program, the type as which all inputs to the program must be parsed. The rule
set must contain a definition for the rule or function main, which is automatically applied to the parse tree
of the input.

6.1 Comments

TXL comments begin with a percent symbol (%) and continue to the end of the line, as in TeX. If % is to
be used as a terminal symbol in the TXL program, it must be quoted with a single quote (e.g. '%) each
time it appears to distinguish it from the comment marker.

6.2 Include Files

A TXL program may include other TXL source files. Include files are equivalent to inserting the included
file in the program at the point of the include. Included files may themselves include other source files.
The syntax for include files is:

include " filename "

where "filename" is a string literal containing the (possibly system-dependent) name of the file to be
included. By default, file names without directory specifiers are assumed to be in the same directory as
the TXL source file containing the include statement. If the file is not found there, then TXL uses an
include file search path to find the file. By default, the include file search path is: the present working
directory (i.e., the directory from which the TXL command was run), the Txl subdirectory of the present
working directory (if one exists), and the TXL library directory, configured when the TXL processor is
installed on each system. Additional directories can be prepended to the include file search path using
the ÐI command line option (see the "User's Guide to the TXL Compiler/Interpreter" for further
information).

Note that the implementation of file inclusion is such that the keyword include, like rule, function and
define, is reserved in TXL. If any of these words appear as terminal symbols in the grammar then they
must be quoted with a single quote (e.g. 'include) each time they appear. A complete list of TXL
keywords is given in the keys section of Appendix A.

6.3 Preprocessor Directives

The TXL preprocessor allows conditional compilation of TXL programs depending on parameters
specified using the Ðd command line option. The TXL preprocessor uses Turing /Modula-3 style
preprocessor directives, but accepts also ANSI C-style preprocessor directives for compatibility with Unix
tools such as diff.

44

The complete set of Turing (Modula-3 style) preprocessor directives is accepted. Because of its similarity
to the syntax of TXL itself, this is the preferred form for TXL preprocessor directives.

The following directives form the Turing preprocessor command set. In the following, items enclosed in
square brackets [] indicate optional items and items enclosed in brace brackets { } are items that may be
repeated zero or more times.

#pragma { command line flags }

#define SYMBOL
#undefine SYMBOL

#if [not] SYMBOL1 [then]
source lines

 { # elsif [not] SYMBOLn [then]
source lines }

 [# else
source lines]

#end [if]

For compatibility with other Unix and C tools, the following subset of the ANSI C preprocessor directives
is also accepted.

#pragma { command line flags }

#define SYMBOL
#undef SYMBOL

#if [n][def] SYMBOL1
source lines

 { # elif [n][def] SYMBOLn
source lines }

 [# else
source lines]

#endif

Note that these commands include all of those generated by the Unix "diff -D" command, so different
versions of the same TXL program can be automatically integrated and conditionally compiled from the
same source using "diff -D".

Any mix of ANSI C and Turing-style preprocessor syntax is accepted by the TXL preprocessor, although
due to readability concerns, such mixing is discouraged as bad style.

TXL preprocessor statements are interpreted line-wise, which means that the # character must be the first
non-blank character on the line (otherwise the line is treated as a regular TXL source line), and any
trailing characters on the same line as the preprocessor directive are ignored as comments.

For example, the following line does not contain a preprocessor directive :

'[Oldid [id] #end if Jimbo Jambo ']

The following preprocessor line is legal and does contain a preprocessor directive :

45

#end if JIMBO @#$%!(*& JAMBO or #define MUMBO JUMBO

This line is exactly equivalent to :

#end if

Any number of spaces may appear between the leading # and the preprocessor command, and between
items in a preprocessor command. Thus the preprocessor directive :

define FOO

is exactly equivalent to :

#define FOO

As in Turing and C, preprocessor symbols are by convention all upper case, but are not required to be so.
Any TXL identifier can be used as a TXL preprocessor symbol.

In general, the interpretation of TXL preprocessor directives is intended to be identical to the
interpretation of the corresponding directives in ANSI C and Turing. Preprocessor directives are
interpreted line-by-line from beginning to end of the TXL source file, with include statements interpreted
as if replaced by the source lines in the included file. Non-preprocessor source lines (those that do not
begin with a # as the first non-space character) are passed on unchanged to the TXL compiler except as
noted below.

#pragma { command line flags }

The #pragma directive allows command line flags and their arguments to be specified from within the
TXL program itself. The effect of the flags is exactly as if they had been specified on the command line.

#define SYMBOL
#undefine SYMBOL
#undef SYMBOL

TXL preprocessor symbols can only be defined or undefined, but cannot be associated with any value.
Preprocessor symbols are by default undefined unless explicitly defined in one of three ways :

1. Explicit definition using the #define preprocessor directive, for example :

#define SYMBOL

2. Command line definition using the Ðd command line option, for example :

txl -d SYMBOL myinput.input mytxlprogram.Txl

3. Pragma definition using the #pragma preprocessor directive :

#pragma -d SYMBOL

Once defined, preprocessor symbols remain defined until explicitly undefined using the #undef or
#undefine preprocessor directives, or until end of the compilation, whichever comes first. Certain
symbols (e.g., MAC, UNIX, AIX, TXLDB, etc.) may be predefined to allow conditional compilation based
on target machine, debugger or other environmental factors.

46

#if [not] SYMBOL1 [then]
source lines

 { # elsif [not] SYMBOLn [then]
source lines }

 [# else
source lines]

#end [if]

#if [n][def] SYMBOL1
source lines

 { # elif [n][def] SYMBOLn
source lines }

 [# else
source lines]

 # endif

These directives allow conditional inclusion of source lines in the compilation depending on whether or
not certain preprocessor symbols are currently defined. In each case, the source lines following the first
if/elif/elsif that holds are interpreted if and only if the specified symbol is defined (or is not defined, if
n or not is specified in the if/elif/elsif), and the source lines following all the other if/elif/elsif/else 's
are discarded.

If none of the if/elif/elsif 's hold and else is specified, then the source lines following the else are
interpreted, otherwise they are discarded. If none of the if/elif/elsif 's hold and no else is specified, then
all of the nested source lines are discarded.

#if and any other preprocessor directives may be nested in the conditionally included source lines. These
directives are interpreted if and only if interpretation of the #if directive results in the interpretation of
the group of source lines in which they appear, otherwise they are discarded with the group.

6.4 Predefined Global Variables

When TXL programs are run, certain global variables are pre-initialized to import information from the
environment of the run. In particular, the TXL global variable TXLargs of type [repeat stringlit] is
predefined in all implementations of TXL to import the command line arguments to the TXL program.
Command line arguments to the program are specified using a single "-" to separate them from TXL's
own arguments. For example, if the command line to run the program is:

txl -s 20 myinput.input mytxlprogram.Txl - -myoption 2 -myotheroption

Then TXLargs will automatically be preinitialized to:

export TXLargs [repeat stringlit]
"-myoption" "2" "-myotheroption"

The program can import TXLargs to test its command line arguments, for example:

import TXLargs [repeat stringlit]
deconstruct * TXLargs

"-myoption" Value [stringlit] MoreOptions [repeat stringlit]
deconstruct * [stringlit] TXLargs

"-myothereoption"

47

While individual platforms may vary in their predefined variables, the following TXL global variables are
preinitialized in all TXL implementations.

TXLargs [repeat stringlit] TXL program arguments (see above)

TXLprogram [stringlit] file name of the TXL program being run

TXLinput [stringlit] file name of the main input to the TXL program

TXLexitcode [number] exit code for the TXL run - can be exported to
change the exit code to be returned at the end of
the run

6.5 Version Compatibility

For compatibility with previous versions of TXL, certain obsolete forms not documented in this manual
continue to be accepted by the TXL processor. In particular, '+' is accepted in place of '...|' in token
definitions and the old '%#' pragma convention are accepted for backward compatibility with existing
TXL programs.

For compatibility with previous versions, the following equivalent short form notations for the
nonterminal modifiers continue to be accepted. In each case X may be any nonterminal type or quoted
terminal symbol. Use of these short forms is deprecated, and in all cases the long form on the left is
preferred.

Modifier Short form

[opt X] [X?]

[repeat X] [X*]

[repeat X+] [X+]

[list X] [X,]

[list X+] [X+]

[see X] [:X]

[not X] [-X]

For compatibility with previous versions, the following predefined global variables continue to be
supported. The use of these old variable names is deprecated, and the new name on the left is preferred.

New name Old name

TXLargs argv

TXLexitcode exitcode

48

Appendix A. Formal Syntax of TXL

We use the TXL grammar notation to formally specify the syntax of TXL. The precise definition of the
predefined nonterminals [id] , [number] , [stringlit] , [charlit] , [token] and [key] used
below is given in section 3.2, "Predefined Nonterminal Types".

Note: This grammar does not include the syntax of preprocessor directives - see "Preprocessor
Directives" in section 6 for the syntax of preprocessor statements.

% TXL comments begin with a % character and end at the end of the line.
% The % character must be quoted if it appears as a terminal symbol
% in a TXL program (as it does here)
comments

'%
end comments

% The following are keywords of TXL and must be quoted if they appear
% as terminal symbols in a TXL program (as they do here)
keys

'all 'assert 'by 'comments 'compounds 'construct 'deconstruct
'define 'end 'export 'external 'function 'import 'include 'keys
'list 'match 'not 'opt 'repeat 'replace 'rule 'skipping 'tokens
'where

end keys

% A TXL program consists of a sequence of TXL statements
define program

[repeat statement]
end define

define statement
[includeStatement]

| [keysStatement]
| [compoundsStatement]
| [commentsStatement]
| [tokensStatement]
| [defineStatement]
| [ruleStatement]
| [functionStatement]
| [externalStatement]

end define

define includeStatement
'include [stringlit] % string literal gives file name

end define

define keysStatement
'keys

[repeat literal]
'end 'keys

end define

49

define compoundsStatement
'compounds

[repeat literal]
'end 'compounds

end define

define commentsStatement
'comments

[repeat commentConvention] % one convention per line
'end 'comments

end define

define commentConvention
[literal] % start symbol (to end of line)

| [literal] [literal] % start / end symbol pair
end define

define tokensStatement
'tokens

[repeat tokenPattern] % one pattern per line
'end 'tokens

end define

define tokenPattern
[typeid] [stringlit] % new token type, or override of

% an existing token type
| '| [stringlit] % extension of the immediately

% preceding token type
| [typeid] '... '| [stringlit] % extension of an existing

 % token type
| [typeid] '+ [stringlit] % extension of an existing

 % token type (deprecated)
end define

define defineStatement
'define [typeid]

[opt dotDotDotBar] % extension of an existing define
[repeat literalOrType]
[repeat barLiteralsAndTypes]

'end 'define
end define

define dotDotDotBar
'... '|

end define

define barLiteralsAndTypes
'| [repeat literalOrType]

end define

define literalOrType
[literal] | [type]

end define

50

define type
'[[typeid] ']

| '['opt [typeidOrQuotedLiteral] ']
| '['repeat [typeidOrQuotedLiteral] [opt plusOrStar] ']
| '['list [typeidOrQuotedLiteral] [opt plusOrStar] ']
| '['attr [typeidOrQuotedLiteral] ']
| '['see [typeidOrQuotedLiteral] ']
| '['not [typeidOrQuotedLiteral] ']
| '['! ']

% Alternative short forms for the above (deprecated)
| '[[typeidOrQuotedLiteral] '? '] % opt
| '[[typeidOrQuotedLiteral] '* '] % repeat
| '[[typeidOrQuotedLiteral] '+ '] % repeat +
| '[[typeidOrQuotedLiteral] ', '] % list
| '[[typeidOrQuotedLiteral] ', '+ '] % list +
| '[': [typeidOrQuotedLiteral] '] % see
| '['~ [typeidOrQuotedLiteral] '] % not
| '[[typeidOrQuotedLiteral] ', '+ '] % list +

end define

define plusOrStar
'+ | '*

end define

define typeidOrQuotedLiteral
[typeid]

| [quotedLiteral]
end define

define ruleStatement
'rule [ruleid] [repeat formalArgument]

[repeat constructDeconstructImportExportOrCondition]
[opt skippingType]
'replace [opt '$] [type]

[pattern]
[repeat constructDeconstructImportExportOrCondition]
'by

[replacement]
'end 'rule

| 'rule [ruleid] [repeat formalArgument]
[repeat constructDeconstructImportExportOrCondition]
[opt skippingType]
'match [type]

[pattern]
[repeat constructDeconstructImportExportOrCondition]

'end 'rule
end define

define functionStatement
'function [ruleid] [repeat formalArgument]

[repeat constructDeconstructImportExportOrCondition]

51

[opt skippingType]
'replace [opt '*] [type]

[pattern]
[repeat constructDeconstructImportExportOrCondition]
'by

[replacement]
'end 'function

| 'function [ruleid] [repeat formalArgument]
[repeat constructDeconstructImportExportOrCondition]
[opt skippingType]
'match [opt '*] [type]

[pattern]
[repeat constructDeconstructImportExportOrCondition]

'end 'function
end define

define externalStatement
'external 'rule [ruleid] [repeat formalArgument]

| 'external 'function [ruleid] [repeat formalArgument]
end define

define formalArgument
[varid] [type]

end define

define constructDeconstructImportExportOrCondition
[constructor]

| [deconstructor]
| [condition]
| [import]
| [export]

end define

define constructor
'construct [varid] [type]

[replacement]
end define

define deconstructor
[opt skippingType]
'deconstruct [opt 'not] [opt '*] [opt type] [varid]

[pattern]
end define

define condition
'where [opt 'not] [opt 'all]

[expression]
| 'assert [opt 'not] [opt 'all]

[expression]
end define

52

define import
'import [varid] [opt type]

[opt pattern]
end define

define export
'export [varid] [opt type]

[opt replacement]
end define

define skippingType
'skipping [type]

end define

define pattern
[repeat literalOrVariable]

end define

define literalOrVariable
[literal]

| [varid] [type] % bind of a new variable
| [varid] % use of a previously bound variable

end define

define replacement
[repeat literalOrExpression]

end define

define literalOrExpression
[literal]

| [expression]
end define

define expression
[varid] [repeat ruleApplication]

end define

define ruleApplication
'[[ruleid] [repeat varidOrLiteral]

[opt 'each] [repeat varidOrLiteral] ']
end define

define varidOrLiteral
[varid] | [literal]

end define

define literal
[quotedLiteral] | [unquotedLiteral]

end define

define quotedLiteral
' ' [unquotedLiteral] % note: ' ' means a single quote mark

end define

53

define unquotedLiteral
[id]

| [stringlit]
| [charlit]
| [number]
| [key]
| [repeat special+] % sequence of contiguous special chars

end define

define special
'! | '@ | '# | '$ | '^ | '&

| '* | '(| ') | '_ | '+ | '{ | '}
| ': | '< | '> | '? | '~ | '\
| '= | '- | '; | ', | '. | '/
| '[| '] | '| % these three must be quoted in TXL

end define

define varid
[id] % identifier that is a variable name

end define

define typeid
[id] % identifier that is a type (define) name

end define

define ruleid
[id] % identifier that is a rule/function name

end define

54

Appendix B - Detailed semantics of opt, repeat, list and attr

The nonterminal modifiers opt, repeat, list and attr are implemented by generating internal nonterminal
definitions corresponding to the meaning of the modifiers, as shown in the following sections. Note that
the internal nonterminal type names given in the defines below are examples only and may or may not be
present in any particular implementation of TXL. Use of these internal type names in TXL programs is
never necessary and not recommended.

B.1 Implementation of [opt] and [attr]

The nonterminal modifier [opt X] generates the define statement:

define opt__X
[X]

| [empty]
end define

Every reference to [opt X] is implemented as a reference to [opt__X] .
The implementation of [attr X] is similar, using internal type name [attr__X] .

B.2 Implementation of [repeat]

The nonterminal modifier [repeat X] generates the define statements:

define repeat_0_X
[repeat_1_X]

| [empty]
end define

define repeat_1_X
[X] [repeat_0_X]

end define

Every reference to [repeat X] is implemented as a reference to [repeat_0_X] .
[repeat X+] generates the same set of defines but uses [repeat_1_X] as the implementation.

A tree of type [repeat X+] always matches a pattern requiring [repeat X] , and a nonempty tree of
type [repeat X] always matches a pattern requiring [repeat X+] .

B.3 Implementation of [list]

The nonterminal modifier [list X] generates the define statements:

define list_0_X
[list_1_X]

| [empty]
end define

55

define list_1_X
[X] [list_0_X]

end define

Every reference to the nonterminal [list X] is implemented as a reference to [list_0_X] .
[list X+] generates the same set of defines but uses [list_1_X] as the implementation.

A tree of type [list X+] always matches a pattern requiring [list X] , and a nonempty tree of type
[list X] always matches a pattern requiring [list X+] .

The separating commas of the list are not explicitly represented in the implementation of [list X] .
This saves space and speeds up pattern matching, but does not change the requirement for explicit
commas in input lists and list patterns.

The implementation of lists is such that the pattern:

First [X] , Rest [list X]

matches any nonempty list, including the singleton list (even though it does not have a comma).
This property simplifies working with lists and avoids the need to have separate rules for singleton lists.

56

Index of Terms

actual parameter 16, 19
add see "[+]"
alphabetic character 10, 11
alphanumeric comparison 32
alternative

forms of a nonterminal 2, 3, 7
parse 3, 38
patterns for a token 10
short forms 48, 51

ambiguity
in grammars 2, 3, 38
in token patterns 9

anonymous variable 17
ANSI C preprocessor directives 44-46
[any] 7, 36-40
append

of lists see "[,]"
of repeats see "[.]"
of token text see "concatenation", "[quote]", "[unparse]"

application
of a rule/function 13Ð19, 21, 22, 24, 29, 30, 39
of the main rule/function 44
scope of see "scope of application"

argv see "TXLargs"
arithmetic

comparison 32
operation 31

argument of a rule/function see "parameter of a rule/function"
ASCII 4, 5, 12
assert 23, 52
[attr] 42, 51, 55
attribute 34, 42, 43, 51, 55
BackusÐNauer form see "BNF"
backtracking

in the grammar 1, 3, 7
in rules/functions 20, 22
limiting in the grammar 7

binding of a TXL variable 17, 18, 20Ð26, 37
blank see "[SP]", "spaces in input", "spacing of output"
BNF 1, 2
body

of a define 2
of a rule/function 20, 21, 23Ð25

bound variable see "binding of a TXL variable"
boundary, line see "line boundary"
[breakpoint] 34, 36
builtÐin

function 23, 31-34
formatting nonterminal 41, 42

C preprocessor directives see "ANSI C preprocessor directives"
calling a rule/function see "application of a rule/function"

57

Ðchar command line option 5, 12, 42
character-level input 5, 12, 42
character operations see "operations on strings", "operations on token text"
character set 4, 53
[charlit] 4, 6, 10, 11, 31-34, 49, 54
classes, of input items 3, 6, 10, 11
column, output 41
command line option 4, 5, 8-10, 12, 34, 41-43, 44, 46
[comment] 4, 6, 8, 9
commenting convention

in TXL 44, 49
in the target language 2, 8, 9, 40, 50

comments 4, 8, 9, 44, 49
Ðcomment command line option 4, 8, 9
communication between rules 25, 28, 29
comparison

numeric 32
string 32, 33
token text 32
general 32, 33, see also "deconstructor", "pattern"

compatibility
of list and repeat types 55, 56
of TXL versions 47
with Unix diff 44, 45

complex conditions 36
composition, of rules/functions 14
compound tokens 4, 8
compounds statement 8, 50
concatenation

of lists see "[,]"
of repeats see "[.]"
of strings 31, see also "[+]"
of token text 31, see also "[+]"

condition 20, 22, 23, 52
condition rule/function 22, 23, 35, 36, 38
conditional compilation 44-47
constraints

on lookahead 7
on pattern match see "condition", "deconstructor"

constructor, of a variable 17, 20, 23-25, 37, 38, 52
contains, a pattern see "deconstructor", "condition"
contextÐfree grammar 1
conventions

coding 2, 44-47
comment 8, 51
lexical 9, 10

dangerous, rules using [any] 38
[debug] 34
debugging aids 33-35, 43
[decimalnumber] 5
declaration, of a variable see "constructor", "deconstructor", "import", "export",

"pattern"
deconstructor, of a variable 20-22, 25-29, 37, 39, 43, 52

58

deep
deconstruct see "searching deconstructor"
parameter 25, 27

default
include file search path 44
input token types 3
input white space 4
output spacing 41
type of a deconstructor 21

define statement 2, 3, 6, 44, 50
#define 45, 46
delimiter, of input tokens 4, 9
deprecated features 47, 50, 51
directory, of include files 44
[div] 31
divide see "[/]", "[div]"
#elsif, #elif 45, 47
#else 45, 47
ellipsis

to extend defines 3
to extend token patterns 10

embedded subtree, matching 20
[empty] 5, 6, 15, 55
#end if, #endif 45, 47
equality comparison see "comparison"
error stream, standard 33, 34
escape character, in a token pattern 4, 11
[EX], exdent 41
execution

control, using built-in functions 34
of a TXL program 15

exitcode see "TXLexitcode"
exponent, in a numeric input token 4, 5, 11
export, of a variable 24Ð29, 48, 53
extension

of a define see "redefine"
of a token pattern 10, 49

external rule/function 31, 34, 44, 48, 52
failure

of an assertion 23
of a condition 22
of a deconstructor 20, 26

[fclose] 33
[fget] 33
file

inclusion see "include file"
input/output 33
input source see "TXLinput"
program source see "TXLprogram"

[floatnumber] 5
formal

syntax of TXL 48
parameter of a rule/function 16Ð20, 49, 50

59

formatting of output 41
[fput], [fputp] 33
function 13-15, 18, 23, 31, 34, 38, 44, 52

built-in see "built-in function"
external see "external rule/function"
polymorphic see "polymorphic rule/function"

generic rule/function see "polymorphic rule/function"
[get], [getp] 33
global variable 24-29
goal nonterminal 2, 44, see also "[program]"
grammar 1Ð9, 13, 38-42, 44, 49
greater than see "[>]"
[grep] 33
head of a sequence 21, 32
[hexnumber] 9, 10
[id] 4Ð6, 10, 11
Ðidchars command line option 4, 10
identifier 4, 6Ð11, 13, 16, 22, 31Ð35, 42, 46, 54, see also "[id]"
#if 45, 47
implementation

of TXL 19, 44
of opt, repeat, list and attr 55, 56

import, of a variable 24-29, 49, 53
[IN], indent 41
include statement 44, 49
[index] 31
input source file name see "TXLinput"
[integernumber] 5
interference, between subrules 29
internal

tree format 34, 37
nonterminal definitions 6, 55, 56

introduction, of a variable see "constructor", "deconstructor", "import", "export",
"pattern"

invocation of a rule/function see "application of a rule/function"
[key] 6-8, 49, 54
keys statement 4Ð8, 44, 49
keyword 2, 4Ð7, 10, 14, 19, 21, 23, 28, 30, 35, 44
language, input 2, 4, 6, 8, 9, 34
leaves, output of 33, 41
left recursion 1
length

of a list 32
of a string 31, see also "[#]"
of a sequence 32
of token text 31, see also "[#]"

[length] 32
less than see "[<]"
lexical conventions 9, 10
limiting

a rule to one pass 31
backtracking 7
scope of application 29

60

line boundary
in input 4, 5, 11, 12, see also "-char"
in output see "formatting of output", "[NL]"

link, communication see "communication between rules"
[list] 6, 17Ð19, 21, 32, 34, 41, 47, 49, 51, 55, 56
literal

terminal symbol see "terminal symbol"
string see "string literal"

[literal] 50, 53
local variable see "variable"
lookahead 7, see also "[see]", "[not]"
lower case 5, 9, 11
[lowerid] 5
[lowerupperid] 5
main

rule/function 15, 16, 26, 44
pattern 20, 22, 23
replacement 20, 22-24

match
rule see "condition rule"
of pattern see "pattern match"

markup 39, 40
[message] 34
messageÐpassing, between rules 25, 28, 29
metacharacter, in a token pattern 10, 11
modifier

nonterminal see "nonterminal modifier"
parameter see "each"

modulus see "[rem]"
multiply 31
newline 5, 11, 12, see also "line boundary"
[newline] 5, 12
[NL] 41
nonterminal type 2, 3, 5-13, 16-18, 20, 21, 23Ð25, 29, 36, 37, 39, 41-44, 47,

49, 55, 56
nonterminal modifier 6, 7, 42, 47, 55, see also "[opt]", "[repeat]", "[list]", "[attr]",

"[see]", '[not]"
notation, grammar 1, 2, 48
[not] 7
[number] 2Ð6, 9-11, 13Ð18, 21, 23, 24, 27Ð29, 31, 32, 34, 42, 49, 54
numeric

comparison 32
operation 31

oneÐpass rule 30, 31, 33
operations

arithmetic 31
input/output 33
on identifiers 31
on lists 32
on sequences 31, 32
on strings 31, 32, 33
on token text 31, 32, 33

61

operators see also "operations"
regular expression 10, 11

[opt] 6, 47, 55
option, command line see "command line option"
order

of alternatives 2, 3
of deconstructors, constructors and conditions 20
of input token pattern matching 9
of rule search 15
of statements 2, 44
of unparsing 41

output
debugging 33, 34
of a program 1, 13, 41, 43
operations 33, 34
formatting 8, 41, 42
raw 41, 42

override
of a define 3, see also "redefine"
of a token type 10, 50

overview of TXL paradigm 1
pair

of comment brackets 8
of corresponding elements, in each 19

parameter
deep 26, 27
of a rule/function 13, 16-21, 26, 27

parent rule/function 27-29
parsing

phase of TXL 1-3
of input 3, 8

parse tree 1, 7, 13, 15-18, 37, 41-44
[parse] 31
parts of a rule/function 20-25
pattern

of a token see "token pattern"
of a rule/function 13Ð18, 20-23, 25, 30, 35, 36-39, 53
refinement 20-23

phases of TXL 1
[pipe] 34
polymorphic rule/function 7, 36-38
#pragma 45, 46
predefined

nonterminal types 3-6, 10, 11
functions see "builtÐin functions"
variables 47

prefix see "lookahead"
preprocessor directives 44-47
prettyÐprinting output 41
printing a message 33, 34
[print] 34
[printattr] 34
program see "TXL program"

62

[program] 2, 16
program source file name see "TXLprogram"
punctuation 4, 8, see also "special character"
[put], [putp] 33
quoted terminal symbol 2, 6-8, 10, 18, 44, 47, 53
[quote] 33, see also "[unparse]"
Ðraw command line option 41, 42
[read] 33
redefine 3
refinement

pattern 20-23
replacement 20, 23, 24

regular expression 9, 10, 11
[rem] 31
remainder see "[rem]"
[reparse] 33
[repeat] 6, 31, 32, 47
replacement of a rule/function 7, 13-31, 34, 35, 37-40, 44, 49
rule 1, 7, 12, 13Ð29, 32, 33, 35-40, 44, 51
scope of application of a rule/function 13Ð16, 20, 23, 26, 27, 29-31, 35, 39
searching

deconstructor 21, 22, 26, 37
function 14, 39, see also "rule"

[see] 7, 48
[select] 32
semantics

of TXL 1
of an external rule/function 34
of function application 13
of global variables 24, 25
of oneÐpass rules 30, 31
of opt, repeat, list and attr 55, 56
of rule application 14, 15
of token patterns 10, 11

sequence see "[repeat]"
shell see "[system]"
skipping

deconstruct 21, 22, 52
rule/function 29, 30, 51

sorting 23, 28, 30
source file 10, 44
[SP] 41, 42
[space] 5, 12
spaces in input 4, 5, 8, 9
spacing of output 41, 42
special character 2, 4, 8, 11, 54
splice

of lists see "[,]"
of repeats see "[.]"
of strings see "concatenation"
of token text see "concatenation"

statements, of TXL 2-9, 13-14, 44-47, 49-52

63

string
operations see "operations on strings"
literal see "[stringlit]"

[stringlit] 4, 6, 10, 11, 26, 31Ð34, 47, 49, 54
structure, of a TXL program see "TXL program"
subrule 18, 19, 21, 24, 25, 27-29, 35
subsequence 23, 32, see also "[select]"
substitute, fast ground see "[$]"
substring 31, 33, see also "[:]"
subtract see "[-]"
subtree 14, 15, 17, 18, 21, 29, 30, 32, 37, 41
succeed,succeeds 7, 17, 22, 23, 33, 35-37
success

of a condition 22, 35
of a condition rule 35

syntax
of include files 44
of preprocessor directives 44-46
of a rule/function 13-18, 20Ð24, 29, 30, 34-36, 41
of token regular expression patterns 10, 11
of TXL 48-54

system interface see "[system]", "[pipe]"
[system] 34
[TAB] 41
tables 25, 26, 43
[tail] 32
target type of a rule/function 13, 38, 46
terminal symbol 2, 4Ð8, 17Ð18, 33, 38, 44, 48, 49
token 4, 5, 7Ð10, 31-33, 44, 49
token pattern 9-12
tokens statement 6, 8
[token] 6-8, 49
transformation

phase 1, 13
rule/function 1, 13-15, 35

tree see "parse tree"
tuning for speed 31
Turing style preprocessor directives 44-46
TXL

processor 1, 44
program 1, 15, 44-47, 49

TXLargs 47
TXLexitcode 48
TXLinput 48
TXLprogram 48
type see "nonterminal type"
#undefine, #undef 45, 46
universal type 7, 36
Unix 5, 44-46
Unix interface see "system interface"
[unparse] 33
unparsing of output 41
[unquote] 33

64

[upperid] 5
[upperlowerid] 5
userÐdefined rule/function see "external rule/function"
variable 16, 17, 19Ð27, 32, 43, 44
version compatibility 48
wellÐformed result 1, 13
[write] 33
[!]

backtracking limit 7
built-in function 31

[#] 31
[$] 33
[*] 31
[+] 31
[,] 32
[Ð] 31
[.] 31
[/] 31
[:] 31
[<=] 32
[<] 32
[=] 32
[>=] 32
[>] 32
[^] 32
[_] 31
[~=] 32

65

