
Parsing of Math Formulas and Chemical Diagrams using Graph-Based
Representation and Attention Models

by

Ayush Kumar Shah

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computing and Information Sciences

B. Thomas Golisano College of Computing and

Information Sciences

Rochester Institute of Technology

Rochester, New York

June 2025

Parsing of Math Formulas and Chemical Diagrams using Graph-Based
Representation and Attention Models

by

Ayush Kumar Shah

Committee Approval:

We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work

described in this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in

partial fulfillment of the requirements of the degree of Doctor of Philosophy in Computing and Information Sciences.

Dr. Richard Zanibbi Date
Dissertation Advisor

Dr. Qi Yu Date
Dissertation Committee Member

Dr. Weijie Zhao Date
Dissertation Committee Member

Dr. Masaki Nakagawa Date
Dissertation Committee Member

Dr. Dan Phillips Date
Dissertation Defense Chairperson

Certified by:

Dr. Pengcheng Shi Date
Ph.D. Program Director, Computing and Information Sciences

ii

iii

©2025 Ayush Kumar Shah
All rights reserved.

Parsing of Math Formulas and Chemical Diagrams using Graph-Based
Representation and Attention Models

by

Ayush Kumar Shah

Submitted to the
B. Thomas Golisano College of Computing and Information Sciences Ph.D. Program in

Computing and Information Sciences
in partial fulfillment of the requirements for the

Doctor of Philosophy Degree
at the Rochester Institute of Technology

Abstract

Mathematical formulas and chemical diagrams appear frequently in scientific documents but are
often embedded as visual content, either rasterized or vector-based images, limiting their accessibil-
ity and automated analysis. This thesis aims to bridge this gap by presenting a graph-based visual
parsing framework that recognizes and parses these notations from both vector and raster image
inputs in digital documents.

For mathematical formulas in born-digital PDFs, we construct Symbol Layout Trees (SLTs) using
a graph defined over vector-based primitives, capturing spatial relationships, avoiding relying on
OCR. For born-digital chemical diagrams, we introduce a Minimum Spanning Tree (MST)-based
technique that extracts molecular structure graphs by interpreting vector graphics using domain-
specific spatial and symbolic constraints.

To parse rasterized images, we develop a multi-task, segmentation-aware neural network that oper-
ates on over-segmented visual primitives extracted via line segment detection and watershed-based
segmentation. We create annotated training data by aligning vector-based ground truth with de-
tected visual primitives in raster images. The model jointly performs symbol classification, segmen-
tation, and relationship classification in a multi-task learning framework, utilizing discrete attention
mechanisms to dynamically modify input features over iterative passes. We enhance robustness us-
ing synthetic structural and visual noise applied at the primitive level to simulate degradations in
real document images and mitigate class imbalance through stratified sampling and loss reweighting
strategies, including weighted cross-entropy, class-balanced and focal losses. We introduce a two-
stage graph attention model to support cross-task learning, where class distributions from the first
stage are used to inform refinement in the second.

iv

v

Evaluation metrics compare nodes and edges in the predicted graphs to ground truth using adja-
cency matrices and Hamming distances to quantify structural and labeling errors. The results and
analysis across mathematical and chemical datasets show that (1) input line-of-sight (LOS) graph
representation improves expression coverage (the upper bound on the number of expressions that
can be correctly parsed) and reduce number of edge hypotheses for math, while 6 nearest-neighbor
(6NN) graphs are better suited for chemistry due to their local structure, (2) attention mechanisms
and cross task interaction enhance structural prediction, (3) primitive-level noise augmentation and
loss rebalancing and aggregation improve generalization across input conditions. Together, these
findings support the development of a unified and extensible framework for visual parsing of struc-
tured scientific notations across domains.

Acknowledgments

I am deeply grateful to my advisor, Dr. Richard Zanibbi, for his invaluable guidance, encouragement,
and support throughout my research journey. His expertise and insightful feedback have greatly
shaped my work and inspired me to achieve new heights. I am also profoundly thankful to Dr.
Scott Denmark and his student, Blake Ocampo for their collaboration, insightful discussions, and
contributions that helped enrich my work on chemical diagram parsing.

I would like to extend my heartfelt thanks to the members of the Document and Pattern Recognition
Lab (DPRL) at Rochester Institute of Technology (RIT) for their invaluable feedback, collabora-
tive spirit, and stimulating discussions. Special thanks to Matt Langsenkamp, Abhisek Dey, Bryan
Amador, Ming Creekmore, Brandon Kirincich, and Patrick Philippy for their support, and contri-
butions during this research journey.

I am also deeply grateful to Matthew Berry, Yashdeep Thorat, Sara Lambert, and Kate Arneson,
along with other members of the National Center for Supercomputing Applications (NCSA), for
their assistance, technical support, user feedbacks, and insightful contributions to the ChemScraper
system.

My sincere gratitude goes to my dissertation committee members: Dr. Masaki Nakagawa, Dr. Qi
Yu, Dr. Weijie Zhao, for their invaluable feedback, encouragement, and constructive suggestions,
which have been instrumental in shaping this dissertation proposal. I would also like to thank the
defense chair, Dr. Dan Phillips for reviewing the work.

This work was made possible through the support of the Alfred P. Sloan Foundation under Grant No.
G-2017-9827 and the National Science Foundation (USA) under Grant Nos. IIS-1717997 (MathSeer
project) and 2019897 (Molecule Maker Lab Institute project). I am deeply appreciative of this
support, which has facilitated my research and collaborations.

Finally, I would like to express my gratitude to all colleagues, mentors, and collaborators who have,
directly or indirectly, supported my research endeavors.

vi

Co-Authorship

Chapter 3 includes work on the original Symbol Scraper, which was initially coded and written
by Alexander Keller, Ritvik Joshi, Jessica Diehl, and Dr. Richard Zanibbi. Additionally, the first
version of the born-digital parser for chemical diagrams, also discussed in Chapter 3, was coded
and written by Ming Creekmore and Abhisek Dey. The sections on visual primitive extraction and
evaluation metrics in Chapter 2 were coded and written in collaboration with Bryan Amador.

The math formula parsers presented in Chapter 3 and Chapter 4 previously appeared as papers at
the International Conference on Document Analysis and Recognition (ICDAR) in September 2021
and August 2023, respectively, coauthored by Abhisek Dey and Dr. Richard Zanibbi. The chemical
diagram parsers discussed in Chapter 3 and Chapter 4 collectively appeared in the International
Journal of Document Analysis and Recognition (Volume 27, September 2024), coauthored by Bryan
Amador, Abhisek Dey, Ming Creekmore, Blake Ocampo, Dr. Scott Denmark and Dr. Richard
Zanibbi.

vii

For my parents, Ram Adhar Sah and Pratibha Shah.

viii

Contents

1 Introduction 1

1.1 Motivation and Applications . 2

1.2 Parsing Mathematical Formulas and Chemical Diagrams 4

1.3 Research Questions and Thesis Outline . 7

1.4 Thesis Statement . 9

1.5 Contributions . 9

1.6 Limitations . 11

2 Background 13

2.1 Data Representations and Structures . 14

2.1.1 Input Sources and Primitives . 14

2.1.2 Graph Representations . 19

2.1.3 Output Representations . 27

2.2 Parsing Models . 29

2.2.1 Math formula parsing . 29

2.2.2 Chemical diagram parsing . 36

ix

CONTENTS x

2.3 Techniques Relevant to Parsing Models . 40

2.3.1 Multi-task Learning and Interaction . 41

2.3.2 Local Constraints in Graph-Based Methods 42

2.3.3 Use of Edge Features in Graph Parsing . 43

2.3.4 Graph Attention Methods . 44

2.4 Evaluation Metrics . 47

2.4.1 Graph-based Metrics (LgEval) . 47

2.4.2 String-based Metrics . 50

2.5 Summary . 52

3 Born-digital Parsing from PDF symbols 54

3.1 SymbolScraper: Symbol Extraction from PDF . 59

3.2 MST-based Math Formula Parsing . 60

3.2.1 Identifying Extracted Symbols in Formula Regions 60

3.2.2 Parsing Formula Structure with SymbolScraper and QD-GGA 60

3.2.3 Building the Symbol Layout Tree (SLT) . 61

3.3 MST-based Molecular Digram Parsing . 62

3.3.1 Minimum Spanning Tree (MST) . 64

3.3.2 MST → Visual Structure Graph . 65

3.3.3 Visual → Molecular Structure . 67

3.4 Generating Training Data for Visual Parser . 68

3.4.1 Visual Primitives (Lines) . 69

CONTENTS xi

3.4.2 Visual Graph Generation . 69

3.5 Evaluation and Results . 71

3.5.1 Evaluation of Math Formula Recognition . 71

3.5.2 Evaluation of Chemical Diagram Recognition 74

3.6 Summary . 82

4 Visual Parsing from Raster Images 84

4.1 The Parsing Model – LGAP and LCGP . 85

4.1.1 Inputs . 88

4.1.2 Features . 89

4.1.3 Multi-Task CNN for Classifying Primitives and Primitive Pairs 92

4.1.4 Parsing: Transforming Input Graphs into Output Graphs 97

4.2 Evaluation and Results . 100

4.2.1 Evaluation of Math Formula Recognition (LGAP) 100

4.2.2 Evaluation of Chemical Diagram Recognition (LCGP) 105

4.3 Summary . 107

5 Input Graph Representations and Context 110

5.1 Input Graph Representations (RQ2) . 111

5.1.1 Types of Graph Representations . 111

5.1.2 Comparison and Analysis . 113

5.1.3 Edge Type for Atom Number Annotations in Chemical Diagrams 117

5.2 Graph Attention and Task Interaction (RQ3) . 117

CONTENTS xii

5.2.1 Common Feature Extraction Pipeline . 118

5.2.2 Visual Feature Improvements (RQ1) . 119

5.2.3 Edge-Aware Graph Attention with Multi-Hop Message Passing 125

5.2.4 Two-Stage Graph Attention with Cross-Task Interaction 131

5.3 Evaluation and Results . 134

5.3.1 Datasets and Evaluation Metrics . 134

5.3.2 Common Feature Extraction Pipeline . 137

5.3.3 Visual Feature Improvements . 138

5.3.4 Split-Attention (ResNeSt) Backbone . 139

5.3.5 RQ3: Graph Attention and Task Interaction 140

5.4 Summary . 148

6 Visual Noise and Loss Functions 150

6.1 Visual Noise Augmentation . 151

6.1.1 Structural Noise . 152

6.1.2 Visual Noise for Primitive and Context Windows 154

6.2 Class Imbalance and Sampling Strategies . 157

6.2.1 Imbalance in Class Distributions . 157

6.2.2 Stratified Train-Validation Splits . 160

6.2.3 Weighted random sampling . 162

6.3 Loss functions . 163

6.3.1 Cross-Entropy Loss . 164

CONTENTS xiii

6.3.2 Weighted Cross-Entropy Loss . 164

6.3.3 Class-Balanced Loss . 165

6.3.4 Focal Loss . 166

6.4 Loss Aggregation . 167

6.5 Evaluation and Results . 169

6.5.1 Noise Augmentation . 170

6.5.2 Class Imbalance . 172

6.5.3 Loss Aggregation . 177

6.5.4 Benchmarks . 180

6.6 Summary . 187

7 Conclusion 189

7.1 Visual Primitive Features (RQ1) . 190

7.2 Input Graph Representations (RQ2) . 191

7.3 Graph Context and Task Interaction (RQ3) . 191

7.4 Visual Noise and Loss Functions (RQ4) . 192

7.5 Other Future Work . 194

8 List of Publications 196

Appendices 215

A Feature Resolution and Pooling Configuration Search 216

A.1 Effect of Input Feature Size . 218

CONTENTS xiv

A.2 Effect of Spatial Pyramidal Pooling Regions . 219

List of Figures

1.1 Parsing the math formula 2
zi,y

from three input sources: (left) a vector-based PDF
rendering, (middle) a rasterized image version of the same formula (shown with over-
laid grids to emphasize its pixel-based structure), and (right) a handwritten version
represented using pen stroke data. The complete graph shows the raster image input,
where each node represents a connected component (CC) of the formula. 5

1.2 Parsing chemical diagram (Nitrobenzene) from PDF image and raster image sources.
Manual grids are added to the raster image to highlight its pixel-based nature, visually
distinguishing it from the vectorized PDF representation. The || symbol in output
represents merged lines indicating double bonds. 6

2.1 Different types of primitives in math and chemical diagrams. (a) PDF primitives
for math formula 2

zi,y
. Note that the symbol ‘i’ appears as a single PDF primitive.

(b) and (c) are visual primitives for the same formula from handwritten strokes and
raster image (CCs) respectively. Note that the symbol ‘i’ is segmented into two visual
primitives (CCs/strokes) (d) and (e) correspond to the PDF and visual primitive for
the chemical diagram of Nitrobenzene. Note that the character ‘N’ is split into 3
lines in (e) but appears as a single PDF primitive. 16

2.2 Stages of visual primitives extraction from a raster image of a chemical diagram. (a)
Input raster image, (b) simplified polygons derived from CC contours, (c) skeletal
lines extracted as medial axes of parallel line pairs, and (d) final line primitives after
segmentation and refinement. Note that ‘2’ and ‘O’ are unsegmented in (d) because
their corresponding skeletal lines are smaller than global average (c). 18

xv

LIST OF FIGURES xvi

2.3 Illustration of different types of graph representations for the mathematical formula
2

zi,y
. (a) The Primitive Level Graph represents the low-level primitives (e.g., con-

nected components or strokes) as nodes, labeled with their unique identifiers (shown
in blue), and spatial relationships between these primitives are depicted as directed
edges. (b) The Symbol Layout Tree (SLT) abstracts symbols as nodes formed
by grouping primitives (e.g., the ‘i’ comprises strokes/CCs {3,4}), with spatial re-
lationships between symbols shown as directed edges. The numeric identifiers of
strokes/CCs (a) and their corresponding grouped symbols (b) are consistently shown
in blue. {3,4} is shown in one node in (b), but two nodes in (a). (c) The Operator
Tree (OPT) represents the semantic structure, with operators (e.g., ‘DIVIDE’ for
the fraction) and operands (e.g., ‘two’, ‘z’, ‘i’, and ‘y’) as nodes, and directed edges
indicating hierarchical relationships. The ‘GROUP’ node in the OPT is treated as a
grouping operator, connecting its operands ‘zi’ and ‘y’. 20

2.4 Different types of graph representations (visual syntax graph and representation
graph) for the chemical diagram Nitrobenzene. (a) Visual Graph showing lines and
characters as nodes (in green), and connections/merges as edges (in red). (b) Tok-
enized Visual Graph with merged nodes (bonds and named groups). (c) Molecular
Graph. Blue nodes show the primitives of N merged into a character (a) and dou-
ble bonds and atom/group names in (b,c). In (c) orange nodes are ‘hidden’ carbon
atoms, and single/double bonds are converted from nodes to edges 21

2.5 Label Graph File examples for math and chemical diagrams. (b) A Lg file for (a)
input formula image (2

zi,y
). (d) A Lg file for (c) input chemical diagram image

(Nitrobenzene). 26

2.6 Output representations for math formula and chemical diagrams. (a) Presentation
MathML and (b) LATEX representations translated from SLT for 2

zi,y
. (c) CDXML

output excerpt and (d) SMILES representation for Nitrobenzene. 28

2.7 An example of a primitive-level graph representation highlighting errors in the pre-
dicted graph (right) compared to the ground truth (left) for a mathematical expres-
sion. The predicted graph shows incorrect or missing relationships (red edges) and
mislabeled nodes (red nodes). Labels in brackets represent the ground truth, while
underscores indicate missing elements or undefined labels. 49

LIST OF FIGURES xvii

3.1 Detection of symbols and expressions. The PDF page shown in (a) contains encoded
symbols shown in (b). (c) shows formula regions identified in the rendered page
image, and (d) shows symbols located in each formula region. 55

3.2 Parsing Nitrobenzene (C6H5NO2) from a PDF image (a). (b) Minimum Span-
ning Tree (MST) over lines & characters. (c) Visual Graph with additional
edges (dashed lines) (d) Tokenized Visual Graph with merged nodes (bonds and
named groups). (e) Molecular Graph. Blue nodes show double bonds and atom-
/group names in (d) and (e). In (e) orange nodes are ‘hidden’ carbon atoms, and
single/double bonds are converted from nodes to edges. 56

3.3 ChemScraper Born-Digital Pipeline. Molecules are detected in PNG page images,
but symbols are extracted from PDF instructions. Page-Region-Object tables store
bounding boxes and the graphics they contain. Molecules are recognized in three
stages, producing CDXML containing the page location, appearance, and chemical
structure for each. CDXML can then be converted to chemical structure file formats
(e.g., SMILES) or rendered as images (e.g., SVG). 57

3.4 Parsing a formula image. Formula regions are rendered and have characters extracted
when they are provided in the PDF. We produce a Symbol Layout Tree as output,
which can be translated to LATEX and Presentation MathML. 61

3.5 Molecule Parsing from PDF Symbols. Symbol information is transformed into an
MST (Figure 3.2(b)), a visual structure graph (Figure 3.2(c)), a tokenized visual
graph (Figure 3.2(c), and finally a molecular structure graph (Figure 3.2(d)) 63

3.6 Ground Truth Visual Graph Generated for Figure 3.2(c). (a) Label graph file with
Objects (O), Relationships (R) and Visual primitives with contour points (#contours).
(b) Visualization showing primitive identifiers, node labels, and edges (all edges la-
beled as CONNECTED. Objects for single bond contain one line primitive each, while
the character N contains three line primitives. A second file for the PNG is created
using 13 PDF primitives (vs. 15 visual line primitives shown here). 70

3.7 HTML visualization for formulas extracted from a sample PDF page with detected
formula locations (left), and a table (right) showing extracted formulas and recogni-
tion results as rendered MathML and SLT graphs. 72

LIST OF FIGURES xviii

3.8 Error analysis (errors shown in red). (a) Main error table organized by decreasing
frequency of errors. (b) Specific instances where ‘l’ is misclassified as ‘one,’ seen after
clicking on the ‘10 errors’ link in the main table. 73

3.9 Rendering a molecule with different parameters (Indigo toolkit). Each of (a)-(d)
indicate the label mode, whether implicit hydrogens are shown, and the relative
thickness. Parameters in (d) are the defaults. The born-digital parser recognizes all
four versions correctly. 78

3.10 Sensitivity of Born-Digital Parser to Label Rendering Parameter. SMILES-based
evaluation is used. Other parameters have default values, with render-implicit-hydrogens-visible

as True and render-relative-thickness to 1. 78

3.11 Sensitivity of Born-Digital Parser to Thickness Rendering Parameter. Higher thick-
ness reduces accuracy. Other parameters: render-implicit-hydrogens-visible is
True, render-label-mode is terminal-hetero. 79

3.12 Sensitivty of Born-Digital Parser to Showing Implicit Hydrogens. Other parameters:
render-label-mode is terminal-hetero and render-relative-thickness is 1. 79

3.13 Relationship Confusion Histograms for Renderings in Table 3.4 (truncated at right
for space). Hyperlinks show molecules with specific errors, check boxes allow selecting
molecules with errors for export. Default rendering: the top 2 errors are missing
single and triple bonds. We can observe that in both cases, at times a missing
(ABSENT) hidden carbon is the cause. Hardest rendering: missing single bonds
are again the most frequent error, caused half of the time by a missing carbon. The
second most-frequent error is missing hashed wedges between carbons, where no bond
is detected, or because of misclassification of hashed wedges as solid wedges. 81

LIST OF FIGURES xix

4.1 Parsing a Raster Image of Nitrobenzene (C6H5NO2). Line contours are extracted
as primitives, over which a pruned LOS graph is built. At top-right, four node
and four edge queries are shown, at bottom-left their classification tensors (rows:
queries, columns: classes). (Q)uery and (C)ontext features enter an SE-ResNext
block. Two-layer Multi-Layer Perceptrons (MLPs) estimate probabilities for symbol,
segmentation (MERGE), and relationship (CONNECTED) probabilities. Merges
are applied (e.g., for ‘N’), with symbol/relationship probabilities averaged across
primitives. The model runs recurrently, updating queries and their contexts until no
new merges are found (e.g., two passes for this example). 87

4.2 Modifed puncutation (PUNC) ground truth representation. The old PUNC edge is
shown using red dashed arrows, and its corresponding new edge is shown with solid
orange arrows. The original PUNC edge between nodes ‘z’ and ‘COMMA’ is missing
in the LOS graph, as can be seen in Figure 2.3. 90

4.3 Binary attention masks in LGAP. The input primitive query mask (represented here
by the base of the letter ‘i’) and its corresponding LOS masks are used to generate the
attention masks by performing element-wise multiplication with the global feature
map. The two attention masks are concatenated to get the node feature vector that
is utilized for symbol classification. Note that the same process is applied to the
primitive pair binary masks and LOS mask to generate the primitive pair feature
vector for classifying directed edges. 91

4.4 LGAP formula parsing example. A complete graph over input primitives (here, CCs)
is pruned, sub-images corresponding to CCs and CC LOS edges are given symbol,
merge/split, and spatial relationship class distributions. Based on merge/split prob-
abilities primitives are merged into symbols (here, for the ‘i’), and finally an SLT is
produced from remaining spatial relationship edge by extracting a directed MST
(arrows omitted for legibility). Symbol and relationship class probabilities are aver-
aged when merging primitives into symbols. 92

4.5 Parsing Nitrobenzene (C6H5NO2) from a raster image (a). (b) Visual primitives.
The N is split into 3 lines. (c) Visual Graph extracted from visual parser. (d)
Tokenized Visual Graph with merged nodes (bonds and named groups). (e)
Molecular Graph. Blue nodes show the primitives of N merged into a character
(c) and double bonds and atom/group names in (d) and (e). In (e) orange nodes are
‘hidden’ carbon atoms, and single/double bonds are converted from nodes to edges. . 97

LIST OF FIGURES xx

5.1 Comparison of input graph representations on the InftyMCDB-2 training set (a-b)
for math formulas and Pubchem-5k training set (c-d) for chemical diagrams. (a),
(c): Number of input (candidate) edges generated by each graph representation.
Complete graphs produce the highest number of edges, and 2NN graphs produce the
lowest. (b), (d): Evaluation of each graph representation using edge recall, precision,
F1, and expression coverage rate. 115

5.2 Step-by-step illustration of the LSD-based visual primitive extraction pipeline in
Algorithm 1. (a) Input binary image I with 5 CCs, (b) Skeletonization produces
medial axis lines S ← Skeletonize(I), (c) LSD is applied on the skeleton: Lraw ←
LSD(S) (d) CC analysis generates watershed markers M , (e) Watershed algorithm is
applied using these markers on the input grayscale image: W ←Watershed(Igray,M),
(f) Regions corresponding to long lines (identified via geometric thresholding) are
removed from W , (g) Over-segmented short fragments are merged using a second
CC analysis to get W ′, (h) Long lines are reintroduced as distinct labeled regions to
obtain the final set of 6 primitives, P = W ′ ∪ Llong, where different colors indicate
different primitive regions. 120

5.3 Examples of query (left) and context (right) features (centered around query) ren-
dered at different input resolutions. At lower resolutions, (a) 28× 28), primitives in
context features become difficult to identify visually. As resolution increases up to
(d) 64× 64), the primitives become more distinct. 122

5.4 EGATv2 mechanism for nodes. (a) Edge-aware attention mechanism: attention
scores α

(t)
ij are computed from a concatenation of node and edge query features

(q
(t−1)
i ,q

(t−1)
j ,q

(t−1)
ij), projected through a learnable matrix W and passed through

a LeakyReLU nonlinearity. Softmax normalization is performed over the two nearest
neighbors (2NN) of each node: nodes i and j and the edge ij. (b) Multi-hop node fea-
ture update for node 1 (‘z’): aggregates attention-weighted messages from neighbors
(top row): node 2 (base of ‘i’) and node 3 (dot of ‘i’), including itself (node 1),
and the two corresponding edges (bottom row): z→ base of ‘i’ (12) and z→ dot of
‘i’ (13), and itself (11) update its representation based on its attention score. After
aggregation, aggregated node and edge query features are combined with original
query and context features via concatenation to form the updated node embedding
q
(t)
1 for node 1 (‘z’). 127

LIST OF FIGURES xxi

5.5 Node-level error analysis comparison between two models on the InftyMCDB-2 test
set in Table 5.9: (a) baseline model, and (b) the best performing EGATv2 (2-stage,
2-hop) model (truncated at right for space). Each error table is organized by decreas-
ing frequency of object-level node classification errors, with associated primitive-level
confusions visualized to the right of each object. Red circles and lines indicate mis-
classifications, blue circles denote the correct class, and dotted lines illustrate merge
edges between primitives belonging to the same symbol. Hyperlinked error counts
allow inspection of specific formulas, and checkboxes enable selection for export. (a)
The baseline model is dominated by errors involving minus, i, and RightParenthesis

symbols, and (b) the EGATv2 model’s top three errors are classifying minus, equal,
and dot, but with lower error frequencies compared to the baseline. 145

5.6 Edge-level error analysis comparing the (a) baseline model with the (b) EGATv2
(2-stage, 2-hop) model on the InftyMCDB-2 test set (truncated at right for space)
in Table 5.9. In both models, the top errors involve propagated symbol classifica-
tion errors, particularly misclassifications of minus and equal symbols, which result
in incorrect relationship detections. However, EGATv2 shows a substantially lower
frequency of such propagated misclassification errors. 146

5.7 Node-level error analysis comparison between two models on the USPTO test set:
(a) baseline model, and (b) the best performing EGATv2 (2-stage, 2-hop) model
(truncated at right for space) in Table 5.10. Single line and ‘4’ are the most
frequent sources of error in both models; however, EGATv2 reduces Single line
errors by nearly 7 times and ‘4’ errors by almost half. The third most frequent error
is ‘1’ in the baseline and b in EGATv2. 147

5.8 Edge-level error analysis comparing the (a) baseline model and the (b) EGATv2
(2-stage, 2-hop) model on the USPTO test set (truncated at right for space) in
Table 5.10. In both models, the most frequent edge errors involve missed connections
between two Single lines as well as Single line with other atoms such as H and
N. EGATv2 substantially reduces the frequency of these errors, indicating improved
contextual understanding of bond relationships in molecular structures. 148

LIST OF FIGURES xxii

6.1 Illustration of structural noise applied to a primitive as described in Algorithm 2.
(a) Original primitive (b) Random split point (in blue) selected (c) Random split
direction (in red) determined (d) Primitive split along the line into two primitives
(e) Resulting primitive features after applying the split, followed by rescaling and
centering of contours . 154

6.2 Visual noise applied to a primitive query window. (a) Original primitive query win-
dow (b) Downscaling reduces resolution to simulate low-quality scans (c) Gaussian
blur simulates defocus and smudging (d) Salt-and-pepper noise introduces random
pixel corruption (e) Combination of all three transformations (f) Final binarized out-
put using Otsu’s thresholding . 155

6.3 Class distributions in the chemical dataset (PubChem-5k), across symbol, segmenta-
tion, and relationship tasks: (a) symbol classes showing heavy skew; (b) segmentation
labels dominated by NoMerge; (c) relationship edge labels dominated by NoRelation. 158

6.4 Class distribution in the math dataset (InftyMCDB-2), across symbol, segmentation,
and relationship tasks: (a) symbol classes showing high imbalance; (b) segmentation
labels dominated by NoMerge; (c) relationship edge labels dominated by NoRelation. 159

6.5 Node-level error analysis comparing two models (see Table 6.5) on the InftyMCDB-2
test set: (a) trained with standard cross-entropy (CE) loss, and (b) trained with Focal
loss, γ = 0.5 (truncated at right for space). The Focal loss variant shows reduced
frequency of common misclassification errors, particularly for similar symbols such
as minus and equal . 175

6.6 Edge-level error analysis comparing two models (see Table 6.5) on the InftyMCDB-2
test set: (a) trained with standard cross-entropy (CE) loss, and (b) trained with
Focal loss, γ = 0.5. The Focal loss variant reduces the frequency of edge errors linked
to propagated symbol misclassifications, such as confusion between minus and equal 176

6.7 Node-level error analysis comparison between two models on the USPTO test set:
(a) trained with standard cross-entropy (CE) loss, and (b) trained with Focal loss,
γ = 0.5 (see Table 6.6). Single line and ‘4’ are the most frequent sources of error
in both models; however, the Focal loss model reduces the errors slightly. 177

LIST OF FIGURES xxiii

6.8 Edge-level error analysis comparing models trained with (a) standard cross-entropy
(CE) loss and (b) Focal loss, γ = 0.5 on the USPTO test set (truncated at right for
space). In both models (see Table6.6), the most frequent edge errors involve missed
connections between pairs of Single lines, as well as between Single lines and atom
primitives such as H and N. The model trained with Focal loss reduces the frequency
of such errors across the top 2 cases. 178

List of Tables

3.1 Parameters for PDF Symbol Parsing Stages . 62

3.2 Grid Search Parameters. Values tested are shown, with default values in bold. 76

3.3 Molecular Structure Recognition Benchmarks. Percentages of generated SMILES
matching ground truth are shown. For USPTO both PNG and PDF images are
rendered using Indigo, but rendered SMILES PDFs may differ from scanned PNGs
for CLEF and UoB (indicated by italics). 76

3.4 Born-Digital Parser Label Graph Metrics for Different Rendering Parameters (5719
molecules). Shown are F1 measures for symbol labels, correct labels, and complete
graphs. 78

4.1 Effect of modifying PUNC relationship representation for InftyMCCDB-2. F1 and
expression rate metrics are defined in Section 4.2.1 102

4.2 Effect of LGAP Spatial Pyramidal Pooling (SPP) and 1D context module. Feature
vector sizes given as (node-size, edge-size). Modified PUNC representation used . . . 102

4.3 Effect of Adding LOS Neighborhood Masks to LGAP SPP-Avg Model. Original
ground truth used (without PUNC modification) . 103

4.4 Benchmarking MST-based Parsing Models on InftyMCCDB-2 104

5.1 Model parameter counts for visual backbone encoders. 125

5.2 Computing environments used for experiments. 136

xxiv

LIST OF TABLES xxv

5.3 Baseline configuration for math and chemistry experiments. 136

5.4 Training and inference performance metrics for InftyMCDB-2 (math) and Pubchem-
5k (chemistry) datasets on Server 1 using the baseline model configuration defined
in Table 5.3. 137

5.5 Effect of visual input primitives on parsing performance for mathematical formulas
(InftyMCCDB-2 test dataset). 138

5.6 Performance comparison between SE-ResNeXt and ResNeSt backbones on the InftyMCDB-
2 test set. Both models use contour-based primitive inputs and 31-region SPP. . . . 140

5.7 Performance comparison on the USPTO chemical test set across different visual fea-
ture improvements. Models are evaluated using F1 scores for symbol and relationship
detection and classification, expression-level rates (%) for structure and structure +
class, and the percentage of exact SMILES string matches converted from the pre-
dicted visual graphs. 140

5.8 Model parameter comparison of EGATv2 variants with baseline 142

5.9 Performance of EGATv2 variants by stage and hop count across tasks on the InftyMCDB-
2 dataset (6,830 formulas). We report F1% scores for symbol detection and classi-
fication, relationship detection and classification, and expression-level structure and
classification rates. 142

5.10 Performance of EGATv2 variants by stage and hop count across tasks on the USPTO
test set. We report F1% scores for symbol and relationship detection and classifi-
cation, expression-level structure and classification rates, and percentage of exact
SMILES string matches. 143

6.1 Summary of Loss Function Variants, Formulations, and Parameter Settings 164

6.2 Baseline configuration showing control variables for math and chemistry experiments. 170

6.3 Impact of noise-augmented training on parsing performance under different test con-
ditions on the InftyMCDB-2 dataset (6,830 formulas). F1-scores are reported for
symbols and relationships, and file-level structure and expression (structure + class)
accuracy rates are reported. 171

LIST OF TABLES xxvi

6.4 Impact of noise-augmented training on parsing performance under different test con-
ditions on the USPTO test set. F1-scores are reported for symbols and relation-
ships, expression-level structure and classification rates, and the percentage of exact
SMILES string matches. 171

6.5 Comparison of different loss functions on parsing performance for the InftyMCDB-2
test data. F1-scores are reported for symbol and relationship prediction, and file-level
structure and structure+class accuracy for expressions. 173

6.6 Comparison of different loss functions on parsing performance for the USPTO test
set. F1-scores are reported for symbol and relationship prediction, expression-level
structure and classification accuracy, and exact SMILES match percentage. 173

6.7 Evaluation of loss aggregation strategies—summation (Sum) and complemented har-
monic mean (CHM)—under different loss function conditions on the InftyMCDB-2
test dataset. F1-scores are reported for symbol and relationship detection and clas-
sification, and expression-level structure and structure+class accuracy. 178

6.8 Evaluation of loss aggregation strategies—summation and complemented harmonic
mean (CHM)—on the USPTO test dataset under different loss function conditions.
F1-scores are reported for symbol and relationship detection and classification, expression-
level structure and structure+class accuracy, and exact SMILES match. The class
weights w used for α-balanced focal loss are defined in Equation 6.2. 179

6.9 Benchmark results on the CROHME 2019 test set. We report expression struc-
ture+class rate (ExpRate), which reflects correct structure as well as symbol and
relation classes. The columns ≤ 1 and ≤ 2 report expression-level accuracy allowing
at most 1 and 2 symbol or relation errors, respectively. The final column (Structure)
measures structure-only recognition accuracy, irrespective of symbol and relation la-
bels. 184

6.10 Benchmark results on the Im2LaTeX-100K dataset. We report edit distance accuracy
(Edit %), BLEU-4 score, image-level exact match (Image Match), and whitespace-
insensitive match (Image Match -ws). Data efficiency is measured as the number of
training samples required per 1% absolute BLEU-4 score (lower is better). 185

LIST OF TABLES xxvii

6.11 Molecular Diagram Recognition Benchmarks. Percentages of predicted SMILES
matching ground truth (Exact SMILES Match %) are shown. For USPTO, PNG
images are rendered using Indigo. The final column reports data efficiency as the
number of training molecules (in thousands, K) required to achieve 1% absolute
SMILES match accuracy (Lower is better). 186

8.1 The 5 published papers during my Ph.D. 196

A.1 Spatial pyramidal pooling configurations used in grid search. 218

A.2 Effect of input feature size on math and chemical subset performance. 218

A.3 Effect of SPP pooling region configurations on parsing performance. 219

Chapter 1

Introduction

Parsing is the process of analyzing and extracting meaningful information from data. It plays an im-
portant role across a wide range of domains including natural language processing, computer vision,
speech recognition, and data mining. It enables computers to interpret structured and unstructured
data, transforming complex inputs into meaningful information. Document parsing, a subset of this
broader field, focuses on extracting and interpreting content from structured documents such as
books, scientific articles, web pages, and technical manuals. Document parsing has become a vital
tool for making information accessible and searchable, enhancing digital libraries, automating data
extraction workflows, and enabling intelligent retrieval of knowledge across various domains.

Among the most challenging tasks in document parsing is the recognition and interpretation of
mathematical formulas and chemical diagrams. These notations are prevalent in scientific literature,
technical reports, and patents, serving as a rich source of domain-specific knowledge. However,
despite their ubiquity and significance, mathematical and chemical notations are typically embedded
in documents as images, vector graphics, or other non-machine-readable formats. Hence, most
retrieval systems only accept text queries, and cannot handle structures like mathematical formulas
or chemical diagrams. This lack of accessibility creates a barrier to automatic indexing, retrieval,
and analysis of scientific and technical knowledge. Consequently, there is a pressing need for effective
recognition and interpretation methods for these diagrams to enable their integration into computer-
readable forms. This would facilitate easy access, searchability, and interactivity across various
platforms, including digital libraries, educational technologies, chemical informatics, and more. To
aid in the development of search engines that can process queries containing mathematical notation
[5, 34, 74, 90, 153, 158] or chemical diagrams, parsing them is needed for indexing formulas and

1

CHAPTER 1. INTRODUCTION 2

diagrams in documents, and to support handwritten input of formulas in queries [73,81,109,140].

1.1 Motivation and Applications

The motivation for this research stems from the role that mathematical and chemical diagrams
play in scientific communication and the challenges associated with their effective recognition and
interpretation. Mathematical formulas encode complex expressions, equations, and relationships
that are central to fields such as mathematics, physics, engineering, and computer science. Similarly,
chemical diagrams capture detailed molecular structures, reaction mechanisms, and chemical bonds,
serving as the cornerstone of disciplines such as chemistry, pharmacology, and materials science.
These graphical elements hold valuable information essential for research, education, and industry
applications.

The scientific literature holds vast amounts of useful chemical and mathematical information, but
much of it remains locked within non-machine-readable formats. This makes it challenging to re-
trieve, analyze, and utilize such information effectively. Current manual processes for extracting
and analyzing chemical data or mathematical expressions are labor-intensive and error-prone. Au-
tomating these tasks through advanced parsing techniques can save significant time and labor costs
while helping in research and innovation.

There is a growing interest in developing techniques to extract information from graphics within
documents because not all content can be effectively retrieved using text alone. Effective recognition
and parsing of mathematical and chemical diagrams have broad implications across multiple domains
including:

• Enhancement of Chemical Informatics: Automating the extraction and recognition of
molecular structures, reaction data, and related content from chemical diagrams accelerates
chemical research and synthesis processes. This has implications for drug discovery, material
design, and the broader field of chemical synthesis.

• Development of Graphics-Aware Search Engines: By enabling search engines to process
queries involving graphical elements, such as mathematical symbols or molecular diagrams,
new opportunities for information retrieval and knowledge discovery are unlocked. Users can
retrieve related content based on visual patterns, expanding the possibilities of scientific and
technical searches.

CHAPTER 1. INTRODUCTION 3

• Advancements in Educational Technology and Digital Libraries: Parsing and inte-
grating graphical content into digital platforms improves accessibility, for example, by enabling
screen readers to interpret formulas and diagrams, and enhances searchability by allowing con-
tent to be indexed and retrieved based on visual and structural features. This supports more
effective learning environments for students, educators, and researchers.

• Support for Academic Research: Providing tools that automatically parse complex graph-
ical content frees researchers from manual data extraction tasks, allowing them to focus on
data analysis, hypothesis generation, and scientific advancement.

Consider a scenario in chemical informatics where a student encounters a chemical diagram of
aspirin (acetylsalicylic acid) and seeks to learn about catalysts that can enhance its yield or identify
reactions that produce this compound. Answering such queries requires extracting, parsing, and
recognizing molecular diagrams and reaction pathways, a task that would be greatly facilitated
by automated tools. Similarly, imagine a researcher wanting more information about a complex
mathematical formula they found in a publication. Accurate recognition, segmentation, and parsing
of mathematical symbols and relationships would enable efficient searches and comparisons across
scientific literature, as well as reuse in their own documents and tools (e.g., computer algebra
systems).

The development of robust parsers that can handle both mathematical and chemical diagrams is im-
portant for transforming how information is accessed and used in scientific workflows. This research
aims to address this need by leveraging (1) input graph representations, (2) graph attention-driven
methods including edge-aware attention via GAT [129], and (3) multi-task learning and interaction
approaches, and (4) strategies to handle class imbalance and noise, which are tailored to the unique
characteristics of these domains. Graph attention-driven methods, such as GAT [129], allow nodes
to attend selectively to their neighbors based on learned attention weights, enabling more expressive
and context-aware representations of local structure. Multi-task learning and interaction approaches
allow the model to jointly optimize related tasks such as symbol classification, segmentation, and
relationship identification, while enabling shared information flow across tasks to improve general-
ization. In parallel, we explore techniques to mitigate class imbalance and simulate realistic noise
to improve robustness and real-world applicability.

CHAPTER 1. INTRODUCTION 4

1.2 Parsing Mathematical Formulas and Chemical Diagrams

We propose developing efficient and interpretable parsers for mathematical and chemical formulas
using graph-based methods and attention-driven techniques. Two key design goals in this work
include: (1) efficiency, measured in terms of both computational runtime and the amount of training
data required; and (2) interpretability, by maintaining input–output correspondence at the level of
primitives, enabling error analysis directly over nodes and edges in the predicted graph, compared
to the ground truth graph. These priorities shape the architectural choices, learning strategies, and
evaluation protocols throughout the dissertation.

The parsing problem in our work is approached through two modalities: born-digital parsing and
visual parsing. Born-digital parsing uses content in vector-based formats such as PDF files,
where the underlying representation retains visual and structural information about the formulas
and diagrams. This format enables more precise extraction of graphical primitives, including lines,
symbols, curves, and spatial arrangements. Born-digital content often appears in modern technical
documents, research papers, and digital libraries, representing a wealth of data that can be leveraged
to improve recognition accuracy and computational efficiency.

In contrast, visual parsing targets raster images or stroke-based inputs which are typically de-
rived from scanned documents, handwritten notes, or digital sketches. This modality poses unique
challenges due to variations in image quality, resolution, and potential noise or distortions. The
visual parsing approach focuses on converting these pixel-based or stroke-based representations into
machine-readable formats, produced by born-digital parsers.

Obtaining accuracy and interpretability in visual parsing requires effective feature extraction, ro-
bust segmentation, and graph-based modeling techniques capable of handling diverse and ambiguous
input data. Segmentation plays a critical role in enabling interpretability, as it establishes clear cor-
respondence between visual input entities (e.g., strokes, line segments, CCs) and their corresponding
entities in the output structure. This alignment is essential for downstream tasks such as symbol
classification and relationship inference, and it supports transparency and verification in system
behavior. In contrast, encoder-decoder models that treat input images holistically often lack this
fine-grained correspondence, making it difficult to trace how visual elements contribute to the final
output and limiting their usefulness for interpretable models and error analysis.

By addressing both born-digital and visual parsing, this thesis aims to create a unified framework
capable of processing mathematical and chemical diagrams from a variety of input sources.

CHAPTER 1. INTRODUCTION 5

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

PDF

Input: Complete Graph

UPPER

UNDER

HORIZONTAL

PUNC

RSUB

Output: Symbol Layout Tree (SLT)

Parser

HandwrittenRaster

Figure 1.1: Parsing the math formula 2
zi,y

from three input sources: (left) a vector-based PDF
rendering, (middle) a rasterized image version of the same formula (shown with overlaid grids to
emphasize its pixel-based structure), and (right) a handwritten version represented using pen stroke
data. The complete graph shows the raster image input, where each node represents a connected
component (CC) of the formula.

Mathematical Formula Parsing. Mathematical formulas consist of symbols and structural
relationships arranged in complex spatial configurations. In our segmentation-aware approach,
parsing these formulas involves segmenting the image into symbols, classifying these symbols, and
identifying relationships among them to reconstruct the underlying structure accurately as shown
in Figure 1.1. This process becomes more challenging with visual inputs due to variations in font,
size, layout, and noise from scanning artifacts. In contrast, born-digital parsing of mathematical
formulas benefits from access to vector graphics, which often provide clean representations but still
require careful handling of spatial relationships and symbol connectivity.

Chemical Diagram Parsing. Chemical diagrams depict molecular structures, including atoms,
bonds, and stereochemical features. Parsing these diagrams requires accurately identifying atoms
and bonds, classifying bond types, and capturing both spatial and chemical relationships, as illus-
trated in Figure 1.2. Spatial relationships refer to the geometric layout of diagram elements, such as
the relative position, orientation, and distance between atoms and bonds, which are critical for in-
terpreting stereochemistry and layout-dependent annotations. Chemical relationships, in contrast,

CHAPTER 1. INTRODUCTION 6

Parser

PDF
Raster

||

||

||

NO2

Output: Molecular GraphInput: Complete Graph

Figure 1.2: Parsing chemical diagram (Nitrobenzene) from PDF image and raster image sources.
Manual grids are added to the raster image to highlight its pixel-based nature, visually distinguish-
ing it from the vectorized PDF representation. The || symbol in output represents merged lines
indicating double bonds.

describe the underlying molecular connectivity, i.e., which atoms are bonded and how they form a
connected graph, independent of their specific positions on the page.

Similar to mathematical parsing, visual parsing of chemical diagrams from raster images poses
challenges due to noise, varying drawing styles, and ambiguities in structural representations. On
the other hand, born-digital parsing leverages vector graphics, providing precise geometric data but
requires robust algorithms to interpret atom connectivity and chemical semantics.

Commonalities and Differences in Parsing Tasks. In our segmentation aware approach,
both mathematical and chemical parsing tasks involve structures that require accurate symbol
segmentation, classification, and relationship identification. However, there are notable differences in
how these notations are represented and interpreted. Mathematical formulas emphasize hierarchical
relationships among symbols, often requiring detailed spatial reasoning and layout analysis as shown
by the different relationships in Figure 1.1. In contrast, chemical diagrams focus on connectivity and
topological arrangements, where bonds and atom types must be identified and correctly interpreted
in the context of chemical rules. We describe these representations in detail in Chapter 2.

CHAPTER 1. INTRODUCTION 7

The born-digital and visual parsing approaches further introduce distinct challenges. Born-digital
content provides precise vector data that simplifies segmentation but still requires graph-based
spatial reasoning to interpret relationships. Visual parsing, on the other hand, faces challenges with
noise, variations, and image artifacts but is essential for document analysis in more diverse and
non-standard scenarios, such as scanned documents, handwritten notes, or publications that embed
raster images without accompanying vector metadata. While born-digital documents also support
document analysis when vector information is available, they assume structurally consistent input.
Visual parsing methods are therefore critical when such assumptions do not hold, requiring image
processing and neural network models to recover accurate and interpretable representations from
visual data.

1.3 Research Questions and Thesis Outline

The goal of this thesis is to improve the accuracy, and interpretability of visual parsers for mathe-
matical formulas and chemical diagrams. To this end, we aim to answer the following key research
questions, which guide the development, analysis, and evaluation of our proposed methods:

RQ1 How can primitive features be constructed and updated efficiently to support iterative refine-
ment of segmentation and improve structural parsing?

RQ2 What types of input graph representations are most effective for parsing mathematical for-
mulas and chemical diagrams, and do these representations differ between the two domains?

RQ3 How can graph context and class distributions be leveraged to improve contextual represen-
tation and task interaction in multi-task parsing?

RQ4 Can visual and structural noise at the primitive level, together with class balancing strategies,
improve the robustness of the visual parser?

This dissertation aims to addresses the task of parsing mathematical formulas and chemical diagrams
from both vector-based and raster image data. Each chapter explores specific technical methods,
algorithms, and evaluation frameworks developed throughout this research.

Chapter 2 provides the necessary background on representations, input sources, graph structures,
and output notations used in mathematical and chemical parsing. It details various evaluation met-
rics, including graph-based methods like adjacency matrices and LgEval, and string-based measures.

CHAPTER 1. INTRODUCTION 8

This chapter also reviews existing parsing models and relevant parsing techniques, setting the stage
for the subsequent chapters.

In Chapter 3, we present methods for born-digital parsing from vector-based PDF symbols. This
includes extracting symbols from PDFs, constructing Symbol Layout Trees (SLTs) for mathematical
formulas using Edmonds’ algorithm on Line-of-Sight graphs [113], and parsing molecular diagrams
through Minimum Spanning Tree (MST) transformations. The chapter also discusses generating
training data for visual parsers.

Chapter 4 focuses on visual parsing from raw images, extending our graph-based parsing meth-
ods to raster image data. The chapter introduces the Line-of-Sight with Graph Attention Parser
(LGAP) [114] and the Line-of-Sight Chemical Graph Parser (LCGP) models [112], explaining their
input structures, feature extraction techniques, and graph transformation processes. LCGP ex-
tends LGAP to chemical diagrams, introducing a contour-based primitive extraction method that
directly leverages extracted contours from images to improve visual features, as well as introduces
a segmentation-aware refinement process that iteratively merges primitives and updates visual fea-
tures, addressing the goals of RQ1.

Chapter 5 addresses RQ2 and RQ3 by investigating the choice of input graph representations
and the role of contextual interaction in multi-task parsing. We systematically compare Line-of-
Sight (LOS), k-Nearest Neighbor (KNN), and complete graphs, evaluating their coverage, sparsity,
and impact on parsing accuracy in both math and chemical domains. The chapter also introduces
improvements in primitive extraction and unifies visual feature representations across domains using
contour-based feature construction and a shared ResNeSt-50 encoder. We then propose EGATv2,
a multi-hop, edge-aware graph attention model that enables joint node-edge updates and task
interaction through a two-stage architecture with aggregation of class distribution and visual features
together.

Chapter 6 addresses RQ1 by improving the robustness and efficiency of visual primitive extrac-
tion from raster images, including the separation of over-segmented primitives. It also contributes
to RQ4 by focusing on robustness and generalization of the visual parser under noise and data
imbalance. We simulate visual and structural degradation using synthetic noise transformations
and apply these during training to increase resilience to real-world image variations. Additionally,
we analyze class imbalance across tasks and propose sampling, loss weighting and loss aggregation
strategies to improve performance on rare classes. All experiments in this chapter build on the
EGATv2 model introduced previously, using its two-stage, two-hop configuration as the baseline.

CHAPTER 1. INTRODUCTION 9

Chapter 7 summarizes the key findings and contributions of this research, highlighting the advance-
ments made in parsing mathematical formulas and chemical diagrams. The chapter discusses the
implications of these findings for future research and applications, including potential extensions
to other domains and the integration of these parsing techniques into broader document analysis
systems.

Chapter 8 lists the publications that have resulted from this research, providing context for the
contributions of our work.

1.4 Thesis Statement

Robust and interpretable graph-based visual parsing of mathematical and chemical diagrams can
be achieved through: (1) domain-specific graph representations; (2) iterative merging of input
nodes representing connected components and strokes (for math) or line-based visual primitives
(for chemistry); and (3) multi-task learning incorporating randomized primitive splitting, visual
noise augmentation on primitive query and context images, contextualized graph attention, and
class-balanced loss functions.

1.5 Contributions

The key contributions of this research are as follows:

1. Training Data and Evaluation Metrics for Chemical Diagram Recognition. Devel-
oped a geometry-based ground truth generation method for parsing raster chemical diagrams
by aligning visual primitives (line segments) nodes with vector primitive nodes in generated
PDF visual graph using spatial and geometric heuristics (maximum overlap). This enables
precise, interpretable annotations directly tied to input visual primitives. For evaluation, we
adapted existing LgEval1 metrics [84, 85] to chemical diagram recognition by generating la-
bel graph files compatible with its adjacency-based evaluation, supporting fine-grained, node-
and edge-level performance assessment. This approach overcomes limitations of traditional
string-based metrics (e.g., SMILES), which lack spatial alignment and error localization, espe-
cially for stereochemical structures. While designed for chemistry, the ground truth alignment

1https://gitlab.com/dprl/lgeval

https://gitlab.com/dprl/lgeval

CHAPTER 1. INTRODUCTION 10

method can be extended to other diagrammatic domains such as mathematical expressions,
flowcharts, or circuit diagrams, wherever visual primitives can be mapped to structured rep-
resentations.

2. Parsing Mathematical Formulas and Molecular Diagrams Using Vector Informa-
tion. Developed graph-based parsers for extracting structures of mathematical formulas and
molecular diagrams directly from vector-based PDF content. For mathematical formulas,
Symbol Layout Trees (SLTs) were constructed by applying Edmonds’ algorithm [38] on an
input Line-of-Sight (LOS) graph with symbols extracted from PDF, capturing the spatial
relationships among symbols and primitives without the need for OCR. Likewise, for molec-
ular diagrams, a Minimum Spanning Tree (MST) approach based on distance was used to
construct an input graph, which was subsequently transformed into a molecular structure
graph through a series of graph transformations guided by chemical and spatial constraints.
This approach bypasses rasterization and complex vector conversions, enabling efficient and
interpretable graph construction that preserves geometric and contextual information directly
from vector-based data [112,113].

3. Recurrent Segmentation-Aware Graph Parsing (RQ1, RQ2). Developed segmentation-
aware graph parsers for both mathematical formulas and chemical diagrams that iteratively
refine symbol groupings and update visual features. This includes:

• Enhanced visual feature extraction through the incorporation of line-of-sight (LOS)
neighbors context features and spatial pyramidal pooling [114]. Also, introduced an
input refinement mechanism that iteratively merges primitives into symbols and updates
corresponding visual features [112].

• Evaluated and selected domain-specific input graphs—LOS graphs for math, enabling
long-range structural capture with reduced noise, and 6NN graphs for chemistry, offering
a balance of local connectivity and precision. Also improved representation of punctua-
tion relationships in math formulas to increase edge coverage in LOS graphs.

4. Robustness: Line-Based Primitives, Primitive Noise, and Loss Functions for Class
Imbalance (RQ1, RQ4). Proposed a unified visual feature design based on primitive-
centered query and context windows derived from drawn contours, enabling consistent local
context modeling across domains without relying on full-image features. We also introduce an
efficient and robust method for extracting visual line primitives from raster chemical diagrams,
which effectively separates over-segmented components and this method can be extended to
mathematical formulas, flowcharts, and other diagrammatic domains. To enhance robustness

CHAPTER 1. INTRODUCTION 11

under real-world degradations, we introduced a localized noise augmentation strategy inspired
by Baird’s degradation model [11], applying primitive-level visual perturbations (e.g., blur,
downscaling, salt-and-pepper noise) and structural noise via random binary splits. Addi-
tionally, we addressed class imbalance in segmentation, symbol, and relationship tasks using
a combination of reweighted loss functions including weighted cross-entropy, focal loss, and
class-balanced loss and stratified sampling at the formula level to promote rare-class learning
and task balance. To further support task-level balance, we aggregate losses across tasks using
a complemented harmonic mean.

5. Edge-Aware Graph Attention with Cross-Task Interaction (RQ3): Introduced EGATv2,
a two-stage, edge-aware graph attention network that aggregates visual features and class dis-
tributions for both nodes and edges, enabling bidirectional message passing. The architecture
supports cross-task interaction, improving coordination among symbol, segmentation, and
relationship predictions.

1.6 Limitations

Despite the contributions introduced in this work, several limitations remain:

1. Primitive extraction sensitivity. The current primitive extraction pipeline relies on hand-
tuned heuristics and assumes clean segmentation. In degraded or stylized images, primitive
detection and grouping can fail or require manual tuning. Furthermore, visual primitive
extraction was applied only to chemical diagrams, limiting generalizability.

2. Fixed graph structures. The use of static input graphs (e.g., LOS or KNN) introduces
tradeoffs between structural fidelity and computational efficiency. Heuristic edge pruning may
not generalize well to all diagram types or layouts, especially in noisy or unconventional inputs.

3. Symbol disambiguation challenges. EGATv2 struggles to distinguish visually similar but
semantically different symbols, such as minus versus equals signs in math, or single bonds
versus strokes in characters, especially in dense or ambiguous contexts.

4. Limited augmentation diversity. The visual and structural noise models used for ro-
bustness rely on simple binary splits and a small set of perturbation types. These may not
sufficiently model real-world degradations such as scanning noise, background clutter, or vari-
able font rendering.

CHAPTER 1. INTRODUCTION 12

5. Loss weighting and task balance. Although focal loss and class-balanced loss were em-
ployed to address class imbalance, only a narrow range of parameters (e.g., γ = 0.5) was
explored. The complemented harmonic mean used for multi-task loss aggregation improves
balance across tasks, but further tuning or generalization may be needed to ensure stability
across class distributions.

Chapter 2

Background

Parsing of mathematical formulas and chemical diagrams involves transforming raw raster or vector
data into structured representations, such as Symbol Layout Trees (SLTs) for math and molecular
graphs for chemistry. This chapter provides an overview of the foundational concepts, method-
ologies, and evaluation metrics essential for these tasks, setting the groundwork for the proposed
research.

The chapter begins with Data Representations and Structures (2.1), which explores the various
input sources, associated visual primitives, and their transformations into graph representations.
This section covers input types such as born-digital PDFs, typeset images, and handwritten strokes,
discussing how these are converted into graph structures that capture spatial and structural rela-
tionships. It also describes the output representations, including SLTs and molecular graphs, which
serve as the final structured outputs of parsing systems.

The second major section, Parsing Models (2.2), reviews prior work in mathematical and chemical
diagram parsing. This discussion traces the progression from early rule-based approaches to neural
network-based methods, highlighting their application and limitations in both domains. The evolu-
tion of these models underscores the need for further innovations to address challenges in accuracy,
speed, and interpretability.

The chapter then delves into Techniques Relevant to Parsing Models (2.3), discussing advanced
methods that enhance graph-based parsing. Topics include multi-task learning and interaction [21],
which leverage shared representations across related tasks to improve model performance. Ag-
gregating and distributing contextual information is also examined, alongside local constraints like

13

CHAPTER 2. BACKGROUND 14

nearest-neighbor pruning for focusing on relevant graph connections. The importance of incorporat-
ing edge features to capture structural relationships and advancements in graph attention methods,
such as Relational Attention [33] and Graphormer-inspired encodings [148], are also explored in
depth.

The final section, Evaluation Metrics (2.4), describes the methods used to assess the performance
of parsing systems. This includes graph-based metrics like structure matching accuracy and frame-
works like LgEval library1 [84, 85], as well as string-based metrics, such as SMILES matching for
chemical diagrams and LaTeX accuracy for mathematical formulas. These metrics provide a robust
framework for evaluating the effectiveness of parsing models.

This chapter provides a detailed understanding of the key concepts and methodologies underlying
visual parsing. It lays the foundation for the proposed research directions aimed at improving the
robustness, accuracy, and interpretability of visual parsers for mathematical and chemical diagrams.

2.1 Data Representations and Structures

The recognition and parsing of mathematical formulas and chemical diagrams depend heavily on
how input data is represented and structured [154]. The inputs for these tasks come from various
sources such as born-digital PDFs, typeset images, and handwritten strokes, each providing unique
challenges for extracting meaningful visual primitives. These primitives are then organized into
graph-based representations, which capture the relationships between the individual components,
such as symbols in math or atoms and bonds in chemistry. This section explores the different input
types, the graph structures used to represent their relationships, and the domain-specific output
formats required for the final interpretation of both mathematical and chemical structures.

2.1.1 Input Sources and Primitives

PDF (Born-digital): PDF primitives

Born-digital PDFs provide an essential source of data for parsing both mathematical formulas and
chemical diagrams. Baker et al. [12] introduced the use of symbol information from PDFs directly
rather than applying OCR to rendered images, which was later adopted by many subsequent math

1https://gitlab.com/dprl/lgeval

https://gitlab.com/dprl/lgeval

CHAPTER 2. BACKGROUND 15

recognition systems [3, 67, 165]. Unlike raster images, PDFs store vectorized graphical and text
data, which allow for precise extraction of visual and symbolic information. This precision removes
the need for Optical Character Recognition (OCR), which is often error-prone, and instead allows
for direct access to encoded symbols and graphical components. It is also faster since it avoids
rendering and analyzing document images. We use the following PDF primitives in our work.

For mathematical formulas, we utilize the PDF primitives as characters such as alphabets,
numbers, and mathematical symbols (e.g., equals signs, fraction lines, and dots) as seen in Figure
2.1 (a). These primitives are represented in the PDF data as vector graphics or embedded glyphs,
with detailed properties such as position, size, font style, and typeface. The precise encoding of
symbols within the PDF allows for a reliable representation of formula primitives.

For chemical diagrams, we use graphical elements such as lines, polygons, curves, and text
characters that represent atoms and bonds as our PDF primitives as seen in Figure 2.1 (d). These
graphical primitives provide detailed geometric encodings of molecular structures. For example, lines
encode bonds between atoms (e.g., single, double, or triple bonds), while text characters encode
atom labels (e.g., ‘C’ for carbon or ‘O’ for oxygen). Nodes correspond to atoms or groups and edges
represent bonds. These lines and characters form the PDF primitives for the parsing task.

Overall, the advantage of using born-digital PDFs in both mathematical and chemical parsing lies in
the accuracy and structure of the data. The vectorized encodings provide a high level of precision,
enabling robust parsing that avoids the complexities associated with OCR or raster image processing.

Typeset Formula Images (Raster): Visual primitives

Typeset formula images, or raster images, provide a pixel-based representation of both mathematical
formulas and chemical diagrams. Unlike vector-based formats like PDFs, raster images consist of
pixel data, and the extraction of visual primitives from such data involves challenges related to
resolution and noise. Usually encoder-decoder models [136, 160, 162] use raster images directly
as inputs. However, in our work, for both domains, we extract visual primitives from the raster
images to form the basis of our structured graph representation. This approach offers a higher-level
abstraction by capturing distinct visual elements such as connected components or lines, rather
than processing raw pixel data from the entire image

In mathematical formula parsing, we use connected components (CCs) as the primary visual
primitives as shown in Figure 2.1 (c). CCs are extracted based on connected component analysis,

CHAPTER 2. BACKGROUND 16

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

0

1

2

3

4
5

6

641SPP PUN Symbols 2561Arg Symbols

441 977small dataset experiments
1764 Srp NUNC Symbols SymContent

2 Same t GNN Symbols 2layers 704 352 2087
3 2layers704 512 7087 Northbay

M 7 layers 704 178 208 Niagara

57Same t GNN Symbols 3 layers 704 352,351 208 RIB
67 704 512,256,2087 Doug
7 704 128 1128 708

Sigmoid x

Los Content

AD I

midpopD med
I1

0

2

4

3 5

6

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

0

1

2
3

4
5

PDF Primitives Visual Primitives

(a) (b) (c)

(d) (e)

Figure 2.1: Different types of primitives in math and chemical diagrams. (a) PDF primitives for
math formula 2

zi,y
. Note that the symbol ‘i’ appears as a single PDF primitive. (b) and (c) are visual

primitives for the same formula from handwritten strokes and raster image (CCs) respectively. Note
that the symbol ‘i’ is segmented into two visual primitives (CCs/strokes) (d) and (e) correspond to
the PDF and visual primitive for the chemical diagram of Nitrobenzene. Note that the character
‘N’ is split into 3 lines in (e) but appears as a single PDF primitive.

where touching pixels are grouped together. These components represent individual symbols or
parts of symbols, such as variables, operators, or punctuation marks. In this process, CCs are
rarely under-segmented but may be over-segmented, meaning that portions of a symbol might be
split into multiple components (e.g. ‘i’ into line and dot). However, over-segmentation can be
handled by our visual parser model, discussed in Chapter 4.

For chemical diagrams, CCs cannot be directly used, as the bond lines in molecular structures
are often connected, resulting in large CCs that contain multiple bond lines and atom labels. This
leads to under-segmentation, making it difficult for the model to distinguish between individual
primitives such as bonds and atoms. To address this, we split these large CCs into smaller line
primitives as seen in Figure 2.1 (e) using geometry-based segmentation approach described below.

CHAPTER 2. BACKGROUND 17

Visual Primitives Extraction. The process begins by extracting CC contours from the raster
image and converting them into polygons as shown in Figure 2.2 (b) using a simplification algo-
rithm provided by Shapely library2. These polygons are then further split into skeletal lines by
identifying pairs of adjacent parallel lines on the contour boundary. Each pair of parallel lines is
replaced by its medial axis (i.e., the line between the midpoints of the parallel lines’ endpoints),
which represents the bond. Pixels within the CCs are then segmented by assigning them to the
nearest skeletal line using a distance transform. This segmentation helps ensure that overlapping
or connected bond lines are separated into individual primitives.

The stages of this visual primitive extraction process, from simplified polygons to skeletal lines and
final line primitives, are illustrated in Figure 2.2. Some CC shapes such as curved lines and closed
curves are unaltered by the process. The ‘2’ and ‘O’ are unsegmented in Figure 2.2 (d) because
after identifying all skeletal lines for CCs in a molecule, to avoid segmenting small CCs, we test
whether the average skeletal line length in a CC is less than the average for all skeletal lines. If
this average length is smaller than the global average, we do not segment the CC. We also remove
skeletal lines within CCs that are smaller than the global average skeletal line length, which avoids
over-segmenting lines at dense intersections (e.g., at the connection point between two single bonds
and a double bond). We split a long line in a triple or double bond by projecting the floating line
onto it, and then testing if the overlap ratio r for the longer line is in the interval of one third to
one half, with a margin of 10% (13 −

1
10 ≤ r ≤ 1

2 + 1
10).

Overall, while raster images present additional challenges due to under-segmentation in chemical
diagrams, the extraction of visual primitives allows for an accurate representation of molecular
structures that can be processed and evaluated further.

Handwritten Strokes

In formula recognition, handwritten strokes present unique challenges compared to born-digital or
typeset formats. Handwritten input introduces variability in symbol shapes, sizes, and spatial rela-
tionships due to individual handwriting styles. Handwritten strokes are treated as the fundamental
visual primitives in this domain. Each stroke corresponds to a continuous pen movement from a
starting point to an endpoint, captured as a sequence of 2D coordinates. These strokes are extracted
directly from the input, and the model must determine which strokes belong together to form mean-
ingful symbols, such as numbers, variables, operators, and punctuation marks (See Figure 2.1 (c)).

2https://shapely.readthedocs.io/en/stable/

https://shapely.readthedocs.io/en/stable/

CHAPTER 2. BACKGROUND 18

(b) Simplified polygons (c) Skeletal lines (d) Final line primitives

(a) Input raster Image

Figure 2.2: Stages of visual primitives extraction from a raster image of a chemical diagram. (a)
Input raster image, (b) simplified polygons derived from CC contours, (c) skeletal lines extracted
as medial axes of parallel line pairs, and (d) final line primitives after segmentation and refinement.
Note that ‘2’ and ‘O’ are unsegmented in (d) because their corresponding skeletal lines are smaller
than global average (c).

The recognition of handwritten mathematical formulas has been extensively explored, with early
CROHME competitions providing benchmarks and advancements to manage input variability and
complexity [80,82,84,85]. Similarly, handwritten chemical diagram recognition has been studied in
various works [102, 124, 166]. The ICDAR 2024 Competition on Handwritten Chemical Structure
Recognition [23] introduced a novel task focused on recognizing handwritten chemical structures, a
challenging problem due to the lack of standardized data and the high variability in handwritten
styles. The competition utilized the EDU-CHEMC dataset, containing over 60,000 handwritten
images collected in educational settings, annotated with SSML strings. Unlike SMILES, SSML
provides a representation closely tied to image structure, incorporating features such as bond angles
and visual layout.

The major challenge in handwritten formula parsing is managing the variability in how symbols are
written. For example, the same symbol can be written with different numbers of strokes (e.g., the
digit ‘8’ can be drawn in one continuous stroke or two separate loops). Similarly, symbols like ‘x’
or ‘+’ can have variations in their structure due to different handwriting styles. As a result, stroke

CHAPTER 2. BACKGROUND 19

segmentation and symbol recognition require robust methods that can adapt to these variations.

In practice, over-segmentation may occur, where a symbol is split into multiple strokes (e.g., a
handwritten ‘x’ drawn with two separate strokes). The model must learn to merge these over-
segmented strokes into a single symbol during the parsing process. Conversely, under-segmentation
is rarely an issue, as individual strokes are generally isolated and separate.

Our work focuses on handwritten math formulas, while handwritten chemical formulas is beyond
the scope of this work.

2.1.2 Graph Representations

In the context of formula recognition, graph representations are essential for capturing the relation-
ships between symbols or primitives in mathematical and chemical diagrams. These representations
offer a structured way to model the spatial and logical relationships between elements, whether they
are PDF symbols in born-digital formulas, strokes in handwritten formulas, connected components
in math formula images, or lines and characters in chemical diagrams. Eto et al. [39] were the first to
take this approach for representing math formulas, creating a graph with symbol nodes containing
alternative labels, and candidate spatial relationships on edges with associated costs. Line-of-sight
(LOS) graphs select edges where strokes in a handwritten formula or connected components in an
image are mutually visible [52, 71]. Systems such as Hu et al. [50], LPGA [71], and QD-GGA [72]
use this LOS input graph constraint, and select the final interpretation as a directed Maximum
Spanning Tree (MST).

MolGrapher [79], ChemGrapher [94], Tang et al. [124], MolScribe [100], image to graph transformer
[149], use graph representations for parsing chemical diagrams. In our work, we treat the extracted
born-digital (PDF symbols) and visual primitives (strokes, connected components, or geometric
shapes) as nodes, while the spatial or structural relationships between them as edges. This allows
for a flexible and interpretable way to represent the formula or diagram’s overall structure. The
advantage of graph-based representations is their ability to encode both the local relationships
between elements (e.g., how individual primitives combine to form symbols) and the global structure
(e.g., the spatial arrangement of symbols or primitives within a formula or molecule).

We divide the graph representations into two main categories: Visual Syntax Graph, which capture
the immediate syntactic relationships among visual primitives and symbols, and Representation

Graph, which represent the formal syntactic interpretation of the parsed formula or molecular dia-

CHAPTER 2. BACKGROUND 20

fractionalLine
0

two
1UPPER

z
2

UNDER

i
3RSUB

i
4

RSUB

COMMA
5

PUNC

y
6

HORIZONTAL

i

fractionalLine
Obj0
0

two
Obj1
1

UPPER

z
Obj2
2

UNDER

i
Obj3
3 4RSUB

COMMA
Obj4
5

PUNC

y
Obj5
6

HORIZONTAL

DIVIDE

two GROUP

SUBSCRIPT y

z i

Visual Syntax Graph Representation Graph

(a) Primitive Level Graph

(b) Symbol Layout Tree (SLT)

(c) Operator Tree (OPT)

Figure 2.3: Illustration of different types of graph representations for the mathematical formula
2

zi,y
. (a) The Primitive Level Graph represents the low-level primitives (e.g., connected components

or strokes) as nodes, labeled with their unique identifiers (shown in blue), and spatial relationships
between these primitives are depicted as directed edges. (b) The Symbol Layout Tree (SLT) ab-
stracts symbols as nodes formed by grouping primitives (e.g., the ‘i’ comprises strokes/CCs {3,4}),
with spatial relationships between symbols shown as directed edges. The numeric identifiers of
strokes/CCs (a) and their corresponding grouped symbols (b) are consistently shown in blue. {3,4}
is shown in one node in (b), but two nodes in (a). (c) The Operator Tree (OPT) represents the
semantic structure, with operators (e.g., ‘DIVIDE’ for the fraction) and operands (e.g., ‘two’, ‘z’,
‘i’, and ‘y’) as nodes, and directed edges indicating hierarchical relationships. The ‘GROUP’ node
in the OPT is treated as a grouping operator, connecting its operands ‘zi’ and ‘y’.

gram.

In the following sections, we detail these graph types for both math and chemistry. This includes
explanations of the primitive-level and symbol-level graphs within the Visual Syntax Graph cat-
egory and descriptions of the OPT for math and the molecular graph for chemistry within the
Representation Graph category. Additionally, we discuss label graph (Lg) files [84,85], used to store
these representations in a structured format, facilitating evaluation and downstream processing.

CHAPTER 2. BACKGROUND 21

Visual Syntax Graph Representation Graph

(a) Primitive Level Graph 
(Visual Graph) 

nodes: lines & characters 
edges: connections/merges

(b) Symbol Level Graph 
(Tokenized Visual Graph) 

nodes: bonds, atoms & atom groups 
edges: connections

(c) Molecular Graph 
nodes: atoms & atom groups 

edges: bonds

(a) Raster Image (b) Visual primitives
nodes: lines

(d) Tokenized Visual Graph
nodes: bonds, atoms & superatoms

edges: connections

(e) Molecular Graph
nodes: atoms & superatoms

edges: bonds

||

||

||

NO2

(c) Visual Graph
nodes: lines & characters
edges: connections/merges

||

||

||

NO2

(a) Raster Image (b) Visual primitives
nodes: lines

(d) Tokenized Visual Graph
nodes: bonds, atoms & superatoms

edges: connections

(e) Molecular Graph
nodes: atoms & superatoms

edges: bonds

||

||

||

NO2

(c) Visual Graph
nodes: lines & characters
edges: connections/merges

||

||

||

NO2
||

||

||

NO2

Figure 2.4: Different types of graph representations (visual syntax graph and representation graph)
for the chemical diagram Nitrobenzene. (a) Visual Graph showing lines and characters as nodes (in
green), and connections/merges as edges (in red). (b) Tokenized Visual Graph with merged nodes
(bonds and named groups). (c) Molecular Graph. Blue nodes show the primitives of N merged into
a character (a) and double bonds and atom/group names in (b,c). In (c) orange nodes are ‘hidden’
carbon atoms, and single/double bonds are converted from nodes to edges

Visual Syntax Graph

They capture the immediate syntactic relationships among visual primitives and symbols. Visual
syntax graphs encompass the primitive-level graph and the symbol-level graph. The primitive-level
graph operates at the level of individual strokes, connected components, or lines, representing basic
visual primitives. In contrast, the symbol-level graph organizes these primitives into meaningful
symbols, capturing their structural relationships within a mathematical formula or chemical dia-
gram. For mathematical formulas, this results in a Symbol Layout Tree (SLT), while in chemical
diagrams, it produces an intermediate tokenized visual graph.

1. Primitive Level Graph (CCs/Strokes/Lines) At the primitive level, we represent graphs
as the lowest level of structure for both mathematical and chemical formula parsing. We treat the
basic visual primitives—whether they are connected components (CCs) in typeset images, strokes
in handwritten formulas, or characters and lines in chemical diagrams—as nodes in a graph. We use
edges to capture the relationships between these primitives, such as spatial adjacency or merging
into larger symbols.

In our mathematical formula parser, we build the primitive-level graph using connected com-

CHAPTER 2. BACKGROUND 22

ponents (CCs) from typeset images [71,72] or strokes from handwritten input [85,141]. We encode
the relationships between these elements as edges in the graph. Each node represents an individual
CC or stroke, which can represent one of N symbol classes, such as digits, operators, or punctuation
marks. We capture two types of relationships with edges: merge edges (binary), which are used to
combine multiple strokes or CCs into a single symbol, and spatial relationship edges (E classes),
which represent the spatial relationships between nodes. For example, if the letter ‘x’ is written
with two separate strokes, we connect these strokes with a merge edge to form the final symbol.
We capture spatial relationships such as subscript, superscript, horizontal alignment, inside, above,
and below.

The number and arrangement of strokes or CCs may differ for a single formula. For the example in
Figure 2.3, the primitive label graphs for the image and handwritten version are identical so that
CCs and strokes have an exact correspondence. This is not always the case, for example when an
‘x’ drawn with two handwritten strokes appears as a single CC in a typeset image.

In chemical diagram parsing, we treat visual primitives as characters, parts of characters, and
lines. We extract these primitives from the image and construct a primitive-level graph, where each
node represents an extracted character, a part of a character, or a line. Each node can represent
one of several categories, denoted as N classes, including atoms (e.g., ‘N’, ‘H’, and ‘C’), charges
(‘+’, ‘-‘), and bond types (‘Single’, ‘Solid Wedge’, ‘Brackets’). We use edges to represent binary
relationships between nodes. There are two types of edges: connection edges indicate whether two
nodes, such as an atom and a bond, are directly connected in the diagram, while merge edges are
used to combine parts of symbols that may have been over-segmented during the extraction process.
For example, we create a connection edge between an atom node (e.g., ‘C’) and a bond node (e.g., a
single bond line) if they are spatially adjacent. Similarly, if a bond line or character has been split
into two or more segments, we add merge edges to combine these segments into a single node (See
Figure 2.4).

2. Symbol Level Graph At the symbol level, graph representations capture the relationships
between higher-level, semantically meaningful components. These components, referred to as tokens
or symbols, represent groupings of characters or visual elements that collectively carry meaning.
Tokenization is the process of identifying these groupings—whether they are mathematical operators
[150], chemical elements [79], or even language keywords—by segmenting and classifying sequences of
connected characters or primitives. For instance, in math, the string ‘cos’ forms a token representing
the trigonometric function cosine, while in chemistry, ‘CH3’ represents a supteratom (group of atoms
treated as a single entity, such as functional groups) called methyl group. Similarly, in other domains

CHAPTER 2. BACKGROUND 23

like programming, tokens such as ‘def’ in Python signal a function definition. Thus, tokenization
aims to transform sequences of connected components or primitives into symbols with specific
meaning for further processing. These tokens form the nodes of the graph, and the edges capture
the spatial or structural relationships between these elements. These symbol-level graphs allow for
a more abstract representation of the formula or diagram, moving beyond the raw primitives toward
meaningful semantic groupings.

In mathematical formula parsing, we represent the symbol-level graph as a Symbol Layout
Tree (SLT). In this tree, we treat nodes as recognized symbols or tokens, such as numbers, vari-
ables, operators, and punctuation marks. For example, ‘x’, ‘2’, ‘+’, or ‘=’ each form individual
nodes. Additionally, we handle tokenized symbols like ‘cos’ as a single node to capture the semantic
meaning of the trigonometric function. We classify each node into one of N symbol classes, and
we use edges in the SLT to represent spatial relationships between symbols, including subscript,
superscript, horizontal adjacency, above, below, or inside. These spatial relationships are used for
capturing the two-dimensional structure of mathematical expressions. For instance, in the expres-
sion x2, we encode the superscript relationship between ‘x’ and ‘2’ as an edge in the SLT, labeled as
‘Superscript’. Similarly, we capture subscript relationships (e.g., ‘ai’), horizontal adjacency (e.g., ‘a
+ b’), punctuation relationships (e.g., commas or parentheses), above and below (e.g., numerators
and denominators in fractions), and inside (e.g., numbers inside square roots) within the SLT. By
forming a graph that represents the hierarchical structure of the entire formula, SLTs provide a
consistent description for formulas in both handwritten strokes and typeset images.

One important characteristic of math graphs is that SLTs form directed trees, meaning each node
maintains directed relationships with others, and cycles are not allowed. This tree structure en-
sures an unambiguous representation of nested expressions, where each sub-expression fits into the
hierarchy without loops.

In chemical diagram parsing, we construct the symbol-level graph as an intermediate tokenized
visual graph after extracting characters and bond lines from the image. In this graph, we represent
nodes as atoms, atom groups, or bond types. Unlike typical chemical graphs [79,100], where atoms
are represented as nodes and bonds are represented as edges, we treat both the visual elements,
atoms and bonds as nodes, with edges denoting the connectivity between them. For example, nodes
may represent chemical elements such as ‘C’, ‘O’, or ‘N’, atom groups like ‘NO2’ or ‘CH3’, and bond
types such as ‘Single’, ‘Double’, or ‘Solid Wedge’. We use edges to represent binary, bidirectional
connections between nodes. For instance, an edge is created to connect a carbon atom node (‘C’)
to a ‘Single’ bond node if these elements are linked in the molecular structure.

CHAPTER 2. BACKGROUND 24

Unlike in math, where spatial relationships such as superscript or subscript are crucial, chemical
structure (molecular graph) can be obtained with simple graph rewrites using these direct binary
connections between atoms and bonds. Also, the tokenized visual graphs for chemical diagrams
can contain cycles (i.e., they are not trees). This reflects the cyclical nature of certain molecular
structures, such as aromatic rings, where multiple atoms and bonds form loops. Additionally, the
edges between nodes in chemical graphs are bidirectional, as the connections between atoms and
bonds are not inherently directional.

In summary, while both symbol-level graphs for math and chemistry represent higher-level struc-
tures and relationships, their properties differ. SLTs for math are directed trees with hierarchical
relationships, ensuring acyclic structures. In contrast, chemical visual graphs are bidirectional, with
possible cycles, reflecting the nature of molecular structures.

Representation Graph

They represent the formal syntactic interpretation of the parsed formula or molecular diagram, with
nodes and edges that represent elements of the expression’s logical structure. For math, the rep-
resentation graph takes the form of an Operator Tree (OPT) [152, 163], capturing the hierarchical
organization of operators and operands within a formula. For chemical diagrams, the representa-
tion graph is a molecular graph [77, 79, 100], which encodes the relationships between atoms and
bonds, representing the final structure of a molecule. These representation graphs are essential
for applications that require a formal, machine-readable representation of the formula or chemical
structure.

Operator Tree (OPT). In mathematical formula parsing, the syntactic graph takes the form
of an Operator Tree (OPT), which represents the computational structure of the formula. Nodes
in the OPT correspond to operators, variables, or numbers, and edges represent the hierarchical
relationships between these components. For example, as seen in Figure 2.3 (c), for the expression
2

zi,y
in the given OPT, the division operator DIVIDE is positioned at the root, indicating it as the

highest-priority operation. It connects to the operands two and COMMA through directed edges. The
COMMA node is further expanded into its substructure, where SUBSCRIPT is represented as a child
node, connecting to the operands z and i. This hierarchical structure ensures that the syntactic
relationships and precedence of operations are correctly encoded, reflecting the mathematical struc-
ture of the expression. Similar to chemical molecular graphs, OPTs provide a higher-level syntactic
structure compared to Symbol Layout Trees (SLTs). While SLTs capture the spatial relationships
between symbols (e.g., subscript, superscript), OPTs represent the order of operations and their

CHAPTER 2. BACKGROUND 25

precedence, focusing on the syntactic meaning of the formula.

Molecular Graph. The molecular graph serves as the final output for chemical parsing, represent-
ing the chemical structure at a high level. It is constructed by mapping the visual elements, such as
atoms and bonds, into a graph format. At the molecular graph level, nodes correspond to atoms or
atom groups. Each atom node is labeled according to the element it represents (e.g., ‘C’ for carbon,
‘O’ for oxygen, ‘N’ for nitrogen), while superatom nodes carry the labels of the respective functional
groups, such as ‘NO2’ or ‘CH3’.

The edges in the molecular graph represent the bond types between atoms or atom groups. Each
edge is classified into one of several categories, including Single’, Double’, Triple’, Wavy’, Solid
Wedge’, and Hashed Wedge’ bonds. These bond types not only describe the chemical connections
but also convey geometric information, such as stereochemical arrangements (e.g., solid and hashed
wedges indicating bonds going into or out of the plane of the page). For instance, a single bond
between a carbon (C) and an oxygen (O) atom is represented by an edge labeled ‘Single’ connecting
the corresponding nodes. This molecular graph can be used to generate chemical representations
such as CDXML [88] or SMILES [135] strings, which encode the molecule’s structure in a compact,
searchable format.

Analogy Between Math and Chemistry. There is a clear analogy between syntactic graphs in
math and chemistry. In math, SLTs capture the visual structure of formulas and can be converted
into OPTs to represent their syntactic meaning. Similarly, tokenized visual graphs in chemical dia-
grams represent the visual layout of atoms and bonds and are transformed into molecular graphs to
capture molecular syntax. This transformation from visual to syntactic representation ensures that
abstract entities and hidden elements are identified, such as hidden carbons in chemical diagrams or
implicit multiplications in mathematical expressions. Both transformations facilitate downstream
tasks by providing structured, meaningful representations of the original input.

The construction of molecular graphs involves additional semantic analysis steps, such as identifying
hidden elements in the molecular structure. For example, hidden carbon atoms are identified at
line intersections, and named functional groups are replaced by their corresponding subgraphs. In
this process, dictionaries are used to map names to molecular subgraphs. As shown in Figure 2.4, a
functional group such as ‘NO2’ is replaced by a subgraph comprising one nitrogen and two oxygen
atoms, connected to a hidden carbon at the intersection.

CHAPTER 2. BACKGROUND 26

[OBJECTS]

Objects (O): 10

Format: O, objId, class, 1.0, [primitiveId list]

O, Obj0, fractionalLine, 1.0, 0

O, Obj1, two, 1.0, 1

O, Obj2, z, 1.0, 2

O, Obj3, i, 1.0, 3, 4

...

[RELATIONSHIPS]

Relationships (R): 11

Format: R, parentId, childId, class, 1.0 (weight)

R, Obj0, Obj1, UPPER, 1.0

R, Obj0, Obj2, UNDER, 1.0

R, Obj2, Obj3, RSUB, 1.0

...

[PRIMITIVE FEATURES]

#cc, 0, 100, 1, 110, 290

#cc, 1, 1, 77, 85, 150

#cc, 2, 120, 1, 180, 90

...

[OBJECTS]

Objects (O): 10

Format: O, objId, class, 1.0, [primitiveId list]

O, Obj0, Double, 1.0, 0, 4

O, Obj1, Single, 1.0, 1

O, Obj2, Double, 1.0, 2, 3

...

[RELATIONSHIPS]

Relationships (R): 11

Format: R, parentId, childId, class, 1.0 (weight)

R, Obj9, Obj8, CONNECTED, 1.0

R, Obj0, Obj1, CONNECTED, 1.0

R, Obj0, Obj3, CONNECTED, 1.0

...

[PRIMITIVE FEATURES]

#contours, 0, 58, 139, 56, 141, 55, 141, ...

#contours, 0, 78, 98, 77, 99, 76, 99, ...

#contours, 1, 80, 395, 80, 397, 81, 398, ...

...

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

0
1

2

3

4
5 6

(b) (d)

(a) (c)

Figure 2.5: Label Graph File examples for math and chemical diagrams. (b) A Lg file for (a) input
formula image (2

zi,y
). (d) A Lg file for (c) input chemical diagram image (Nitrobenzene).

Label Graph File (Lg file)

Label graph (Lg) files [84,85] are used to store input or output graph representations used during the
parsing process, capturing the structure of both mathematical and chemical diagrams. These files
define relationships between visual primitives—such as connected components (CCs), strokes, or
line segments—and higher-level entities like symbols, atoms, or bonds. The lg file format is general-
purpose, applicable to various types of graphs, regardless of whether they represent mathematical
formulas, chemical structures, or other visual structures.

In an Lg file, the visual elements, referred to as primitives, are assigned unique numeric identifiers.
These primitives may include strokes, CCs, characters, or line segments, depending on whether the
task is mathematical formula parsing or chemical diagram parsing. Higher-level entities, known as
objects (O), are constructed by grouping these primitives together. For example, in a mathematical
expression, a symbol like ‘x’ may consist of two strokes, while in a chemical diagram, an atom such
as ‘N’ may be composed of multiple line segments.

Each Lg file contains entries for both objects (O) and relationships (R) as shown in Figure 2.5, along
with the corresponding primitive coordinate data (e.g., bounding boxes for CCs, contour points for
visual primitives). The objects in the file represent groups of primitives, such as atom groups,
bond segments, or mathematical symbols (e.g., the equals sign formed by two minus signs). These
entries specify which primitives make up each object, whether they are individual lines of a bond
in chemistry, characters forming an atom label, or characters forming a mathematical symbol.

CHAPTER 2. BACKGROUND 27

The relationship entries in the Lg file capture the connections between these objects. In the case
of math formulas, these relationships include spatial relationships such as horizontal, superscript,
subscript, inside. For chemical diagrams, the connections can represent binary relationships in a
tokenized visual graph (e.g., atom-bond connections) or bond types in a molecular graph (e.g.,
single, double, triple, solid wedge bonds).

The relationship entries in the Lg file define the connections between objects. For mathematical
formulas, these relationships include spatial arrangements such as horizontal, superscript, subscript,
and inside. In the case of chemical diagrams, the connections can represent binary relationships in
the tokenized visual graph (e.g., atom-to-bond connections) or bond types in the molecular graph
(e.g., single, double, triple, and solid wedge bonds).

Additionally, relationships like MERGE are implicitly defined between all primitive pairs within a
single object. For example, in Figure 3.6, MERGE edges are present between primitives 10, 11,
and 12, which together form the character ‘N’ (represented as Obj10). The connection between
this character and the adjacent single bond (represented as Obj9) is captured by CONNECTED edges
between primitives 9 and 10, 9 and 11, and 9 and 12. Similarly, all primitives within an object share
the same label. For instance, primitives 10, 11, and 12 are all labeled as ‘N’ for Obj10.

2.1.3 Output Representations

The final step in parsing mathematical and chemical diagrams involves converting the recognized
structures into domain-specific output representations that are suitable for downstream applications.
These output formats are designed to convey the semantic meaning of the parsed diagrams and
are widely used in various scientific and technical contexts. Depending on the domain—whether
mathematics or chemistry—different output representations are employed.

In mathematical formula recognition, SLTs have popular encodings such as LATEX and Presen-
tation MathML (See Figure 2.6) that include additional formatting information such as fonts, font
styles (e.g., italic), and spacing.

LATEX is a widely-used typesetting system, especially for academic and technical documents. It
allows precise representation of mathematical formulas in a textual format that can be rendered as
high-quality typeset equations. The formulas are encoded as strings of LaTeX commands, which
specify the arrangement of symbols and their spatial relationships (e.g., superscript, subscript,
fraction). Parsing results are often converted into LATEX for integration into academic papers or

CHAPTER 2. BACKGROUND 28

<math

xmlns="http://www.w3.org/1998/Math/MathML">

<mfrac>

<mn>2</mn>

<mrow>

<msub>

	 <mi>z</mi>

	 <mi>i</mi>

</msub>

	 <mo separator="true">,</mo>

	 <mi>y</mi>

</mrow>

</mfrac>

</math>

\frac{2}{z_i, y} C1=CC=C(C=C1)[N+](=O)[O-]

(a) (c)

(b) (d)

Figure 2.6: Output representations for math formula and chemical diagrams. (a) Presentation
MathML and (b) LATEX representations translated from SLT for 2

zi,y
. (c) CDXML output excerpt

and (d) SMILES representation for Nitrobenzene.

web-based platforms.

Mathematical Markup Language (MathML) is an XML-based standard designed to represent
both the presentation and content of mathematical notation. Its goal is to seamlessly integrate
mathematical formulas into web pages and documents, making them accessible for both visual
rendering and semantic interpretation.

MathML consists of two components: Presentation MathML and Content MathML. Presentation
MathML encodes how an equation should visually appear, focusing on layout and formatting, such
as superscripts, fractions, and spacing. Content MathML, on the other hand, encodes the meaning
of the equation, allowing mathematical software to interpret its semantics independently of visual
rendering [75].

In chemical diagram parsing, the most common output formats are SMILES and CDXML (See
Figure 2.6), which are described below.

CDXML (ChemDraw XML). The chemical graph is represented in a ChemDraw3 CDXML
file [88], capturing both visual and chemical structure in molecular diagrams. CDXML is a file
format representing molecules and reactions along with related text on a canvas or series of pages.

3https://revvitysignals.com/products/research/chemdraw

https://revvitysignals.com/products/research/chemdraw

CHAPTER 2. BACKGROUND 29

For molecular data, both chemical structure and the appearance of molecules on a 2D canvas are
encoded in CDXML files. The format was created for the ChemDraw chemical diagram editor. In
CDXML tags define molecules, nodes (e.g., atoms, named groups), and bond connections in the
diagram, along with annotations for node positions and appearance. We encode the locations of
nodes on their associated page, so that the appearance and location of recognized molecules match
the original document. Positions are also helpful with accurate conversion to other chemical formats
(e.g., SMILES), and to capture spatial information in the chemical structure (e.g., for wedge bonds).

SMILES (Simplified Molecular-Input Line-Entry System) [135] is a compact, text-based
notation widely used in cheminformatics for storing, searching, and analyzing molecular data. It
represents molecular structures as sequences of atoms (denoted by letters) and bonds (denoted
by symbols such as ‘-’, ‘=’, and ‘#’). SMILES strings provide a concise 1-D representation of
compounds that is both human-readable for domain experts and compatible with commonly used
cheminformatics tools.

Each of these domain-specific representations serves a distinct purpose, ensuring that the parsed
outputs can be accurately interpreted, visualized, or processed by relevant tools in mathematics
and chemistry. While LATEX and MathML focus on the presentation and content of mathematical
formulas, SMILES and CDXML are designed to encode the structural and visual properties of
molecular diagrams.

2.2 Parsing Models

2.2.1 Math formula parsing

Mathematical formula recognition has evolved significantly over the past few decades, transition-
ing from syntactic, rule-based methods to deep neural network-based techniques. Chan et al. [22],
Zanibbi et al. [154], Zhelezniakov et al. [169], and Truong et al. [126] have surveyed a wide range
of math recognition systems over the past few decades. Early efforts focused on leveraging gram-
mars and syntactic rules to capture the complex spatial and structural relationships inherent in
mathematical notation. However, modern approaches have shifted toward using data-driven mod-
els, including graph neural network models, encoder-decoder architectures, and transformer-based
models, each offering unique advantages and addressing different aspects of the formula recognition
task. In this section, we discuss the contributions and limitations of these models, and the relevance
to our work.

CHAPTER 2. BACKGROUND 30

Grammar-Based (Syntactic) Models

The recognition of mathematical expressions dates back to 1967, when Anderson introduced a
syntax-directed approach based on replacement rules for recognizing two-dimensional handwritten
mathematical expressions, including arithmetic formulas and matrix descriptions [6]. This approach
utilized a 2D top-down parsing algorithm and an attribute grammar. Following this early work,
many systems adopted syntactic or grammar-based approaches to recognize the complex structural
relationships inherent in mathematical notation. Baker et al. [12] used a syntactic pattern recog-
nition approach to recognize formulas from PDF documents using an expression grammar. The
grammar requirement and need for manually segmenting mathematical expressions from text make
it less robust than INFTY. However, the system was faster by avoiding rendering and analyzing
document images, and improved accuracy using PDF character information. In later work, Sorge
et al. [116] were able to reconstruct fonts not embedded in a PDF document, by mapping unicode
values to standard character codes where possible. They then use CC analysis to identify characters
with identical style and spacing from a grouping provided by pdf2htmlEX, allowing exact bounding
boxes to be obtained.

Following on Baker et al.’s approach to PDF character extraction [12], Zhang et al. [165] use a
dual extraction method based on a PDF parser and an OCR engine to supplement PDF symbol
extraction, recursively dividing and reconstructing the formula based on symbols found on the main
baseline for formula structure analysis. Later, Suzuki et al. improved the recognition rate in IN-
FTYReader [119], by also utilizing extracted PDF character information from PDFMiner [121].
Some PDF characters are composed of multiple glyphs, such as large braces or square roots (com-
monly drawn with a radical symbol connected to a horizontal line). These ‘compound’ characters
were identified by Baker et al. [12] using overlapping bounding boxes in modern PDF documents
containing Type 1 fonts.

Context-free grammars (CFGs) became a popular choice, with several systems extending this idea
through Stochastic CFGs to allow probabilistic parsing, as demonstrated by Alvaro et al. [4]. These
grammars were often used alongside parsing algorithms to produce structured output such as parse
trees or LATEX strings [4, 12,89,125].

Grammar-based methods were particularly suited to mathematical recognition due to the domain’s
inherent structure, fixed symbol set, and recursive nature, all of which lend themselves to well-
defined syntax rules [15]. For example, Baker et al. [12] applied a coordinate grammatical approach
to recognize formulas from PDF documents, using syntactic pattern recognition with an expression

CHAPTER 2. BACKGROUND 31

grammar.

While syntactic methods offer precise parsing capabilities, they face several limitations. Math-
ematical notation often varies widely, making it difficult to design universal grammars that can
accommodate all symbol sets and structural variations [165]. The need to redefine formula sym-
bols and structures for different cases further complicates the creation of robust grammars [152].
Moreover, syntactic approaches tend to be computationally expensive, as searching through rules to
identify valid parses can be time-consuming, especially for complex expressions. They also require
careful handling of failures when inputs do not conform to predefined grammar rules, limiting their
robustness and scalability in diverse real-world scenarios.

Relation to our work. While grammar-based approaches have played a foundational role in
mathematical expression recognition, our work diverges from these methods by employing data-
driven techniques for parsing. Specifically, the Line-of-Sight Graph Attention Parser (LGAP) avoids
predefined grammar rules and instead leverages a CNN-based network with attention mechanisms
to directly learn from data.

Although LGAP utilizes PDF information for representing visual primitives and their spatial rela-
tionships, the parsing process is entirely data-driven. The LOS graph captures potential relation-
ships between primitives, and the CNN with attention mechanisms classifies nodes and edges to
refine the graph into a structured Symbol Layout Tree (SLT). This approach bypasses the rigidity
and computational challenges of grammar-based parsing, offering greater flexibility and scalability
for diverse inputs. Unlike grammar-based methods, which rely on predefined rules, LGAP learns
the structural and spatial dependencies directly from training data, making it more adaptable to
real-world variations in mathematical formulas.

Deep Neural Network Models

Deep neural network models have significantly advanced the field of mathematical expression recog-
nition by leveraging powerful data-driven approaches for capturing complex patterns and relation-
ships in input data. Unlike syntactic approaches, which rely on pre-defined grammar rules, deep
learning models learn directly from data, offering flexibility and scalability across diverse input
types, including handwritten, typeset, and born-digital formats. These approaches are generally
categorized into encoder-decoder models and graph-based models, including graph neural network
(GNN) models. Encoder-decoder models, including transformer-based variations, translate input
images or sequences into structured representations, often leveraging self-attention mechanisms for

CHAPTER 2. BACKGROUND 32

improved contextual understanding. On the other hand, graph-based models focus on capturing
spatial and relational dependencies among symbols using graph structures.

Encoder-Decoder models are deep neural network architectures in which an encoder produces
a feature embedding for input data in a lower-dimensional space, while the decoder converts the
embedded input representation back into the original input, or into another representation. Gen-
erally, a Convolution Neural Network (CNN) is used for encoding pixel-level image features, and
Recurrent Neural Networks (RNNs) are used as decoders to produce a string representation of a
formula (e.g., in LATEX) with some form of attention mechanism. Encoder-decoder models are used
in other sequence prediction problems such as image caption generation [144], speech recognition,
and scene text recognition [151], and have produced state-of-the-art results for these problems as
well as math formula recognition [123,136,160,161]. The end-to-end Track, Attend and Parse (TAP)
system [160] is a popular example. TAP obtained state-of-the-art results for many years, mostly
because of the intelligent use of ensemble models that combine online and offline features, as well
as different types of attention mechanisms.

Wu at al. [136] aim to improve generalization and interpretability in sequence-based encoder-decoder
models by utilizing the hierarchical tree structure of mathematical expressions through a tree-based
decoder with attention, and improving the generalization by removing the need for the spatial
relationships to be in strict order. A few other variations include a counting aware network [62]
using symbol counting as a global symbol-level position information to improve attention, and a
stroke constrained network [133] which use strokes as input primitives for their encoder-decoder, to
improve the alignment between strokes and symbols.

A recent transformer-based model by Zhu et al. [170], focused on capturing and using more detailed
contextual information to improve accuracy. Their framework, called Implicit Character-Aided
Learning (ICAL), introduces two key modules: one that predicts and models implicit characters
(hidden symbols in mathematical expressions, including “^”, “_”, “{”, “}”) and another fusion model
that merges this information with the transformer decoder’s output for more accurate predictions.
By enhancing how global structural information is processed, their method improves recognition
performance over previous state-of-the-art techniques on the CROHME 2014/2016/2019 datasets
[73,82,83].

Anitei et al. [7] introduce a method leveraging a Convolutional Neural Network (CNN) for initial
feature extraction and a transformer encoder for modeling global context. The model, trained
with Connectionist Temporal Classification (CTC) loss, operates as an encoder-only architecture,
enhancing both speed and performance over traditional encoder-decoder systems. The CNN ex-

CHAPTER 2. BACKGROUND 33

tracts local patterns while the transformer encoder, captures structural and spatial relationships
in mathematical expressions through multi-head self-attention. The final CTC-based decoding
step generates LATEX sequences by collapsing repeated symbols and removing blanks, They out-
perform the previous state-of-the-art techniques on typeset formula datasets, including IBEM [8]
and Im2Latex-100k [29].

A limitation of encoder-decoder models is the interpretibility of their results. Error diagnosis in
these models is challenging due to the lack of a direct correspondence between the input (image
regions or strokes) and the symbols and relationships produced in an output LATEX string or SLT: the
exact correspondence between input primitives (pixels, CCs, or strokes) and the output is unknown.
Hence, there is no way to identify errors at the input primitive level.

Relation to our work. Encoder-decoder models have inspired aspects of our approach to parsing
mathematical formulas. Specifically, their ability to model complex, sequential dependencies us-
ing attention mechanisms and hierarchical representations aligns closely with the needs of parsing
tasks. Building on these principles, we plan to incorporate self-attention mechanisms inspired by
transformer-based encoder-decoder models into our parsing frameworks. This integration aims to
enhance the contextual representation of symbols and relationships, improving both segmentation
and classification.

Graph-based Models. Representing mathematical formulas as graphs or trees is more natural
than images or one-dimensional strings. For example, LATEX expresses formulas as a type of SLT
with font annotations. Mathematical expression recognition can alternatively be posed as filtering a
graph to produce a maximum score or minimum cost spanning tree (MST) representing symbols and
their associated spatial relationships. Eto et al. [39] were the first to take this approach, creating
a graph with symbol nodes containing alternative labels, and candidate spatial relationships on
edges with associated costs. Formula structure was obtained from extracting a minimum spanning
tree amongst the relationship edges, along with minimizing a second measure of cost for the global
formula structure.

For graph-based parsing, an input graph defined by a complete graph connecting all primitives is
natural. However, this leads to lots of computation, and makes statistical learning tasks challenging
due to input spaces with high variance in features: this motivates reducing variance through strategic
pruning of input graph edges. Line-of-sight (LOS) graphs select edges where strokes in a handwritten
formula or connected components in an image are mutually visible [52, 71]. Systems such as Hu
et al. [50], LPGA [71], and QD-GGA [72] use this LOS input graph constraint, and select the
final interpretation as a directed Maximum Spanning Tree (MST). QD-GGA [72] extracts formula

CHAPTER 2. BACKGROUND 34

structure using an MST over detected symbols, extending previous approaches [71,119] by adding a
multi-task learning (MTL) framework, and graph-based attention used to define visible primitives
in images used to generate visual features for classification. QD-GGA uses Edmond’s arborescence
algorithm [38] to obtain a directed Maximum Spanning Tree (MST) between detected symbols,
maximizing the sum of spatial relationship classification probabilities obtained from an end-to-end
CNN network with attention. Using directed MSTs allows many invalid interpretations to be pruned,
as the output graph is a rooted directed tree (as SLTs are).

The use of graph neural networks with attention has been seeing more use in math parsing to
capture context between primitives using graph edges directly. For instance, Peng et al. [97] use a
gated graph neural network (GGNN) in the encoder stage as a message passing model to encode
CNN features with visual relationships in the LOS graph. Wu et al. [137] use GNN-GNN encoder-
decoder (modified Graph Attention Network [129] encoder, modified Graph Convolution Network
[56] decoder) to utilize graph context. Tang et al. [123] aims to learn structural relationships
by aggregating node and edge features using a Graph Attention Network to produce SLTs by
simultaneous node and edge classification, instead of the sequence representation used for encoder-
decoder models. They produce the output SLT by filtering ‘Background’ nodes and ‘No-Relation’
edges. Note the contrast with the use of Edmonds’ algorithm in QD-GGA and LGAP, where all
primitives are assumed to belong to a valid symbol, and an MST algorithm selects directed edges
between symbols obtained after merging primitives predicted to belong to the same symbol to
produce an SLT.

Xie and Mouchère [139] present a novel stroke-level graph labeling approach for handwritten math-
ematical expression recognition using an edge-weighted graph attention network (EGAT). This
method builds a graph representation of handwritten expressions where nodes represent individ-
ual strokes and edges capture their spatial and temporal relationships. Unlike encoder-decoder
architectures, this end-to-end model directly extracts features from strokes using a graph embed-
ding network and refines node and edge attributes through EGAT, effectively capturing structural
dependencies. This approach demonstrates improved accuracy in both stroke classification and re-
lation prediction on CROHME 2023 [140] dataset without pre-training. Building on this, the same
authors extend their model to incorporate both local and global context through a stroke-level
Graph-to-Graph Modeling framework using a master node architecture (GGM-EGAT) [141]. Their
approach integrates node and edge embeddings using an edge-weighted attention mechanism that
dynamically includes edge features during message passing and feature aggregation. The attention
mechanism jointly updates node and edge representations, with a message concatenation step that
reinforces mutual dependency between connected elements. The global variant further introduces a

CHAPTER 2. BACKGROUND 35

virtual master node to facilitate long-range interactions, improving structure recognition accuracy
on complex handwritten expressions.

Graph-based parsing is more natural for mathematical expressions. Unlike encoder-decoder models,
the mapping between the input and the output can be obtained from labels assigned in the output
to the nodes (strokes or connected components) and edges provided in the input [155]. Error
metrics at the symbol and primitive levels for segmentation, symbol classification, and relation
classification can be computed directly from the labeled output graphs. Also, like encoder-decoder
models, these techniques do not require expression grammars, requiring only a vocabulary of symbol
and relationship types. However, these models, although fast with easier interpretability, have not
been able to match the accuracy of encoder-decoder models. Possible reasons may include a lack of
global context, attention, and spatial information in the current models.

Relation to our work. In our work, the Line-of-Sight Graph Attention Parser (LGAP) formulates
the problem of parsing mathematical formulas as a graph search problem. Input diagrams are
represented as Line-of-Sight (LOS) graphs, where nodes correspond to visual primitives (e.g., strokes,
connected components, or characters), and edges represent potential spatial relationships between
these primitives and merge edges. By leveraging CNNs and Graph Attention Networks (GATs), the
model classifies segmentations, node types (symbols) and edge labels (spatial relationships).

The parsing process involves reducing the LOS graph to a Symbol Layout Tree (SLT) by retaining
the most probable edges and their associated classifications. This is achieved using Edmonds’
algorithm, which extracts a Maximum Spanning Tree (MST) from the LOS graph by maximizing
relationship probability distributions. The MST construction ensures that the resulting graph is
rooted and directed, representing the correct hierarchical structure of the expression.

Our approach captures both local and global dependencies through graph-based modeling, combin-
ing the strengths of spatial relationships encoded in LOS graphs with the contextual representation
power of GATs. This integration enables accurate classification of nodes and edges while reduc-
ing the complexity of graph search, resulting in interpretable and efficient parsing of mathematical
formulas.

Summary and Baseline Selection. For final comparisons in our evaluation of mathematical
formula parsing, we select representative baseline systems across both handwritten and typeset
domains, chosen for their performance, relevance, and methodological diversity. On the CROHME
2019 benchmark for handwritten expressions, we include USTC-iFLYTEK [73] and ICAL [170]
as strong encoder-decoder baselines, along with the top-performing rule-based systems such as

CHAPTER 2. BACKGROUND 36

MyScript and Samsung [73]. We also compare against QD-GGA [72], as we build upon this model.
Likewise, we include other GNN based models, including GGM-EGAT [141], which incorporates
joint edge-aware attention with global context propagation via a master node. These systems
provide coverage of both symbolic sequence generation and node-edge classification paradigms. On
the Im2LaTeX-100K dataset for typeset formula recognition, we compare against a range of encoder-
decoder models including MathNet [110], and EDPA [69], selected for their state-of-the-art BLEU
and image-level accuracy. We also include a GNN-based model—Im2Latex-GNN [97] to situate our
graph-based EGATv2 model within the broader landscape. These baselines were selected to test
scientific hypotheses concerning model interpretability, data efficiency, structural recognition, and
the tradeoffs between symbolic sequence decoding and graph-based structural prediction.

2.2.2 Chemical diagram parsing

We begin by surveying approaches to parsing molecular structure, categorizing them into (1) rule-
based systems, and (2) neural-based systems. For neural-based systems, we further divide these into
methods that produce string representations of structure (e.g., SELFIES [57], DeepSMILES [91],
or InChI [47, 48]) and methods that produce graph representations of structure. We conclude by
comparing and contrasting previous work with the ChemScraper parsers.

Rule-Based Parsers. The earliest parser for chemical diagrams in printed documents we know of
is a rule-based parser by Ray et al. from the late 1950’s [104]. This approach first detected atoms
in scanned document images, and then connections between atoms were identified in the regions
between atoms. connections for atoms were used to determine the type of bonds, which worked well
for common compounds.

An important later development was the creation of the Kekulé system [78]. Kekulé adds additional
pre-processing and improved visual detection of bond types over previous methods. Kekulé used
thinning and vectorization of raster scans to eliminate variations in bond lines and characters, and
ensured that a consistent set of characters and lines were recovered. Once a connection between a
pair of atoms was established, the system visually detected the bond type instead of using chemical
rules as Ray et al. did. In the same period, CLiDE [53] added the use of connected component
analysis in disconnected bond groups to identify bond types. The final adjacency matrix for structure
was created similar to Kekulé. Another system by Comelli et al. [26] used additional processing to
identify charges as subscripts or superscripts attached to atoms.

A still-popular open-source system extending the rules of CLiDE and Kekulé is OSRA by Filipov

CHAPTER 2. BACKGROUND 37

et al. [41]. OSRA refined processing of raster images generated from born-digital documents, which
tend to have clearly rendered text lines, characters, and graphics. A similar system is MolRec [108],
which uses horizontal and vertical grouping to detect connected atoms, their charge, and stereo-
chemical information. The more recent CSR system [19] also uses rule-based graphical processing
to output SMILES representations for molecules, using the OpenBabel [92] toolkit to generate a
valid connectivity table.

Relation to our work. Our MST-based approach builds upon traditional rule-based systems, em-
ploying geometric rules and constraints to ensure chemically valid parsing. The process starts with
constructing an MST using proximity and angular constraints to connect primitives. Transitioning
to the visual graph involves refining edges to handle over-segmentation and disconnected compo-
nents. In the tokenized visual graph stage, primitives are grouped into symbols like atom labels
and bond types using rules for line lengths, character placements, and stereochemistry detection.
Finally, semantic analysis converts the tokenized visual graph into a molecular graph, identifying
hidden elements (e.g., implicit carbon atoms) and mapping named structures (e.g., "NO2") to their
subgraphs.

This rule-driven pipeline ensures robust parsing while maintaining interpretability. To handle diverse
diagram styles, we use the parser to generate ground truth data for training neural network-based
visual parsers, enabling improved generalization and accuracy across varied molecular diagrams.

Neural Networks.

String Output. Recent advances in neural networks have proven effective for parsing chemical
diagrams. For example, Staker et al. [117] use an end-to-end model for extracting molecular diagrams
from documents and converting them into SMILES strings. For diagram extraction, they used a
U-Net [105] to segment diagrams, which were then passed through an attention-based encoder
network [128] to generate a SMILES string representing molecular structure from the segmented
image.

DECIMER [103] also uses an encoder-decoder model for extracting molecular structure from raster
images. In their work they explored using different structure representations, including SMILES,
DeepSMILES, and SELFIES. They found that SELFIES produced stronger results because of the
additional information encoded in comparison with SMILES strings. Rajan et al. present an im-
proved encoder-decoder model [102] for recognizing hand-drawn chemical structures. The model
integrates a CNN encoder with a transformer decoder to convert images into SMILES strings.
Synthetic datasets were generated using the RanDepict toolkit [16] to mimic hand-drawn styles,

CHAPTER 2. BACKGROUND 38

enabling training on a diverse array of molecular representations. This enhanced DECIMER archi-
tecture improves robustness against variations in handwriting styles, line thickness, and background
noise, achieving 73.25% accuracy and a Tanimoto similarity of 0.94 on the DECIMER Hand-Drawn
dataset.

Additional encoder-decoder parsers include IMG2SMI by Campos et al. [20] which uses a Resnet-
101 [45] backbone to extract image features. Li et al. [64] modified a TNT vision transformer
encoder [43] by adding an additional decoder. This use of a vision transformer was made possible by
the BMS (Bristol–Myers–Squibb) dataset [1] released by Kaggle, which provided a larger baseline
for the conversion of molecule images to InChI (International Chemical Identifier names). The
training dataset used by Li et al. contained 4 million molecule images. Similarly, SwinOCSR by
Xu et al. [146] used the Swin transformer to encode image features and another transformer-based
decoder to generate DeepSMILES, and used a focal loss to address the token imbalance problem in
text representations of molecular diagrams.

MPOCSR [65] introduces a multi-path Vision Transformer (MPViT) [61] as the backbone for fea-
ture extraction and combines it with a transformer-based encoder-decoder architecture to generate
SMILES sequences. The multi-path design integrates local features from convolutions with global in-
formation from the transformer, improving the representation of both coarse and fine-grained image
details. To handle the long-tail distribution of chemical elements in datasets, the model employs a
class-balanced (CB) loss function, ensuring improved predictions for rare elements like ‘Br’ and ‘Cl’.
The training dataset consists of 2 million molecule images, including Markush and non-Markush
structures, generated using tools like CDK and Randepict [16]. The MPOCSR achieves superior per-
formance with an accuracy of 90.95%, outperforming previous models such as Image2SMILES [55],
DECIMER-V2 [103], and SwinOCSR [146].

Graph Output. String representations of molecular structure lack direct geometric representation
between input objects (e.g., atoms and bonds) and the output strings, and models trained upon
them require extensive training data [79]. In recent years, molecular diagram parsers that combine
rule-based and neural-based approaches and generate graph representations have emerged. These
methods usually employ a graph decoder or graph construction algorithm.

MolScribe [100] uses a SWIN transformer to encode molecular images and a graph decoder consisting
of a 6-layer transformer to jointly predict atoms, bonds, and layouts, yielding a 2D molecular
graph structure. They also incorporate rule-based constraints for chirality (i.e., 3D topology) and
algorithms to expand abbreviations.

CHAPTER 2. BACKGROUND 39

MolGrapher [79] is another method employing a graph-based output representation. It utilizes a
ResNet-18 backbone to locate atoms, and constructs a supergraph incorporating all feasible atoms
and bonds as nodes, which is then constrained. Subsequently, a Graph Neural Network (GNN) is
applied to the supergraph, accompanied by external Optical Character Recognition (OCR) for node
classification. Both these systems utilize multiple data augmentation strategies, including diverse
rendering parameters, such as font, bond width, bond length, and random transformations of atom
groups, bonds, abbreviations, and R-groups (i.e., abbreviations for ‘rest of molecule’) to bolster
model robustness.

Likewise, Yoo et al. [149] and OCMR [134] produce graph-based outputs directly from molecular
images. Yoo et al. [149] leverage a ResNet-34 backbone, followed by a Transformer encoder equipped
with auxiliary atom number and label classifiers. A transformer graph decoder with self-attention
mechanisms is used for bonds. In contrast, Wang et al. [134] employ multiple neural network models
for different parsing steps. These steps include key-point detection, character detection, abbrevi-
ation recognition, atomic group reconstruction, atom and bond prediction. A graph construction
algorithm is subsequently applied to the outputs.

Chen et al. [24] introduce MolNexTR, a model combining ConvNext [68] and Vision Transformer
(ViT) [35] in a dual-stream encoder for molecular structure recognition. The encoder captures
local atom-level features and long-range interatomic relationships. A two-stage decoder predicts
atoms and bonds to construct molecular graphs, while post-processing integrates chemical rules for
stereochemistry and abbreviation expansions, ensuring valid SMILES outputs. They use diverse
augmentation strategies (e.g., rendering, image perturbation, and contamination algorithms) and
integrate chemical knowledge. They achieve state-of-the-art results on the standard datasets, in-
cluding USPTO, CLEF, UOB, JPO, Staker, ACS, showcasing its robustness to diverse molecular
styles and noise.

These graph-based methods offer improved interpretability and robustness, and represent chemical
structures naturally. In particular, atom-level alignment with input images facilitates easy exami-
nation, geometric reasoning, and correction of predicted results.

Relation to our work. Our approach bridges born-digital and visual parsers by representing in-
puts and outputs consistently as graphs. For the visual parser, we utilize a CNN-based segmentation-
aware network that processes molecular diagrams as graphs with visual primitives like lines and
characters as nodes, and spatial and relational connections as the edges. The network iteratively
classifies nodes and edges to construct the tokenized visual graph, which is converted to a molecular
graph as output. Unlike string-based methods, the graph representation provides a direct mapping

CHAPTER 2. BACKGROUND 40

between input primitives and predicted chemical structures, facilitating geometric reasoning, error
correction, and a more natural representation of molecular diagrams.

Summary and Baseline Selection. For final evaluation, we compare our chemical diagram parser
against a broad spectrum of systems spanning rule-based, neural network-based, and graph-based
approaches. On the USPTO synthetic dataset, we include rule-based systems such as MolVec [41],
OSRA [41], and Imago [19], which historically achieve high SMILES match accuracy and serve as
strong traditional baselines. Among neural network models, we benchmark against DECIMER [102,
103] and Img2Mol [117], both representative of modern encoder-decoder approaches that convert
diagram images to SMILES strings. These baselines are chosen for their accessibility and widespread
adoption in open-source chemical structure recognition pipelines.

From the graph-based category, we include SwinOCSR [146], MolScribe [100], and MolGrapher [79],
which represent state-of-the-art performance on benchmark datasets and produce explicit graph out-
puts. These systems were selected due to their alignment with our methodological goals: structure-
level prediction, support for complex layout and stereochemistry, and interpretability of graph out-
puts. In addition, OCMR [134] is included as a hybrid model using multiple neural components and
a graph construction algorithm. Our evaluations on both synthetic (USPTO) and scanned (CLEF-
2012) datasets focus on exact SMILES accuracy and data efficiency, reflecting both structural fidelity
and generalization under limited supervision. The selected baselines allow for a comprehensive com-
parison across accuracy, architectural design, and sample efficiency dimensions.

2.3 Techniques Relevant to Parsing Models

Parsing models for mathematical and chemical diagrams leverage a variety of techniques to enhance
their accuracy, efficiency, and interpretability. These methods address challenges such as learning
from multi-task objectives, incorporating global context, and effectively utilizing edge features and
attention mechanisms in graph-based representations. Additionally, innovative approaches like local
graph constraints, modified self-attention for transformers, and optimized loss functions contribute
to improved performance. In this section, we discuss existing works that provide the foundation for
these techniques, highlight their relevance to parsing tasks, and outline how our work builds upon
or diverges from these methods.

CHAPTER 2. BACKGROUND 41

2.3.1 Multi-task Learning and Interaction

Multi-task learning (MTL) is a machine learning paradigm where multiple related tasks are learned
simultaneously, allowing the model to leverage shared representations across tasks. This approach
has been shown to improve generalization and reduce overfitting by utilizing shared knowledge
between tasks [21, 106]. MTL can be seen as a form of inductive transfer, where knowledge gained
from auxiliary tasks provides a beneficial inductive bias. This bias encourages the model to favor
hypotheses that can effectively address multiple tasks simultaneously. For instance, introducing
sparsity through techniques like ℓ1 regularization is a common example of inductive bias. In MTL,
the auxiliary tasks serve as the source of this bias, guiding the model toward solutions that not only
optimize the primary task but also generalize effectively across related tasks [106].

MTL enhances model effectiveness by leveraging various mechanisms. It serves as an indirect form
of data augmentation, using multiple tasks to reduce the impact of noise and improve generalization.
By combining information from related tasks, MTL helps the model prioritize important features,
especially in noisy or high-dimensional data. It also allows the model to benefit from complemen-
tary tasks, where features that are easy to learn in one task can support another task’s learning.
Additionally, MTL encourages the development of shared representations that align with multiple
tasks, enabling better adaptability to new scenarios. Lastly, MTL reduces overfitting by introducing
constraints that limit the model’s tendency to adapt to noise in the data.

In MTL, hard parameter sharing involves sharing hidden layers among all tasks while maintain-
ing task-specific output layers, effectively reducing the risk of overfitting by encouraging a shared
representation across tasks [14, 21]. In contrast, soft parameter sharing [36, 147] assigns separate
models to each task and regularizes the distance between their parameters, promoting similarity
while allowing greater flexibility in task-specific learning.

Recent MTL approaches typically generate predictions for all tasks directly from the input in a single
processing cycle, either in parallel or sequentially. However, this approach often overlooks useful
relationships between tasks, such as the alignment of depth discontinuities with semantic edges,
potentially limiting performance improvements [142, 167]. To address this, newer methods employ
initial task predictions to refine outputs in subsequent steps. For example, Xu et al. [142] used spatial
attention to incorporate features from initial predictions into a residual for improving task outputs.
Zhang et al. [167] proposed a sequential prediction method, leveraging earlier task predictions to
refine features for other tasks iteratively. Building on this, later works employed recursive procedures
to propagate cross-task and task-specific patterns, focusing on affinity matrices of initial predictions

CHAPTER 2. BACKGROUND 42

rather than directly refining features [168]. MTI-Net [127] models task interactions across multiple
scales through three key components: a multi-scale multi-modal distillation unit that explicitly
models task interactions at each scale, a feature propagation module that transfers distilled task
information from lower to higher scales, and a feature aggregation unit that combines refined task
features across scales to produce final predictions. It demonstrates improved performance, reduced
memory usage, and fewer computations compared to single-task learning methods, as validated on
multi-task dense labeling datasets.

Relation to our work. Building on this foundation, we propose extending the MTL framework in
new directions to further enhance the interplay between subtasks. Specifically, we plan to integrate
self-attention mechanisms where classifications from the initial execution of the network are used
as inputs for subsequent iterations. This iterative refinement process allows the model to progres-
sively improve its predictions by learning from prior outputs. These enhancements are designed to
exploit the interdependencies between subtasks further, enabling the model to capture contextual
information and reduce ambiguities in parsing.

2.3.2 Local Constraints in Graph-Based Methods

In graph-based learning, incorporating local constraints has proven to be an effective strategy for
reducing computational complexity and enhancing interpretability. These constraints focus on lim-
iting the connections between nodes in a graph to those that are most relevant, improving the
graph’s sparsity and reducing noise. This paradigm has been explored across diverse applications,
such as molecular graph parsing, road network extraction, and subgraph learning.

MolGrapher [79] and MolScribe [100] leverage local constraints to improve molecular graph parsing
by limiting node connectivity based on domain-specific properties. For instance, nodes representing
atoms and bonds are connected only if they meet spatial adjacency criteria, ensuring that the
resulting graphs remain chemically valid. This approach allows the models to focus on meaningful
local interactions, such as bond angles or connections, while ignoring irrelevant global connections.

Bahl et al. [10] apply local constraints to road network extraction by utilizing k-nearest neighbor
graphs. By connecting each node to its k closest neighbors, the model captures the local structure of
road networks, such as intersections and curves, while maintaining sparsity. This method effectively
reduces the number of edges in the graph, leading to faster computation and better generalization.

Li et al. [63] propose sparse subgraph learning methods, which introduce local constraints by dynam-

CHAPTER 2. BACKGROUND 43

ically pruning edges during training. This ensures that the graph retains only the most important
connections, balancing the trade-off between sparsity and informativeness. Such techniques are
particularly useful in high-dimensional datasets, where densely connected graphs can be computa-
tionally prohibitive and prone to overfitting.

Relation to our work. In parsing mathematical and chemical diagrams, local constraints are
crucial for constructing sparse yet informative graphs. In our Line-of-Sight Graph Attention Parser
(LGAP) [114], we apply LOS constraints [52, 71] to pruned edges from complete graph. LOS
graphs include edges only between mutually visible strokes in handwritten formulas or connected
components in images. This reduces computational complexity and improves statistical learning by
lowering feature variance in the input space.

Similarly, in our Line-of-Sight Chemical Graph Parser (LCGP) [112], used for molecular diagram
parsing, we restrict each primitive’s LOS connections to its k = 6 nearest neighbors. This ac-
commodates the four-bond constraint in molecular structures—ensuring that at most four lines or
characters represent bonds—while accounting for potential over-segmentation of visual primitives,
such as fragmented bond lines or characters. This approach enables the model to focus on rele-
vant local interactions and effectively handle over-segmented inputs, ensuring both computational
efficiency and improved accuracy.

2.3.3 Use of Edge Features in Graph Parsing

In graph-based parsing, the inclusion of edge features has emerged as a crucial advancement for
improving model performance. Edge features provide additional contextual information about the
relationships between nodes, enhancing the model’s ability to capture structural dependencies within
the graph. This idea has been effectively integrated into several models [33,42,139,148].

Graphormer [148] incorporates edge features directly into self-attention layers using an edge encod-
ing mechanism. This mechanism integrates the features of edges along the shortest path between
nodes, represented mathematically as:

Aij =
(hiWQ)(hjWK)T√

d
+ bϕ(vi,vj) + cij ,

cij =
1

N

N∑
n=1

xen
(
wE
n

)T
,

CHAPTER 2. BACKGROUND 44

where: hi and hj are the hidden state vectors of nodes i and j, respectively, WQ and WK are
learnable weight matrices for the query and key transformations,

√
d is a scaling factor, where d is

the dimensionality of the query and key vectors, and bϕ(vi,vj) is a bias term that encodes the shortest
path distance ϕ(vi, vj) between nodes vi and vj , providing structural information.

The term cij aggregates the weighted edge features along the shortest path SPij as follows:

cij =
1

N

N∑
n=1

xen
(
wE
n

)T
,

Here, N is the total number of edges along the shortest path SPij , xen is the feature vector of
the n-th edge en in SPij , wE

n ∈ RdE is the learnable embedding vector for the n-th edge feature,
and dE is the dimensionality of the edge feature embedding. By encoding edge features using
this mechanism, Graphormer enhances attention weights with structural information, capturing
connectivity patterns and improving the graph representation for downstream tasks.

Relational Transformers (RT) [33] extend transformer architectures by conditioning attention mech-
anisms on edge vectors. Specifically, RT concatenates the edge vector eij with the node feature vec-
tors Q,K, V before performing linear transformations, effectively encoding the relationship between
nodes directly into the attention computation. This approach not only improves performance but
also introduces a multi-task interaction between nodes and edges, leveraging edge features to refine
node embeddings.

Relation to our work. Building on this foundation, we propose enhancing our parsing models by
incorporating edge-specific attention mechanisms. These mechanisms will dynamically update edge
features during iterative passes, similar to nodes, refining the representation of relationships between
symbols and components. Additionally, we plan to introduce a bidirectional flow of information by
incorporating edge features into node representations and vice versa. This mutual exchange will
strengthen the interaction between edges and nodes within the MTL framework

2.3.4 Graph Attention Methods

Attention mechanisms have been instrumental in advancing graph-based parsing by enabling models
to dynamically focus on meaningful relationships between nodes. This subsection explores various
graph attention methods, from standard transformer-based approaches to graph-specific adapta-
tions, and their applications in parsing mathematical and chemical diagrams.

CHAPTER 2. BACKGROUND 45

Standard Graph Attention Networks. Graph Attention Networks (GATs) [129] extend the
traditional attention mechanism from transformer architectures to graph data. By dynamically
computing attention weights based on node features and graph connectivity, GATs allow nodes
to attend to their neighbors, effectively capturing local contextual relationships. This makes GATs
particularly suitable for graph-based parsing tasks, where local dependencies are crucial. GATv2 [17]
improves upon the original Graph Attention Network (GAT) by introducing a more expressive and
dynamic attention mechanism. In GAT, attention scores are computed using static weights, limiting
its ability to adapt to varying graph structures. GATv2 addresses this limitation by modifying the
computation of attention coefficients, making them a function of the target and source node features,
rather than the source features alone. This dynamic approach ensures that the attention mechanism
captures richer relationships between nodes.

Mathematically, GATv2 computes the attention coefficients as:

αij = softmaxj
(
aTσ (W · [hi ∥hj])

)
,

where hi and hj are the feature vectors of nodes i and j, W is a learnable weight matrix, a is a
learnable attention vector, σ is an activation function (e.g., LeakyReLU), and ∥ denotes concatena-
tion. This formulation ensures that the attention mechanism dynamically adapts to both the target
and source nodes’ features.

The dynamic nature of GATv2 allows it to better capture complex node relationships and adapt to
heterogeneous graph structures. Despite these enhancements, GATv2 retains the same computa-
tional efficiency as GAT, making it a powerful tool for tasks requiring flexible and expressive graph
representations.

Modified Self-Attention in Graph Transformers. Graph-structured data poses unique chal-
lenges for standard transformers due to its non-Euclidean nature, where structures lack a fixed order
and dimensionality [37]. To address this, graph transformers incorporate graph-specific inductive bi-
ases, such as node position and edge structural information, into the self-attention mechanism [115].
These biases can be categorized into local and global attention mechanisms, which adaptively encode
both fine-grained and high-level graph structures.

Graphormer [148] introduces centrality and spatial encodings into the attention computation to
capture graph structure. Centrality encoding quantifies node importance using in-degree and out-
degree, while spatial encoding integrates shortest path distances between nodes as a bias term in
self-attention. By avoiding traditional positional encodings, Graphormer enables adaptive atten-
tion based on graph-specific relationships, effectively encoding structural information. Centrality

CHAPTER 2. BACKGROUND 46

encoding captures the importance of a node based on its in-degree and out-degree:

h
(0)
i = xi + z−

deg−(vi)
+ z+

deg+(vi)
,

where xi is the initial node feature, and z−
deg−(vi)

and z+
deg+(vi)

are learnable parameters corresponding
to the in-degree and out-degree of node vi, respectively.

Spatial encoding integrates shortest path distances (SPD) between nodes as a bias term in the
self-attention mechanism:

Aij =
(hiWQ)(hjWK)T√

d
+ bϕ(vi,vj),

where hiWQ and hjWK are the query and key projections of nodes i and j, d is the dimensionality
of attention vectors, and bϕ(vi,vj) encodes the SPD between vi and vj .

The GTMGC [143] model adapts the standard transformer self-attention mechanism to molecular
graphs by introducing Molecule Structural Residual Self-Attention (MSRSA), which incorporates
adjacency matrices (A) and row-subtracted interatomic distance matrices (Drow-sub) as residual bi-
ases in the attention scores. The local attention component uses adjacency matrix information scaled
by a learnable parameter, ensuring local structural relationships are captured, while the spatial at-
tention component incorporates distance relevance by applying a bias based on Drow-sub, modulated
by another learnable parameter. The final attention computation combines these structural biases
with global attention to adaptively weigh nodes and edges in the graph. This modification enables
MSRSA to effectively model both local and global dependencies, making it particularly suited for
molecular graph parsing.

Relation to Our Work. In our work, we leverage Graph Attention Networks (GATs) [129] in
LGAP [114] to update node features using edge adjacency matrices. The aggregated features are
concatenated with the original features before passing through linear layers to improve feature
representation. Currently, LCGP does not employ graph attention mechanisms.

We propose to integrate GATv2 [17] and adapt the modified self-attention mechanism of graph
transformers to enhance both LGAP and LCGP. Specifically, we aim to utilize the self-attention
and cross-attention mechanisms from graph transformers within the MTL framework, enabling the
model to dynamically capture task-level interactions and learn the importance of tasks for each
other.

CHAPTER 2. BACKGROUND 47

2.4 Evaluation Metrics

Evaluating the performance of a parsing system for mathematical formulas and chemical diagrams
requires well-defined metrics that quantify the accuracy, completeness, and correctness of the gen-
erated outputs. These metrics are crucial in assessing both the structure and content of the parsed
diagrams, ensuring that the system not only recognizes the individual components but also correctly
captures the relationships between them.

In the context of mathematical formula parsing, evaluation typically involves measuring the accuracy
of the Symbol Layout Tree (SLT), which represents the hierarchical structure of the formula. Metrics
such as symbol recognition rates, spatial relationship detection, and overall structure accuracy
are used to gauge the system’s performance. For chemical diagram parsing, evaluation metrics
focus on the correctness of the molecular structure, often represented in formats like SMILES or
molecular graphs. The evaluation process may include string-based metrics, such as exact matches
or normalized distances, as well as graph-based methods that assess the accuracy of the atom and
bond relationships.

This section outlines the primary evaluation metrics used for both domains, including graph-based
methods, string-based methods, and other task-specific metrics that help to assess the accuracy
and reliability of the parsing systems. By employing these metrics, we can determine how well
the systems perform across different types of input, such as PDFs, raster images, and handwritten
strokes.

2.4.1 Graph-based Metrics (LgEval)

Evaluating the accuracy of parsed visual structures in both mathematical formulas and chemical
diagrams involves the use of graph-based metrics. The LgEval library4 [84,85], provides a framework
for comparing labeled graphs by examining how well the nodes (representing primitives or symbols)
and edges (representing relationships) align between the ground truth and the parser’s output. This
method enables a fine-grained analysis of recognition errors, allowing us to pinpoint mistakes in both
node labeling and relationship detection.

Labeled graphs defined over the same nodes with known input locations can be directly compared
using their adjacency matrix entries. Recognition errors are easily identified by differing labels

4https://gitlab.com/dprl/lgeval

https://gitlab.com/dprl/lgeval

CHAPTER 2. BACKGROUND 48

in adjacency matrix cells, and located within an input image using the node locations. With a
particular bottom-up representation for grouping nodes (i.e., segmentation), errors may be identified
even when node groupings disagree, or nodes are missing in one or the other graph [157].

Handwritten math formula recognition was evaluated in this manner for the early CROHME com-
petitions, with ground truth and recognizer outputs defined over the same handwritten strokes [85].
The LgEval library was used to compute metrics and visualize errors [84, 85, 113]. One can view
all errors using the confHist tool including missing nodes and relationships. Repeated errors for
nodes, edges, and subgraphs are compiled in histograms that may be explored in HTML pages.

For example, in mathematical formula parsing, the nodes in the graph represent individual symbols,
and the edges represent spatial relationships such as superscripts, subscripts, or horizontal adjacency.
In chemical diagram parsing, the nodes represent atoms or bond segments, and the edges represent
the connections between these elements, such as bond types (single, double, triple, etc.) or spatial
connections between visual elements in a tokenized graph.

Evaluation Process: The evaluation process begins by assigning unique identifiers to the nodes
in both the ground truth and parser output graphs. In mathematical formula recognition, these
identifiers may correspond to the connected components (CCs) or strokes forming a symbol, while
in chemistry, the identifiers may correspond to atoms or bond segments in a molecule. Once the
nodes are aligned based on spatial overlap (for visual parsing) or direct matching (for structured
data), adjacency matrices are constructed for both the ground truth and parser output.

Each row and column of an adjacency matrix corresponds to a node in the graph. Diagonal entries
represent node labels (e.g., the type of symbol in math, or the atom in chemistry), while off-
diagonal entries represent the edges between nodes (e.g., spatial relationships in math, or bond
types in chemistry). Differences between the adjacency matrices of the ground truth and the parser
output highlight recognition errors. For example, a mislabeled node (such as a misclassified symbol
or atom - e.g., ‘two’ misclassified as ‘z’ shown in Figure 2.7) would appear as a mismatch in a
diagonal entry, while an incorrect or missing spatial relationship (e.g., ‘Horizontal’ misclassified as
‘Rsub’ in Figure 2.7) or bond type would appear as an off-diagonal mismatch.

For each graph, the evaluation metrics typically include:

• Unlabeled Structure Accuracy: This measures whether the predicted graph has the cor-
rect structure without considering the labels of the nodes and edges. It ensures that the
relationships between the primitives are captured accurately in terms of their connections. In

CHAPTER 2. BACKGROUND 49

fractionalLine
0

z
(two)
1

UPPER

z
2

UNDER

l
(i)
3

RSUB
dot
(i)
4

_
(RSUB)

COMMA
5PUNC

y
6

RSUB
(HORIZONTAL)

UPPER
(i)

_
(i)

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Ground Truth

z

z.l,y

1

Predicted

Primitive level graph (with errors)

Figure 2.7: An example of a primitive-level graph representation highlighting errors in the predicted
graph (right) compared to the ground truth (left) for a mathematical expression. The predicted
graph shows incorrect or missing relationships (red edges) and mislabeled nodes (red nodes). Labels
in brackets represent the ground truth, while underscores indicate missing elements or undefined
labels.

Figure 2.7, the structure is incorrect, as there are missing edge between ‘z’ and upper part of
‘i’, due to over-segmentation error in ‘i’.

• Labeled Structure Accuracy: This metric extends the unlabeled structure accuracy by
evaluating whether the nodes and edges are correctly classified. For instance, in math, this
means that the symbols are recognized correctly, and their spatial relationships (e.g., subscript,
superscript) are accurate. In chemistry, this involves verifying that the atoms and bonds are
labeled correctly in the tokenized visual graph or the molecular graph. In Figure 2.7, there
are incorrect node and edge labels shown in red.

• Detection F-scores: This measures how well the system detects symbols (math) or atoms
and bonds (chemistry) by comparing the number of correctly detected components to the total

CHAPTER 2. BACKGROUND 50

number of components in the ground truth. The F-score is the harmonic mean of precision
and recall, ensuring a balance between precision and recall. In Figure 2.7, we miss detecting
the ‘RSUB’ edge between ‘z’ and upper part of ‘i’, reducing recall.

• Detection + Classification F-scores: This combines detection with classification. For a
component to be considered correct, it must not only be detected but also classified accurately.
This applies to both symbols and spatial relationships in math, and atoms and bond types in
chemistry.

In chemical diagram parsing, this method is applied to both tokenized visual graphs and molecular
graphs. For tokenized visual graphs, the relationships might represent binary connections between
atoms and bonds, while for molecular graphs, the relationships represent specific bond types (e.g.,
single, double, or triple bonds). In mathematical formula parsing, the relationships are spatial
relations like superscripts, subscripts, or horizontal adjacency.

A key difference between the two domains is how the relationships are interpreted. In math, spatial
relationships between symbols play a central role in defining the formula’s structure, whereas in
chemistry, the connections between atoms and bonds define the molecular structure. However, both
domains share the same underlying graph-based evaluation approach, making the LgEval framework
versatile for assessing different types of visual structures.

By utilizing the LgEval library, we are able to carry out a comprehensive and detailed analysis of
the recognition system’s performance, identifying where errors occur and how they affect the overall
accuracy of the parsing process.

2.4.2 String-based Metrics

In addition to graph-based metrics, string-based metrics are commonly used to evaluate how well
systems translate visual or handwritten input into structured textual representations like LATEX (for
maths) or SMILES (for chemistry).

LaTeX Match

For mathematical formulas, the exact LaTeX match is a key metric. This metric measures the
percentage of formulas where the automatically generated LATEX code exactly matches the ground
truth LATEX representation. The comparison is strict, meaning even minor differences in formatting

CHAPTER 2. BACKGROUND 51

(such as missing braces, incorrect subscript or superscript placement, or small spacing errors) will
result in a mismatch.

Limitations of LaTeX Match: A key limitation of the LaTeX match metric is that the same
formula can often be represented by multiple equivalent LaTeX strings. For instance, variations in
spacing, the use of optional braces, or alternative ways of expressing subscripts and superscripts can
result in different LaTeX code that still represents the same visual structure. Despite this, only an
exact match will count as correct in this metric, making it overly rigid in some cases. Additionally,
LaTeX match does not provide fine-grained feedback like graph-based metrics. It only indicates
whether the entire formula was generated correctly or not, without giving insight into which specific
parts of the formula (symbols or spatial relationships) were misrecognized.

SMILES Match and Normalized Levenshtein Distance

SMILES strings are compared by (1) the percentage of exact matches, and (2) the inverse of the
average Normalized Levenshtein Distance (NLD). The levenshtein distance is the minimum number
of insertions, deletions, or substitutions needed to convert one SMILES string to the other [111]. The
distance is normalized to [0, 1] using the minimum/maximum possible edits based on the SMILES
string lengths. The inverse of the average NLD is given by subtracting the average NLD from 1,
giving a similarity in [0, 1], with 1 produced for identical SMILES strings.

Limitations.

Molecular formulas are naturally represented as graphs, where atoms and bonds have well-defined
relationships and spatial arrangements. In contrast, SMILES representations are linear character
strings describing graph structure. These SMILES characters have no direct connection with the
atoms and bonds present in an input image (i.e., where atoms appear is not represented).

Levenshtein distances for SMILES strings may correspond to multiple operation sequences of the
same length. In this case, Levenshtein-based SMILES metrics do not uniquely identify which parts
of the input are incorrectly recognized. It is thus tempting to instead use graph edit distances
over molecule structure graphs directly, with operations that insert/delete/relabel nodes and edges.
Unfortunately, this can also result in ambiguous minimal edit sequences, and errors may again not
be uniquely identified.

The main issue here is a missing correspondence between input image regions and the nodes/edges
in a molecular structure graph representation. If molecular structure graphs include input image

CHAPTER 2. BACKGROUND 52

locations (e.g., bounding boxes) their nodes may be aligned spatially and then compared using adja-
cency matrices. We describe the first application of this approach to chemical structure recognition
evaluation next.

These string-based metrics are essential for assessing the accuracy and quality of systems that
convert graphical or handwritten input into structured representations like LaTeX or SMILES.
However, they are limited by their rigid nature and inability to provide detailed insights into specific
recognition errors.

2.5 Summary

In this chapter, we explored the foundational elements required for understanding the parsing of
both mathematical formulas and chemical diagrams. We first discussed the different representations
and input types, including born-digital PDFs, typeset images, and handwritten strokes. Each input
source brings unique challenges in extracting visual primitives, such as connected components (CCs),
strokes, and lines, and forming them into structured graph representations. We introduced the
notion of primitive-level graphs and how they differ between math and chemistry in terms of nodes
and edges, as well as the construction of symbol layout trees (SLTs) for math and molecular graphs
for chemistry.

We also outlined the evaluation metrics crucial for assessing the effectiveness of our parsing models.
Graph-based metrics, using tools like LgEval, provide a fine-grained approach to evaluating struc-
tural and relational accuracy. In contrast, string-based metrics like LaTeX and SMILES provide
quick, albeit limited, evaluations based on exact matches. These string-based methods, however,
suffer from limitations in their ability to capture structural nuances, as discussed for both mathemat-
ical and chemical outputs. We also reviewed related works in the fields of mathematical formula and
chemical diagram parsing, highlighting the evolution of techniques from syntactic and rule-based
methods to more modern graph-based and neural network approaches. These works provide the
foundation and context for our contributions, addressing limitations in existing models regarding
accuracy, speed, and interpretability. This chapter provides the necessary background for under-
standing the technical and methodological context in which the proposed research operates.

In the next chapter, we delve into the born-digital parsing of formulas and diagrams directly from
PDF symbols, leveraging the precise vector data available within PDFs to construct structured
representations without relying on OCR. This transition forms the backbone of our approach to

CHAPTER 2. BACKGROUND 53

extracting high-quality data efficiently from documents.

Chapter 3

Born-digital Parsing from PDF symbols

This chapter focuses on the born-digital parsing of mathematical formulas and chemical diagrams
from PDF files (ChemScraper [112]), utilizing vector-based information extracted directly from
PDF drawing commands without relying on OCR. PDF documents encode rich graphical content,
including symbols, lines, and other primitives, offering opportunities for precise and efficient ex-
traction. By leveraging these native PDF instructions, we achieve higher parsing accuracy and
efficiency compared to pixel-based methods. We were motivated to use PDF instructions by earlier
math formula recognition work by Baker et al. using a combination of PDF instructions and image
analysis [13]. In our approach, only PDF instructions are used, extracted by our SymbolScraper

tool [113] without image processing.

For mathematical formulas, the goal is to recognize isolated formulas by constructing their structure
as Symbol Layout Trees (SLTs), capturing the spatial arrangement of symbols such as superscripts,
subscripts, and horizontal alignments [156] as described in Chapter 2. The isolated formulas are
located using an existing tool–YOLOv8 [132] for formula detection, while precise symbol extraction,
including bounding box locations and character labels, is handled by SymbolScraper [113]. SLTs
provide a structured representation of formulas that can be converted into formats such as LATEX
or Presentation MathML. The challenge lies in accurately parsing complex formula structures with
a large and diverse symbol vocabulary, while preserving spatial relationships among symbols. Rec-
ognizing these structures requires robust parsing techniques to interpret symbol arrangements and
interactions effectively. To aid in diagnosing parsing errors and improving recognition accuracy, we
utilize tools that visualize recognition outputs and errors through the LgEval library [73,83,85]. This
library provides a convenient HTML-based visualization of recognition results, allowing for detailed

54

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 55

10 NICHOLAS M. KATZ AND PETER SARNAK

ν1(SO(odd)) = δ0, and it turns out that ν2(SO(odd)) = ν1(Sp). Note that Sp is
unique in having the density of ν1 vanish (in fact to second order) at s = 0. This
shows that the eigenvalues of a typical A in a large USp(2N) are repelled by 1.

We end this section by remarking that the same questions for the most reducible
of the compact symmetric spaces, T N = U(1)×U(1) . . .×U(1), have very different
answers. Note that T N with the measure dx1

2π
dx2
2π . . . dxN

2π corresponds to choosing
x1, x2, . . . xN independently at random (or if we think of these as matrices, then
we are choosing a random diagonal matrix). The local spacing statistics for these
have been much studied in the probability literature. It is well known [FE] that the
local spacings for this model approximate a Poisson process as N → ∞. The k-th
consecutive spacing measures converge to µk(T) = sk−1e−s ds/(k−1)! (note that µ1

has no repulsion at zero), while the limiting pair correlation R2(T) is simply the
density dx on R.

3. Function fields

One can get much insight into the source of the Montgomery Odlyzko Law by
considering its function field analogue. Replace the field of rational numbers Q
by a field k which is a finite extension of the field Fq(t) of rational functions in t
with coefficients in Fq, the finite field of q elements. In analogy with the Riemann
Zeta Function, Artin [AR] introduced a zeta function ζ(T, k). It is defined by the
product over all places v of k (see [WE2])

ζ(T, k) =
∏
v

(1− T deg(v))−1.(32)

One can also think of ζ(T, k) as the zeta function of a nonsingular curve C over
Fq whose field of functions is k. For example, let C/Fq be a plane curve given by
an equation

f(X1, X2, X3) = 0(33)

where f is nonsingular and homogeneous of some degree and has coefficients in Fq.
For each n ≥ 1 let Nn be the number of projective solutions to (33) in Fqn . The
zeta function of the field of functions k of C is the same as the zeta function of the
curve C over Fq which is defined as

ζ(T, C/Fq) = exp

(∞∑
n=1

NnT n

n

)
.(34)

This geometric point of view is very powerful. For example, the Riemann-Roch
Theorem on the curve C plays the role of the Poisson summation formula [SCH]
and shows that

ζ(T, C/Fq) =
P (T, C/Fq)

(1 − T) (1− qT)
(35)

where P ∈ Z[T] is of degree 2g, g being the genus of the curve C. It also gives
the functional equation P (T) = qgT 2gP (1/qT). The Riemann-Hypothesis for these
zeta functions, which was put forth and tested in many examples by Artin, asserts
that all the zeroes lie on |T | = 1/

√
q. This was proven by Weil. By now there

are several different proofs: Weil [WE3], [WE4], elementary proofs by Stepanov
[ST] and Bombieri [BO], and proofs by Deligne [DE] which have the advantage of
applying much more generally. One reason for being able to proceed in the function

(a)

10 NICHOLAS M. KATZ AND PETER SARNAK

ν1(SO(odd)) = δ0, and it turns out that ν2(SO(odd)) = ν1(Sp). Note that Sp is
unique in having the density of ν1 vanish (in fact to second order) at s = 0. This
shows that the eigenvalues of a typical A in a large USp(2N) are repelled by 1.

We end this section by remarking that the same questions for the most reducible
of the compact symmetric spaces, T N = U(1)×U(1) . . .×U(1), have very different
answers. Note that T N with the measure dx1

2π
dx2
2π . . . dxN

2π corresponds to choosing
x1, x2, . . . xN independently at random (or if we think of these as matrices, then
we are choosing a random diagonal matrix). The local spacing statistics for these
have been much studied in the probability literature. It is well known [FE] that the
local spacings for this model approximate a Poisson process as N → ∞. The k-th
consecutive spacing measures converge to µk(T) = sk−1e−s ds/(k−1)! (note that µ1

has no repulsion at zero), while the limiting pair correlation R2(T) is simply the
density dx on R.

3. Function fields

One can get much insight into the source of the Montgomery Odlyzko Law by
considering its function field analogue. Replace the field of rational numbers Q
by a field k which is a finite extension of the field Fq(t) of rational functions in t
with coefficients in Fq, the finite field of q elements. In analogy with the Riemann
Zeta Function, Artin [AR] introduced a zeta function ζ(T, k). It is defined by the
product over all places v of k (see [WE2])

ζ(T, k) =
∏
v

(1− T deg(v))−1.(32)

One can also think of ζ(T, k) as the zeta function of a nonsingular curve C over
Fq whose field of functions is k. For example, let C/Fq be a plane curve given by
an equation

f(X1, X2, X3) = 0(33)

where f is nonsingular and homogeneous of some degree and has coefficients in Fq.
For each n ≥ 1 let Nn be the number of projective solutions to (33) in Fqn . The
zeta function of the field of functions k of C is the same as the zeta function of the
curve C over Fq which is defined as

ζ(T, C/Fq) = exp

(∞∑
n=1

NnT n

n

)
.(34)

This geometric point of view is very powerful. For example, the Riemann-Roch
Theorem on the curve C plays the role of the Poisson summation formula [SCH]
and shows that

ζ(T, C/Fq) =
P (T, C/Fq)

(1 − T) (1− qT)
(35)

where P ∈ Z[T] is of degree 2g, g being the genus of the curve C. It also gives
the functional equation P (T) = qgT 2gP (1/qT). The Riemann-Hypothesis for these
zeta functions, which was put forth and tested in many examples by Artin, asserts
that all the zeroes lie on |T | = 1/

√
q. This was proven by Weil. By now there

are several different proofs: Weil [WE3], [WE4], elementary proofs by Stepanov
[ST] and Bombieri [BO], and proofs by Deligne [DE] which have the advantage of
applying much more generally. One reason for being able to proceed in the function

(b)

(c) (d)

Figure 3.1: Detection of symbols and expressions. The PDF page shown in (a) contains encoded
symbols shown in (b). (c) shows formula regions identified in the rendered page image, and (d)
shows symbols located in each formula region.

examination of structure recognition errors organized by ground truth subgraphs. For example,
symbol segmentation, symbol classification, and relationship classification errors are automatically
highlighted and linked to specific input formula images in context, enabling targeted analysis and
refinement of the recognition process.

In the case of chemical diagrams, current molecule structure recognizers generally parse images from
pixel-based raster images, and produce chemical structure descriptions such as Simplified Molecular-

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 56

(a) PDF Image (b) MST
nodes: lines & characters
edges: connections/merges

(d) Tokenized Visual Graph
nodes: bonds, atoms & superatoms

edges: connections

(e) Molecular Graph
nodes: atoms & superatoms

edges: bonds

||

||

||

NO2
||

||

||

NO2

(c) Visual Graph
nodes: lines & characters
edges: connections/merges

Figure 3.2: Parsing Nitrobenzene (C6H5NO2) from a PDF image (a). (b) Minimum Spanning
Tree (MST) over lines & characters. (c) Visual Graph with additional edges (dashed lines)
(d) Tokenized Visual Graph with merged nodes (bonds and named groups). (e) Molecular
Graph. Blue nodes show double bonds and atom/group names in (d) and (e). In (e) orange nodes
are ‘hidden’ carbon atoms, and single/double bonds are converted from nodes to edges.

Input Line-Entry System strings (SMILES [135]) describing molecular structure as output. A num-
ber of these approaches work well, and some include modern variations of encoder/decoder models
that recognize structure with high accuracy, as discussed in Chapter 2. However, modern documents
often use vector images to depict molecules. Vector images encode diagrams as characters, lines,
and other graphic primitives. So, parsing involves recognizing chemical elements, such as atoms,
atom groups, and bonds, from PDF drawings. Unlike mathematical formulas, where symbols fol-
low strict spatial hierarchies, chemical diagrams require identifying connections between atoms and
bonds, potentially forming complex cyclic structures (e.g., aromatic rings). Our approach involves
constructing a Minimum Spanning Tree (MST) over extracted primitives, followed by tokenization
of molecular entities such as atoms and bonds. This tokenized visual graph is then transformed
into a molecular graph representing the chemical structure, supporting downstream tasks such as
chemical search and reaction planning.

The chemical diagram born-digital parser is used to annotate pixel-based raster images, to address

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 57

YOLOv8

Extract Characters
& Graphics

molconvert

PROTable PROTable

CDXML

Build MST

Build Chemical Graph

Build Visual Graph

SMILES

Figure 3.3: ChemScraper Born-Digital Pipeline. Molecules are detected in PNG page images, but
symbols are extracted from PDF instructions. Page-Region-Object tables store bounding boxes and
the graphics they contain. Molecules are recognized in three stages, producing CDXML containing
the page location, appearance, and chemical structure for each. CDXML can then be converted to
chemical structure file formats (e.g., SMILES) or rendered as images (e.g., SVG).

a shortage of training data. This includes annotations for all graphical primitives, atoms, and bonds
(see Section 3.4). We use this data to train a new visual parser, a novel multi-task neural network
for recognizing molecule diagrams in raster images (see Chapter 4). The born-digital parsers’ use
of Minimum Spanning Trees (MSTs) to recognize molecular diagrams is novel.

The born-digital vector image parser is one component in the online ChemScraper molecule extrac-
tion tool1, which includes a YOLOv8 [132] detection module not described here. Figure 3.3 provides
an overview of the full ChemScraper born-digital extraction pipeline. The model locates page re-
gions where molecular diagrams appear, and then parses their structure. Recognized molecules are
stored in ChemDraw2 CDXML files [88]. CDXML represents both visual and chemical structure in
molecular diagrams. The ChemAxon molconvert command line tool3 is used to convert CDXML
to vector images (SVG) and SMILES. Recognized molecules can then be used for editing, search,
and other applications (e.g., in chemoinformatics).

1https://chemscraper.frontend.staging.mmli1.ncsa.illinois.edu/configuration
2https://revvitysignals.com/products/research/chemdraw
3https://docs.chemaxon.com/display/docs/molconvert_index.md

https://chemscraper.frontend.staging.mmli1.ncsa.illinois.edu/configuration
https://revvitysignals.com/products/research/chemdraw
https://docs.chemaxon.com/display/docs/molconvert_index.md

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 58

An important attribute of ChemScraper output graphs is that they contain both visual and chemical
structure information. This allows output graphs to closely match their original appearance in ad-
dition to capturing chemical structure. The additional visual information is helpful both for reusing
the appearance of molecules within documents, and for visualization and checking of recognition
results.

In this chapter, we present the core components of the parsing pipelines for both mathematical
formulas and chemical diagrams. For mathematical formulas, the process involves symbol extraction,
formula region detection, and the generation of Symbol Layout Trees (SLTs) to capture structure.
For chemical diagrams, characters and graphical elements such as lines are extracted to construct
a tokenized visual graph, which is then converted into a molecular graph to represent chemical
structures. Both approaches emphasize graph-based parsing techniques, leveraging vector-based
PDF data for fast, accurate, and interpretable recognition.

The subsequent sections cover each step in detail, with the goal of producing structured graph
representations: SLTs for mathematical expressions and molecular graphs for chemical structures.
These graph representations not only capture the content and layout of the original diagrams but
also enable various applications, including editing, searching, and chemical reaction planning, by
converting them into formats such as LATEX, MathML, CDXML, and SMILES.

In Section 3, we describe the Symbol Scraper, a tool designed to extract characters, graphics, and
shapes from vectorized drawing instructions in PDF files. Section 3.1 introduces the MST-based
math formula parser, which builds the Symbol Layout Tree (SLT) using Symbol Scraper and the
QD-GGA approach. Section 3.3 focuses on the ChemScraper born-digital parser, which constructs
molecular graphs through a streamlined and efficient design. The process begins with constructing
a Minimum Spanning Tree (MST) from PDF graphical primitives, identifying neighboring elements,
adding or removing edges to capture the diagram’s visual structure, and grouping (or tokenizing)
primitives into molecular entities, such as atoms and bonds. This tokenized visual graph is then
transformed into a graph representing the molecular structure.

Section 3.4 explains the generation of annotated training data using the born-digital parser, focusing
on extracting primitives for training visual parsers that recognize molecular structures from raw
images. Finally, Section 3.5 presents the evaluation results for both the mathematical and chemical
born-digital parsers. For chemical diagrams, we use two evaluation representations: SMILES and
labeled directed graphs. A key contribution of this work is the direct comparison of molecular
structure graphs, which enables detailed detection of structural differences that are often missed by
traditional SMILES-based evaluations.

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 59

3.1 SymbolScraper: Symbol Extraction from PDF

SymbolScraper is a tool for extracting characters and shapes from vectorized drawing instructions
in PDF files, ignoring embedded images [113]. This requires identifying and extracting character
shapes (glyphs) embedded in font profiles, as well as instructions for other graphics such as lines
and polygons. Unless formula images are embedded in a PDF file (e.g., as a .png), born-digital
PDF documents provide encoded symbols directly, removing the need for character recognition [12].
In PDF documents, character locations are represented by their position on writing lines and in
‘words,’ along with their character codes and font parameters (e.g., size).

For the math parser, we simply extract all character locations and labels from the math formula
regions, detected by YOLOv8. These symbol-level details from born-digital PDFs are directly
utilized; however, in cases where symbols are absent or incomplete, characters are recognized from
connected components (CCs) in images using a visual parser called QD-GGA [72].

For the chemical parser, the extraction process is more complex, as it involves identifying and
tokenizing additional graphical elements such as polygons, curves, lines, and rectangles present
in chemical diagrams. PDF graphics are defined primarily by instructions for lines, rectangles,
and Bezier curves. We use these as graphical primitives along with their parameters such as (x,y)
points, line widths, whether objects are filled, etc. Graphical primitives are converted to line strings
(polylines)4, each of which is a sequence of straight line segments. We approximate Bezier curves
in PDF as straight line segments, using a parameter to limit the maximum distance that a point
on the original curve can deviate from the approximated line segments, in points (i.e., 1/72 of an
inch).

For chemical diagram parsing, a small number of rules and additional parameters are used to extract
the final input tokens (parameters shown in Table 3.1). Some straight lines are drawn as filled
polygons, which are approximated by a line if the two longest lines cover more than a percentage of
the polygon perimeter and have their angles within a small tolerance. Solid wedges (trapezoids) are
identified in polygons based on the ratio of long:short side lengths. Positive charges are sometimes
drawn with two overlapping lines tested for perpendicularity within an angular tolerance.

The final input tokens produced by SymbolScraper for the born-digital parser are bounding boxes,
polygons, or polylines. Each have associated parameters, types, and labels.5

4Java Topology Suite: https://locationtech.github.io/jts/
5represented using the Python Shapely library

https://locationtech.github.io/jts/

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 60

3.2 MST-based Math Formula Parsing

Parsing mathematical formulas from PDFs requires building a graph representation of the symbols
and their spatial relationships. In our approach, we leverage the high-quality information available
in born-digital PDFs by using SymbolScraper to extract precise symbol locations and labels directly
from drawing commands. This eliminates the need for OCR and ensures accurate symbol extraction
wherever PDF information is available. However, not all PDFs contain complete symbol data or
maintain drawing instructions, necessitating the use of a neural network-based method as a fallback.
For these cases, we employ QD-GGA [72], which is a convolutional neural network based parser,
which segments connected components (CCs) and recognizes symbols from pixel-based data. These
image-based models are discussed in detail in Chapter 4.

This parsing approach uses a Maximum Spanning Tree (MST) for determining formula structure.
Specifically, we construct a line-of-sight (LOS) graph over symbol bounding boxes, which is then
merged into a symbol-level LOS graph. The MST is extracted from this symbol-level LOS graph
by maximizing the relationship probability distributions obtained from the CNN using Edmond’s
arborescence algorithm [38].

3.2.1 Identifying Extracted Symbols in Formula Regions

The first step in parsing is identifying and associating extracted symbols with their corresponding
formula regions. We detect overlapping areas between the formula regions (detected using YOLOv8)
and the bounding boxes of symbols extracted by SymbolScraper. Symbols outside the detected
formula regions are discarded, as illustrated in Figure 3.1d. The combined information—formula
regions and their corresponding symbols—is stored in a tab-separated variable (TSV) file in a
hierarchical structure. This consolidated data serves as the input for graph-based parsing.

3.2.2 Parsing Formula Structure with SymbolScraper and QD-GGA

When symbol locations and labels are available from SymbolScraper, they are directly used for
parsing, bypassing the need for character-level OCR or CC-based segmentation. Figure 3.4 shows
an example of formulas parsed using SymbolScraper data. However, for cases where SymbolScraper
data is incomplete or missing, QD-GGA [72] supplements the parsing process. QD-GGA uses
connected component (CC) extraction and a CNN based network to identify symbols and spatial

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 61

Input: image w. extracted chars. (BBs shown)

zeta
Obj0
0

LeftPar
Obj1
1

HORIZONTAL T
Obj2
2

HORIZONTAL

comma
Obj3
3

PUNC

k
Obj4
4

HORIZONTAL
RightPar
Obj5
5

HORIZONTAL

Output: Symbol Layout Tree (SLT)

\(\zeta\left({{T,}\left. k \right)} \right.\)

SLT in LATEX

<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
 <mi xml:id="0:">ζ</mi>
 <mrow>
 <mo xml:id="1:">(</mo>
 <mrow>
 <mrow>
 <mi xml:id="2:">T</mi>
 <mo xml:id="3:">,</mo>
 </mrow>
 <mrow>
 <mi xml:id="4:">k</mi>
 <mo xml:id="5:">)</mo>
 </mrow>
 </mrow>
 </mrow>
</mrow>
</math>

SLT in Presentation MathML

Figure 3.4: Parsing a formula image. Formula regions are rendered and have characters extracted
when they are provided in the PDF. We produce a Symbol Layout Tree as output, which can be
translated to LATEX and Presentation MathML.

relationships in the formula.

We construct a graph in which the nodes represent extracted symbols or CCs, and the edges capture
spatial relationships between these nodes. These edges are initially defined by a line-of-sight (LOS)
graph computed over the connected components. In cases where CC-based symbols are segmented
into multiple parts, binary ‘merge’ relationships are defined, and the symbol class is determined
based on the highest average confidence score among merged CCs.

3.2.3 Building the Symbol Layout Tree (SLT)

Once the symbols and their relationships are identified, the next step is to construct a hierarchical
graph representation, the Symbol Layout Tree (SLT). To build the SLT, we use Edmond’s arbores-
cence algorithm [38] to extract a Maximum Spanning Tree (MST) from the weighted relationship
class distributions. This ensures that the final formula interpretation reflects the correct structure
and spatial arrangement of the symbols. QD-GGA concurrently trains CNN-based features and
attention modules for multiple tasks, including symbol classification, edge classification, and seg-
mentation of CCs into symbols. The graph-based attention module allows multiple classification
queries for both nodes and edges to be processed in a single feed-forward pass, leading to a fast
training and inference.

The final output of the parsing process is an SLT, which encodes both the structure and the symbols

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 62

Table 3.1: Parameters for PDF Symbol Parsing Stages

Primitive Graph (MST) 3. MST → Visual Graph
Parameter (Value) 1. Extract

Symbols
2. Build MST (a)

-ve Charges
(b)

Restr. MST
(c)

Tokenization

PDF GRAPHIC PRIMITIVES

BEZIER_FLATNESS_PTS (0.25)

RECT2LINE_LONG_RATIO (0.85)

RECT2LINE_ANGLE_TOLERANCE (5.0)

ANGLES & PROXIMITY

ANGLE_TOLERANCE_DEGREES (3.0)

CLOSE_NONPARALLEL_ALPHA (1.75)

CLOSE_CHAR_LINE_ALPHA (1.5)

SYMBOLS

S-WEDGE_LENGTHS_DIFF_RATIO (0.7)

NEG-CHARGE_Y_POSITION (0.5)

NEG-CHARGE_LENGTH_TOLERANCE (0.5)

PRUNING EDGES

ABS_COS_CHAR_PRUNE (0.1)

CHAR_LINE_Z_TOLERANCE (1.5)

MAX_ALPHA_DIST (2.0)

of the formula, along with the spatial relationship classifications. This SLT can be further converted
into other machine-readable formats, such as Presentation MathML or a LATEX string, for use in
various applications (see Figure 3.4).

In cases where symbol data is incomplete or absent, our method seamlessly integrates QD-GGA as
a fallback, ensuring robust formula recognition. Further details on the neural network-based parsing
approach (QD-GGA) are provided in Chapter 4, where we explore how attention-based methods
improve segmentation and classification accuracy.

3.3 MST-based Molecular Digram Parsing

In this section we present the ChemScraper born-digital parser for recognizing molecular diagrams
directly from vectorized PDF images. As seen in Figure 3.5, our born-digital parser has four stages,
including extracting graphics commands using an improved SymbolScraper [113], constructing a
Minimum Spanning Tree (MST), rewriting the MST as a visual structure graph, and finally rewrit-

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 63

Input: Born-Digital PDF Molecule Image

1. Extract Symbols from PDF
Characters and graphical objects (e.g., lines)

2. Build Minimum Spanning Tree (MST)
Connect neighboring lines, shapes, & characters

3. MST → Visual Graph

(a) Detect negative charges (vs. other lines)

(b) Restructure MST
(+) add edges: touching lines (e.g., in rings), adjacent parallel lines and char/line pairs
(-) delete edges: ‘floating’ objects

(c) Tokenization
· Neighboring characters → name nodes
· Neighboring parallel lines → bond nodes

4. Visual Graph → Molecular Graph
*No tunable parameters

(a) Convert line intersections into carbons

(b) Replace bond nodes by edges

(c) Annotate names with subgraphs (e.g., SO2)

(d) Generate CDXML

Output: Editable molecular diagram (CDXML)

Figure 3.5: Molecule Parsing from PDF Symbols. Symbol information is transformed into an MST
(Figure 3.2(b)), a visual structure graph (Figure 3.2(c)), a tokenized visual graph (Figure 3.2(c),
and finally a molecular structure graph (Figure 3.2(d))

ing the visual graph into a molecular structure graph. The final molecular graph replaces line
intersections by carbon atoms, and all bond tokens/nodes (e.g., single, double, triple, solid/hashed
wedge) are replaced by edges.

This is a compiler-like recognition architecture, with some similarities to the DRACULAE math-
ematical formula recognition system [152]. Using a compiler-based architecture provides a helpful
separation of concerns that allows changes to be implemented and tested across smaller modules.

We provide an overview of the outputs and processing for stages shown in Figure 3.5. Each stage is

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 64

then described in more detail in the remainder of this section. The full parsing process has an asymp-
totic run-time complexity of O(n2 log n) for n nodes in the input graph (PDF character/graphics
primitives), reflecting the cost of MST construction.

Stages 1 & 2: Primitive Graph (MST). SymbolScraper recovers primitive symbols from PDF,
for which neighboring objects are identified using an MST. Because molecule diagrams represent
connections between atoms/groups using line intersections and line/character proximity, MSTs cap-
ture many valid connections. However MSTs prune cycles, some primitives must be merged, and
some diagrams contain multiple molecules (e.g., parallel lines in bonds and floating ions).

Stage 3: (Tokenized) Visual Graph. To capture structure missing in the primitive MST, the
MST is transformed to provide a two-dimensional syntactic analysis for the visible primitives. This
is done by first adding/removing edges to correct MST structure producing a visual structure graph
(Figure 3.2(c)), followed by grouping characters and lines into names and bond types (i.e., tokens)
producing a tokenized visual structure graph (Figure 3.2(d)).

Stage 4: Molecular Graph. The final stage is semantic analysis: visual syntax is mapped to
represented information/structure, including elements not visible in the diagram. This includes
identifying hidden carbon atoms at line intersections, and structures represented only by name. In
our system, names are mapped to molecular subgraphs using a dictionary. In Figure 3.2(e), NO2

will be replaced by a subgraph with one nitrogen and two oxygen atoms connected to a hidden
carbon.

This MST-based approach differs from that used in math parsing: instead of being the final struc-
ture, the MST here serves as an initial constraint that is iteratively refined through edge addition/re-
moval to form the final chemical graph, allowing cycles where necessary for accurately representing
molecular structures. Our semantic analyzer, designed for this parsing pipeline, can also be applied
to other visual parsers generating compatible visual graph outputs, as demonstrated with the visual
parser discussed later in Chapter 4.

3.3.1 Minimum Spanning Tree (MST)

MSTs are widely used for constraints and optimization tasks involving point sets and other ge-
ometric object collections in continuous space (i.e., Rn), including agglomerative clustering. For
graphics recognition, MSTs have been used to constrain symbol and spatial relationship types when
recognizing handwritten math formulas, e.g., by Matsakis [76] and Eto and Suzuki [40].

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 65

As can be seen in Figure 3.2, chemical diagrams are even better suited to MST-based selection of
spatial relationships than math formulas. The visual structure of math formulas may have as many
as eight spatial relationship types, while molecule diagrams contain only one spatial relationship
(connected). Symbols in formulas may be related at a distance, while connections in molecular dia-
grams are between neighboring symbols. Lines or other graphical objects that need to be combined
into symbols (e.g., two parallel lines in a double bond) are also neighboring objects.

We construct an MST to connect graphical primitives with their nearest neighbor in a chemical dia-
gram, breaking ties arbitrarily when two or more neighbors are equidistant. A complete undirected
graph over all input PDF primitive pairs is generated first, with edges weighted by distance. By
default, edge weights are the distance between the closest points on two objects; however, for line
pairs we use their end-points to capture connection distances. This also prevents overlapping lines
from having distance 0.

Invalid character connections are prevented by setting distances in our weighted adjacency matrix to
∞ when: (1) The absolute value of the cosine for the angle between characters falls between [0.1, 0.9],
e.g., between [25.8, 84.3]◦. This prevents (illegal) superscript or subscript character connections.
(2) A line-character distance is more than 1.5 standard deviations from the mean line-character
distance in the diagram. Pruning parameters are shown in Table 3.1.

We use Kruskal’s algorithm to extract an MST with n−1 edges for n primitives, such that the sum
of edge distances is minimal in the pruned adjacency matrix. An example MST over input graphics
primitives is shown in Figure 3.2(b).

3.3.2 MST → Visual Structure Graph

While an MST over PDF graphical primitives includes many connections needed to recognize molec-
ular structure, connections often need to be added or removed. For example, an MST cannot contain
cycles, and so we need to insert edges when three or more lines intersect. These and other changes
are needed to produce the final graph capturing the visual syntax of a molecular diagram, e.g., as
seen in Figure 3.2(d). The steps used for this transformation are presented below; parameters are
shown in Table 3.1.

Negative Charges. We first distinguish negative charges from other lines. Lines are considered
negative charges if they are: (1) roughly horizontal (0◦), (2) no longer than a fraction of the average
line length in the diagram, and (3) right adjacent to a character, with the line’s vertical center in

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 66

the upper half of the character’s bounding box.

Restructure MST. Next we correct connections for ‘floating’ bond lines such as the double bonds
in Figure 3.2. These floating lines may not connect with their corresponding parallel line in the
MST when another line’s endpoint is closer. We consider creating an edge between a candidate
floating line with degree 1 (one edge) in the MST with another nearby overlapping parallel line if
it is within the five nearest neighbors of the line, and the average endpoint distances between the
two lines is smaller than for the current neighbor. If so, the line is disconnected from its current
neighbor and connected to the closer parallel line.

We then use distance-based clustering to add and remove connections based on MST distances.

1. Line Intersections. Add missing non-parallel line intersections (e.g., for rings and multi-line
intersections) where the lines’ endpoints are within a ratio of the maximum distance between
connected non-parallel lines.

2. Character-Line Connections. Filter MST char-line connection distances via Z-scores (i.e.,
standard deviations from the mean) before estimating the maximum char-line connection
distance. Add all char-line edges within a ratio of this maximum distance.

3. Split Floating Structures. Prune edges with a distance larger than a ratio of a maximum
distance. The connection type used to determine the maximum distance is selected in the
following in order, based on first available distance type in the MST: (1) char-line distances,
(2) parallel line distances, or (3) non-parallel line distances.

Tokenization. There are two steps for merging lines into bonds and characters into atom and
group names: (1) merging adjacent characters and parallel lines, and (2) labeling bond types.

Merge Characters and Parallel Lines. Characters connected by edges are merged into text tokens,
using the location of the nearest character as the connection point for a bond, if present (see
Figure 3.2(d)). Double bonds, triple bonds, and hashed wedge bonds are represented by adjacent
parallel lines. Hashed and solid wedge bonds have a shorter side that begins the bond and a longer
side that ends the bond, indicating the bond direction. Solid wedge bonds are trapezoids, while
hashed wedge bonds are drawn as parallel lines of increasing length. All neighboring parallel line
groups in the MST are merged, and annotated by the number of lines they contain. For example,
in Figure 3.2(d), three pairs of parallel lines representing double bonds will each be merged and
annotated with ‘2’.

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 67

Label Bonds in Line Groups/Wedges. Annotated line groups can then be labeled as single, double, or
hashed wedge bonds by the number of lines they contain (i.e., 1, 2, or >3). Three parallel lines are a
special case: both triple bonds and hashed wedge bonds may contain 3 parallel lines. We distinguish
these by sorting the 3 lines topologically (i.e., top-down, left-to-right), and then determine whether
these lines uniformly increase or decrease in size within the sorted list.

For wedge bonds, we need to identify new endpoints on the longest and shortest sides (for solid) or
longest and shortest lines (for hashed) and restructure the final visual structure graph accordingly.
Bond endpoints are important in the semantic analysis step, which we describe next.

3.3.3 Visual → Molecular Structure

In the final stage of the born-digital parser, visual structure is converted to molecular structure, and
chemical information not directly visible in the diagram is added to produce a chemical graph. The
chemical graph is then represented in a CDXML file capturing both visual and chemical structure.
Note that this stage uses a deterministic process that involves no tunable parameters.

We first need to define explicit intersection points where line endpoints meet. These intersection
points are defined by the midpoint between adjacent endpoints for connected lines in the visual
structure graph. ‘Hidden’ carbon atoms are then inserted as nodes at bond line intersections, and
at line endpoints without a neighbor. Nodes for bonds in the tokenized visual structure graph are
removed, and replaced by edges labeled with the same bond type (see Figure 3.2(d) and (e)).

CDXML Generation. CDXML is a file format representing molecules and reactions along with
related text on a canvas or series of pages. For molecular data, both chemical structure and the
appearance of molecules on a 2D canvas are encoded in CDXML files. The format was created for
the ChemDraw chemical diagram editor.

In CDXML tags define molecules, nodes (e.g., atoms, named groups), and bond connections in the
diagram, along with annotations for node positions and appearance. We encode the locations of
nodes on their associated page, so that the appearance and location of recognized molecules match
the original document. Positions are also helpful with accurate conversion to other chemical formats
(e.g., SMILES), and to capture spatial information in the chemical structure (e.g., for wedge bonds).

Annotate Names with Subgraphs: Molecules are often represented more compactly using chemical
formulas or other names for substructures. For example, Figure 3.2 shows an abbreviation node
NO2, a nitro group with an external connection available. We use a manually compiled dictionary

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 68

of 612 common abbreviations with their associated subgraphs collected from the RDKit Python
library6, ChemDraw, and our own work. For the abbreviation NO2, we insert the full structure
(∗ → N1, N1 → O1, N1 → O2) into the CDXML as a nested molecule ‘fragment.’ ∗ represents
where the structure can be connected to other structures; O1 and O2 represents two oxygen atoms
connected to the nitrogen N1 through a single and double bond respectively.

3.4 Generating Training Data for Visual Parser

In designing ChemScraper, we noticed that authors often copy molecular diagrams directly into
their documents as raster images, which become embedded in PDFs. To create parsers for raster
images with easily interpreted results, we require explicit correspondences between image regions
and molecular symbols in generated visual structure graphs. Unfortunately, there is a shortage of
training data with direct annotations of raster images. In addition to fast and accurate recognition,
this was the second key motivator for creating our born-digital parser.

While one can create large datasets from SMILES using their rendered raster images, the correspon-
dence between image regions and portions of SMILES strings is absent in such datasets. One can
also generate molecular diagram images from MOL files, which include explicit molecular structure
(e.g., atoms and their connection by bonds), along with optional 3d spatial positions. However,
MOL files were not designed to describe image regions for characters, bonds, or other visual primi-
tives in an image. For example, MOLs identify spatial locations of atom groups such as CH3, but
do not the locations for its constituent H and 3 in an image.

A new data generation technique is required. First, we sought a stable visual primitive in pixel-
based (raster) molecule images that would avoid merging symbols, and found that we could extract
a type of line primitive reliably for this purpose (see Figure 4.5(b)). Given the born-digital parse
results for a molecule in PDF, we extract these line primitives from the rasterized PNG for the
molecule, and align them with the PDF primitives based on maximum overlap.

The born-digital visual graphs annotated with line primitives can then be used for training models
using the same line primitives as input. For these parsers, the visual primitive extraction replaces
the first step of the born-digital parsing pipeline seen in Figure 3.3, where rather than extract
characters and lines directly, we may also extract image regions that over-segment (i.e., split) lines
and characters.

6https://www.rdkit.org

https://www.rdkit.org

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 69

3.4.1 Visual Primitives (Lines)

From a raster image (PNG) for a PDF molecule rendered by the Indigo chemoinformatics toolkit,7

we extract connected component (CC) contours, and convert these to polygons using a simplification
algorithm (provided by Shapely). These polygons are transformed into a set of skeletal lines using
pairs of adjacent parallel lines on the contour boundary. Each pair of parallel lines is replaced by
their medial axis (i.e., line between the middle of the parallel lines’ endpoints).8 After the medial
axis lines have been identified, pixels in CCs are segmented by assignment to the nearest axis line
using a distance transform.

The resulting ‘visual’ line primitives can be seen in Figure 4.5(b). Some CC shapes such as curved
lines and closed curves are unaltered by the process. The 2 is unsegmented because after identifying
all skeletal lines for CCs in a molecule, to avoid segmenting small CCs, we test whether the average
skeletal line length in a CC is less than the average for all skeletal lines. If this average length is
smaller than the global average, we do not segment the CC. We also remove skeletal lines within
CCs that are smaller than the global average skeletal line length, which avoids over-segmenting
lines at dense intersections (e.g., at the connection point between two single bonds and a double
bond). We split a long line in a triple or double bond by projecting the floating line onto it, and
then testing if the overlap ratio r for the longer line is in the interval of one third to one half, with
a margin of 10% (13 −

1
10 ≤ r ≤ 1

2 + 1
10).

For illustration, here we have manually broken the N into three parts; in practice, both characters
and lines may be over-segmented. In Figure 4.5(b) there are 15 visual primitives, versus 13 graphical
primitives for the original PDF in Figs. 3.2(a) and (b). 10 primitives are straight bond lines, and 5
primitives are for the characters in NO2.

3.4.2 Visual Graph Generation

We now annotate raster images using our visual primitives and visual graphs before tokenization
(see 3.2(c)) from our born-digital parser. We use Indigo to render PDFs from SMILES rather than
PNG images as done in previous methods (e.g., MolScribe [100]). The born-digital parser is then
run on the PDF images, and where the recognized SMILES and original SMILES match (i.e., the
result is correct), we use the resulting visual graph as our preliminary ground truth data (e.g., see
Figure 3.2(c)).

7https://github.com/epam/Indigo
8parameters in Table 3.1 constrain angles and min. overlap

https://github.com/epam/Indigo

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 70

[OBJECTS]

Objects (O): 10

Format: O, objId, class, 1.0, [primitiveId list]

O, Obj0, Single, 1.0, 0

O, Obj1, Single, 1.0, 1

O, Obj10, N, 1.0, 10, 11, 12

...

[RELATIONSHIPS]

Relationships (R): 11

Format: R, parentId, childId, class, 1.0 (weight)

R, Obj0, Obj4, CONNECTED, 1.0

R, Obj0, Obj1, CONNECTED, 1.0

R, Obj1, Obj3, CONNECTED, 1.0

...

[PRIMITIVE FEATURES]

#contours, 0, 58, 139, 56, 141, 55, 141, ...

#contours, 0, 78, 98, 77, 99, 76, 99, ...

#contours, 1, 80, 395, 80, 397, 81, 398, ...

...

a.
b.

Single
Obj 1

1

Single
Obj 2

2

Single
Obj 3

3

Single
Obj 6

6

Single
Obj 0

0

Single
Obj 4

4

Single
Obj 5

5

Single
Obj 9

9Single
Obj 8

8

Single
Obj 7

7

N
Obj 10

10, 11, 12

O
Obj 11

13

2
Obj 12

14

Figure 3.6: Ground Truth Visual Graph Generated for Figure 3.2(c). (a) Label graph file with
Objects (O), Relationships (R) and Visual primitives with contour points (#contours). (b) Visual-
ization showing primitive identifiers, node labels, and edges (all edges labeled as CONNECTED. Objects
for single bond contain one line primitive each, while the character N contains three line primitives.
A second file for the PNG is created using 13 PDF primitives (vs. 15 visual line primitives shown
here).

We next assign visual line primitives to PDF graphical primitives in the born-digital visual graph.
PDF images are converted to 256 DPI PNG images, and we extract visual line primitives as described
above. The assignment of visual primitives to PDF primitives/symbols is determined by maximum
overlap. In Figure 4.5(c), 1 line primitive is attached to each line node, 3 line primitives are attached
to N , and one primitive is attached to each of the O and 2. Finally, we validate bonds between
atoms against a MOL connection table generated from SMILES using Indigo.

To store visual graphs, we create label graph (Lg) files [84, 85] for both PDF primitives and visual
line primitives. An example is shown in Figure 3.6(a). Primitives are represented by numeric
identifiers and image contours, while typed objects are comprised of one or more primitives (e.g.,
Single bond: one line, character N: three lines).

A label graph file defines structure over declared primitives, using primitive groups (objects) and
their relationships. In our label graph files, only CONNECTED relationships are explicitly defined,
however MERGE relationships are defined implicitly between all primitive pairs in an object. In
Figure 3.6 MERGE edges exist between primitives 10, 11, and 12 for N (Obj10), and the connection
between this character and the Single bond Obj9 is represented by CONNECTED edges for (9,10), (9,

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 71

11) and (9,12). Similarly, all primitives in an object share a label (e.g., for Obj10, primitives 10, 11,
and 12 are labeled N).

3.5 Evaluation and Results

This section presents the evaluation metrics and experimental results for the parsing methods de-
veloped for both mathematical formulas and chemical diagrams. The goal of this evaluation is to
assess the accuracy, robustness, and overall effectiveness of the born-digital parsers across both do-
mains, using the graph-based and string-based metrics introduced in Chapter 2. For mathematical
formulas, we primarily rely on raster image evaluations due to the lack of standardized datasets
for evaluating formulas extracted directly from PDFs. Here, the parsing pipeline leverages Symbol-
Scraper to extract symbol locations and labels from PDFs wherever possible, with QD-GGA [72]
used as supplementary models when PDF information is missing. The evaluation covers the accurate
reconstruction of Symbol Layout Trees (SLTs). Similarly, for chemical diagrams, we measure the
parser’s ability to extract graphical primitives and convert them into molecular graphs. The results
are presented separately for math and chemistry, with a detailed analysis of system performance,
limitations, and potential error sources.

3.5.1 Evaluation of Math Formula Recognition

We do not have results specifically for the born-digital math parser, as there are no standard
datasets available for benchmarking formulas extracted directly from PDFs. Therefore, we present
our evaluation results based on raster images, using QD-GGA [72], the neural network-based parser
employed in cases where PDF information was unavailable in our math parsing pipeline.

Dataset. We evaluated the parser on the InftyMCCDB-2 dataset,9 a modified version of InftyCDB-
2 [118]. The test set consists of 6830 mathematical expressions derived from scanned article pages.
The parser achieved a structure recognition rate of 92.56% and an expression recognition rate
(Structure + Classification) of 85.94%.

Implementation/Systems. SymbolScraper is built in Java using Apache’s PDFBox and the Java

Topology Suite. The experiments were conducted on a desktop system with a hard drive (HDD),
32GB RAM, an Nvidia GTX 1080 GPU, and an Intel(R) Core(TM) i7-9700KF processor. The

9https://zenodo.org/record/3483048#.XaCwmOdKjVo

https://zenodo.org/record/3483048##.XaCwmOdKjVo

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 72

MathSeer Pipeline Results Visualization

Pdf name: Katz99

Page: 10

Expression
name Expression Image MathML Output LG Output

Katz99_P10F026

Katz99_P10F027

Katz99_P10F028

Katz99_P10F029

Katz99_P10F030

Katz99_P10F031

ζ(T , k)

C

C/1

q

f

k

f(X

1

, X

2

, X

3

= 0

tcrZ
Nai�
�

IcerOZo
Nai0
0

CNPHUNLR5I R
Nai1
1

CNPHUNLR5I

bmkkZ
Nai2
2

OTLA

j
Nai3
3

CNPHUNLR5I
PhfgrOZo
Nai4
4

CNPHUNLR5I

0
COb�
�

B
Nah�
�

qjZqe
Nah0
0

CNOHUNLS3I nlb
Nah1
1

CNOHUNLS3I o
Nah2
2

ORTA

b
1Of
 �0

j
0Ob�
�

e
Nah

IcerOZq
Nah0
0

CNPHXNLS9I U
Nah1
1

CNPHXNLS9I

cotZj
Nah0
0 �00

wcqn
Nah00
01

CNPHXNLS9I

nmc
Nah2
2

PRTA

bnllZ
Nah3
3OTLB

U
Nah4
4

CNPHXNLS9I

run
Nah5
5PRTA

bnllZ
Nah6
6

OTLB

U
Nah7
7

CNPHXNLS9I

CNPHXNLS9I

rfqcc
Nah8
8

PRTA

Firefox http://localhost:8001/GTDB_full_test/html-output/pdf_htmls/Katz99_Page10.html

1 of 1 02/02/2021, 11:11 PM

Figure 3.7: HTML visualization for formulas extracted from a sample PDF page with detected
formula locations (left), and a table (right) showing extracted formulas and recognition results as
rendered MathML and SLT graphs.

total processing time for the 6830 formula images was 26 minutes and 25 seconds, averaging 232
milliseconds per formula.

An important contribution of this work is new tools for visualizing recognition results and struc-
ture recognition errors, which are essential for efficient analysis and error diagnosis during system
development and tuning. We have created these in the hopes of helping both ourselves and others
working in formula extraction and other graphics extraction domains.

Recognition Result Visualization (HTML + PDF). We have created a tool to produce a
convenient HTML-based visualization of the detection and recognition results, with inputs and
outputs of the pipeline for each PDF document page. For each PDF page, we summarise the results
in the form of a table, which contains the document page image with the detected expressions at
the left and a scrollable (horizontally and vertically) sub-table with each row showing the expression
image, the corresponding MathML rendered output, and the SLT graphs (see Figure 3.7).

We created HTMLs for easy evaluation of the entire pipeline, to identify component(s) (symbol
extraction, expression detection, or structure recognition) producing errors on each page. This
makes it easier to diagnose the causes of errors, identify the strengths and weaknesses of different
components, and improve system designs.

Improved Error Visualization. The LgEval library [84,85] has been used for evaluating formula
structure recognition both for recognition over given input primitives (e.g., strokes) and for output

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 73

LgEval Structure Confusion Histograms

Mon Dec 21 05:24:30 2020

full_sys_lg_vs_LG_test__size_1_min_1

Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.

Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (128 incorrect targets; 584 errors)

Primitive histograms (190 incorrect targets; 32164 errors)

 Save Selected Files

Object Confusion Histograms

Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 128 incorrect targets, 584 errors.

Object Targets Primitive Targets and Errors

1 28 errors
Targets

1 26 errors 22 errors 2 errors 1 errors 1 errors

2 2 errors 1 errors 1 errors

2 26 errors
Targets

1 25 errors 25 errors

int

int f j slash MiddleLeftPar

intint
intint

hatj
RSUP

periodj
RSUP

leq

3 17 errors
Targets

1 13 errors 10 errors 1 errors 1 errors 1 errors

2 2 errors 1 errors 1 errors

3 2 errors 2 errors

4 17 errors
Targets

1 15 errors 9 errors 3 errors 2 errors 1 errors

l

l one prime t s

ll
ll

oneone
oneone

primeslash

PUNC

llll
llll

lessless
lessless

S

S s P L e

(a)

Object Error analysis and details

Object Target:

17 errors

l

 Save Selected Files

Primitive Targets Primitive level Errors

1

13 errors

l

Errors

1 10 errors

one

Filename Image LG

28006805.lg

28003581.lg

28019258.lg

28008829.lg

28008356.lg

2 1 errors

prime

Filename Image LG

28004063.lg

3 1 errors

t

Filename Image LG

28004064.lg

4 1 errors

s

Filename Image LG

28019138.lg

2

2 errors

ll ll

Errors

1 1 errors

oneone
oneone

Filename Image LG

28012118.lg

2 1 errors

primeslash
PUNC

Filename Image LG

28014365.lg

3

2 errors

llll
llll

Errors

1 2 errors

lessless
lessless

Filename Image LG

28013888.lg

Additional errors: 0

bnllZ
Nai)

)

AhfIcerOZo
Nai0

0

r
Nai2

2

CNPHUNLS5I nmc
Nai1

1

OTLB

PRTA

nmc
�j(

Nai3
3

CNPHUNLS5I

AhfPhfgrOZo
Nai4

4

CNPHUNLS5I

h
Nai)
5�6

p
Nai0)

01

ANOHTNLR9I h
Nai0
0)�00

a
Nai5

3

ANOHTNLR9Ip
Nai00

02

ANOHTNLR9I ANOHTNLR9Ib
Nai1

)

l
Nai2

0

ANOHTNLR9I ANOHTNLR9IO
Nai3

1

esoedm
Nai7

7

ANOHTNLR9I Z
Nai4

2

ANOHTNLR9I
nmd
 j(

Nai8
8

ANOHTNLR9I d
Nai6

4

ANOHTNLR9I ANOHTNLR9I

h
Nai)
08�1)

jdpp
Nai0

12�13�14

B
Nai00

8

ENPHVNLS9I

T
Nai0)

7

PhfgsOZq
Nai01

0)

hms
Nai02

00
T

Nai15
18

TLCDP

udqs
Nai5

3ENPHVNLS9I b
Nai03

01

U
Nai14

17

ENPHVNLS9I

ZjogZ
Nai04

02

sgdsZ
Nai4

2

ENPHVNLS9I ojtr
Nai05

03

dsZ
Nai7

5

ENPHVNLS9I

l
Nai06

04

svn
Nai07

05

udqs
Nai08

06
PRTO

d
Nai3

1ENPHVNLS9I

IdesOZq
Nai1

)

ENPHVNLS9I
nmd
 j(

Nai1)
07

n
Nai13

16

ENPHVNLS9I

ojtr
Nai10

10

qgn
Nai11

11

ENPHVNLS9I ENPHVNLS9I

f
Nai12

15

udqs
Nai17

20

ENPHVNLS9IENPHVNLS9I

ENPHVNLS9I

PRTA

udqs
Nai16

2)

PRTO

ENPHVNLS9I
w

Nai8
6

ENPHVNLS9Ilhmtr
Nai2

0

ENPHVNLS9I

ENPHVNLS9I

PRTO
ENPHVNLS9I

t
Nai6

4

ENPHVNLS9I

PRTA

ENPHVNLS9I

ENPHVNLS9I ENPHVNLS9I

botZj
Nai)
0�1

nmb
 j(

Nai5
7

ANPHTNLR9I h
Nai0
4�5

l
Nai4

6

ANPHTNLR9IPhfgrOZq
Nai1

)

ANPHTNLR9Iu
Nai2

2

ANPHTNLR9IIberOZq
Nai3

3

ANPHTNLR9I ANPHTNLR9Ie
Nai6

8

ANPHTNLR9I

h
Nai)
2�3

l
Nai5

7

ENPHXNMR9I

fdo
Nai0
4�5

nmd
 j(

Nai7
0)

ENPHXNMR9I

9
 L(
Nai1

)

IderOZq
Nai6

8

ENPHXNMR9I

ntdqjhmd
Nai2

0U
Nai3

1

TOOAP

PhfgrOZq
Nai4

6

ENPHXNMR9I

ENPHXNMR9I

ENPHXNMR9I ENPHXNMR9Ib
Nai8
00

ENPHXNMR9I

dotZj
Nai)
07�08

jZlacZ
Nai03

02

CNPHUNMS9I

rtards
Nai0

)

AhfIdesOZq
Nai4

3

CNPHUNMS9I

M
Nai0)

8

CNPHUNMS9I

jZlacZ
Nai1

0

PRTA
udqn

Nai00
0)

bnllZ
Nai7

6
OTMB

nmd
 j(

Nai8
7

CNPHUNMS9I

M
Nai01

00

CNPHUNMS9I

jZlacZ
Nai06

05

PRTA

bnllZ
Nai5

4OTMB

L
Nai02

01

udqn
Nai2

1
PRTA

PhfgsOZq
Nai6

5

CNPHUNMS9I

lhmtr
Nai05

04
PRTO

IdesOZq
Nai07

06

CNPHUNMS9I

nmd
Nai04

03

CNPHUNMS9I

CNPHUNMS9I

AhfPhfgsOZq
Nai3

2

CNPHUNMS9ICNPHUNMS9I

CNPHUNMS9I

IcerOZo
Nai)

)

P
Nai7

7

ENPHUNLR9IE
Nai0

0

n
Nai6

6

ENPHUNLR9I

ntcojhmc
Nai1

1

bnllZ
Nai2

2 PhfgrOZo
Nai3

3

nmc
�j(

Nai4
4

ENPHUNLR9I

ntcojhmc
Nai5

5

ENPHUNLR9I

TOOCP

OTLA

U
Nai8

8

ENPHUNLR9I

ENPHUNLR9I

TOOCP

cptZj
Nai)
)�0

g
Nai01

03

ENPHUNLS9I

h
Nai0
3�4

l
Nai2

2

ENPHUNLS9I PhfgsOZq
Nai0)

01

wcqn
Nai00

02

mnscptZj
Nai04

06

ENPHUNLS9I

wcqn
Nai07

1)PRTA

nmc
 j(

Nai02
04

ENPHUNLS9I

r
Nai4

6

TLBDP
sun

Nai03
05

L
Nai7
0)

ENPHUNLS9I

ENPHUNLS9I

nmc
Nai05

07

eqZbshnmZjIhmc
Nai06

08

ENPHUNLS9I

r
Nai08

10

TLBDP

E
Nai8
00

TOODP

PRTO

IcesOZq
Nai1

1

r
Nai5

7

ENPHUNLS9I

qhfgsZqqnu
Nai1)

11

wcqn
Nai6

8

ENPHUNLS9I

ENPHUNLS9I

ojtr
Nai3

5

ENPHUNLS9IENPHUNLS9I

ENPHUNLS9I

ENPHUNLS9I

ENPHUNLS9I

cptZj
Nai)
5�6

N
Nai02

04

ENPHUNLR9I

jcpp
Nai0

00�01�02

u
Nai06

10

ENPHUNLR9I

n
Nai0)

8

f
Nai01

03

ENPHUNLR9I

rtl
Nai00

0) o
Nai05

1)

TLADP

eqZbshnmZjIhmc
Nai6

3ENPHUNLR9I

u
Nai2

)

ENPHUNLR9IIcesOZq
Nai04

08

ENPHUNLR9I

nmc
Nai03

05

nmc
 j(

Nai5
2

ENPHUNLR9I

ENPHUNLR9I

nmc
 j(

Nai1
06�07

ENPHUNLR9I PhfgsOZq
Nai7

4

ENPHUNLR9In
Nai3

0

f
Nai8

7

ENPHUNLR9I

o
Nai4

1

ENPHUNLR9I

ENPHUNLR9I

TOODP

TLADP

ENPHUNLR9I

jdp
Nai)
1)�10

eqZbshnmZjIhmd
Nai12

12

ENPHUNLS9If
Nai0
30�31

IdesOZq
Nai1

)

ENPHUNLS9I udqs
Nai0)

7

ENPHUNLS9I

nmd
Nai00

8

lhmtr
Nai1)

07

ENPHUNLS9I

eqZbshnmZjIhmd
Nai01

0)

PhfgsOZq
Nai07

05

ENPHUNLS9I

E
Nai2

0TOODP

s
Nai21

21

TLCDP

IdesOZq
Nai02

00

s
Nai2)

2)

ENPHUNLS9I

D
Nai03

01

IdesOZq
Nai15

15

ENPHUNLS9I

nmd
Nai7

5PRTA

PhfgsOZq
Nai04

02

s
Nai05

03

PhfgsOZq
Nai24

24

ENPHUNLS9I

eqZbshnmZjIhmd
Nai06

04

TOODP

s
Nai25

25

TLCDP

ENPHUNLS9I

L
Nai08

06

ojtr
Nai10

08

ENPHUNLS9I

ENPHUNLS9I

jZlacZ
Nai14

14

ENPHUNLS9I

nmd
Nai3)

3)

ENPHUNLS9I

c
Nai11

11

ojtr
Nai27

27

ENPHUNLS9I

s
Nai4

2TLCDP

svn
Nai6

4
TOODP

n
Nai13

13

ENPHUNLS9I
s

Nai22
22

ENPHUNLS9I

IdesOZq
Nai16

16

ENPHUNLS9I

s
Nai17

17 svn
Nai18

18

ENPHUNLS9I

ENPHUNLS9I

ENPHUNLS9I

L
Nai20

20

ENPHUNLS9I

PRTO

PhfgsOZq
Nai5

3

ENPHUNLS9I

C
Nai23

23

ENPHUNLS9IENPHUNLS9I

B
Nai26

26

svn
Nai8

6

ENPHUNLS9I

nmd
 j(

Nai28
28

ENPHUNLS9Iudqs
Nai3

1

eqZbshnmZjIhmd
Nai30

32

ENPHUNLS9I

TOODP

ENPHUNLS9I

c
Nai31

33

TLCDP

ENPHUNLS9I

PRTO

ENPHUNLS9I

ENPHUNLS9I

dptZj
Nai)
04�05

hms
Nai0)

8

CNPHUNLS9K

c
Nai0

)

qgn
Nai1)

10

CNPHUNLS9K

A
Nai12

13
PRTA

udqs
Nai21

22

CNPHUNLS9K

lhmtr
Nai00

0)

nmd
Nai4

3

CNPHUNLS9K I
Nai01

00

ojtr
Nai02

01

dorhjnm
Nai14

15

CNPHUNLS9K

f
Nai03

02

wdqn
Nai6

5
PRTA

KdesOZq
Nai7

6

CNPHUNLS9K

I
Nai04

03

lhmtr
Nai10

11

CNPHUNLS9K

qgn
Nai05

06

nldfZ
Nai11

12

CNPHUNLS9K

bnllZ
Nai16

17
OTLB

KdesOZq
Nai06

07

CNPHUNLS9K

c
Nai07

08

nldfZ
Nai2)

20

CNPHUNLS9K

qgn
Nai08

1)

I
Nai17

18

CNPHUNLS9K

svn
Nai22

23

PRTO

PhfgsOZq
Nai1

0

udqs
Nai13

14

CNPHUNLS9K

CNPHUNLS9K

nmd
Nai18

2)

CNPHUNLS9K

CNPHUNLS9K

oqhld
 j(

Nai5
4

PRTA

qgn
Nai8

7

CNPHUNLS9K

PhfgsOZq
Nai3

2

CNPHUNLS9K

bhqb
Nai15

16

CNPHUNLS9K

qgn
Nai20

21

CNPHUNLS9K

dsZ
Nai2

1

CNPHUNLS9K

CNPHUNLS9K

CNPHUNLS9K

CNPHUNLS9K

CNPHUNLS9KCNPHUNLS9K
CNPHUNLS9K

PRTO

CNPHUNLS9K

Firefox http://localhost:8000/lpga_release/output/confHist_outputs/CH_full_sys_lg_vs_LG_test__size_1_min_1_gt_htmls/Obj_3...

1 of 1 03/02/2021, 1:36 AM

(b)

Figure 3.8: Error analysis (errors shown in red). (a) Main error table organized by decreasing
frequency of errors. (b) Specific instances where ‘l’ is misclassified as ‘one,’ seen after clicking on
the ‘10 errors’ link in the main table.

representations without grounding in input primitives [73] . We extend LgEval’s error summary
visualization tool, confHist, to allow viewing all instances of specific errors through HTML links.
These links take the user directly to a list of formulas containing a specific error. The tool generates
a table showing all error types for ground truth SLT subtrees of a given size, arranged in rows and
sorted by frequency of error, as shown in Figure 3.8a (for single symbols). Each row contains a
sub-table with all primitive level target and error graphs, with errors shown in red. Errors include
missing relationships and nodes, segmentation errors, and symbol and relationship classification
errors - in other words, all classification, segmentation, and relationship errors.

New links in the error entries of the HTML table open HTML pages, containing all formulas sharing
a specific error along with additional details arranged in a table. This includes all expression images
containing a specific error along with their SLT graph showing errors highlighted in red Figure 3.8b.
The new tool helps to easily identify frequent recognition errors in the contexts where they occur.
For example, as seen in Figure 3.8b, we can view all expression images in which ‘l’ is misclassified
as ‘one’ by clicking the error entry link (10 errors) in Figure 3.8a and locate the incorrect symbol(s)
using the SLT graphs.

Both visualization tools load very quickly, as the SLT graphs are represented in small PDF files
that may be scaled using HTML/javascript widgets.

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 74

3.5.2 Evaluation of Chemical Diagram Recognition

We next evaluate the accuracy of our parsers. It is important to remember that the ChemScraper
born-digital parser utilizes PDF information for characters, lines, and other graphical objects that
parsers working from raster (pixel) images do not. Our analysis includes a graph-based analysis of
recognition errors at the level of molecule structure present that provides information missing in
standard SMILES-based evaluation methods.

Datasets. For tuning born-digital parser parameters and generating visual parser training data,
we use 5000 molecules (46 unique SMILES characters) extracted from PubChem10 prepared by the
MolScribe team [100]. For benchmarking, we use three datasets: (1) the USPTO synthetic dataset
with 5,179 PNG images generated by the Indigo toolkit from SMILES strings (37 unique SMILES
characters) [101], (2) UoB (5,740 molecule PNG images + SMILES: 33 unique characters [107]),
and (3) CLEF (992 molecule PNG images + SMILES: 71 unique characters [99]).

The born-digital parser is run on Indigo-rendered PDFs from SMILES ground truth, including for
the UoB and CLEF datasets. For the USPTO synthetic set, the rendered PNG and PDF images
are essentially identical, but this is not true for the CLEF and UoB data sets where scanned images
of molecules were annotated with SMILES; in this case rendering the SMILES using Indigo may
produce images in different styles, fonts, and orientations than the scanned molecule images.

Implementation/Systems. ChemScraper born-digital parser is implemented in Python using
the Shapely (2d geometry), networkx (graphs), numpy, and mr4mp (map-reduce) libraries. The
ChemScraper born-digial and visual parsing pipelines are Python-based, along with the visual line
primitive extractor.

Born digital parsing runs were made on a Ubuntu 20.04 server, with a Intel(R) Xeon(R) CPU
E5-2667 v4 (3.20 GHz) and 512 GB RAM. Experiments for the visual parser were run on another
Ubuntu 20.04 server with hard drives (HDD), an A40 (48GB) GPU, a 64-core Xeon Gold 6326 (2.9
GHz), and 256 GB RAM.

SMILES-Based Evaluation

ChemScraper-generated CDXMLs are first translated to SMILES using ChemAxon’s molconvert

tool. After this, we canonicalize both CDXML and benchmark SMILES to remove differences in
10https://pubchem.ncbi.nlm.nih.gov

https://pubchem.ncbi.nlm.nih.gov

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 75

their atom order, which can vary for the same molecule. SMILES canonicalization is performed
using the RDKit library via the function CanonSmiles(), with ignore_chiral=False.

Parameter Tuning and Rendering. Each molecule in our 5,000 PubChem molecules for pa-
rameter fitting was rendered with Indigo with 3 randomly selected parameters. The rendering
parameters are described below. For benchmarking the born-digital parser, we use the Indigo de-
fault rendering parameters. This is done to insure PDF molecules for the born-digital parser have
the same appearance as PNG images in the USPTO dataset, which is our primary collection for
benchmarking.

The final parameter values seen earlier in Table 3.1 are obtained using grid search, with the exception
of the PDF GRAPHICS PRIMITIVES group belonging to SymbolScraper. To keep the tuning
process manageable, we divided the grid search into 3 stages, one per group in the order given
in Table 3.1. Initial default values were identified. After each parameter group’s grid search was
complete, learned values replaced the default values. Value ranges and defaults are shown in Table
3.2.

We also tested the effect of the MST pruning parameters discussed in Section 3.3.1: removing
them harms accuracy. For the USPTO dataset removing the absolute cosine angle threshold for
characters produces 93.72% SMILES matches, removing the threshold for line-character distances
produces 97.06% SMILES, matches and removing both produces 93.20% matches. Including the
pruning parameters produces 98.16% exact SMILES matches.

Benchmarking Born-Digital Parser. Table 3.3 compares ChemScraper and existing molecule
parsing models. For the USPTO dataset, we see that the born-digital parser obtains the highest
rates. Note that the ‘rendering failure’ for USPTO applies to all systems, because the SMILES for
these 15 molecules are missing in the collection itself. Given this, the born-digital parser working
from PDFs outperforms the neural models working from raster images by nearly 1%, and rule-based
system working from raster images by roughly 3%. The strong performance of the born-digital
parser is because of the additional information is available from PDF instructions, and the robust
design of the born-digital parser.

The model also obtains competitive rates for CLEF and UoB, but note that this is for Indigo-
rendered SMILES, and not the provided PNGs because PDF images are not provided in these
collections.

In terms of execution time, running the born-digital parser on the USPTO-Indigo dataset (5,719
molecules) with a single process took 28.01 mins (293.39 ms/formula), i.e., 3.4 molecules/sec, with

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 76

Table 3.2: Grid Search Parameters. Values tested are shown, with default values in bold.

1. ANGLES & PROXIMITY

ANGLE_TOLERANCE_DEGREES {1, 3, 5, 10, 15}
CLOSE_NONPARALLEL_ALPHA {1, 1.25, 1.5, 1.75, 2.0}
CLOSE_CHAR_LINE_ALPHA {1, 1.25, 1.5, 1.75, 2.0}

2. SYMBOLS

S-WEDGE_LENGTHS_DIFF_RATIO {0.70, 0.85, 0.90, 0.95}
NEG-CHARGE_Y_POSITION {0, 0.25, 0.5}
NEG-CHARGE_LENGTH_TOLERANCE {0.33, 0.5, 0.66}

3. PRUNING EDGES

ABS_COS_CHAR_PRUNE {0.10, 0.15, 0.20}
CHAR_LINE_Z_TOLERANCE {1.0, 1.5, 2.0}
MAX_ALPHA_DIST {2.0, 2.5, 3.0}

Table 3.3: Molecular Structure Recognition Benchmarks. Percentages of generated SMILES match-
ing ground truth are shown. For USPTO both PNG and PDF images are rendered using Indigo, but
rendered SMILES PDFs may differ from scanned PNGs for CLEF and UoB (indicated by italics).

Synthetic Image *Scanned Image

Models USPTO (5719) CLEF-2012 (992) UoB (5740)

Rule-based
MolVec 0.9.7 95.40 83.80 80.60
OSRA 2.1 95.00 84.60 78.50
Imago 2.0 - 68.20 63.90

Neural Network
Img2Mol 58.90 48.84 78.18
DECIMER 69.60 62.70 88.20

Graph Outputs

OCMR - 65.10 85.50
SwinOCSR 74.00 30.00 44.90
Image2Graph - 51.70 82.90
MolScribe 97.50 88.90 87.90
MolGrapher - 90.50 94.90

ChemScraper

Born-Digital Parser (PDF input)
(PDF rendering errors) (15) 98.16 (71) 89.32 (0) 94.41
*Skipping rendering errors 98.42 96.20 94.41

Visual Parser (PNG input) 85.02 - -

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 77

a peak CPU memory use of 230 MB. With multiple processes (32) the total time is reduced to 1.81
mins (19.04 ms/formula), i.e., 52.5 molecules/sec. Performance benchmarks from Rajan et al. [101]
show that on a Linux workstation with Ubuntu 20.04 LTS, two Intel Xeon Silver 4114 CPUs and
64 GB of RAM, processing the USPTO-Indigo dataset took 28.65 minutes for MolVec 0.9.7, and
145.04 minutes for OSRA 2.1. Thus, on comparable systems, our born-digital parser operates at
similar or faster speeds compared to other rule-based methods.

Rendering: Sensitivity Analysis. To check the robustness of the born-digital parser, we used
the rendering parameters of Indigo to perform a sensitivity analysis. We tested three rendering
parameters visualized in Figure 3.9. Parameters/values considered are:

1. relative-thickness: Boldness of graphic and text objects. Values considered: {0.5, 1, 1.5}.
The default is 1.

2. render-implicit-hydrogens-visible: Whether to show implicit hydrogens. Default is True.

3. render-label-mode: Which atom labels to show: {hetero, terminal-hetero, all}. all shows
all atoms. There is a none option we omit because it leads to ambiguous molecules. Default
is terminal-hetero.

This produces 18 parameter combinations for rendering. We evaluated our parser with each of them
for the USPTO Indigo dataset, using SMILES matches and inverse normalized levinshtein distances
for evaluation.

Figure 3.10 shows how different atom labelings affect performance of the parser. Including all atom
labels slightly hurts performance, in part because the more dense a molecule becomes, the more
probable it is for the parser to connect atoms incorrectly. Figure 3.11 then shows the effect of
rendering with different thicknesses. Lower thicknesses produce stronger results, again because this
decreases the density of the molecule. As seen in Figure 3.9, lower thickness increases the distance
between unconnected objects.

Figure 3.12 compares performance when rendering molecules with or without implicit hydrogens.
The difference between the conditions is minimal, with 14 fewer exact matches (roughly 0.06%)
than when showing implicit hydrogens. This difference is due to merging errors of different groups
that are close, similar to the crowding of Figure 3.9b.

Overall, the born-digital parser is quite robust to these changes in rendering parameters. This
robustness was achieved by gradually increasing the reliance of the born-digital parser on graph

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 78

C

C
C

C

C
C

C
C

CC

C

O
C
C
C
C

C
O C

C

C
C

C
C

C
C
C C

C

O

C
O

(a) (all, F, 1.5)

CH3

C
C

CH3

C
C

CH2
C
H2

CCH3

CH3

O
C
C
H2

C
H2

C

C
OH C

CH3

C
CH3

C
C

CH2
C
H2

C CH3

CH3

O

C
OH

(b) (all, T, 1.5)

CH3

CH3

CH3

CH3

O

OH

CH3

CH3

CH3

CH3

O

OH

(c) (term-h, T, 0.5)

CH3

CH3

CH3

CH3

O

OH

CH3

CH3

CH3

CH3

O

OH

(d) (term-h, T, 1.0)

Figure 3.9: Rendering a molecule with different parameters (Indigo toolkit). Each of (a)-(d) indicate
the label mode, whether implicit hydrogens are shown, and the relative thickness. Parameters in
(d) are the defaults. The born-digital parser recognizes all four versions correctly.

Label Type

90.00%

92.50%

95.00%

97.50%

100.00%

all hetero terminal-hetero

Exact matches Inverse Normalized Levenshtein Distance

Figure 3.10: Sensitivity of Born-Digital Parser to Label Rendering Parameter. SMILES-based eval-
uation is used. Other parameters have default values, with render-implicit-hydrogens-visible

as True and render-relative-thickness to 1.

Table 3.4: Born-Digital Parser Label Graph Metrics for Different Rendering Parameters (5719
molecules). Shown are F1 measures for symbol labels, correct labels, and complete graphs.

Rendering Parameters Correct node Correct edge Molecules
Render label_ mode implicit_ hydrogens_ visible relative_ thickness (labels) F1 (labels) F1 Struct. +Class

Default terminal-hetero true 1 99.96 99.84 98.49 97.62
Hardest all true 1.5 99.65 99.01 81.89 81.12

properties while reducing the number of parameters used; additional reductions in parameters are
likely possible.

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 79

Relative Thickness

90.00%

92.50%

95.00%

97.50%

100.00%

0.5 1 1.5

Exact matches Inverse Normalized Levenshtein Distance

Figure 3.11: Sensitivity of Born-Digital Parser to Thickness Rendering Parameter. Higher
thickness reduces accuracy. Other parameters: render-implicit-hydrogens-visible is True,
render-label-mode is terminal-hetero.

Implicit Hydrogens Visible

90.00%

92.50%

95.00%

97.50%

100.00%

FALSE TRUE

Exact matches Inverse Normalized Levenshtein Distance

Figure 3.12: Sensitivty of Born-Digital Parser to Showing Implicit Hydrogens. Other parameters:
render-label-mode is terminal-hetero and render-relative-thickness is 1.

Graph-Based Evaluation

Example molecular structure graphs are shown in Figs. 3.2(e) and 4.5(e), which are equivalent.11 For
the ChemScraper parsers, molecular structure graphs produced using born-digital primitives (see
Figure 3.2(b)) contain polygons representing the image locations for hidden carbons and atom/group
labels. We use these graphs directly for evaluation.

As outlined in Chapter 2, graph-based comparisons are facilitated when both the ground truth and
output graphs share the same set of nodes with known input locations. These graphs can be analyzed

11Note: The graphs are mostly undirected, but wedge bonds going ‘in’/‘out’ of a page require directed graphs.

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 80

through their adjacency matrices, where any discrepancies in cell entries indicate recognition errors.
By referencing node locations, these errors can be precisely pinpointed within the corresponding
input image. Furthermore, even when the grouping of nodes (segmentation) varies between the
graphs—whether due to over-segmentation or missing nodes—such differences can still be detected
through this bottom-up comparison approach [157].

Here, we take a slightly different approach. Rather than graphs sharing nodes, corresponding ground
truth and output nodes in molecular structure graphs are aligned (i.e., assigned the same identifier)
based on spatial overlap in a PDF image. After this alignment, we apply the same adjacency
matrix-based evaluation metrics and tools used for CROHME.

We first assign identifiers to nodes in the ground truth graph, which are atoms or named groups
(e.g., SO2) and hidden carbons at line intersections. the Indigo graph using code provided by
MolScribe. We have adapted MolScribe code to locate atom/group names and hidden carbons in
a PDF image for a molecular diagram generated using Indigo. Then, parser output graph nodes
are given the identifier of the ground truth node that they have maximum overlap with, breaking
ties arbitrarily. Where multiple output nodes overlap one ground truth node, or an output node
does not overlap a ground truth node (e.g., missed line intersections produce extra hidden carbons),
additional unique identifiers are created. Bonds are then defined using labeled edges between nodes
using these bond types: (single, double, triple, wavy, solid wedge, hashed wedge).

After alignment, adjacency matrices are used to identify all structural differences from the labels
in corresponding cells. Both rows and columns of adjacency matrices for: (1) ground truth, and
(2) parser output, are labeled by the node identifiers obtained during alignment. Node labels are
located in diagonal entries (e.g., (n1, n1)) and edge labels are provided in the off-diagonal entries
(e.g., (n1, n2)). For nodes, we compute the percentage of ground truth nodes aligned with an output
graph node with the same label (i.e., (R)ecall), and the percentage of output nodes aligned with
an identically labeled ground truth node (i.e., (P)recision). We combine Recall and Precision using
their harmonic mean F1:

F1 =
2RP

R+ P
.

We also report the analogous F1 measure for edges (bonds). An output edge is correct if its end
nodes and label match ground truth. Finally, we report the percentages of molecules with correct
structure (i.e., correct MERGE and CONNECTED relationships), and with both correct structure and
node labels.

For fine-grained evaluation of ChemScraper, we require molecule graph representations for both
ground truth and the predicted molecules. Given we have already created chemical structure graphs

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 81

Object Targets Primitive Targets and Errors

1 163 errors

CC SingleSingle

Targets

1 163 errors

CC SingleSingle

83 errors

CC

46 errors

ABSEC

34 errors

CC S WedgeH Wedge

2 35 errors

CC TripleTriple

Targets

1 35 errors

CC TripleTriple

26 errors

CC

8 errors

ABSEC

1 errors

CC H WedgeS Wedge

(a) Default Rendering Parameters

Object Targets Primitive Targets and Errors

1 633 errors

CC SingleSingle

Targets

1 633 errors

CC SingleSingle

378 errors

ABSEC

225 errors

CC

28 errors

CC H WedgeS Wedge

1 errors

ABSEABSENT

1 errors

CC DoubleDouble

2 320 errors

CC H Wedge

Targets

1 320 errors

CC H Wedge

285 errors

CC

30 errors

CC S Wedge

5 errors

CABSENT

(b) Hardest Rendering Parameters

Figure 3.13: Relationship Confusion Histograms for Renderings in Table 3.4 (truncated at right for
space). Hyperlinks show molecules with specific errors, check boxes allow selecting molecules with
errors for export. Default rendering: the top 2 errors are missing single and triple bonds. We
can observe that in both cases, at times a missing (ABSENT) hidden carbon is the cause. Hardest
rendering: missing single bonds are again the most frequent error, caused half of the time by a
missing carbon. The second most-frequent error is missing hashed wedges between carbons, where
no bond is detected, or because of misclassification of hashed wedges as solid wedges.

subsequently converted to CDXML format, we can readily employ these graphs for evaluation. It
is important to note that the molecular graphs utilized for evaluation differ from the visual graphs
created in Section 3.4 to annotate raster images.

Molecular Graphs for Evaluation. The predicted graph corresponds to the final stage in the
parsing algorithm, shown in Figure 3.2(e). These graphs are generated in the final step of the
born-digital parsing pipeline (see Figure 3.5). This graph assumes the representation of atoms
or atom groups as nodes, with edges representing bond types associated with nodes, which may
have one of the following types: {Single, Double, Triple, Solid Wedge, Hashed Wedge}. To
construct a ground truth molecular structure graph, we use a MOL object generated by Indigo from
the corresponding SMILES representation. We then extract atom positions along with the adjacency
matrix for bonds between atoms using MolScribe code [100] with minor modifications.

We identify correspondences between nodes in parser output and ground truth graphs using atom
coordinates from Indigo (ground truth) and Symbol Scraper (parser output). Minor discrepan-

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 82

cies in atom coordinates are resolved using minimum distances between corresponding atom pairs.
Corresponding nodes are giving the same identifiers.

Finally, we create object-relationship label graph files (Lg files) as described in Section 3.4. ‘Object’
entries represent individual atoms or atom groups, and the ‘Relationship’ entries denote bond edges
with bond type labels between the atoms, as opposed to specifying the type of connections between
visual elements.

Analysis. We use LgEval to compare molecular graphs to obtain the metrics in Table 3.4. The
table shoes a disparity between recognition rates when using labeled graphs (last column) vs. the
exact SMILES matches shown in Table 3.3. This arises because SMILES string-based metrics lack
sensitivity to direction and errors for 3D bonds, such as hashed and solid wedge bonds. In this way,
SMILES exact matches may be misleading in terms of identifying correct molecular structures. In
contrast, our graph-based metrics readily identify such errors.

Table 3.4 show a large decline in recognition rates when using the hardest rendering condition for
the parser, despite only a 0.83% reduction in accurate detection of edges in molecular graphs. This
is mainly due to the intricate network of edges and relationships, particularly in large structures
with rings. Even a 1% error in relationships, as seen in the USPTO-Indigo dataset with 382,058
target relationships for 5,719 molecules, substantially affects accuracy.

In the confHist tool error summary (an excerpt is shown in Figure 3.13), common errors for
the default rendering include missed single and triple bonds. The run for the hardest rendering
parameters produces a notable increase in the count for the most frequent errors, including missing
single and hashed wedge bonds. This unexpected difficulty with easier-to-detect bonds is due to
the density of molecules in the hardest rendering condition, which produces short bond lines and a
compact structure (See Figure 3.9(b)). This poses challenges for our graph transformations using
thresholds to accurately detecting bonds or establishing correct connections between entities. This
illustrates where greater use of visual features may be beneficial within the born-digital parser itself.

3.6 Summary

We presented two specialized born-digital parsing systems: one for extracting mathematical formulas
and the other for molecular diagrams, both leveraging PDF graphics data without relying on OCR.
SymbolScraper plays a crucial role by extracting precise character labels and locations from PDF
rendering commands, bypassing traditional OCR methods. The mathematical parser integrates this

CHAPTER 3. BORN-DIGITAL PARSING (PDF) 83

symbol data to construct Symbol Layout Trees (SLTs), which may be converted to formats like LATEX
or Presentation MathML. In the absence of complete PDF information, we use neural network-based
models such as QD-GGA [72] and LGAP [114] to ensure formula structure recognition, focusing on
segmenting connected components and classifying symbols.

For chemical diagrams, the ChemScraper parser efficiently tokenizes graphical elements like lines,
polygons, and curves into molecular structure graphs, which can then be converted into chemical
representations like SMILES and CDXML. This parser also addresses the challenge of training
data scarcity by generating annotated raster images for visual parsing tasks. Both parsers provide
outputs that are compatible with widely-used tools like ChemDraw, enabling seamless integration
into chemical workflows.

We adapted adjacency matrix-based evaluation metrics from CROHME for both mathematical
formulas and molecular graphs, ensuring detailed assessments of parsing accuracy. These metrics
highlight structural errors not captured by simpler string-based evaluation methods like SMILES
matching.

Limitations: While these parsers offer robust and accurate extraction capabilities for documents
with vector-based content, they rely heavily on the availability of clean vector information. Many
real-world documents contain a mix of vector and raster graphics or lack vector information entirely.
This limitation underscores the need for extending our parsing approach to handle raster images
through visual parsing, a problem we address in the next chapter.

In the next chapter, we extend our exploration to visual parsing from raw images. Here, we shift
focus from PDF-based symbol extraction to image-based parsing, leveraging neural networks to
analyze and reconstruct formula and diagram structures directly from pixel-based data.

Chapter 4

Visual Parsing from Raster Images

Documents include both born-digital PDF documents (e.g., where symbols in a formula may be
available, but not formula locations [12, 113]) as seen in the previous chapter, and scanned docu-
ments, for which OCR results for formulas can be unreliable. In this chapter, we focus on the task of
parsing the visual structure of formulas and diagrams from raster images after formulas have been
detected/isolated, and parsing isolated formulas from connected components or visual primitives in
binary images in particular.

The Line-of-Sight with Graph Attention Parser (LGAP) [114] introduced in this chapter builds
upon the Query-Driven Global Graph Attention formula parser (QD-GGA) [72]. Both systems use
line-of-sight (LOS) graphs to structure their input and generate SLTs that represent mathematical
expressions. However, LGAP improves upon QD-GGA by incorporating additional context through
LOS neighbors [50,52], enhancing spatial information via spatial pyramidal pooling [44], and refining
representation of punctuation relationships to avoid requring edges that are missing in many LOS
graphs. This chapter shows how LGAP increases the recognition accuracy for math formulas and
addresses the challenges inherent in parsing mathematical expressions.

In parallel, we introduce Line-of-Sight Chemical Graph Parser (LCGP)—a neural network-based
chemical diagram parser that extends the concepts of LGAP for molecular structures. LCGP is
specifically designed to handle the intricacies of chemical diagrams by segmenting primitives such
as lines, polygons, and curves from raster images, generating visual graphs, and converting them
into molecular structure graphs. LCGP also employs iterative segmentation-aware learning, where
the network refines input features across multiple runs until the merging of primitives stabilizes. The
advancements made in LCGP for chemical diagram parsing can also be adapted for mathematical

84

CHAPTER 4. VISUAL PARSING (IMAGES) 85

formulas, and this will be discussed in Chapter 5.

The chemical visual parser introduced here recognizes molecules from raster images (pixel-based).
Similar to the born-digital parser, ChemScraper, described in Chapter 3, the visual parser operates
in a compiler-style multi-step architecture, starting with (1) primitive identification and progressing
through (2) visible diagram structure recovery to (3) chemical structure generation.

The chemical visual parser starts by creating line-shaped contour primitives from a raster image that
over-segment lines and characters. Just as for the born-digital parser, the visual parser creates a
visual graph providing an explicit correspondence between an input image and recognized structure.
The same tokenization and molecular graph generation steps used for the born-digital parser are
then performed to produce the final molecular graph, which can be converted into formats like
SMILES and CDXML for chemical applications. The LCGP network, based on a ResNet backbone,
uses discrete attention mechanisms and dynamically updates classifier inputs with refined primitive
contours during recurrent runs.

Both LGAP and LCGP benefit from taking a divide-and-conquer approach, with structure recov-
ery in mathematical formulas driven by LOS-based neighbors, and molecular diagrams processed
through overlapping windows. The parsers are evaluated using adjacency matrix-based metrics
for graph comparisons, providing detailed insights into recognition errors. For chemical diagrams,
we also employ SMILES-based evaluation to report structural differences missed by graph-based
methods.

In summary, this chapter demonstrates the evolution from QD-GGA to LGAP for math parsing,
and the transition from LGAP to LCGP for chemical diagram parsing. These parsers exemplify
the potential of graph-based methods for extracting meaningful structure from visual data and
offer avenues for future extensions. The methods introduced here set the stage for developing more
unified parsing systems that can seamlessly handle both math and chemical structures from raw
images.

4.1 The Parsing Model – LGAP and LCGP

In this section, we provide an in-depth overview of two parsing models, LGAP [114] and LCGP
[112], both designed for visual parsing tasks but with specific adaptations for math formulas and
chemical diagrams, respectively. By examining each model across their various components, we
aim to clarify their similarities and differences in detail. Both LGAP and LCGP share a common

CHAPTER 4. VISUAL PARSING (IMAGES) 86

backbone and parsing strategy, grounded in the use of line-of-sight (LOS) features and multi-task
neural networks, but diverge in their feature representations, input handling, constraints, and post-
processing steps. The progression from QD-GGA to LGAP for math parsing, and subsequently from
LGAP to LCGP for parsing chemical diagrams, reflects targeted improvements to accommodate the
unique requirements of each domain.

LGAP (Line-of-Sight Graph Attention Parser) is an MST-based parser designed to improve
mathematical formula parsing. Evolving from the QD-GGA model, LGAP enhances parsing accu-
racy by incorporating line-of-sight (LOS) context not only in constructing input graphs but also in
supplementing visual features through neighboring primitives. This additional context helps cap-
ture local relationships between symbols, which are essential for accurate formula parsing. LGAP
also addresses the QD-GGA model’s spatial information loss by employing spatial pyramidal pool-
ing [44] rather than isolated average pooling. This preserves critical spatial features, especially
useful in recognizing complex math expressions with hierarchical structures like superscripts and
subscripts. Furthermore, LGAP corrects limitations in representing punctuation, which previously
relied on ‘PUNC’ edges between adjacent symbols. In many cases, the line-of-sight between parent
symbols at left and punctuation marks at right, such as ‘.’ or ‘,’ is blocked by other symbols, causing
removal of a ground truth edge in the graph.

LCGP (Line-of-Sight Chemical Graph Parser) is a multi-task neural network adapted from
LGAP to parse chemical diagrams from raster images. While LGAP was tailored to the demands of
math formulas, LCGP extends this approach to handle the complexities of molecular structures. Like
LGAP, LCGP utilizes LOS-based features but modifies its feature representations, input processing,
and constraints to reflect the distinct requirements of chemical diagrams. The model constructs
visual structure graphs for molecular diagrams by classifying individual queries – line primitives and
relationships through multi-task queries, similar to LGAP, but with modifications to accommodate
chemical structures. The parser is trained using our ground truth representation for raster images
illustrated in the previous chapter (3). Also, another additional strategy is used in LCGP for
formulas that contain MERGE edges. We use two versions of the input: (1) with no labels, relations,
or MERGE edges defined (i.e., raw primitive input), and (2) with no labels or relations, but all ground-
truth MERGE edges provided. This allows the model to learn more quickly how to classify symbols
and relationships from whole objects rather than their parts.

While LGAP and LCGP both build visual structure graphs, LCGP’s focus on chemical diagrams
necessitates further processing beyond MST-based restructuring. Compared to the born-digital
parser, LCGP uses line primitives to replace the first stage of the pipeline in Figure 3.5, while

CHAPTER 4. VISUAL PARSING (IMAGES) 87

Pruned LOS Graph
(6 nearest neighbors)

SE-ResNext

Linear

Query (Qn) Context (Cn)

Nodes (primitives) Edges (primitive pairs)

qn||cn

Symbol
classes (71)

Query (Qe) Context (Ce)

SymbolsSegmentationsRelations

Molecule Image
(Raster)

Visual primitives

Symbol-level GraphFinal Visual Graph

Merge

Prune

LinearLinear

Update query &
context features until

no new merges
qe||ce

Relation
classes (2)

Segmentation
classes (2)

dropout (0.1)

dropout (0.1)

Figure 4.1: Parsing a Raster Image of Nitrobenzene (C6H5NO2). Line contours are extracted as
primitives, over which a pruned LOS graph is built. At top-right, four node and four edge queries
are shown, at bottom-left their classification tensors (rows: queries, columns: classes). (Q)uery and
(C)ontext features enter an SE-ResNext block. Two-layer Multi-Layer Perceptrons (MLPs) estimate
probabilities for symbol, segmentation (MERGE), and relationship (CONNECTED) probabilities.
Merges are applied (e.g., for ‘N’), with symbol/relationship probabilities averaged across primitives.
The model runs recurrently, updating queries and their contexts until no new merges are found
(e.g., two passes for this example).

LCGP replaces the second and third stage up to step 3(b) to produce a visual graph (restructured
MST). The remaining tokenization and semantic analysis steps (steps 3(c) and 4) are unchanged.

Through the evolution from QD-GGA to LGAP for math formulas, and further to LCGP for chem-
ical diagrams, this section presents a unified parsing approach that adapts well across domains
by building on a shared LOS-based parsing model and progressively refining feature and structural
adaptations specific to each task. We delve into the parsing model by examining its key components,
including the inputs and outputs, feature representations, and the multi-task CNN-based classifica-
tion framework used for both LGAP and LCGP. We then explain how the models transform input
graphs into output structures, specifically, a Symbol Layout Tree (SLT) for math formulas and a
molecular graph for chemical diagrams. Each subsection will highlight how LGAP and LCGP ad-
dress their domain-specific requirements while building on a shared foundation. Both models were
implemented in PyTorch, with Python’s NetworkX library facilitating graph representations and

CHAPTER 4. VISUAL PARSING (IMAGES) 88

Edmonds’ algorithm to obtain MSTs/SLTs, where relevant. The open-source implementations for
LGAP and LCGP are available for further development and research.1

4.1.1 Inputs

In both LGAP and LCGP, the initial input to the parsing model is a Line-of-Sight (LOS) graph
constructed from visual primitives. This LOS graph effectively prunes edges between primitives
by connecting only those pairs where an unobstructed line can be drawn from the center of one
primitive to a point on the convex hull of another [71]. This approach helps reduce the number of
edges while retaining essential spatial relationships, which is crucial for efficiency in graph-based
parsing.

In LGAP for mathematical formulas, the input primitives are either handwritten strokes or con-
nected components (CCs) from typeset images (see Figure 2.1). A handwritten stroke is represented
by a list of 2D (x,y) coordinates obtained from sampled positions of a pen, trackpad, or other touch
device. When parsing online handwritten formulas, our input is a graph over strokes images: strokes
are individually rendered using their stroke coordinates. For typeset formulas, connected compo-
nents derived from binarized formula images act as input primitives. For both handwritten and
typeset formulas, we assume that primitives (stroke images or CCs) belong to exactly one symbol.

An initial complete graph is created with edges between every pair of primitives, but only LOS
edges remain after pruning as suggested by Hu et al. [52]. This selective LOS graph [28], as shown
in Figure 4.4, reduces the space of output graphs and number of classification decisions needed by
eliminating irrelevant connections with few deletions of pertinent edges [52]. It focuses the model on
key relationships—such as the relationship between a fraction line and ‘2’—by removing unnecessary
edges from ‘2’. Figure 4.4, all edges between the ‘2’ and other CCs other than the fraction line are
pruned.

In LCGP for molecular diagrams, the input consists of line primitives obtained from rasterized
molecular images, which often include lines, curves, and character components. Connections and
merges exist only between nearby primitives in molecular diagrams, as reflected by our use of
MSTs in the born-digital parser. Similar to LGAP, LCGP starts with a complete graph of visual
primitives and then applies LOS constraints to retain edges only between directly visible primitives.
An additional step here involves limiting each primitive’s LOS connections to its k = 6 nearest
neighbors to accommodate a four bond constraint in molecular diagrams – there can be at most 4

1LGAP/LCGP open-source implementation: https://gitlab.com/dprl/lgap-parser

https://gitlab.com/dprl/lgap-parser

CHAPTER 4. VISUAL PARSING (IMAGES) 89

lines or characters in a bond; we choose 6 neighbors to accommodate over-segmentation in visual
primitives, such as when bond lines or characters may be broken into multiple segments. This
adjustment ensures that the model remains focused on relevant local interactions, particularly in
cases of over-segmentation.

Modified Punctuation Relationship in Ground Truth SLTs (LGAP). Mahdavi et al. [71]
added a new spatial relationship called PUNC in the InftyMCCDB-22 dataset, for distinguishing
horizontal relationships with punctuation sybmols from other horizontal relationships to make their
visual features more consistent and thereby identifiable. However, this modification can lead to
missing ground truth punctuation edges in the input LOS graph, often when a symbol has a subscript
and is followed by a punctuation symbol on its writing line. This happens since there is good chance
that the line of sight between the parent symbol and the punctuation is blocked by one or more
primitives between them, usually a large subscript. For the example in Figure 4.2, the ground
truth edge between the symbols ‘z’ and ‘COMMA’ is blocked by the primitives corresponding
to ‘i’. Here the PUNC relationship will be missed, due to the missing edge in the input LOS
graph representation. Additional heuristics in LPGA [71] modify the LOS graph to add missing
punctuation based on angles and relative sizes of symbols, which are not very robust.

To address this issue, we modified the assigned parent node for PUNC edges as shown in Figure 4.2.
Instead of the original parent, which may be far left on the writing line and/or blocked in the LOS
graph, we assign the PUNC parent node to the symbol immediately at left of the punctuation
symbol. This modification ensures all PUNC edges are included in input LOS graphs. This also
improves training/learning, as relationships between PUNC parent and child nodes using more
consistent visual features (see Section 4.2).

4.1.2 Features

In both LGAP and LCGP, we develop feature representations based on the line-of-sight (LOS)
context, with each model using unique strategies to improve accuracy and efficiency in parsing
mathematical formulas and chemical diagrams.

In LGAP, for formula images, we extract CC contours by first smoothing them and then sampling
contours to produce trace points. For handwritten formula images, trace points are already available.
These trace points are interpolated, normalized, and scaled to a height of 64 pixels while preserving
the aspect ratio: this results in formula images with a fixed height but varying width. The full

2https://www.cs.rit.edu/~dprl/data/InftyMCCDB-2.zip

https://www.cs.rit.edu/~dprl/data/InftyMCCDB-2.zip

CHAPTER 4. VISUAL PARSING (IMAGES) 90

fractionalLine
Obj0
0

two
Obj1
1

UPPER

z
Obj2
2

UNDER

i
Obj3
3 4RSUB

COMMA
Obj4
5

_
(PUNC)

y
Obj5
6

HORIZONTAL

PUNC
(_)

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Figure 4.2: Modifed puncutation (PUNC) ground truth representation. The old PUNC edge is
shown using red dashed arrows, and its corresponding new edge is shown with solid orange arrows.
The original PUNC edge between nodes ‘z’ and ‘COMMA’ is missing in the LOS graph, as can be
seen in Figure 2.3.

normalized formula image is fed into a CNN encoder backbone to compute the global visual features,
and points on sampled contours are used to construct the LOS input graph (described below).

Input regions are processed to produce binary attention masks created for input queries correspond-
ing to individual primitives (nodes) or primitive pairs sharing an edge in the LOS graph. Binary
masks for directed edges between primitive pairs are concatenated with the binary mask for the
parent primitive, to increase identifiability and thus classification accuracy [72]. Query binary masks
filter the CNN global feature map, providing focus on image regions pertinent for three classifica-
tion tasks: (1) masking individual CC/strokes for symbol classification (for nodes), and masking
CC/stroke pairs for (2) segmentation and (3) spatial relationship classification (for directed edges).

We introduce an additional binary LOS mask, which consists of a binary sum (OR) of the query
mask with the binary mask of all neighboring primitives in the LOS graph (see Figure 4.3). These
additional LOS binary masks serves to provide visual spatial context information from the neighbors
in the LOS graph. As for primitive and primitive pair binary masks, LOS masks are downsampled
and weight the global feature map produced by the encoder in order to focus on the relevant parts
of the input image for the three classification tasks (symbols, segments, relationships).

However, a significant limitation in LGAP is that these binary masks often have sparse information
due to the large image size relative to the localized regions with active pixels. Only the query
primitives or primitive pairs contribute active pixels within the full formula image, resulting in
a high proportion of zero-valued pixels. This sparsity limits the network’s ability to generalize
meaningful patterns efficiently and can lead to suboptimal feature representations.

In LCGP, we addressed these limitations by shifting to a more compact and context-focused fea-

CHAPTER 4. VISUAL PARSING (IMAGES) 91

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

SE-ResNext
Encoder

Attention
block

Attention
block

Formula ImageA query node LOS neighbors of the
given query node

LOS Graph
(Primitive level)

Global Feature Map

C × H × W

Node attention mask LOS attention mask

Node feature vector

Pooling

Downsample +
Normalize

Downsample +
Normalize

Pooling

Figure 4.3: Binary attention masks in LGAP. The input primitive query mask (represented here
by the base of the letter ‘i’) and its corresponding LOS masks are used to generate the attention
masks by performing element-wise multiplication with the global feature map. The two attention
masks are concatenated to get the node feature vector that is utilized for symbol classification. Note
that the same process is applied to the primitive pair binary masks and LOS mask to generate the
primitive pair feature vector for classifying directed edges.

ture representation. Instead of processing entire formula windows, visual features are created by
drawing line primitive contours directly into 28 × 28 binary images for (1) individual primitives
(node queries), (2) primitive pairs (edge queries), and (3) context images containing the k = 6

nearest neighbors centered around each query (one per node/edge query). This approach signifi-
cantly reduces the amount of zero-padding and allows each primitive or pair to be tightly centered,
minimizing irrelevant areas and focusing the network on the actual region of interest. This setup
is similar to the MNIST digit classification task [60], where the network processes compact, cen-
tered images of individual symbols, which aligns well with LCGP’s symbol classification task and
improves the network’s ability to recognize symbols accurately.

LCGP’s fixed-size feature vectors eliminate the variable-width issue in LGAP, where varying formula
widths made batch processing inefficient and required extensive packing. With uniformly-sized
28×28 feature maps, LCGP achieves efficient batch processing, allowing for better generalization and

CHAPTER 4. VISUAL PARSING (IMAGES) 92

Symbol classification

Adjacency matrix outputs from CNN

Relation classification Symbol detection
Complete Graph LOS Graph (Primitive level)

Segmentation

CNN

LOS Graph (Symbol level)Symbol Layout Tree

Merge
i

Edmond's MST
ExtractionUPPER

UNDER

HORIZONTAL

PUNC

RSUB

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

0

1

2

3

4
5

6

Figure 4.4: LGAP formula parsing example. A complete graph over input primitives (here, CCs)
is pruned, sub-images corresponding to CCs and CC LOS edges are given symbol, merge/split, and
spatial relationship class distributions. Based on merge/split probabilities primitives are merged
into symbols (here, for the ‘i’), and finally an SLT is produced from remaining spatial relationship
edge by extracting a directed MST (arrows omitted for legibility). Symbol and relationship class
probabilities are averaged when merging primitives into symbols.

reduced memory requirements. Additionally, the queries are shuffled throughout the dataset—even
across formulas—treating each query as independent. This strategy promotes robust learning, as the
network processes a diverse set of primitives and primitive pairs across different formula contexts.

In summary, LCGP enhances the feature representation by focusing on tightly-cropped query and
context images, reducing sparsity, and optimizing for batch efficiency. These features are compact
yet effective, capturing essential information while reducing noise, resulting in a more efficient and
accurate parsing approach compared to LGAP.

4.1.3 Multi-Task CNN for Classifying Primitives and Primitive Pairs

In this subsection, we delve into the multi-task CNN architecture used for classifying primitives
and primitive pairs in both mathematical formulas and chemical diagrams. The goal is to segment

CHAPTER 4. VISUAL PARSING (IMAGES) 93

symbols, classify their types, and determine the spatial or structural relationships between them.
The evolution from QD-GGA to LGAP and subsequently to LCGP highlights the enhancements
made in contextual feature extraction, attention mechanisms, and efficient processing. This section
will describe how the CNN model processes visual features derived from input primitives and their
pairs, performing symbol classification for individual primitives and segmentation and relationship
classification for primitive pairs. Through this approach, the model captures both local details
and contextual information, enabling accurate parsing of visual structures within mathematical and
chemical diagrams.

The LGAP model evolved from the end-to-end trainable multi-task learning model, QD-GGA [72],
focusing on parsing mathematical formulas through improved attention mechanisms and feature uti-
lization. In LGAP, image features for primitives and edges within the Line-of-Sight (LOS) graph
are extracted using a CNN architecture, facilitating the classification of three primary tasks: sym-
bol segmentation (detection), symbol classification, and spatial relationship classification. This
multi-task learning framework builds upon the QD-GGA model, where the estimated probability
distributions for each classification task are stored in three adjacency matrices defined over the LOS
graph. Symbol classification probabilities for primitives are represented along the LOS adjacency
matrix diagonal, and merge/split and spatial relationship probabilities are represented for directed
LOS edges in off-diagonal entries, as seen at top-right in Figure 4.4.

The CNN contains an SE-ResNext backbone [49, 138] used to compute a global feature map from
the input formula image along with attention modules to produce attention relevance maps from
the binary masks described in the previous Section. The SE-ResNext backbone and the attention
modules are trained concurrently using a combined cross entropy loss function for all three classifi-
cation tasks. Attention modules are used to produce 2D relevance maps from the 2D binary masks
for nodes, edges and LOS neighbors separately by convolving them through 3 convolutional blocks,
trained for each task, where each block has 3 kernels of size 7× 7, 5× 5, and 5× 5 [72].

For this work, we modified the QD-GGA SE-ResNext encoder by reducing the number of output
channels from 512 to 256, to reduce the number of parameters requiring training. This results in
a 256-dimensional feature vector for symbol classification, and two 512-dimensional feature vectors
for segmentation and relation classification, respectively.

In LCGP, we introduce enhancements to address some limitations in LGAP and better adapt the
model for chemical diagram parsing. Unlike LGAP, LCGP does not generate a global feature map
for the entire formula image, nor does it use separate attention modules to produce relevance maps.
Instead, each query and its context are represented by independent, fixed-size 28×28 binary images,

CHAPTER 4. VISUAL PARSING (IMAGES) 94

which significantly reduces the proportion of zero-valued pixels and centers the focus on relevant
primitives. This approach eliminates the sparsity and variability of the input image sizes present in
LGAP, allowing for more compact and effective feature extraction.

In LCGP, query and context images are passed separately through the same SE-ResNext backbone.
This backbone generates 32 feature maps for each 28×28 input. We further refine the architecture
by replacing the large 7×7 convolutional kernel with a smaller 3×3 kernel, applying a stride of 1 and
using same padding, while removing the first maxpool layer to preserve more detailed features since
input images are already small. Note that the number of output channels is further reduced from
256 in LGAP to 32 in LCGP, reflecting the improved feature representation and reducing model
complexity without compromising accuracy.

By treating each query independently and shuffling queries across the dataset, LCGP achieves
robust learning while maintaining uniform and efficient processing through fixed-size features. This
approach, inspired by the MNIST-like classification of primitives [60], allows LCGP to maintain
local context while focusing on critical elements for parsing.

Spatial Pyramidal Pooling and 1-D Context Module.

Average pooling uses a single average activation value to represent the convolutional response in
a region [2]. Without the use of windowing within an input image, a large amount of important
spatial information is lost during average pooling. Jose et al. [54] use a pyramidal pooling method,
which integrates spatial information into the feature vectors, producing more compact and location
invariant feature vectors. He et al. [44] introduced the spatial pyramid pooling (SPP) strategy
for deep CNNs by adopting the widely used spatial pyramid matching (SPM) strategy [58]. SPP
captures spatial information by pooling features within equal-sized regions of the feature map for
increasing numbers of sub-regions, forming a pyramid of overlapping sub-regions (e.g., whole image,
left-right, top-down, 3 horizontal regions, etc.). SPP is used to capture spatial information across
multiple horizontal and vertical regions, providing more spatial information and lower variance in
features.

For LGAP, we use 5 levels with 11 regions in pooling outputs: this includes 1 full feature map,
2 vertical bins, 3 vertical bins, 2 horizontal bins, and 3 horizontal bins. To reduce the growth in
parameters due to increasing pooling regions from 1 to 11, we also reduce the number of output
channels in the SE-ResNext encoder from 512 to 64 (a factor of 8). The resulting node and edge
feature vectors have lengths of 704 (i.e., 64 × 11) and 1408 (i.e., 128 × 11), respectively. With the

CHAPTER 4. VISUAL PARSING (IMAGES) 95

new LOS attention masks, the feature lengths are 1408 (i.e., 704 × 2) and 2816 (i.e., 1408 × 2)
respectively. The edge features have an additional factor of 2 due to the concatenation of parent
primitive attention masks, as mentioned earlier.

1-D Context Module in LGAP. The weighted feature maps are pooled to produce feature vec-
tors. A ‘1D context’ module then performs a 1-by-3 convolution along the sequence of query feature
vectors used as classification input [72]. The convolution aggregates features from the previous
(i− 1)th and next (i+1)th query in input order for the ith query. In the input, queries are spatially
sorted top-down, left-right by the top-left coordinate of a query’s bounding box. Feature vectors
are passed to one of three fully-connected output layers for three classification tasks: segmentation
and relationships (edges), and symbol classification (nodes). We also examine removing the 1-by-3
convolutional context module, since its notion of neighbor is not based directly on spatial proximity
as discussed earlier (see Section 4.2).

For LCGP, feature maps are average pooled in 7 pyramidal regions (image, 3 vertical, 3 hori-
zontal). The final query visual features are the pooled convolution responses for a node/edge and
its associated context (i.e., qn||cn or qe||ce). For 32 features maps with 7 average-pooled regions,
the query and context images produce 2 × 224 = 448 features. We add three positional encodings
to query vectors in the form of bounding boxes (BBs) (xmin, ymin, xmax, ymax) with coordinates
normalized to be percentages of width/height:

1. Query BB relative to the formula window

2. Query BB relative to the context window

3. Context window BB relative to the formula

For edge queries we use the combined primitive pair position as the query position. Adding these
three BBs each query vector contains 448 + (3× 4) = 460 features. Dropout is applied for regular-
ization (rate of 10%).

1-D Context REMOVED in LCGP. A key improvement in LCGP is the elimination of the 1D
context module, which was used in LGAP for aggregating local context along a query sequence.
This removal is justified because LCGP already achieves context-aware representations through
the use of tightly cropped query and context images and the inherent spatial pooling mechanism
within the SE-ResNext backbone. Additionally, removing the 1D context module simplifies the
architecture, reduces computational overhead, and allows for direct input of query and context

CHAPTER 4. VISUAL PARSING (IMAGES) 96

feature vectors into linear layers for classification tasks. This change leads to more efficient and
consistent processing without compromising the model’s ability to capture relevant context.

Multi-Task Cross Entropy Loss Function and Training.

In both LGAP and LCGP models, we utilize a multi-task learning approach, applying a cross
entropy (CE) loss function with a softmax activation for each classification task. This approach,
originally used in QD-GGA [72], combines losses for symbol segmentation, symbol classification,
and relationship classification.

For LGAP, the data instances correspond to individual formulas, where each formula contains N

nodes (primitives such as strokes or connected components) and E edges (between primitives in the
line-of-sight graph). The total loss for a formula is computed as:

δ(N,E) =
∑
n∈N

CE(n, S) +
∑
e∈E

(CE(e,D) + CE(e,R)) , (4.1)

where D denotes segmentation ground truth edge labels, R denotes relationship ground truth edge
labels, and S represents the ground truth symbol labels for primitives (nodes). The loss is optimized
per formula, ensuring that the relationships within each formula are treated as a coherent unit. For
backpropagation, the Adam optimizer is used with a learning rate of 0.0005, momentum parameters
β1 = 0.9 and β2 = 0.999, and a weight decay (L2 regularization) of 0.1.

For LCGP, the data instances differ in that they consist of independently shuffled queries for nodes
(primitives) and edges (primitive pairs). Unlike LGAP, where the total loss is computed for each
formula, LCGP computes the total loss over batches of independent queries, making it more robust
by allowing shuffling across the entire dataset, including different formulas within the dataset. The
total loss for a batch of queries is computed as:

X(Qn, Qe) =
∑

qn∈Qn

XS(qn) +
∑

qe∈Qe

(XM (qe) +XC(qe)) , (4.2)

where XS , XM , and XC are the cross entropy losses given the correct target response vectors
(1-hot) and softmax distributions for (S)ymbol classification, primitive (M)erge, and primitive
(C)onnected outputs, respectively. Here, Qn represents the set of node queries (primitives) and
Qe represents the set of edge queries (primitive pairs) within a given batch. Random over-sampling
of node and edge queries is employed to balance positive and negative examples, particularly for
MERGE and CONNECTED edges, ensuring equal numbers of positive and negative samples.

CHAPTER 4. VISUAL PARSING (IMAGES) 97

(a) Raster Image (b) Visual primitives
nodes: lines

(d) Tokenized Visual Graph
nodes: bonds, atoms & superatoms

edges: connections

(e) Molecular Graph
nodes: atoms & superatoms

edges: bonds

||

||

||

NO2

(c) Visual Graph
nodes: lines & characters
edges: connections/merges

||

||

||

NO2

Figure 4.5: Parsing Nitrobenzene (C6H5NO2) from a raster image (a). (b) Visual primitives.
The N is split into 3 lines. (c) Visual Graph extracted from visual parser. (d) Tokenized Visual
Graph with merged nodes (bonds and named groups). (e) Molecular Graph. Blue nodes show
the primitives of N merged into a character (c) and double bonds and atom/group names in (d)
and (e). In (e) orange nodes are ‘hidden’ carbon atoms, and single/double bonds are converted
from nodes to edges.

Node and edge queries are processed together in batches, with a batch size of 64. The Adam
optimizer is used for backpropagation with a learning rate of 0.0005, β values of (0.9, 0.999), and
no weight decay. This batch-based approach improves model robustness by diversifying the context
and increasing generalization through the shuffling of queries across different formulas.

4.1.4 Parsing: Transforming Input Graphs into Output Graphs

The transformation of input graphs into output graphs represents a critical step in both mathe-
matical formula parsing and chemical diagram recognition. This process involves interpreting node
and edge classifications to build meaningful structures that represent the underlying content. For
LGAP, the focus is on constructing a directed Symbol Layout Tree (SLT) from connected com-
ponents or strokes representing mathematical symbols and their spatial relationships. In contrast,

CHAPTER 4. VISUAL PARSING (IMAGES) 98

LCGP constructs a tokenized visual graph for chemical diagrams by merging and connecting prim-
itives such as atoms, bonds, and other graphical elements. Both approaches utilize a line-of-sight
(LOS) graph as a foundational representation, but differ in how they transform this input graph
into their respective output structures. While LGAP relies on a directed Maximum Spanning Tree
(MST) approach with specific constraints, LCGP employs a more flexible pruning strategy with
recurrence to handle the cyclic nature of chemical diagrams. The following section outlines the
methodologies for each model.

In LGAP, after the LOS graph for mathematical formulas is constructed with nodes representing
primitives (e.g., connected components or strokes) and edges representing spatial relationships, the
multi-task CNN model assigns class probability distributions to each node and edge. The model
handles three main tasks: symbol detection (segmentation), symbol classification, and spatial re-
lationship classification across 207 symbol classes (including digits, Latin and Greek characters,
trigonometric variables, fraction lines, etc.), nine relationship classes (e.g., horizontal, right sub-
script, right superscript, under, upper, punctuation, no relation), and two primitive merge classes
(merge/split decisions).

The parsing begins by merging all LOS segmentation edges with a higher probability of being clas-
sified as MERGE rather than SPLIT. This effectively merges all connected components over primitives
in the resulting segmentation graph into symbols. For the example in Figure 4.4, primitives cor-
responding to the symbol ‘i’ are merged into a single symbol node, along with their corresponding
relationship edges. For merged primitives, symbol and relationship probabilities are averaged.

To construct a Symbol Layout Tree (SLT) representing the hierarchical structure of a formula,
we apply Edmond’s arborescence algorithm [38] to produce a directed Maximum Spanning Tree
(MST). The MST maximizes the sum of relationship probabilities in selected directed edges, where
the highest-probability relationship is chosen for each edge. To avoid duplicate edges with the same
spatial relationship from one parent symbol to multiple child symbols, we enforce a constraint that
a parent symbol may have at most one edge per relationship type (e.g., to prevent having two
horizontal relationships from one symbol to two symbols at right). We replace edges that duplicate
a relationship by removing the lower-probability edge, and replacing the lower probability edge’s
label with its next-highest relationship class probability, and then rebuild the MST, repeating until
this unique relationship constraint is satisfied.

Figure 4.4 shows how a complete graph over primitives is constrained and annotated with classi-
fication probabilities in stages, producing an SLT as output [155]. There are bidirectional edges
between strokes or CCs belonging to the same symbol, with the edge label matching the symbol

CHAPTER 4. VISUAL PARSING (IMAGES) 99

class. Spatial relationships are represented by directed labeled with their spatial relationship type.
Relation types include Horizontal, Rsub (right subscript), Rsup (right superscript), Upper, Under,
and PUNC (for punctuation).

In LCGP, the approach is adapted for parsing chemical diagrams. Similar to LGAP, LCGP
utilizes a multi-task neural network to assign class probabilities, but operates with a different set
of classes. As seen in Figure 4.1, node and edge queries are classified using three two-layer multi-
layer perceptrons (MLPs): 71 node symbol classes, including chemical elements (characters), digits,
straight lines, charges (+,-), parenthesis, etc.), two edge primitive merge classes (MERGE and SPLIT),
and two edge primitive connection classes (CONNECTED and NOT_CONNECTED). For each classification,
a hidden linear layer (512 units) is fully connected to the class output layer. For node queries the
Unlike LGAP, the final graph structure for chemical diagrams is not constrained to be a tree, so
Edmonds’ algorithm is not applied. Instead, the parser employs a simpler edge pruning strategy.

Classification outputs guide the merging of primitives into symbols and establish connections be-
tween symbols. The LCGP parser uses a recurrent execution strategy to iteratively refine symbol
segmentation.

Recurrent Execution in LCGP

The parser segments symbols bottom up from input primitives, updating query and context images
during recurrent execution. Execution is performed recurrently until edge queries classified as MERGE
with probability > 0.5 are unchanged from the previous pass (i.e., a fixed point is reached). On
a recurrent execution, query images, context images, and positional encodings are all updated for
merged primitives. Merges are identified by connected components along MERGE edges.

Note that this is not a conventional recurrent neural network (RNN) where a state vector is updated
across executions. Instead, we simply update input features directly as the segmentation changes.
For example, an N broken into three primitives may be merged in the second pass to produce
three node queries containing all three primitives. This allows the N to be classified in a single
query, rather than in three parts within the first iteration. Here the query images are identical for
each merged primitive, but note the context image for the primitives will differ because they are
centered on the original input primitive associated with each query. This addresses class imbalance
by representing multi-primitive symbols multiple times, each with a slightly different context image.

Recurrent execution stops when no change in MERGE decisions is identified. Edges identified with a

CHAPTER 4. VISUAL PARSING (IMAGES) 100

probability of being CONNECTED > 0.5 are selected; any edges not selected for MERGE or CONNECTED

are removed. Symbol and relationship probabilities are then computed by averaging them across
primitives in segmented symbols and their connections.

This simpler, less constrained approach avoids the complexities of Edmonds’ algorithm and is well-
suited for chemical diagrams, where cyclic graph structures may be present.

After constructing the final tokenized visual graph, the graph undergoes a transformation to a
chemical graph using the same deterministic steps described in Stage 4 of the born-digital parser
outlined in Chapter 3. This process, known as semantic analysis, maps the visual syntax of the graph
into a structured chemical representation. The semantic analysis stage includes identifying hidden
elements such as carbon atoms at line intersections and mapping structures represented solely by
name to their corresponding molecular subgraphs. For instance, names like NO2 are replaced by
subgraphs that contain one nitrogen and two oxygen atoms connected to a hidden carbon atom.
This step ensures that the output graph accurately captures the chemical structure beyond what is
visually represented, creating a molecular graph for downstream applications.

4.2 Evaluation and Results

This section evaluates the proposed LGAP and LCGP models on math and chemical datasets
respectively. It explores the effects of modifications to punctuation relationship representations,
changes to CNN architectures, and improvements in visual feature representations for mathematical
formula parsing using the LGAP model. We also present initial benchmarking and analysis of the
LCGP model on chemical diagram datasets. The evaluation focuses on measuring recognition
accuracy, computational efficiency, and identifying areas for further improvement. This section is
divided into two parts: the evaluation of the LGAP model for mathematical formula images and
the evaluation of the LCGP model for chemical diagrams.

4.2.1 Evaluation of Math Formula Recognition (LGAP)

In this section, we evaluate the LGAP model’s performance on mathematical formula images using
a well-defined dataset, and rigorous evaluation metrics to measure the model’s effectiveness and
accuracy in parsing mathematical expression images.

CHAPTER 4. VISUAL PARSING (IMAGES) 101

Dataset. We use InftyMCCDB-23, a modified version of InftyCDB-2 [120]. The dataset contains
binary images for isolated formulas from scanned articles, with formulas containing matrices and
grids removed. The training set has 12,551 formulas, and the test set contains 6830 formulas. The
dataset includes 207 symbol classes, and 9 relationship classes: Horizontal, Rsub (right subscript),
Rsup (right superscript), Lsub (left subscript), Lsup (left superscript), Upper, Under, PUNC (for
punctuation), and NoRelation (see Figure 4.2). The training and test sets have approximately the
same distribution of symbol classes and relation classes.

Evalation Metrics. We report expression recognition rates for (1) Structure: unlabeled SLTs with
correct nodes (CC groups for symbols) and edges (for relationships), and (2) labeled SLTs where
symbol classes and relationship types must also be correct. For a finer-grained analysis, we also
report detection and classification F-scores for symbols and relationships using the LgEval library
originally developed for the CROHME handwritten formula recognition competitions [85]. F-scores
are the harmonic mean of recall and precision for the detection of target symbols and relationships
(2RP / (R+P)). We report both: (1) detection f-scores: quantify properly detected/segmented CC
groups for symbols, and the presence of an edge (relationship) between two properly segmented
symbols, and (2) detection + classification f-scores: here a symbol or relationship is correct if has
been detected correctly and assigned the correct symbol or relationship label.

Implementation Details. Experiments were run on two servers and two desktop machines, all
with hard drives (HDD):

1. 2 x GTX 1080 Ti GPUs (12GB), 8-core i7-9700KF (3.6 GHz), 32 GB RAM

2. 2 x GTX 1080 Ti GPUs (12GB), 12-core i7-8700K (3.7 GHz), 32 GB RAM

3. 4 x RTX 2080 Ti (12GB), 32-core Xeon E5-2667 v4 (3.2 GHz), 512 GB RAM

4. A40 (48GB), 64-core Xeon Gold 6326 (2.9 GHz), 256 GB RAM

Effect of Modifying the PUNC Relationship in Ground Truth

As described in Section 4.1.1, we adjusted the ground truth representation for punctuation rela-
tionships to better capture spatial nuances and correct labeling issues. Specifically, this involved
redefining how punctuation was represented relative to neighboring symbols to minimize ambiguity.

3https://www.cs.rit.edu/~dprl/data/InftyMCCDB-2.zip

https://www.cs.rit.edu/~dprl/data/InftyMCCDB-2.zip

CHAPTER 4. VISUAL PARSING (IMAGES) 102

Table 4.1: Effect of modifying PUNC relationship representation for InftyMCCDB-2. F1 and
expression rate metrics are defined in Section 4.2.1

Symbol (F1) Relation (F1) Expression Rate
Detect +Class Detect +Class Structure +Class

Original relationships 98.23 95.21 94.63 94.28 89.21 81.77
Modified PUNC 98.22 95.23 94.93 94.56 90.45 83.00

Table 4.2: Effect of LGAP Spatial Pyramidal Pooling (SPP) and 1D context module. Feature vector
sizes given as (node-size, edge-size). Modified PUNC representation used

Feature Vectors Symbol (F1) Relation (F1) Expression Rate
Pool Sizes 1D-context Detect +Class Detect +Class Structure +Class

Avg 64,128 True 96.99 90.24 91.18 90.62 85.58 66.41
SPP-Avg 704,1408 True 98.30 95.25 94.50 94.09 88.64 80.78

Avg 64,128 False 89.84 34.68 67.68 65.23 64.32 17.57
SPP-Avg 704,1408 False 95.64 87.55 86.16 84.49 77.76 68.80

This change led to a 1.23% improvement in the formula recognition rate (Structure + Classifica-
tion), as shown in Table 4.1. The outputs were generated using a reduced encoder architecture with
256 channels and a context module, as detailed in Section 4.1.3. Error analysis with the confHist

tool in the LgEval library confirmed that the revised representation more accurately identified and
labeled punctuation relationships that were previously missed or misclassified.

Enhancing Visual Features: SPP and Increased LOS Context

To further improve feature representation, we introduced modifications in feature extraction using
Spatial Pyramidal Pooling (SPP) and incorporated context by using additional LOS (line-of-sight)
neighbors, as described in Sections 4.1.1 and 4.1.3. These changes aimed to capture richer spatial
information and enhance context sensitivity for improved classification and segmentation. Our
experiments evaluated whether these adjustments led to improved recognition accuracy across the
three tasks, including symbol detection, segmentation, and relationship classification.

Spatial Pyramidal Pooling. Table 4.2 shows that when the 1D context module is used, the
formula recognition rate improves 14.37% after replacing average pooling by spatial pyramidal
pooling (first two rows in Table 4.2). This difference in expression rate increases dramatically to
51.23% when the context module is removed (last two rows in Table 4.2). These results suggest

CHAPTER 4. VISUAL PARSING (IMAGES) 103

Table 4.3: Effect of Adding LOS Neighborhood Masks to LGAP SPP-Avg Model. Original ground
truth used (without PUNC modification)

Feature Vectors Symbol (F1) Relation (F1) Expression Rate
LOS Sizes 1D-Context Detect +Class Detect +Class Structure +Class

False 704,1408 True 97.96 94.48 94.36 93.89 88.70 78.90
True 1408,2816 True 98.32 95.66 94.85 94.35 89.27 83.27

False 256,512 True 98.23 95.21 94.63 94.28 89.21 81.77
True 512,1024 True 98.39 95.49 94.85 94.46 89.36 81.89

False 256,512 False 95.16 83.78 86.48 85.22 79.72 65.26
True 512,1024 False 95.40 85.97 86.27 85.07 80.23 70.09

that spatial pyramidal pooling greatly improves visual features, allowing us to obtain recognition
rates close to the QD-GGA model with 256 encoder channels using only 64 encoder channels.
However, removing the 1-D context module reduces the expression rate using the new SPP features
by 13.17%, and the original single-region average pooling features reduces dramatically (48.83%).
This demonstrates that the new SPP features are beneficial, and shows the importance of context.

Adding LOS Context through Neighborhood Embeddings. Next we evaluate the impact of
including additional LOS neighbors in selecting image regions for queries in the attention modules,
as outlined in Section 4.1.2. We hypothesized that incorporating the context from LOS neighbors
would reduce ambiguity for visually similar symbols/relationships. Experiments were performed
using both the 64-channel encoder output with spatial pyramidal pooling (using 11 bins, resulting
a feature vector of lengths 1408 and 2816 (when LOS context is used), as well as the original
256-channel output with average pooling and the original representation. We also investigated
the effect of using LOS masks when the context module was removed. The results in Table 4.3
show improvements in recognition rates at the symbol, relation, and formula levels when LOS
neighborhood masks are used. Further, the expression rate accuracy is increased 2.49% over the
best SPP model in Table 4.2.

Error Analysis.

An error analysis using the confHist tool in LgEval on our best performing model (LOS context,
spatial pyramidal pooling, and 1D context; second row in Table 4.3) reveals the majority of symbol
classification errors occur between visually similar symbols, such as (i, j), (m,n), (l, 1), (α, a), and
(LeftParanthesis, Vertical), in decreasing order of frequency. This highlights needed improvements in

CHAPTER 4. VISUAL PARSING (IMAGES) 104

Table 4.4: Benchmarking MST-based Parsing Models on InftyMCCDB-2

MST Model
Symbols Relationships Formulas

Detect. +Class Detect. +Class Structure +Class

LGAP (this paper) 98.32 95.66 94.85 94.35 89.27 83.27
QD-GGA 98.50 94.54 94.43 93.96 87.77 76.72

LPGARF 99.34 98.51 97.83 97.56 93.81 90.06
LPGACNN 99.35 98.95 97.97 97.74 93.37 90.89

local visual features for symbols. For relationships, the most frequent errors are missing relationship
edges in wide formulas containing a large number of symbols. This type of error can be attributed
to the preprocessing step used for inputs: with the height of all formulas fixed at 64 pixels and
the aspect ratio preserved, image resolution is noticeably reduced for wide formulas. This leads
to features extracted from low-resolution input images being used to locate spatial relationships
between connected components for very wide formulas.

We also note that expression rates are influenced by small changes in symbol and relationship recog-
nition accuracy, which may amplify expression rates differences between conditions. For example, if
a formula has just one symbol or relationship wrong, it is not counted as correct in the expression
rate.

Benchmarking MST-Based Math Parsers

As seen in the previous experiments, the LGAP model that obtained the highest expression rate
used a combination of Spatial Pyramidal Pooling, line-of-sight attention masks, and a modified
punctuation representation in ground truth. We next benchmark this best LGAP model against
previous MST-based visual parsers applied to InftyMCCDB-2. Results are presented in Table 4.4.
Performance for LGAP relative to the QD-GGA model it extends is better in every metric, aside
from a very small decrease in symbol detection F1 (-0.18%). The expression rate has increased 6.55%
over QD-GGA. Unfortunately, performance is weaker than the LPGA models, with an expression
rate that is 7.62% lower.

Despite LGAP’s slightly weaker performance than LPGA [71], the LGAP offers substantial benefits
in speed and efficiency. The encoder and attention modules are trained end-to-end on a joint loss
for multiple tasks in a single feed-forward pass, making the training and execution process much
faster than LPGA. Running on a desktop system with two GTX 1080 Ti GPUs (12GB), an 8-core
i7-9700KF processor (3.6 GHz) and 32 GB RAM, LGAP requires 25 minutes per epoch to train on

CHAPTER 4. VISUAL PARSING (IMAGES) 105

12,551 training images and 11 minutes, 12 seconds to process the 6,830 test formula images (98.4
ms per formula).

Opportunties for further improvements include improving context usage through graph neural net-
works, as well as more sophisticated graph-based attention models to replace the current 1D context
module from QD-GGA.

4.2.2 Evaluation of Chemical Diagram Recognition (LCGP)

In this section, we evaluate the performance of our Line-of-Sight Chemical Graph Parser (LCGP)
for recognizing chemical diagrams from raster images. The evaluation covers datasets used, met-
rics employed, benchmarking against existing methods, and analyses of strengths, limitations, and
areas for improvement. This analysis focuses on demonstrating LCGP’s ability to extract accurate
molecular structure graphs and highlights the impact of training data limitations and structural
diversity on recognition outcomes.

Dataset. We generate our own visual parser training data for LCGP. We use 5000 molecules
(46 unique SMILES characters) extracted from PubChem4 prepared by the MolScribe team [100].
For benchmarking, we use the USPTO synthetic dataset with 5,719 PNG images generated by the
Indigo toolkit from SMILES strings (37 unique SMILES characters) [101].

Additionally, as described in Chapter 3, we generate annotated visual graph data for training our
visual parser that recognizes from raster images. This comprises 3,416 label graph files from the
original pool of 5,000 molecules sourced from PubChem that could be accurately converted into exact
SMILES strings. Errors include 240 diagrams mis-recognized from valid visual primitives by the
born-digital parser, and 1,344 diagrams with errors produced in primitive extraction, alignment, and
converting visual graphs to SMILES strings. This training dataset includes molecules represented
by 32 unique symbol classes. A limitation that there are test set symbols that are missing in this
training set. For the USPTO dataset 4 symbols are absent (1, a, D, b), from CLEF 26 symbols
are absent (including *, R, X, 0), and from the UoB dataset 2 symbols are missing (:, 0).

Evaluation Metrics. For evaluating the performance of the chemical diagram recognition system
using LCGP, we rely primarily on SMILES-based metrics. The primary benchmark is the Exact
SMILES Match metric, which measures the accuracy of the recognized molecular structure by
comparing the generated SMILES string with the ground truth string, both after canonicalization.

4https://pubchem.ncbi.nlm.nih.gov

https://pubchem.ncbi.nlm.nih.gov

CHAPTER 4. VISUAL PARSING (IMAGES) 106

This provides a direct measure of how accurately the chemical structures are reconstructed from
raster images.

In addition, we perform error analysis using confHist on the graph representation, which helps
identify and categorize common types of recognition errors in terms of symbol and relationship
classifications within the visual structure graphs. However, it is important to note that graph-based
evaluation metrics were not directly applied to the visual parser in this study. Instead, the emphasis
was on understanding structural errors and classification performance in the context of chemical
diagram recognition.

Implementation/Systems. The ChemScraper visual parser (LCGP) is implemented in Python
using the PyTorch, networkx (graphs), numpy, mr4mp (map-reduce) libraries. visual parsing pipelines
are Python-based, along with the visual line primitive extractor. Experiments for the visual parser
were run on an Ubuntu 20.04 server with hard drives (HDD), an A40 (48GB) GPU, a 64-core Xeon
Gold 6326 (2.9 GHz), and 256 GB RAM.

Benchmarking Chemical Parsers

For the synthetic USPTO dataset, our visual parser trained using outputs from our born-digital
parser, obtains a recognition rate of 85.02%. While this rate is lower than that seen for transformer-
based methods like MolScribe [100] and rule-based methods such as MolVec and OSRA [41], this
result still demonstrates potential. Notably, MolScribe is trained on 1.68 million examples with
various chemical structure-based and image-based augmentations, and employs a SWIN transformer
model with 88 million parameters. In contrast, our visual parser was trained on a much smaller
dataset of 3,416 annotated images, without augmentation, and using a simpler SE-ResNeXt model
with 4 million parameters. Despite these differences, our parser outperforms SWIN-OCSR [146],
which also uses a SWIN transformer but is trained on 4.5 million molecules.

We have omitted results for the real datasets (CLEF and UoB) due to limitations in our initial
training dataset, which is missing symbols from these sets and it trained using a single set of Indigo
rendering parameters as mentioned earlier. This first training set does not adequately capture the
diverse styles and structural variations seen in the non-synthetic data sets. We will address this
in future work. We will note here however, that the visual line primitives extracted from the real
images are accurate.

We conducted training runs on the Pubchem dataset, which consisted of queries for 3,416 molecules

CHAPTER 4. VISUAL PARSING (IMAGES) 107

in three forms: primitives, whole symbols, and symbols detected during training. Each epoch
averaged 155.6 minutes, with the model completing 19 epochs in about 49 hours. This training
time is notably shorter than other systems, such as DECIMER [103], which required 27 days to
converge on 15 million structures, demonstrating efficiency with fewer data to achieve comparable
results.

However, testing on the synthetic USPTO dataset (5,719 molecules) took 18.6 hours (11.74 secs/-
molecule), which is slower compared to systems like MolGrapher [79] and OCMR [134] that process
a single molecule in less than a second. The slow inference time is due to inefficiencies in our first
implementation. In particular, re-assembling query outputs for formulas and writing visual graphs
are currently slower than they could be. Future versions will accelerate these components.

Error Analysis

For molecular diagrams produced by the visual parser for USPTO, symbols including different
characters, numbers, and wedges are often misclassified as Single bonds. This is mainly due to
class imbalance in the training data that predominantly features Single lines (roughly 70% of
symbols in training are single lines). Errors also include incorrect segmentations, particularly for
characters like N, H that are frequently over-segmented. This is also likely due to their rarity in
the training data. Additionally, relationship errors, notably missed connections between lines and
characters, are comparatively more common due to the predominance of line-line connections over
line-character connections.

The class imbalance in symbols and relationships, especially the predominance of the Single class
and line-line connections, highlights the need for better recognition of less frequent classes to improve
the parser’s performance on diverse molecular structures. Additionally, the training set does not
include all symbols present in the test sets, which impacts the parser’s ability to accurately recognize
and interpret a full range of molecular symbols. Addressing this imbalance and coverage is important
for future enhancements.

4.3 Summary

In this chapter, we introduced the Line-of-Sight with Graph Attention Parser (LGAP) for parsing
mathematical formulas from typeset images and its extension, the Line-of-Sight Chemical Graph

CHAPTER 4. VISUAL PARSING (IMAGES) 108

Parser (LCGP) model for chemical diagrams. LGAP builds on and improves the MST-based QD-
GGA parser through enhanced visual feature representations, incorporating line-of-sight neighbor-
hoods and spatial pyramidal pooling (SPP) for better spatial context capture. Additionally, we
modified ground truth representations of spatial relationships connecting punctuation with parent
symbols in Symbol Layout Trees (SLTs). These enhancements enabled a more comprehensive con-
text representation, minimized spatial information loss compared to single-region average pooling
used in QD-GGA, and preserved valid punctuation relationships that might otherwise have been
pruned.

The LCGP model extends LGAP to parse chemical diagrams from raster images, leveraging anno-
tated visual graph data from our born-digital parser for robust training. LCGP enhances feature
representation by directly drawing line primitives into fixed-size 28 × 28 binary images, improving
focus and reducing noise. Tightly cropped context images provide more precise visual context,
while a recurrent multi-task neural network iteratively refines symbol segmentation and classifica-
tion, handling over-segmentation more effectively. The model outputs molecular structure graphs in
CDXML, compatible with tools like ChemDraw and Marvin, and easily convertible to other formats
such as SMILES, MOL, and InChI. These advancements make LCGP more adaptable to complex
chemical structure recognition and a versatile framework for broader visual parsing tasks.

Our experiments demonstrated the effectiveness of LGAP and LCGP in addressing complex vi-
sual parsing tasks for both math and chemical structures. LGAP showed improvements in parsing
mathematical formulas with enhanced context usage, while LCGP demonstrated potential in pars-
ing chemical diagrams using graph-based representations. However, limitations remain, including
handling noisy images and the need for improved generalization of the visual parser for real-world
data.

Limitations of our approach include:

1. The images evaluated were limited to relatively clean vector and rasterized-vector images
generated from a single rendering model (Indigo). Real-world applications, including noisy
scanned documents, would require adaptations in primitive extraction, annotation strategies,
and parser designs.

2. The initial implementation of the visual parser for chemical diagrams is slower in inference
and struggles with generalization due to limited class coverage and variability in the training
dataset.

CHAPTER 4. VISUAL PARSING (IMAGES) 109

In the next chapter (Chapter 5), we address RQ2 and RQ3 by systematically studying the effect of
input graph representations and contextual interaction mechanisms in visual parsing. We compare
different graph representations across math and chemical domains, analyzing trade-offs in edge re-
call, precision, and expression coverage. We also introduce different improvements in visual features,
including a better backbone encoder architecture. Finally, we develop an edge-aware graph atten-
tion mechanism (EGATv2) that integrates multi-hop message passing and task-level interaction,
enabling joint updates of node and edge representations for improved parsing accuracy.

Chapter 5

Input Graph Representations and
Context

Accurate parsing of structured visual notations such as mathematical formulas and chemical dia-
grams requires understanding not only the appearance of individual visual primitives but also their
spatial and relational context. In graph-based parsing frameworks, this context is modeled via a
structured input graph, where nodes represent over-segmented visual primitives and edges repre-
sent hypothesized relationships. The design of this input graph is critical: it constrains the space
of learnable structures and determines the scope of relational reasoning the model can perform.

In this chapter, we address two central research questions related to graph-based input and context
modeling. First, we address RQ2, which investigates the effectiveness of different input graph
representations in enabling accurate parsing for both math and chemical domains. Prior work
by Hu et al. [51] emphasized the importance of achieving high edge recall while maintaining low
graph density to balance structural completeness and learning efficiency. Motivated by this, we
evaluate multiple graph topologies including complete graphs, line-of-sight (LOS) graphs [52], and
k-nearest neighbor (KNN) graphs [39], and propose domain-specific graph representations that
attain a balance between high expression coverage and sparsity. We also partly address RQ1 by
introducing an efficient and robust method for extracting visual line primitives from raster chemical
diagrams, which effectively separates over-segmented components.

Second, we address RQ3, which studies the role of attention-based mechanisms and intermediate
predictions in modeling contextual dependencies across tasks. Inspired by Mahdavi et al. [72],

110

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 111

who discussed the possible benefits of using task interaction through class distribution vectors, we
propose a two-stage attention model that incorporates classification outputs with visual features
into graph attention to improve cross-task learning. To further enhance context aggregation, we
introduce a novel edge-aware graph attention architecture based on GATv2 [17], which supports
multi-hop message passing and jointly updates both node and edge embeddings.

5.1 Input Graph Representations (RQ2)

In our graph-based parsing framework, structure recognition is decomposed into three interrelated
stages: segmenting primitives into symbols, selecting edges to form a symbol layout graph or tree,
and classifying both the edges and associated symbol nodes. These stages are not strictly sequential;
they influence each other during training through shared representations and recurrent message
passing. Consequently, the design of the input graph representation becomes a critical factor in the
overall parsing performance. Importantly, the input graph serves as a hypothesis space for possible
relationships and defines which edges the model can classify. This graph is fixed before learning
and determines the connectivity constraints for downstream edge and node classification.

A well-constructed input graph should therefore contain all ground-truth edges (or as close to 100%
recall as possible), ensuring that the model is not structurally limited [51]. Near-perfect recall is
sufficient because extra edges can be corrected by learning to classify it as a NoRelation edge. But
missing edges are not recoverable, and they represent structural gaps that the model cannot fix. At
the same time, the number of invalid or extra edges should be minimized to avoid overwhelming
the model with irrelevant options, which increases computational cost and class imbalance during
learning.

5.1.1 Types of Graph Representations

To balance the concerns above, we investigate strategic pruning of edges, not present in the ground
truth graphs to reduce variance and improve computational efficiency while maintaining high recall.
Our goal is to identify graph types that maximize recall of true edges in the ground truth while
enabling effective learning. In both domains, each graph is constructed over a set of visual primitives,
which serve as the graph nodes. For mathematical formulas, primitives correspond to connected
components (CCs) obtained from binarized formula images. For chemical diagrams, primitives
are the over-segmented visual elements extracted through contour and line segment detection, as

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 112

described in Section 3.4.

For analysis and evaluation, we operate on symbol-level nodes, as they are easier to interpret and
understand when comparing different graph representations. We consider three types of input
graphs: Complete, Line-of-Sight (LOS), and K-Nearest Neighbor (KNN), described below.

Complete Graphs. While complete graphs trivially ensure perfect recall by connecting every
pair of nodes, they introduce an overwhelming number of invalid edges. For an expression with
N symbols, a complete graph contains N(N − 1) directed edges. In contrast, the ground truth
edges for mathematical expressions, represented as trees in our parser, are limited to N − 1 edges
between the symbol objects. This results in a precision that is at best 1/N [51]. In the case of
chemical diagrams, the average number of ground truth edges is higher, 2.5N on an average in our
PubChem-5k dataset, but still significantly lower than the number of edges in a complete graph.
This yields an average precision of roughly 2.5

N−1 .

For typical expressions with more than 10 symbols, these values correspond to a precision below
10% for math formulas and below 28% for chemical diagrams. Such low precision hampers both
inference and learning. The parser must evaluate a large number of irrelevant edges, increasing
computational cost, and must also learn under conditions of extreme class imbalance, where valid
edges are vastly outnumbered by invalid ones.

Line-of-Sight (LOS) Graphs. Line-of-sight (LOS) graphs select edges where visual primitives
(e.g., strokes, connected components, or contours) are mutually visible without obstruction [52,71,
72, 114]. This constraint has been widely used in math expression parsers such as Hu et al. [50],
LPGA [71], and QD-GGA [72]. In these models, the final interpretation is selected as a maximum
spanning tree (MST) over the LOS graph hypotheses as described in Chapters 3 and 4.

On average, LOS graphs contain approximately 4.5N directed edges per expression in the InftyMCDB-
2 (math) dataset and 14.8N directed edges per expression in the PubChem-5k (chemistry) dataset,
where N is the number of symbols. This leads to an approximate edge precision of N−1

4.5N for math
formulas and 2.5N

14.8N ≈ 0.169 for chemical diagrams. For typical expressions with more than 10
symbols, this results in a precision of roughly 20% in the math domain and 17% in the chemical
domain.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 113

K-Nearest Neighbor (KNN) Graphs. To balance completeness and computation, we pruned
the complete graph using a k-nearest neighbor strategy, ensuring coverage of all ground truth edges
while reducing edge count. In a K-Nearest Neighbor (KNN) graph [39], each visual primitive is
connected to its K closest neighboring primitives based on spatial distance. The spatial distance
is defined by the nearest end-point distances between the primitives. This structure ensures strong
local connectivity while keeping the overall graph sparse and computationally manageable.

For KNN graphs, we evaluate K = 2 and K = 6: lower values like K = 2 emphasize highly local
structure, while higher values such as K = 6 help capture ground-truth edges between primitives
that are slightly farther apart. These settings allow us to examine the trade-off between graph
sparsity and expression coverage, where all ground truth edges are present in a graph.

For the chemical domain (PubChem-5k), 2NN graphs yield approximately 2.8N directed edges per
expression and achieve a edge precision of around 2.5N

2.8N ≈ 0.89. Increasing K to 6, the number of
edges increase to about 6N per expression, causing the precision to drop to around 2.5N

6N ≈ 0.42.
In the mathematical domain (InftyMCDB-2), 2NN graphs similarly result in about 2.3N edges per
expression and has a precision of N−1

2.3N ≈ 0.39 for N = 10 symbols. 6NN graphs expand the edge
set to approximately 5.2N edges per expression, and precision drops to N−1

5.2N ≈ 0.17 for N = 10

symbols.

5.1.2 Comparison and Analysis

We compare the three graph representations on both mathematical formulas and chemical diagrams
using our PubChem-5k dataset [112] for chemical diagrams and the InftyMCDB-2 dataset [114] for
math formulas.

We evaluate each graph type based on three criteria: edge recall, edge precision, edge F1 and
expression coverage rate. These metrics jointly characterize the suitability of a graph representa-
tion by balancing ground-truth structural coverage with input sparsity and complexity. All graph
representations use the same set of ground-truth nodes and their corresponding symbol labels. This
analysis focuses exclusively on the effect of graph connectivity (i.e., edge sets).

Edge recall is the proportion of ground-truth edges that are present in the input graph. It is
computed across all math expressions or chemical diagrams in the dataset. High recall is essential
to avoid unrecoverable parsing failures, since missing edges cannot be reconstructed in later stages

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 114

in our parser.

Edge Recall % =
ground-truth edges in the input graph

edges in the ground truth graph
× 100

Edge precision is the proportion of edges in the input graph belonging to true relationships.
Maintaining high precision reduces the number of invalid edges, lowering parser complexity and
mitigating the effects of class imbalance during edge classification.

Edge Precision % =
ground-truth edges in the input graph

edges in the input graph
× 100

Edge F1 score is the harmonic mean of edge precision and recall, and provides a balanced
measure that penalizes both missed edges and false positives:

Edge F1 % = 2× Precision× Recall
Precision + Recall

The harmonic mean prefers precision and recall values that are close to each other, with the F1
score reaching its maximum when precision equals recall.

Expression coverage rate. This measures the percentage of math expressions or chemical dia-
grams in the dataset in which all ground-truth edges are present in the input graph. This reflects
the upper bound on correct expressions under perfect node and edge classification for the input
graph representation, and serves as a global indicator of structural completeness in the input graph.

Expression Coverage Rate % =
expressions where all ground-truth edges are present

total expressions in the dataset
× 100

Analysis. Figure 5.1 present a comparative evaluation of input graph representations—Complete,
LOS, 2NN, and 6NN—on the InftyMCDB-2 (math) and PubChem-5k (chemistry) training sets.
Each representation is assessed using the metrics: edge recall, precision, F1 score, and expression
coverage rate, along with the total number of candidate input edges.

Math formulas. For mathematical expressions, the LOS graph offers the best trade-off among the
evaluated representations. As shown in Figure 5.1b, it achieves near-perfect edge recall (99.66%),
high expression coverage (98.58%), and much higher precision (21.17%) than the complete graph
(4.83%). In contrast, while the complete graph achieves perfect recall and expression coverage,

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 115

Graph representation

N
o.

 o
f i

np
ut

/d
et

ec
te

d
ed

ge
s

0

500000

1000000

1500000

2000000

Complete LOS 2NN 6NN

INFTY Train: No. of input/detected edges vs. Graph representation

(a)
0.00

25.00

50.00

75.00

100.00

Edge Recall Edge Precision Edge F1 Expressions covered %

Complete LOS 2NN 6NN

INFTY Train: Graph representation vs metrics

(b)

Graph representation

N
o.

 o
f i

np
ut

/d
et

ec
te

d
ed

ge
s

0

5.0E+6

1.0E+7

1.5E+7

2.0E+7

Complete LOS 2NN 6NN

Pubchem Train: No. of input/detected edges vs. Graph representation

(c)
0.00

25.00

50.00

75.00

100.00

Edge Recall Edge Precision Edge F1 Expressions covered %

Complete LOS 2NN 6NN

Pubchem Train: Graph representation vs metrics

(d)

Figure 5.1: Comparison of input graph representations on the InftyMCDB-2 training set (a-b) for
math formulas and Pubchem-5k training set (c-d) for chemical diagrams. (a), (c): Number of
input (candidate) edges generated by each graph representation. Complete graphs produce the
highest number of edges, and 2NN graphs produce the lowest. (b), (d): Evaluation of each graph
representation using edge recall, precision, F1, and expression coverage rate.

it suffers from extremely low precision due to an excessive number of candidate edges (over 1.7
million), as shown in Figure 5.1a, leading to increased computational cost and class imbalance
during training.

Compared to the KNN-based alternatives, the LOS graph also outperforms both 2NN and 6NN.
The 2NN graph achieves a recall of 78.72%, precision of 38.40%, F1 score of 51.62%, and expression
coverage rate of only 57.72%. While the 6NN graph improves recall to 96.97% and expression

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 116

coverage to 89.91%, its precision drops to 17.43%, still lower than LOS, indicating a higher number
of spurious edges. 6NN graph uses slightly more total edges than the LOS graph, while still missing
long-range relationships essential to parsing mathematical structures. Overall, LOS achieves a more
favorable balance between coverage, recall, and precision for the math domain.

The suitability of LOS graphs for math stems from the nature of mathematical notation. Math
expressions often contain a wide variety of spatial relationships, such as Above, Below, Inside,

Subscript, and Superscript and include many long-range dependencies, especially in constructs
like fractions, square roots, and nested structures. These spatial layouts are not always well captured
by fixed-neighborhood KNN graphs, even with K = 6 primitives. In contrast, LOS graphs preserve
semantically meaningful spatial visibility relationships across variable distances, enabling more ac-
curate parsing of structurally complex formulas with fewer candidate edges. This is particularly
beneficial given the largely horizontal arrangement of math expressions, where key relationships
(e.g., between base symbols and superscripts or between operators and operands) often span long
horizontal or diagonal distances that are well captured by LOS.

Chemical diagrams. For chemical diagrams, the 6NN graph representation provides the most
effective and efficient structure. As seen in Figure 5.1d, it achieves perfect edge recall (100%) and
expression coverage rate (100%), with a substantially higher precision (41.82%) than the complete
(4.24%) and LOS (16.92%) graphs. It also generates fewer input edges than both LOS and complete
graphs, as seen in Figure 5.1c, making it more computationally efficient and less prone to false
positives. The 2NN graph achieves a lower recall of 86.82%, a high precision of 88.02%, F1 score
of 87.42%, but expression coverage rate of only 0.33%. Although the 2NN graph has the highest
precision, its low recall and poor expression coverage indicates many valid edges are missing.

Chemical diagrams are inherently local in structure: edges in our parser represent bonds or an-
notations between adjacent atom line primitives, with no long-range spatial relationships akin to
math. These connections are almost always between the nearest primitives, constrained by chemical
structure rules. Using 2NN graphs results in missed edges, since an atom can have up to four bonds,
and oversegmentation may split atoms into multiple line primitives, requiring a higher K to ensure
all necessary edges are present. The 6NN graph compensates for these omissions by providing a
broader local neighborhood, ensuring that chemically relevant connections, such as multi-bonded
atoms or split primitives are preserved while still controlling the number of candidate edges.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 117

Chosen representations. We use LOS input graph representations for math due to their ability
to model long-range and semantically meaningful spatial relationships with fewer spurious edges.
For chemistry, 6NN graphs offer the best balance of recall, precision, and input size by exploiting the
local nature of chemical structure diagrams. These choices align with domain-specific characteristics
and support the structural requirements of the parser.

5.1.3 Edge Type for Atom Number Annotations in Chemical Diagrams

Chemical diagrams often include atom number annotations that, in isolation, appear visually similar
to atom symbols, particularly digits. While these annotations appear similar to digits in the image,
they serve a different semantic role: indicating the atomic number of a particular atom within a
molecule. In the output chemical graph format (CDXML), such annotations are not represented as
independent nodes but are instead attributes associated with the parent atom nodes. Similarly,
the output SMILES string does not include atom numbers, since they are not part of the molecular
structure itself.

As a result, the visual parser must distinguish between digit symbols that represent atoms and
those that function as atom number annotations, so that post-processing can correctly incorporate
this information into the final graph representation. To support this, we introduce a new edge
type to explicitly encode the annotation relationship. Atom number annotations are represented
via a dedicated edge class, denoted as ANNOTATION, which links the digit node to the corresponding
parent atom node. The edge classification task is updated to distinguish among three edge types:
CONNECTION, NoRelation, and ANNOTATION.

5.2 Graph Attention and Task Interaction (RQ3)

This section addresses RQ3, which investigates whether incorporating edge-aware attention mecha-
nisms can improve graph-based parsing performance in visual recognition tasks. In Section 5.2.2, we
first describe general improvements to the visual feature extraction pipeline that enhance the quality
of node and edge representations prior to graph-based reasoning. These refinements are applicable
across models and are not specific to graph attention. Notably, the improvements to visual primi-
tives also contribute toward RQ1, by providing more robust and consistent input representations
across math and chemical domains.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 118

We then introduce our edge-aware graph attention mechanism in Section 5.2.3, which extends
a standard GATv2 architecture to jointly update node and edge features using shared attention
mechanisms. Finally, in Section 5.2.4, we present a two-stage task interaction framework that
leverages intermediate classification outputs to guide further refinement through a second round of
graph attention, promoting information flow across tasks such as symbol classification, segmentation,
and relationship detection.

5.2.1 Common Feature Extraction Pipeline

In our earlier models, LGAP and LCGP used different strategies for visual feature construction
and multi-task CNN encoding, tailored to their respective target domains—math for LGAP and
chemical diagrams for LCGP (see Chapter 4). In LGAP, visual features were extracted from full
formula images using binary attention masks derived from connected component (CC) contours and
line-of-sight (LOS) neighborhoods. These binary masks were applied to a global CNN feature map
to isolate regions corresponding to query primitives or primitive pairs. However, this approach often
suffered from sparsity in the masks and inefficiencies due to large image sizes relative to localized
regions of interest.

In contrast, LCGP introduced several improvements by shifting to a contour-based representation
in which each primitive is drawn directly onto a fixed-size, resolution-normalized canvas. This local-
ized formulation reduces background noise, improves feature compactness, and enables independent
processing of queries using a shared SE-ResNeXt CNN encoder.

Building on the improvements introduced in LCGP, we now adopt a unified visual feature extraction
pipeline for both math and chemical domains. In our datasets, while chemical diagrams already
include contour-based primitives, mathematical formulas (InftyMCDB-2 dataset) provide connected
components (CCs) as the initial visual primitives. We extract contours from each CC in the math
dataset, aligning its representation with that of the chemical domain. Then, the same contour-based,
resolution-normalized primitive representations are used to construct features for both query and
context primitives, and these are passed through a shared multi-task CNN encoder backbone. This
unification eliminates the dependency on binary masking and large global crops used in LGAP,
simplifying the pipeline while improving consistency and data efficiency. With this change, the
underlying model and learning process become domain-agnostic, and the only remaining differences
across tasks are the input graph representations and domain-specific postprocessing steps, such as
maximum spanning tree (MST) extraction for math formulas and conversion of visual graph to
chemical graph for chemical diagrams.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 119

5.2.2 Visual Feature Improvements (RQ1)

To improve the quality of visual features used in our models, we adopted several refinements to
the extraction pipeline introduced in Chapter 4. These refinements include a more robust primitive
extraction method using the Line Segment Detector (LSD) for chemical diagrams, adoption of a
stronger visual backbone (ResNeSt [159]), evaluation of different input feature resolutions, and
tuning of spatial pooling configurations. Together, these changes provide a stronger foundation for
subsequent graph-based reasoning and multi-task learning.

Visual Primitives Refinement via Line Segment Detector (LSD)

Visual parsing of chemical diagrams and math formulas from raster images in real documents
presents unique challenges due to noisy rendering, over-segmented primitives, and overlapping com-
ponents. Our visual parser model can handle over-segmentation by merging primitives, but cannot
recover from under-segmentation. Under-segmentation occurs when distinct visual primitives are
merged into a single component (e.g., oxygen atom touching a bond line as shown in Figure 5.2),
forcing the model to identify them as a single entity, introducing errors. Our visual primitive ex-
traction method, discussed in Chapter 3 uses polygon simplification, skeletal lines and geometric
transformations, which is effective in simplifying contours, but prone to the under-segmentation
issue. To resolve this, we introduce a refined primitive extraction method that combines Line Seg-
ment Detection (LSD) [131], geometric filtering, connected components analysis, and watershed
segmentation [130].

The Line Segment Detection (LSD) algorithm. LSD is a subpixel-accurate technique that
detects line segments by grouping aligned gradient responses in images. It is grounded in the
Helmholtz principle [31,32], which assumes that structures (like lines) are perceptually meaningful
only if their presence is unlikely to occur by chance. LSD formalizes this through the a contrario
validation framework, which quantifies how surprising a detected structure is under a background
noise model, allowing the method to control false detections without extensive threshold tuning.

Watershed Segmentation. To convert line detections into segmented primitive regions, we apply
the watershed algorithm based on the immersion simulation technique introduced by Vincent and
Soille [130]. In this method, grayscale images are treated as topographic surfaces, and segmentation
is simulated by immersing the surface in water: regional minima act as catchment basins (markers)

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 120

(a) Input image (b) Skeletonized (c) LSD applied (d) CC Markers

(e) Watershed applied(f) Long lines removed(g) CCs merged(h) Output primitives

Figure 5.2: Step-by-step illustration of the LSD-based visual primitive extraction pipeline in Al-
gorithm 1. (a) Input binary image I with 5 CCs, (b) Skeletonization produces medial axis lines
S ← Skeletonize(I), (c) LSD is applied on the skeleton: Lraw ← LSD(S) (d) CC analysis generates
watershed markers M , (e) Watershed algorithm is applied using these markers on the input grayscale
image: W ←Watershed(Igray,M), (f) Regions corresponding to long lines (identified via geometric
thresholding) are removed from W , (g) Over-segmented short fragments are merged using a second
CC analysis to get W ′, (h) Long lines are reintroduced as distinct labeled regions to obtain the final
set of 6 primitives, P = W ′ ∪ Llong, where different colors indicate different primitive regions.

that flood outward, with boundaries (watershed lines) forming where water from distinct basins
meets. We use this to grow or fill regions from seed points for line segments detected by LSD.

Primitive Extraction Algorithm. The complete pipeline for the visual primitive extraction is
described in Algorithm 1. We first apply skeletonization [164] to the input image, which removes
pixels from object borders in iterative passes until only thin, one-pixel-wide structures remain,
preserving the shape topology of the original objects. Then LSD is applied to the output medial
axis structures (skseletonized image). Each detected line is shortened to break connections be-
tween closely spaced endpoints, ensuring clean separation for connected component (CC) analysis,
required for watershed marker generation. These shortened lines are drawn onto a blank canvas,
and connected components are computed to serve as markers for watershed segmentation. The
watershed transform, based on immersion simulation [130], propagates labels from these markers
across the binary image gradient surface, resulting in oversegmented primitive regions.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 121

Algorithm 1 Primitive Extraction using LSD and Watershed Segmentation
Input: Binary input image I of size H ×W

Output: Segmented primitive map P

1: (Skeletonization) Compute skeleton image S ← Skeletonize(I)
2: (Line Detection via LSD) Apply LSD to S to obtain line segments Lraw ← LSD(S)

3: (Preprocessing: Line Shortening and Long Line Identification)
4: (i) Initialize empty list of shortened lines L← ∅ and set of long line midpoints Llong ← ∅
5: (ii) Compute image diagonal D ←

√
H2 +W 2 and threshold τ ← 0.01 ·D

6: (iii) Shorten lines and add long line midpoints:
7: for each raw line l ∈ Lraw do
8: Represent l as segment with endpoints (x1, y1) and (x2, y2)

9: Shorten l at both ends by 5 pixels to get l′

10: Append l′ to L

11: if length(l′) ≥ τ then
12: Add midpoint ml of l′ to Llong

13:

14: (Marker Generation) Generate markers for watershed segmentation
15: (i) Initialize blank canvas C of same size as I

16: (ii) Draw all shortened lines L onto C

17: (iii) Compute CCs on C to obtain marker map M with unique integer labels
18:

19: (Watershed Segmentation)
20: (i) Convert I to 3-channel grayscale image Igray

21: (ii) Apply watershed segmentation: W ←Watershed(Igray,M)

22:

23: (Refine Oversegmentations and Final Map Construction)
24: (i) Remove long lines from W to isolate only oversegmented fragments:
25: for each ml ∈ Llong do
26: Lookup the watershed label at the midpoint: idl ←W (ml)

27: Remove all pixels in W assigned to idl

28: (ii) Apply connected components to the updated W to obtain W ′

29: (iii) Draw long lines from Llong into W ′ with unique new region IDs
30:

31: return Final primitives P = W ′ ∪ Llong

To refine this oversegmentation, long lines are detected using a relative length threshold based on

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 122

(a) 28 × 28 (b) 32 × 32

(c) 48 × 48 (d) 64 × 64

Figure 5.3: Examples of query (left) and context (right) features (centered around query) rendered
at different input resolutions. At lower resolutions, (a) 28 × 28), primitives in context features
become difficult to identify visually. As resolution increases up to (d) 64 × 64), the primitives
become more distinct.

the diagonal of the image (see Algortihm 1) and removed from the initial watershed map. Connected
components are then applied to merge fragmented glyphs, and the removed long lines are added
back as distinct labeled regions. As illustrated in Figure 5.2, this refinement enhances parsing
inputs by addressing both over- and under-segmentation. It preserves all structurally relevant
primitives, including touching or overlapping strokes. This method can also be applied to typeset
or handwritten mathematical formulas to obtain consistent visual primitives for parsing; however,
we leave that for future work.

We examine the effect of two architectural components on parsing accuracy and robustness: the
size of input feature patches extracted for each primitive, and the configuration of spatial pyramidal
pooling (SPP) used within the feature extraction backbone.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 123

Input Feature Size and Spatial Pooling

Input feature size: query and context features. We conduct a grid search on the input
resolution of the cropped query and context images to evaluate how feature size impacts parsing
performance. This fixed input size determines the level of spatial and contextual information pre-
served in the representation. Smaller input sizes (e.g., 28 × 28) reduce memory usage and allow
efficient batch processing, but they limit the spatial resolution available to encode fine-grained de-
tails (see Figure 5.3). This issue becomes especially prominent in context features, where the canvas
includes both the query and its k = 6 nearest neighbors. At low resolutions, the contours of neigh-
boring primitives often overlap or become visually compressed, making their structure indistinct.
This impairs the model’s ability to distinguish between classes that depend on relative positioning
or local patterns.

Additionally, smaller feature maps may lose surrounding context that is useful for differentiating
visually similar symbols. For example, short line segments can be confused with the digit ‘1’,
and adjacent bond lines may occlude or distort atom symbols in chemical diagrams. Conversely,
increasing the feature size provides more pixels per contour, reduces overlap in context patches,
and allows the network to retain spatial cues that aid in classification under both clean and noisy
conditions. However, larger input sizes also introduce trade-offs as they increase computational and
memory overhead.

Number of spatial pyramidal pooling regions. As described in Section 4.1.3 in Chapter 4,
to enhance spatial generalization and facilitate scale-invariant feature learning, we incorporate a
Spatial Pyramidal Pooling (SPP) layer [44] after the final convolutional feature map. SPP aggregates
features over multiple spatial subdivisions of the input, enabling the network to encode both fine-
grained and global spatial structure without requiring a fixed input size for the entire network.

One of the motivations for using SPP was to address confusion between visually similar symbols that
differ in orientation or spatial arrangement. For example, symbols such as W and M, or j and i, can
appear visually ambiguous when their relative spatial features are not well preserved in the feature
representation. By pooling features across structured horizontal and vertical regions, SPP helps
retain positional information and provides a spatial signature that improves discrimination between
such cases. This spatial encoding is especially beneficial in cluttered diagrams, where primitives
often appear in close proximity, and subtle orientation or layout differences are important for correct
classification.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 124

In our previous models discussed in Section 4.1.3, for LGAP, we used 5 levels with 11 regions in
pooling outputs: this included 1 full feature map, 2 vertical bins, 3 vertical bins, 2 horizontal bins,
and 3 horizontal bins. For LCGP, feature maps were average pooled in 7 pyramidal regions (image,
3 vertical, 3 horizontal). For the new models, we further explore additional SPP configurations with
different numbers of pooling regions, described in Section 5.3.3.

Split-Attention (ResNeSt) Backbone

As described in Section 4.1.3, the LCGP parser uses a shared CNN encoder to extract visual features
from contour-based image patches centered on query and context primitives. In our models, we em-
ployed a SE-ResNeXt-50 encoder [49], which had previously proven effective in formula parsing tasks.
This architecture builds upon a sequence of advancements: ResNet [46] introduced residual connec-
tions to improve gradient flow in deep networks; ResNeXt [138] added the concept of cardinality by
dividing convolutional transformations into multiple parallel branches to improve representational
power without significantly increasing computational cost; and SE-ResNeXt [49] extended this by
adding Squeeze-and-Excitation (SE) blocks that adaptively reweight channel responses based on
global context.

While SE-ResNeXt successfully models what feature channels are important, it still lacks the ability
to model where in space those features occur, limiting its effectiveness in tasks involving dense
local structure, such as symbol parsing or distinguishing between closely spaced primitives. This
motivated our transition to a more expressive backbone, ResNeSt [159]. It adds spatial awareness
to channel attention through split-attention blocks that extend the capabilities of SE-ResNeXt by
incorporating attention across channels as well as across multiple spatial partitions within each
group of convolutions. This allows the network to learn both what (channel attention) and where
(spatial attention within groups) to emphasize. This makes it particularly suitable for structured
visual recognition tasks such as symbol classification, segmentation, and relationship detection in
both mathematical and chemical diagrams.

Adaptation for Primitive-Centric Inputs. The original ResNeSt-50 model was designed for
full-scale RGB images of size 224 × 224, which is excessive for the small grayscale, binary contour
patches used in our parsing framework (32 × 32 or 64 × 64). Moreover, aggressive downsampling
and high channel count in the initial layers in the original architecture can lead to loss of spatial
resolution and detail, which are critical for parsing tasks. To make ResNeSt compatible with our
task, we implement several architecture-level adaptations:

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 125

• Reduced output dimensionality: The number of output channels is reduced from 1024
to 32 to match the capacity of prior SE-ResNeXt backbones used in formula parsing and to
reduce parameter count.

• Removed max pooling: Max pooling operations in early layers are removed to preserve
spatial resolution, preventing excessive downsampling of small input patches.

• Reduced convolution stride: Stride of 1 is used in the initial convolution layers (instead
of 2) to maintain spatial granularity.

Efficiency and Representational Capacity. Despite its architectural enhancements, the mod-
ified ResNeSt remains lightweight. As shown in Table 5.1, our reduced ResNeSt variant contains
approximately 64% of the parameters of SE-ResNeXt-50, nearly half the size, but can offer im-
proved expressiveness through its combination of spatial and channel attention mechanisms. We
also leverage pretrained weights for the ResNeSt layers, which further enhances learning efficiency
and convergence stability.

Table 5.1: Model parameter counts for visual backbone encoders.

Model # Trainable Parameters

SE-ResNeXt-50 (baseline) 4,052,969
ResNeSt-50 (full) 27,373,896
ResNeSt-50 (reduced) 2,623,785

5.2.3 Edge-Aware Graph Attention with Multi-Hop Message Passing

Context plays a critical role in parsing structured visual notations, as the interpretation of symbols
and their relationships depends not only on individual features but also on surrounding elements.
In both mathematical and chemical domains, spatial arrangements and local structural patterns are
essential for accurately classifying symbols and identifying their relationships. To support structural
understanding in these diagrams, it is necessary to contextualize each symbol or relationship using
both its visual appearance and its position within the surrounding graph structure. In earlier
approaches, node and edge features were processed independently, limiting the model’s ability to
share contextual information across related components.

As discussed in Chapter 2, Graph Attention Networks (GATs) [129] offer a mechanism for incorpo-
rating local structure into node embeddings by computing attention weights between a node and

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 126

its neighbors based on their feature similarity. This enables adaptive and data-driven aggregation
of information from a node’s neighborhood, enhancing local contextualization. However, standard
GAT architectures are limited in that they update only node representations using neighboring
node features, while completely ignoring edge features. This design is suboptimal for our multi-task
learning (MTL) setting, where edge-level predictions, such as spatial relationships in mathematical
formulas or chemical bonds and annotations in molecular diagrams, are primary objectives. A more
expressive architecture is needed that utilizes both nodes and edges as features to aggregate in the
graph and allows information to flow between them during message passing.

As discussed in Section 2.3.3, recent models such as Graphormer [148], Relational Transformer
(RT) [33], and the stroke-level graph model by Xie et al. [139] demonstrate how edge features can
be effectively integrated into attention mechanisms. These methods encode edge information either
through explicit edge embeddings or by concatenating edge and node features within the attention
computation. This enables richer structural encoding by capturing not only node-level interactions
but also relational attributes such as connectivity and type.

Building on these insights, we propose a modified message-passing architecture based on GATv2 [17]
that incorporates edge features and supports joint node-edge interaction across multiple hops. Here,
multiple hops refer to iterative message-passing steps in which each node and edge representation
is updated by aggregating information not only from immediate neighbors but also from their ex-
tended neighborhood over successive layers, enabling the model to capture higher-order structural
dependencies in the graph. GATv2 enhances the original GAT formulation by making attention
computation dependent on both source and target node features, enabling more expressive contex-
tualization while maintaining computational efficiency, as outlined in Section 2.3.4.

We extend this formulation to support bidirectional communication between nodes and edges.
Specifically, we augment the node update steps with edge-aware attention, and introduce a par-
allel edge update module in which edge embeddings are refined based on the representations of
their incident nodes.

Design. We refer to our adapted GATv2-based framework as Edge Graph Attention Network v2
(EGATv2). The EGATv2 module is applied at the end of the visual feature extraction pipeline,
immediately prior to task-specific classification heads. Input features for each node (fi) and edge
(fij) are formed by pooling the outputs of the ResNeSt encoder and concatenating query (q) and

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 127

α(t)
ij

so
ftm

ax
j

{
qi

(t−1)
{

qj
(t−1) qij

(t−1)
{

e(t)
ij

W

(a) Attention weights
computation

z

zi

z
|

.
z

{

{

q1
(t−1)

q3
(t−1)

q2
(t−1)

α(t)
13

α(t)
12 avg

q1
node,(t)

{

c3
(0)

{

c2
(0)

c1
(0)

{ { {

c1
(0)

{

z.
z

{

{

q1
edge,(t)

q13
(t−1)

q12
(t−1)

α(t)
13

α(t)
12

{
avg

z

q1
node,(t) q1

edge,(t)q1
(0) c1

(0){ { { {q1
(t)

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

Navn
Klasse

8. februar 2023
Fag

2
zi, y

(1)

1 af 1

0
4

1

2

3
5 6

Nodes
(2NN)

Edges
(2NN)

α(t)
11

α(t)
11

(b) Node attention and feature aggregation

Figure 5.4: EGATv2 mechanism for nodes. (a) Edge-aware attention mechanism: attention scores
α
(t)
ij are computed from a concatenation of node and edge query features (q

(t−1)
i ,q

(t−1)
j ,q

(t−1)
ij),

projected through a learnable matrix W and passed through a LeakyReLU nonlinearity. Softmax
normalization is performed over the two nearest neighbors (2NN) of each node: nodes i and j and
the edge ij. (b) Multi-hop node feature update for node 1 (‘z’): aggregates attention-weighted
messages from neighbors (top row): node 2 (base of ‘i’) and node 3 (dot of ‘i’), including itself
(node 1), and the two corresponding edges (bottom row): z → base of ‘i’ (12) and z → dot of
‘i’ (13), and itself (11) update its representation based on its attention score. After aggregation,
aggregated node and edge query features are combined with original query and context features via
concatenation to form the updated node embedding q

(t)
1 for node 1 (‘z’).

context (c) features:

fi = q
(0)
i ⊕ c

(0)
i , q

(0)
i , c

(0)
i ∈ RF (5.1)

fij = q
(0)
ij ⊕ c

(0)
ij , q

(0)
ij , c

(0)
ij ∈ RF (5.2)

Here, F is the dimension of the feature vector. These inputs represent the initial (time step t = 0)
features for message passing and are used as the foundation for subsequent multi-hop node and edge

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 128

updates.

Our EGATv2 module operates solely on the query features, while the context features are con-
catenated later during classification. This design choice is motivated by implementation efficiency,
allowing the attention mechanism to operate on lower-dimensional inputs. The attention coefficients
eij are computed using the concatenated node and edge query features (see Figure 5.4a):

e
(t)
ij = a⊤LeakyReLU

(
W

[
q
(t−1)
i ⊕ q

(t−1)
j ⊕ q

(t−1)
ij

])
, (5.3)

Here, a ∈ RF ′ is a learnable attention vector, W ∈ RF ′×3F is a learnable projection matrix, and
LeakyReLU is the non-linear activation function.

The edge attention coefficients are normalized across each node’s two nearest neighbors (2NN(i)),
including itself, using a softmax function:

α
(t)
ij =

exp(e
(t)
ij)∑

k∈2NN(i) exp(e
(t)
ik)

(5.4)

We aggregate only two nearest neighbors for each node (see Eq. 5.5), so that we capture local
context from the immediate neighbors, and the multiple hops during iterative message passing
captures wider context.

Aggregation via Message Passing. In the original GATv2, at message-passing step t, qnode,(t)
i

represents the aggregated node features for node i, and qedge,(t)
ij represents the aggregated edge

features for edge ij. For our model,

q
node,(t)
i =

∑
j∈2NN(i)

α
(t)
ij Wnq

(t−1)
j (5.5)

q
edge,(t)
ij = α

(t)
ij Weq

(t−1)
ij (5.6)

The attention coefficients α
(t)
ij determine how much influence neighboring elements should have

during the message-passing step. In Eq. 5.5, each node i aggregates information from its two
nearest neighbors j, with each neighbor’s contribution q

(t−1)
j linearly transformed by Wn and

weighted by its attention score α
(t)
ij . This results in a context-aware representation q

node,(t)
i that

encodes node-level interactions.

Unlike standard GATv2, which typically considers all directly connected neighbors in the graph, our
formulation restricts message passing to the two nearest neighbors including itself (2NN(i)). This
choice is motivated by the domain-specific structure of our visual parsing tasks, where meaningful

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 129

local context is typically limited to a small spatial neighborhood. For example, in a mathematical
expression, the symbol = (equal) typically occurs between its left and right operands, and in chemical
diagrams, a bond often connects just two nearby atoms. In both cases, interactions beyond the
immediate neighbors are less informative for local classification decisions.

In Eq. 5.6, the edge feature q
(t−1)
ij from the previous time step is transformed by a separate pro-

jection We and scaled by the same attention coefficient α
(t)
ij . This enables the edge to update its

representation q
edge,(t)
ij based on its relevance to the surrounding structure as determined by the

attention mechanism.

Although the attention coefficients are computed using both node and edge features, there is still
no interaction between the updated node and edge representations during the aggregation step
itself [141]. That is, the node features are updated solely based on neighboring node features, and
edge features are updated solely from their own previous states. To enable better interaction, we
introduce a fusion step where node and edge representations are concatenated after attention-based
aggregation, allowing mutual contextualization before classification.

Bidirectional Node–Edge Feature Aggregation. The bidirectional node-edge feature aggrega-
tion refers to the design in which both node and edge representations are iteratively updated using
information from each other during message passing. At each step, node embeddings are updated
using both neighboring node features and the features of incident edges, thereby capturing not only
symbol-level context but also the relationships those symbols participate in (see Figure 5.4b). Con-
versely, edge embeddings are updated using the embeddings of their connected nodes, incorporating
contextual information from both endpoints into the relationship representation.

This mutual exchange of information allows the model to encode more structured representations.
Rather than treating node and edge tasks independently, the mechanism enables joint refinement
of features that accounts for both local visual patterns and the overall graph structure. This is
particularly important in symbolic domains like mathematics and chemistry, where meaning arises
from both the individual elements and their spatial connections.

Specifically, for each node i, we compute an edge-derived feature q
edge,(t)
i by summing the attention-

weighted edge features qedge,(t−1)
ij from its two nearest neighbors j ∈ 2NN(i), as computed in Eq. 5.6:

q
edge,(t)
i =

∑
j∈2NN(i)

q
edge,(t−1)
ij (5.7)

This aggregated edge feature q
edge,(t)
i encodes structural signals from edges incident to node i, com-

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 130

plementing the node-level aggregation. The final node embedding is then formed by concatenating
the node- and edge-derived components:

q
(t)
i = q

node,(t)
i ⊕ q

edge,(t)
i (5.8)

This formulation allows each node to be contextualized both by its neighboring nodes and the edges
it participates in, supporting richer structural awareness.

Next, we enhance the edge features by incorporating updated node information. Instead of averaging
the endpoint node embeddings, we compute separate scalar attention weights for each node to
determine its relative contribution to the edge representation.

For each edge ij, we compute individual attention weights β
(t)
i and β

(t)
j using a shared attention

function over the updated node features:

β
(t)
i = σ

(
a⊤e LeakyReLU

(
Weq

node,(t)
i

))
(5.9)

β
(t)
j = σ

(
a⊤e LeakyReLU

(
Weq

node,(t)
j

))
(5.10)

Here, We ∈ RF ′×F and ae ∈ RF ′ are learnable parameters, and σ(·) denotes the sigmoid function
to ensure the attention weights lie in [0, 1].

The node-derived feature for edge ij is then computed as a weighted combination of the two node
embeddings:

q
node,(t)
ij =

β
(t)
i q

node,(t)
i + β

(t)
j q

node,(t)
j

β
(t)
i + β

(t)
j

(5.11)

This formulation allows the model to learn node-specific contributions to edge representations,
enabling asymmetric and context-aware information flow from nodes to edges. We then concatenate
this with the updated edge feature computed from the previous step:

q
(t)
ij = q

node,(t)
ij ⊕ q

edge,(t)
ij (5.12)

After k message-passing steps, we obtain the final representations for nodes and edges by con-
catenating their original features with the contextualized representations produced by the EGATv2
module. Specifically, for each node i and edge ij, we concatenate the initial query and context
features with the updated aggregated features to produce vectors ∈ R4F ,

Node:

f
(k)
i = q

(0)
i ⊕ c

(0)
i ⊕ q

node,(k)
i ⊕ q

edge,(k)
i (5.13)

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 131

Edge:

f
(k)
ij = q

(0)
ij ⊕ c

(0)
ij ⊕ q

node,(k)
ij ⊕ q

edge,(k)
ij (5.14)

Here, q(k)
i and q

(k)
ij include the fused outputs from the multi-hop attention-based aggregation steps,

which combine both node-derived and edge-derived information. As a result, each final feature
vector contains four components: the initial query feature, the context feature, and two aggregated
components.

This design enables the network to retain visual convolutional responses while incorporating struc-
tural and contextual dependencies extracted during message passing. Including the original query
and context vectors in the final embeddings serves a similar role to residual connections in deep
networks [46], which preserves earlier stage information and provides a direct path for gradient flow
during training.

These enriched embeddings f (k)i and f
(k)
ij are subsequently passed to task-specific classification heads:

a symbol classifier for node-level predictions, a segmentation classifier for identifying symbol merges,
and a relationship classifier for determining spatial or chemical connections between entities. This
architecture enables to incorporate both visual and structural context in graph-based parsing using
a GNN approach.

5.2.4 Two-Stage Graph Attention with Cross-Task Interaction

Existing works like QD-GGA [72] and our current parser models LGAP and LCGP [114] utilize
multi-task learning (MTL) to jointly optimize for symbol and relationship recognition tasks in
mathematical formulas and chemical diagrams. Similarly, joint learning approaches have been
applied to integrate keypoint detection and node (atom) classification tasks [79] for parsing chemical
diagrams.

As discussed in Chapter 2 (Section 2.3.1), MTL enhances model performance by leveraging shared
representations across related tasks, improving generalization, and reducing overfitting. Traditional
MTL frameworks often predict outputs for all tasks in a single pass, limiting their ability to exploit
inter-task relationships effectively. Recent works have demonstrated that iterative refinement, where
outputs from earlier task predictions are utilized in subsequent steps, can enhance task performance
by aligning features and promoting consistency between tasks. For instance, Xu et al. [142] employed
spatial attention to refine task outputs iteratively, while Zhang et al. [167] proposed a sequential
prediction method to propagate task-specific and cross-task information iteratively. MTI-Net [127]

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 132

extended this concept further by modeling task interactions across multiple scales.

Building on these approaches, we propose incorporating graph attention (EGATv2) mechanisms
into our MTL framework to facilitate iterative refinement of task predictions. In this setup, initial
outputs from tasks such as segmentation, symbol classification, and relationship classification serve
as inputs to subsequent network iterations. These refined inputs are processed through EGATv2
attention layers to propagate enhanced task-specific and cross-task information effectively. For
example, segmentation predictions from the first iteration can guide symbol classification by high-
lighting relevant regions, while relationship detection outputs can refine segmentation by enforcing
spatial consistency between nodes and edges.

The graph attention mechanism in EGATv2, described in the previous section, is utilized in this
iterative refinement process. It enables the model to dynamically adjust task predictions by identi-
fying relevant interactions between task-specific outputs and shared representations. By leveraging
these interactions, the proposed framework aims to achieve better alignment across tasks, leading
to improved accuracy in symbol and relationship classification and enhanced segmentation perfor-
mance.

Design. The proposed two-stage graph attention model extends the EGATv2 framework by in-
troducing a second stage of message passing that leverages the output distributions from the first
stage to facilitate cross-task interaction. In the first stage, the model is trained using visual features
alone, which outputs classification distributions for symbol (csi), relationship (crij), and segmenta-
tion/merge (cmij) tasks. These outputs are then used as inputs in the second stage to guide more
informed message passing.

In the second stage, we use the backbone and EGATv2 weights learned in the first stage, and forward
pass the classification outputs as input features alongside the original visual features.

Input Representation. For each node i, we construct a new feature vector by concatenating
the symbol classification distribution from the first stage cs

(0)
i ∈ RCs with the node query features

q
(0)
i ∈ RF to form a feature vector ∈ RCs+F :

q̃
(0)
i = cs

(0)
i ⊕ q

(0)
i (5.15)

Here, Cs is the number of symbol classes, and F is the feature dimension of the original query
features.

For each edge ij, we concatenate the relationship classification distribution cr
(0)
ij ∈ RCr , segmenta-

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 133

tion (merge) distribution cm
(0)
ij ∈ RCm , and the original edge query features q

(0)
ij ∈ RF to form a

feature vector ∈ RCr+Cm+F :

q̃
(0)
ij = cr

(0)
ij ⊕ cm

(0)
ij ⊕ q

(0)
ij (5.16)

Here, Cr is the number of relationship classes and Cm is the number of segmentation classes, which
is binary (merge or not merge) in our case, so Cm = 2.

These enhanced input vectors q̃
(0)
i and q̃

(0)
ij are used in place of the original query features in the

second-stage EGATv2 module.

Aggregation via Message Passing. The second stage follows the same EGATv2 message-passing
procedure described previously (see Equations 5.3–5.12), with the difference being the nature of
the input features and new trainable weights. Instead of using purely visual query features, we
now operate on enriched inputs: the node features q̃

(0)
i = cs

(0)
i ⊕ q

(0)
i , and the edge features

q̃
(0)
ij = cr

(0)
ij ⊕ cm

(0)
ij ⊕ q

(0)
ij , as defined earlier, using same number of neighbors.

These enhanced representations encode both visual and task-specific class distributions from the
first stage and are propagated over k message-passing steps using the same attention-based updates
as before, which gives the aggregated node feature in RCs+F :

q̃
(k)
i = cs

(k)
i ⊕ q

(k)
i (5.17)

and aggregated edge feature in RCr+Cm+F :

q̃
(k)
ij = cr

(k)
ij ⊕ cm

(k)
ij ⊕ q

(k)
ij (5.18)

This formulation allows the model to learn interactions between node and edge features while
conditioning on task-relevant distributions, thereby enabling cross-task interaction and learning.

Final Embedding Construction. After k message-passing steps, the final feature vectors are
constructed by combining the original classification distributions, original visual features, and the
aggregated outputs from the second-stage graph attention layers.

For nodes, a feature vector ∈ R2Cs+4F is formed as follows:

f
(k)
i = cs

(0)
i ⊕ q

(0)
i ⊕ c

(0)
i︸ ︷︷ ︸

Initial class, query, context

⊕ cs
(k)
i ⊕ q

node,(k)
i ⊕ q

edge,(k)
i︸ ︷︷ ︸

Updated class, node query, edge query

(5.19)

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 134

And for edges, a feature vector ∈ R2Cr+2Cm+4F is formed as follows:

f
(k)
ij = cr

(0)
ij ⊕ cm

(0)
ij ⊕ q

(0)
ij ⊕ c

(0)
ij︸ ︷︷ ︸

Initial relationship, merge class, query, context

⊕ cr
(k)
ij ⊕ cm

(k)
ij ⊕ q

node,(k)
ij ⊕ q

edge,(k)
ij︸ ︷︷ ︸

Updated relationship, merge class, node query, edge query

(5.20)

These final representations incorporate both raw and contextually refined information from multiple
tasks and are fed into task-specific fully connected layers to yield updated predictions for symbol
classification, segmentation (merge decisions), and relationship classification. This second-stage
formulation enables iterative refinement, as the final predictions are based on feature representa-
tions that are not only visually grounded but also shaped by interactions across tasks—symbol,
segmentation, and relationship recognition, through graph-based message passing.

5.3 Evaluation and Results

This section presents experiments evaluating the methods introduced in the preceding sections,
which includes evaluating the effectiveness of different visual feature refinements like ResNeSt back-
bone, and the evaluation of our EGATv2 module and the two-stage graph attention model.

We begin with a description of datasets, evaluation metrics, and implementation details. Subsequent
subsections report results for each method. Together, these evaluations demonstrate how different
components of our framework influence the parser effectiveness and efficiency.

5.3.1 Datasets and Evaluation Metrics

Datasets. We evaluate our models on both mathematical and chemical diagram datasets, consis-
tent with those introduced in Chapter 4.

For mathematical formulas, we use the InftyMCDB-2 (typeset) dataset, consisting of 12,551 training
expressions and 6,830 test expressions, as previously described in Chapter 4. Additional benchmark
results on other datasets, such as the CROHME dataset for handwritten expressions, are reported
in Chapter 6.

For chemical diagrams, we evaluate on datasets derived from the data generation pipeline described
in Chapter 3. Specifically, we use a curated set of 5,000 molecules from PubChem, prepared by the
MolScribe team [100]. Of these, 4,590 molecules rendered with Indigo are successfully converted

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 135

into annotated label graphs using our born-digital parser. The remaining examples are excluded
due to errors: 240 stemming from the born-digital parsing step, and 170 due to failures in primitive
extraction, alignment, or conversion of visual graphs into SMILES strings. For testing, we use the
USPTO dataset, which contains 5,719 chemical diagrams in PNG format generated from SMILES
strings using the Indigo rendering toolkit. Both the training and test datasets are available online1.
For training, we use 80-20 split on the PubChem-5k training dataset, resulting in 3,672 training
and 918 validation examples.

For the chemistry dataset, we reduced the number of symbol classes to simplify the learning task and
delegate visually deterministic patterns to post-processing. Multi-line bond types, such as double,
triple, and hashed wedge bonds, were removed from the symbol classification label set. These bonds,
typically rendered as grouped of parallel lines, were instead inferred deterministically by grouping
parallel single bond lines after classification. This approach utilizes the rule-based method used
in the born-digital parser (Chapter 3) and reduced the number of symbol classes from 74 to 71.
We further excluded very rare visual elements–wave, circle, left parenthesis, and right parenthesis,
which did not appear in the PubChem-5k training set or any of the benchmark test sets (USPTO,
UOB, CLEF). The final label set used for training and evaluation included 67 symbol classes, better
aligning with the distribution of relevant categories in the chemical diagrams.

Evaluation Metrics. For both mathematical formula and chemical diagram parsing, we report
expression-level recognition rates for: (1) Structure, which evaluates whether the predicted graph
has the correct topology, including symbol segmentation and edge connectivity; and (2) Structure
+ Class, which further requires that both symbol and relationship labels are correctly predicted.

We also compute F1 scores for symbol and relationship prediction using the LgEval toolkit [85].
These are reported for both detection accuracy (correct region or edge presence) and detection
with classification (correct label assignment). The F1 score is calculated as the harmonic mean of
precision and recall.

For chemical diagrams, we additionally report the Exact SMILES Match metric, which evaluates
whether the predicted molecule’s SMILES string, obtained by converting the predicted visual graph
and canonicalizing it, matches the ground truth exactly. This is commonly used in chemical diagram
recognition literature to compare and benchmark systems.

1https://cs.rit.edu/~dprl/data/chem/fullset/

https://cs.rit.edu/~dprl/data/chem/fullset/

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 136

Table 5.2: Computing environments used for experiments.

Name GPU(s) CPU Memory OS

Desktop 1 2 × GTX 1080 Ti (12GB) Intel i7-9700KF (8-core, 3.6 GHz) 32 GB RAM Ubuntu 22.04
Desktop 2 2 × GTX 1080 Ti (12GB) Intel i7-8700K (12-core, 3.7 GHz) 32 GB RAM Ubuntu 24.04
Server 1 4 × RTX 2080 Ti (12GB) Intel Xeon E5-2667 v4 (32-core, 3.2 GHz) 512 GB RAM Ubuntu 22.04
Server 2 1 × A40 (48GB) Intel Xeon Gold 6326 (64-core, 2.9 GHz) 256 GB RAM Ubuntu 24.04
RC Node 1 × A100 PCIe (40GB) Intel Xeon Gold 6150 (36-core, 2.7 GHz) 376 GB RAM RHEL 9.6

Table 5.3: Baseline configuration for math and chemistry experiments.

Control variables Math Chemistry

Symbol classes 207 67
Edge classes 9 2
Segmentation classes 2 2

Input primitives CCs Line primitives
Input graph LOS graph 6NN graph
Loss Cross-Entropy (CE) Cross-Entropy (CE)

Implementation Details All models are implemented in Python using the PyTorch framework.
For the visual parser, additional dependencies include networkx for graph operations, numpy for
numerical routines, and mr4mp for map-reduce parallelism. Visual parsing pipelines and primitive
extraction components are fully implemented in Python.

Experiments were conducted across multiple computing environments, which is summarized in Ta-
ble 5.2. The main experiments were run on two desktops and two servers, with the Research
Computing (RC) cluster node [93] used for a few experiments.

We use the Adam optimizer with a learning rate of 0.0005, β = (0.9, 0.999), batch size of 64, and no
weight decay. Models were trained for up to 100 epochs with early stopping based on validation loss.
Specifically, training was halted if the total validation loss increased for more than five consecutive
epochs, and the best epoch was selected as the one just before this increase began. Batch updates
were performed using mixed node and edge queries sampled according to the strategy described in
Section 6.2.

Baseline Model Configuration Table 5.3 shows the baseline configuration used for all exper-
iments in both math and chemistry tasks. This setup defines consistent values for key variables
such as loss function, input graph representation, and number of classes for each task. We use this
configuration as a control to measure the effect of specific changes in the experiments that follow.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 137

Table 5.4: Training and inference performance metrics for InftyMCDB-2 (math) and Pubchem-5k
(chemistry) datasets on Server 1 using the baseline model configuration defined in Table 5.3.

Metric Math Chemistry

Dataset size (train/test) 12,551 / 6,830 4,590 / 5,719
Avg. input instances

(nodes + edges) per formula
55.27 345.23

Avg. training time per epoch 22.4 minutes 101.6 minutes
Inference time per formula 81 ms/formula 915 ms/molecule

Additional variables, such as feature size, number of pooling regions, backbone encoder, number
of hops and stages in EGATv2 are treated as independent variables and modified in isolation to
evaluate their impact on performance of the parser.

Training and Inference Performance. Table 5.4 summarizes the training and inference per-
formance for our models on the math and chemistry datasets using Server 1 (see Table 5.2 for server
details). While the training time per epoch for mathematical formulas is relatively low (22.4 min-
utes), training on chemical diagrams takes substantially longer (101.6 minutes). Similarly, inference
on math expressions is faster (81 ms/formula) compared to chemical diagrams (915 ms/molecule).
These differences are primarily due to the significantly larger number of input instances (i.e., nodes
and edges) in chemical graphs. On average, chemical molecules contain approximately six times
as many nodes and edges (345.23 instances) as mathematical formulas (55.27 instances), increasing
the computational load during both training and inference.

In the following sections, we present experiments addressing the methods introduced earlier.

5.3.2 Common Feature Extraction Pipeline

To assess the impact of adopting the contour-based primitive representation for mathematical for-
mulas, we conduct a comparative evaluation against the previous binary-masked approach used
in earlier versions of our math parsing models (LGAP), as described in Chapter 4. The earlier
method used large formula-level crops with binary attention masks over CNN feature maps to iso-
late connected components (CCs) and their neighborhoods, which led to sparse feature maps and
inefficiencies in capturing localized details. In contrast, the updated approach applies the same
contour-based, resolution-normalized primitive canvas strategy originally developed for chemical
diagrams (Section 5.2.1).

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 138

Table 5.5: Effect of visual input primitives on parsing performance for mathematical formulas
(InftyMCCDB-2 test dataset).

Input features
Symbols Relationships Expressions

Detect. +Class Detect. +Class Structure +Class

Global pixel map and binary masks 98.32 95.66 94.85 94.35 89.27 83.27
Drawn contour-based primitives 98.95 96.83 95.96 95.13 90.32 84.55

For this experiment, we retrain the model using the same architecture and supervision as the
baseline, changing the visual input representation and the feature generation strategy. In the
updated pipeline, contours are extracted from each connected component in the math dataset,
drawn onto fixed-size patches, and passed through a shared CNN encoder independently. As shown
in Table 5.5, this change results in consistent improvements across symbol classification, relationship
recognition, and expression-level accuracy, highlighting the effectiveness of contour-based primitives
as the standard visual representation.

5.3.3 Visual Feature Improvements

We evaluate the impact of improved visual primitives and feature configurations on parsing per-
formance for chemical diagrams. The updated primitives are extracted using a combination of the
Line Segment Detector and watershed segmentation, as described in Section 5.2.2, and are compared
against earlier extraction methods detailed in Chapter 3.

We conducted a grid search on input feature resolution (28× 28, 32× 32, 48× 48, and 64× 64), and
spatial pyramidal pooling regions (1, 7, 17, 31) regions using representative smaller subsets of math
and chemical datasets. The experiments are detailed in Appendix A. For input resolution, 64× 64

input feature size yielded the highest recognition for mathematical formulas while 32 × 32 feature
size performed best for chemical diagrams.

For spatial pooling, models benefited from increased pooling regions. In particular, a 31-region
configuration (1 + 3H + 3V + 5H + 5V + 7H + 7V) was most effective for math, while a 17-region
setup (1 + 3H + 3V + 5H + 5V) provided the best performance for chemistry.

Based on these results, we adopt 64× 64 input features with 31-region SPP for math, and 32× 32

input features with 17-region SPP for chemistry, and use these as default configurations in all
subsequent experiments.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 139

As shown in Table 5.7, updates to visual primitives and tuning of input feature size and pooling
regions lead to consistent performance improvements for the chemical diagrams. Both symbol and
relationship detection and classification F1 scores increase across stages, and the exact SMILES
match rate improves from 85.02% to 86.20%. These results demonstrate the value of new robust
primitives and feature resolution optimization in enhancing chemical diagram parsing accuracy. For
mathematical formulas, we retain the same configuration throughout, as the 64×64 input size with
31-region pooling was already optimal, giving an expression-level structure and classification rate
of 84.55%.

5.3.4 Split-Attention (ResNeSt) Backbone

To assess the effectiveness of the split-attention ResNeSt encoder, we compare the modified ResNeSt-
50 (reduced) variant against the SE-ResNeXt-50 baseline described in Section 5.2.2. Both models
were trained using the same updated pipeline, which includes contour-based primitive inputs and
shared CNN visual encoding. All other components (e.g., graph structure, multi-task heads, loss
formulation, and pooling configurations) were held constant to isolate the effect of the encoder
architecture.

Training Details. We used pretrained ResNeSt-50 weights from ImageNet as initialization. Since
our inputs are single-channel contour patches (grayscale), the first convolutional layer’s weights were
adapted by averaging the pretrained weights across the three RGB channels. This simple conversion
makes the model compatible with single channel inputs. We also trained the model from scratch
(without pretrained weights), and found that while convergence was slower, final performance re-
mained within 0.2–0.3% of the pretrained version across tasks, confirming the robustness of the
architecture.

For the mathematical formula dataset (InftyMCDB-2), evaluation was performed on the full test set
using 64×64 input feature and a 31-region SPP configuration (1+3H+3V +5H+5V +7H+7V). For
the chemical dataset (USPTO), we used 32×32 input feature size and a 17-region SPP configuration
(1+3H +3V +5H +5V), consistent with the best-performing setup identified in Section 5.3.3. All
models were trained with the same hyperparameters, and data splits to ensure comparability.

Discussion. The ResNeSt-based model yields consistent improvements across all evaluation met-
rics compared to the SE-ResNeXt baseline. Increases are observed in both local (symbol, relation)

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 140

Table 5.6: Performance comparison between SE-ResNeXt and ResNeSt backbones on the
InftyMCDB-2 test set. Both models use contour-based primitive inputs and 31-region SPP.

Backbone
Symbols Relationships Expressions

Detect. +Class Detect. +Class Structure +Class

SE-ResNeXt-50 (baseline) 98.95 96.83 95.96 95.13 90.32 84.55
ResNeSt-50 (reduced) 99.00 96.90 96.00 95.20 90.56 84.73

Table 5.7: Performance comparison on the USPTO chemical test set across different visual feature
improvements. Models are evaluated using F1 scores for symbol and relationship detection and
classification, expression-level rates (%) for structure and structure + class, and the percentage of
exact SMILES string matches converted from the predicted visual graphs.

Model
Symbols Relationships Expressions Exact SMILES

Detect. +Class Detect. +Class Structure +Class (%)

Baseline (LCGP) 99.84 99.29 98.86 98.86 50.65 44.37 85.02
+ LSD Visual Primitives 99.85 99.35 98.88 98.88 51.56 45.07 85.62
+ Tuned Feat. Size and Pooling 99.86 99.43 98.89 98.89 51.98 45.55 86.20
+ ResNeSt Backbone 99.87 99.50 98.90 98.90 52.35 45.98 86.30

and global (structure, expression) metrics as seen in Table 5.6. These improvements extend to the
chemical dataset as well, where symbol and relationship classification F1 scores improve slightly,
and the exact SMILES match rate increases from 86.20% to 86.30% (Table 5.7). Notably, these
gains are achieved with fewer trainable parameters and reduced computational cost, as shown in
Table 5.1. The reduced ResNeSt backbone provides higher representational capacity through split-
attention mechanisms, enabling the model to better distinguish fine-grained spatial patterns while
preserving computational efficiency.

Accordingly, the reduced ResNeSt model with pretrained initialization is used as the default visual
encoder in all subsequent experiments in Chapter 5 and Chapter 6.

5.3.5 RQ3: Graph Attention and Task Interaction

To evaluate the effect of edge-aware attention with multi-hop message passing, we conduct a sys-
tematic comparison of EGATv2 variants against a baseline without graph attention. EGATv2
incorporates both node and edge features into the attention computation and enables joint node-
edge updates across multiple message-passing iterations.

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 141

Model Variants. We consider both single-stage and two-stage configurations of EGATv2. In the
single-stage setting, we vary the number of attention hops (K = 1, 2, 3), corresponding to the number
of message-passing layers applied sequentially over the input graph. In the two-stage variant, the
EGATv2 model is first trained independently to produce initial class distributions. These predicted
distributions are then used as additional input features in the second stage. The second-stage
EGATv2 model reuses all weights from the first stage and extends it by introducing new attention
heads and linear layers to process the concatenated visual features and class distribution vectors.
As such, the second stage builds upon and subsumes the first, enabling parameter sharing while
incorporating task-aware layers for improved representation learning.

Implementation Details. Each EGATv2 layer comprises two linear projections: one for com-
puting attention scores and another for updating node and edge feature embeddings. Attention
scores are computed using a concatenation of feature vectors from each query and its neighbors.
For a visual embedding of dimension F , the concatenated pairwise feature dimension becomes 2F ,
matching the attention input dimensionality.

For math experiments, with 31 spatial pooling regions and 32 output channels from the CNN
encoder, plus 10 dimensions from positional encoding bounding boxes (Query BB relative to formula
window, Query BB relative to context window, and Context windoe BB relative to the formula), the
visual embedding dimension is 32× 31 + 10 = 1002, yielding an attention input dimension of 2004.
Similarly, for chemistry with 17 pooling regions, the input to attention is 2× (32× 17+10) = 1108.
Attention scores weight neighboring feature embeddings during aggregation.

The downstream heads for symbol classification, segmentation, and relationship classification share
a multi-layer perceptron (MLP) with a hidden layer of size 512 and ReLU activation. These heads
operate on the final concatenated representation, which includes visual features, class distribution
vectors (for two-stage models), and the output of the multi-hop EGATv2 layers.

All baseline and EGATv2 models use the same baseline configurations as described in Table 5.3,
and also shared backbone encoder for extracting visual features: a reduced version of ResNeSt-50
with the same input feature size and SPP configuration adopted in Section 5.3.3.

As shown in Table 5.8, integrating EGATv2 increases the number of trainable parameters relative
to the reduced ResNeSt-50 encoder, primarily due to expanded linear layers used in contextualized
attention. These layers operate on larger input embeddings that incorporate aggregated query
features. While the baseline model processes 2F -dimensional features before classification, the

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 142

Table 5.8: Model parameter comparison of EGATv2 variants with baseline

Model # Trainable Parameters

SE-ResNeXt-50 4.05M
ResNeSt-50 (reduced) 2.62M
ResNeSt-50 (reduced) + EGATv2 (1 stage) 2.97M
ResNeSt-50 (reduced) + EGATv2 (2 stages) 4.45M
CTC transformer [7] 43.80M
Vision transformer [59] 51.10M
SWIN transformer [146] 88.00M

Table 5.9: Performance of EGATv2 variants by stage and hop count across tasks on the InftyMCDB-
2 dataset (6,830 formulas). We report F1% scores for symbol detection and classification, relation-
ship detection and classification, and expression-level structure and classification rates.

Model
Symbols Relationships Expressions

Detect. +Class Detect. +Class Structure +Class

Baseline 99.00 96.90 96.00 95.20 90.56 84.73

EGATv2, 1 stage
1-hop 99.05 97.05 96.12 95.29 90.67 84.79
2-hop 99.23 97.46 96.92 96.17 92.14 86.94
3-hop 99.15 97.29 96.58 95.88 90.94 84.92

EGATv2, 2 stage
1-hop 99.12 97.21 96.48 95.63 91.43 85.93
2-hop 99.31 97.65 97.18 96.45 92.21 87.99
3-hop 99.21 97.38 96.74 96.01 91.64 86.41

EGATv2 variants expand this to 4F in the single-stage model and to 2Cs+2Cm+4F for edges and
2Cs + 4F for nodes in the two-stage model. As a result, the parameter count grows from 2.62M in
the baseline to 2.97M in the single-stage model (a 13.1% increase) and to 4.45M in the two-stage
model (a 69.8% increase).

Despite these additions, both EGATv2 variants remain lightweight. Even the two-stage model
remains closer to SE-ResNeXt-50 (4.05M parameters) and far smaller than transformer-based models
like the CTC Transformer [7] (43.80M) and the Hybrid Vision Transformer [59] (51.10M).

Discussion. All EGATv2 variants outperform the baseline across symbol, relationship, and expression-
level tasks in both mathematical formulas and chemical diagrams. Among single-stage models, in-
creasing the number of hops from 1 to 2 yields consistent improvements, particularly in relationship
classification (e.g., +0.88 F1% in math, +0.06 F1% in chemistry), as multi-hop message passing

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 143

Table 5.10: Performance of EGATv2 variants by stage and hop count across tasks on the USPTO
test set. We report F1% scores for symbol and relationship detection and classification, expression-
level structure and classification rates, and percentage of exact SMILES string matches.

Model
Symbols Relationships Expressions Exact SMILES

Detect. +Class Detect. +Class Structure +Class (%)

Baseline 99.87 99.50 98.90 98.90 52.35 45.98 86.30

EGATv2, 1 stage
1-hop 99.88 99.52 98.93 98.93 52.44 46.56 86.64
2-hop 99.89 99.57 98.99 98.99 52.53 48.23 88.04
3-hop 99.88 99.53 98.94 98.94 52.42 46.83 86.83

EGATv2, 2 stage
1-hop 99.89 99.55 98.96 98.96 52.49 47.39 87.11
2-hop 99.90 99.86 99.02 99.02 52.54 52.02 89.04
3-hop 99.89 99.56 98.97 98.97 52.46 47.70 87.39

facilitates richer context aggregation from neighboring nodes and edges. However, further increasing
the hop count beyond 2 results in diminishing or slightly degraded performance. This decline may
be attributed to the inclusion of excessive context from distant or less relevant nodes, which can
dilute task-specific signal and increase learning complexity, or to underfitting due to the model’s
limited capacity to extract patterns from these additional contextual inputs.

Two-stage variants consistently outperform their single-stage counterparts across both domains.
This confirms the benefit of leveraging intermediate classification outputs as contextual input for
the second-stage attention mechanism. The two-stage, two-hop model yields the best performance
overall—improving symbol classification by +0.75 F1% and expression-level structure and classi-
fication rate by +3.26% in math, and achieving a +6.04% gain in expression level structure and
classification rate and +2.74% improvement in exact SMILES match in chemistry. These gains
reflect the model’s ability to condition message passing not only on visual features but also on early
task-specific predictions.

Improvements on the chemical dataset are smaller in magnitude compared to the mathematical
domain. This is partly due to the higher average number of nodes and edges per graph in chemical
diagrams (see Table 5.4), which increases prediction complexity and reduces the impact of localized
improvements in symbol or relationship metrics. Nonetheless, even modest gains in local F1 scores
lead to noticeable increases in expression-level structure and classification rates and exact SMILES
match, due to the structural propagation of correctness.

It is also notable that SMILES exact match rates remain relatively high even when expression-level

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 144

structure and classification rates are lower. This discrepancy arises because small local errors in
the visual graph, such as missing or extra edges, may not affect the final molecular graph produced
after postprocessing. The chemical graph reconstruction step groups bond lines (e.g., double or
triple bonds) and infers connectivity based on bond group adjacency. As long as at least one
edge connects the group to the correct neighbor, the resulting molecular graph remains structurally
valid, leading to a correct SMILES string. Thus, expression-level errors in the visual graph can
be partially absorbed during postprocessing, explaining the higher SMILES match rates despite
imperfect intermediate predictions.

These improvements are achieved without increasing the number of parameters beyond the attention
layers and maintain a lower footprint than transformer-based alternatives (see Table 5.8). The
architecture supports expressive and efficient multi-task learning while preserving interpretability
and generalization.

Error Analysis (Math). Figures 5.5 and 5.6 provide a detailed node- and edge-level error analy-
sis on the InftyMCDB-2 test set, comparing the baseline model with the proposed EGATv2 (2-stage,
2-hop) model. These visualizations illustrate that EGATv2 consistently reduces the frequency of
common misclassification patterns by better incorporating local context during prediction.

At the node level (Figure 5.5), the baseline model’s most frequent errors involve visually similar
symbols such as minus, i, and RightParenthesis. EGATv2 shows a lower overall frequency of these
confusions, with its top errors shifting to minus, equal, and dot. Notably, the reduced confusion
between minus and equal highlights the model’s improved use of relational context: since the symbol
equal typically consists of two horizontal lines that resemble stacked minus symbols, distinguishing
between them without contextual cues can be difficult. EGATv2’s architecture enables contextual
feature propagation across neighboring primitives, which helps disambiguate such cases by leveraging
surrounding symbol identities and edge types.

At the edge level (Figure 5.6), many errors in both models are a consequence of upstream symbol
misclassifications. For instance, if a primitive is misclassified as minus instead of equal, the cor-
responding spatial relationship (e.g., HORIZONTAL) may also be incorrectly interpreted, leading to
compounded edge-level errors. While these error chains persist in EGATv2, their overall frequency
is reduced compared to the baseline, highlighting the benefits of bidirectional interaction between
node and edge representations in our architecture.

Nevertheless, some residual errors in EGATv2 suggest remaining limitations in how context is ag-

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 145

LgEval Structure Confusion Histograms
Mon Jun 23 17:44:29 2025

VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (151 incorrect targets; 1595 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 151 incorrect targets, 1595 errors.

Object Targets Primitive Targets and Errors

1 222 errors

minus

Targets

1
216 errors

minus

55 errors

equal

34 errors

minus

33 errors

leqq

11 errors

i

7 errors

pm

6 errors

C

6 errors

underlin

5 errors

two

4 errors

v

4 errors

m

4 errors

H

2
3 errors

minusminus
minusminus

3 errors

Other
Errors

3
1 errors

minus

minus

minus

minus

minusminusminus

minus

minus

minus

minus

minus

minusminusminus

minus

1 errors

Other
Errors

4
1 errors

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minusminusminus
minusminus

minus
minus

minus

minus

minus
minus

minusminus

minus

minusminus
minus

minus

minus

minusminus
minus

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minus

minus

minus
minus
minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

5
1 errors

minus

minus

minus

minus

minus

minus
minusminus

minus

1 errors

Other
Errors

2 66 errors

i

Targets

1 63 errors

ii ii

47 errors

ii ii

4 errors

jj jj

12 errors

Other
Errors

 2 2 errors

i

2 errors

Other
Errors

 3 1 errors

i

i

i

i

i
ii

i

i

1 errors

Other
Errors

3 60 errors

RightPa

Targets

1 51 errors

RightPa

14 errors

RightPa

3 errors

rangle

3 errors

i

31 errors

Other
Errors

2 8 errors

RightPaRightPar

RightParRightPar

8 errors

Other
Errors

 3 1 errors

RightPa

RightPar

RightPar

RightPar

RightParRightPar RightPar

RightPar

RightParRightParRightPar

RightParRightParRightPar

RightPar

RightPar

1 errors

Other
Errors

6/23/25, 6:29 PM CH_VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/18

LgEval Structure Confusion Histograms
Mon Jun 23 17:44:29 2025

VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (151 incorrect targets; 1595 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 151 incorrect targets, 1595 errors.

Object Targets Primitive Targets and Errors

1 222 errors

minus

Targets

1
216 errors

minus

55 errors

equal

34 errors

minus

33 errors

leqq

11 errors

i

7 errors

pm

6 errors

C

6 errors

underlin

5 errors

two

4 errors

v

4 errors

m

4 errors

H

2
3 errors

minusminus
minusminus

3 errors

Other
Errors

3
1 errors

minus

minus

minus

minus

minusminusminus

minus

minus

minus

minus

minus

minusminusminus

minus

1 errors

Other
Errors

4
1 errors

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minusminusminus
minusminus

minus
minus

minus

minus

minus
minus

minusminus

minus

minusminus
minus

minus

minus

minusminus
minus

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minus

minus

minus
minus
minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

5
1 errors

minus

minus

minus

minus

minus

minus
minusminus

minus

1 errors

Other
Errors

2 66 errors

i

Targets

1 63 errors

ii ii

47 errors

ii ii

4 errors

jj jj

12 errors

Other
Errors

 2 2 errors

i

2 errors

Other
Errors

 3 1 errors

i

i

i

i

i
ii

i

i

1 errors

Other
Errors

3 60 errors

RightPa

Targets

1 51 errors

RightPa

14 errors

RightPa

3 errors

rangle

3 errors

i

31 errors

Other
Errors

2 8 errors

RightPaRightPar

RightParRightPar

8 errors

Other
Errors

 3 1 errors

RightPa

RightPar

RightPar

RightPar

RightParRightPar RightPar

RightPar

RightParRightParRightPar

RightParRightParRightPar

RightPar

RightPar

1 errors

Other
Errors

6/23/25, 6:29 PM CH_VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/18

LgEval Structure Confusion Histograms
Mon Jun 23 17:44:29 2025

VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (151 incorrect targets; 1595 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 151 incorrect targets, 1595 errors.

Object Targets Primitive Targets and Errors

1 222 errors

minus

Targets

1
216 errors

minus

55 errors

equal

34 errors

minus

33 errors

leqq

11 errors

i

7 errors

pm

6 errors

C

6 errors

underlin

5 errors

two

4 errors

v

4 errors

m

4 errors

H

2
3 errors

minusminus
minusminus

3 errors

Other
Errors

3
1 errors

minus

minus

minus

minus

minusminusminus

minus

minus

minus

minus

minus

minusminusminus

minus

1 errors

Other
Errors

4
1 errors

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minusminusminus
minusminus

minus
minus

minus

minus

minus
minus

minusminus

minus

minusminus
minus

minus

minus

minusminus
minus

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minus

minus

minus

minus

minus

minus

minus

minus
minus

minus

minus

minus

minus
minus
minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

5
1 errors

minus

minus

minus

minus

minus

minus
minusminus

minus

1 errors

Other
Errors

2 66 errors

i

Targets

1 63 errors

ii ii

47 errors

ii ii

4 errors

jj jj

12 errors

Other
Errors

 2 2 errors

i

2 errors

Other
Errors

 3 1 errors

i

i

i

i

i
ii

i

i

1 errors

Other
Errors

3 60 errors

RightPa

Targets

1 51 errors

RightPa

14 errors

RightPa

3 errors

rangle

3 errors

i

31 errors

Other
Errors

2 8 errors

RightPaRightPar

RightParRightPar

8 errors

Other
Errors

 3 1 errors

RightPa

RightPar

RightPar

RightPar

RightParRightPar RightPar

RightPar

RightParRightParRightPar

RightParRightParRightPar

RightPar

RightPar

1 errors

Other
Errors

6/23/25, 6:29 PM CH_VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/18

(a) Baseline

LgEval Structure Confusion Histograms
Mon Jun 23 18:16:10 2025

VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (131 incorrect targets; 821 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 131 incorrect targets, 821 errors.

Object Targets Primitive Targets and Errors

1 62 errors

minus

Targets

1 59 errors

minus

22 errors

minus

5 errors

equal

5 errors

leqq

4 errors

zero

3 errors

T

20 errors

Other
Errors

 2 1 errors

minus

minus

minus

minus

minusminus

minus

minusminus

minusminus

minus

minus

minus

minus

minus

1 errors

Other
Errors

 3 1 errors

minusminus
minusminus

1 errors

Other
Errors

 4 1 errors

minus

minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

2 56 errors

equal

Targets

1 56 errors

equalequal
equalequal

20 errors

equivequiv
equivequiv

14 errors

leqqleqq
leqqleqq

13 errors

minusminus
minusminus

4 errors

geqqgeqq
geqqgeqq

3 errors

congcong
congcong

2 errors

Other
Errors

3 34 errors

dot

Targets

1 34 errors

dot

12 errors

comm

6 errors

i

3 errors

ldots

13 errors

Other
Errors

6/23/25, 6:28 PM CH_VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/19

LgEval Structure Confusion Histograms
Mon Jun 23 18:16:10 2025

VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (131 incorrect targets; 821 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 131 incorrect targets, 821 errors.

Object Targets Primitive Targets and Errors

1 62 errors

minus

Targets

1 59 errors

minus

22 errors

minus

5 errors

equal

5 errors

leqq

4 errors

zero

3 errors

T

20 errors

Other
Errors

 2 1 errors

minus

minus

minus

minus

minusminus

minus

minusminus

minusminus

minus

minus

minus

minus

minus

1 errors

Other
Errors

 3 1 errors

minusminus
minusminus

1 errors

Other
Errors

 4 1 errors

minus

minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

2 56 errors

equal

Targets

1 56 errors

equalequal
equalequal

20 errors

equivequiv
equivequiv

14 errors

leqqleqq
leqqleqq

13 errors

minusminus
minusminus

4 errors

geqqgeqq
geqqgeqq

3 errors

congcong
congcong

2 errors

Other
Errors

3 34 errors

dot

Targets

1 34 errors

dot

12 errors

comm

6 errors

i

3 errors

ldots

13 errors

Other
Errors

6/23/25, 6:28 PM CH_VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/19(b) EGATv2, 2-stage 2-hop

Figure 5.5: Node-level error analysis comparison between two models on the InftyMCDB-2 test
set in Table 5.9: (a) baseline model, and (b) the best performing EGATv2 (2-stage, 2-hop) model
(truncated at right for space). Each error table is organized by decreasing frequency of object-level
node classification errors, with associated primitive-level confusions visualized to the right of each
object. Red circles and lines indicate misclassifications, blue circles denote the correct class, and
dotted lines illustrate merge edges between primitives belonging to the same symbol. Hyperlinked
error counts allow inspection of specific formulas, and checkboxes enable selection for export. (a)
The baseline model is dominated by errors involving minus, i, and RightParenthesis symbols,
and (b) the EGATv2 model’s top three errors are classifying minus, equal, and dot, but with lower
error frequencies compared to the baseline.

gregated. While EGATv2 propagates query features across neighbors, additional gains may require
mechanisms that jointly aggregates both query and context features.

Error Analysis (Chem). Figures 5.7 and 5.8 present node- and edge-level error visualizations
for the USPTO test set. These reveal similar trends as observed in the math domain, with EGATv2
(2-stage, 2-hop) reducing both symbol misclassification and edge prediction errors compared to the
baseline.

At the node level (Figure 5.7), the most frequent misclassifications in both models involve the Single

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 146

LgEval Structure Confusion Histograms
Mon Jun 23 17:44:03 2025

VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_2_min_3
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (1578 incorrect targets; 2773 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 1578 incorrect targets, 2773 errors.

Object Targets Primitive Targets and Errors

1 40 errors

minusminus
HORIZONTAL

Targets

1 40 errors

minusminus
HORIZONTAL

8 errors

equalminus
HORIZONTAL

8 errors

minusequal
HORIZONTAL

6 errors

minusminus
minusminus

3 errors

leqqminus
HORIZONTAL

15 errors

Other
Errors

2 30 errors

minusequal
HORIZONTAL

Targets

1 30 errors

equal

equal

minus

equal
HORIZONTAL

equal

HORIZONTAL

14 errors

equal

equal

equal

equal

HORIZONTAL

HORIZONTAL

equal

4 errors

equal

equal

minus

HORIZONTAL

equal

HORIZONTAL

equal

3 errors

leqq

leqq

minus

HORIZONTAL

leqqleqq
HORIZONTAL

9 errors

Other
Errors

3 23 errors

oneminus
HORIZONTAL

Targets

1 22 errors

oneminus
HORIZONTAL

8 errors

oneequal
HORIZONTAL

5 errors

oneminus
HORIZONTAL

4 errors

oneleqq
HORIZONTAL

5 errors

Other
Errors

 2 1 errors

minus

minus

minus

one

minus

HORIZONTALHORIZONTA

minus

HORIZONTAL

minus

minusminus

minus

1 errors

Other
Errors

4 20 errors

oneminus
UPPER

Targets

1 17 errors

oneminus
UPPER

4 errors

oneminus
UPPER

3 errors

twotwo
twotwo

10 errors

Other
Errors

 2 1 errors 1 errors

Other
Errors

6/23/25, 6:29 PM CH_VGP_LOS_gat_infty_12551_50_vs_test_merged_class_punc_contours__size_2_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/43

(a) Baseline

LgEval Structure Confusion Histograms
Mon Jun 23 19:04:05 2025

VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (1171 incorrect targets; 1724 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 1171 incorrect targets, 1724 errors.

Object Targets Primitive Targets and Errors

1 14 errors

minusminus
HORIZONTAL

Targets

1
14 errors

minusminus
HORIZONTAL

3 errors

minusminus
minusminus

3 errors

minusminus

3 errors

minusequal
HORIZONTAL

1 errors

minusj

1 errors

minusminus
PUNC

1 errors

eightminus
HORIZONTAL

1 errors

twominus

1 errors

minusminus
HORIZONTAL

2 13 errors

minusequal
HORIZONTAL

Targets

1
13 errors

equal

equal

minus

HORIZONTAL

equal

HORIZONTAL

equal

3 errors

equal

equal

equal

equal

HORIZONTAL

equal
HORIZONTAL

2 errors

geqq

geqq

minus

HORIZONTAL

geqq

HORIZONTAL

geqq

2 errors

minus

minus

minus

HORIZONTAL

minusminus
HORIZONTAL

2 errors

leqq

leqq

minus

HORIZONTAL

HORIZONTAL

leqqleqq

1 errors

minus

minus

minus

minus
minusminus

minus

minus

minus

1 errors

equal

equal

minus

HORIZONTAL

equal
HORIZONTAL

equal

1 errors

equal

equal

i

equalequal

1 errors

minus

minus

i

minusminus

3 10 errors

equalRightPar

HORIZONTAL

Targets

1 10 errors

equal

equal

RightPar

HORIZONTAL

equalequal
HORIZONTAL

2 errors

minus

minus

RightPar

HORIZONTAL

minusminus
HORIZONTAL

2 errors

equal

equal

RightPar

equalequal

2 errors

leqq

leqq

RightPar

leqq

HORIZONTAL

leqq
HORIZONTAL

1 errors

geqq

geqq

RightPar

HORIZONTAL

geqqgeqq
HORIZONTAL

1 errors

equiv

equiv

RightPar

equiv
HORIZONTAL

HORIZONTAL

equiv

1 errors

equal

equal

S
HORIZONTAL

HORIZONTAL

equalequal

1 errors

cong

cong

RightPar

cong

HORIZONTAL

HORIZONTAL

cong

4 10 errors

LeftPaf HORIZONTAL

Targets

1 8 errors

LeftPaf HORIZONTAL

3 errors

BigLeftPf HORIZONTAL

2 errors

LeftPaf HORIZONTAL

1 errors

LeftPaT HORIZONTAL

1 errors

LeftPaf

1 errors

ff ff

2 1 errors

f

f

LeftPar

f

HORIZONTAL

HORIZONTAL

f

1 errors

f

f

LeftPar

f

HORIZONTAL

HORIZONTAL

f

3 1 errors

LeftPa

LeftPar

f
HORIZONTAL

HORIZONTAL

LeftParLeftPar

1 errors

K

K

f
HORIZONTAL

HORIZONTAL

KK

5 9 errors

oneminus
UPPER

Targets

1 7 errors

oneminus
UPPER

3 errors

minusminus
minusminus

1 errors

oneone
oneone

1 errors

onefive
UPPER

1 errors

twoone

1 errors

oneT UPPER

2 1 errors 1 errors

6/23/25, 7:05 PM CH_VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_2_min_1.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LO… 1/144

(b) EGATv2, 2-stage 2-hop

Figure 5.6: Edge-level error analysis comparing the (a) baseline model with the (b) EGATv2 (2-
stage, 2-hop) model on the InftyMCDB-2 test set (truncated at right for space) in Table 5.9. In both
models, the top errors involve propagated symbol classification errors, particularly misclassifications
of minus and equal symbols, which result in incorrect relationship detections. However, EGATv2
shows a substantially lower frequency of such propagated misclassification errors.

line primitive, which dominates the class distribution and constitutes over 50% of all primitives,
as described in Chapter 6. Due to its simple appearance as a straight line, the Single primitive
is easily confused with short strokes that appear in atom characters such as N and H, which often
include similar vertical or diagonal lines.

EGATv2 reduces this confusion by over 4 times by incorporating neighborhood context during node
classification. For instance, a single line surrounded by circular strokes or recognized atoms is more
likely to be a character component rather than a standalone bond. This contextual differentiation
improves recognition accuracy on heavily overrepresented and ambiguous primitives.

At the edge level (Figure 5.8), both models exhibit the highest frequency of errors in detecting
connections between pairs of Single line primitives. EGATv2 reduces such missed connections,
though residual errors remain. Several factors may contribute to persistent edge errors: (1) the un-
derlying visual graph representation connects primitives based on spatial heuristics (e.g., proximity,
orientation), which can omit legitimate bonds if primitives are too far apart or misaligned; (2) class

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 147

LgEval Structure Confusion Histograms
Mon Jun 23 21:18:52 2025

VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line__size_1_min_2
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 2 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 2420 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 2420 errors.

Object Targets Primitive Targets and Errors

1 2192 errors

Single

Targets

1
2018 errors

Single

889 errors

SW

324 errors

N

149 errors

H

91 errors

O

75 errors

Single

70 errors

-

50 errors

l

46 errors

V

46 errors

3

40 errors

P

37 errors

2

2
157 errors

SingleSingle
SingleSingle

70 errors

SingleSingle
CONNECTEDCONNECTED

46 errors

SingleSW
CONNECTEDCONNECTED

11 errors

SWSW
SWSW

6 errors

SingleSingle

3 errors

Singlei CONNECTEDCONNECTED

3 errors

SingleSingle
SingleSingle

3 errors

NSingle
CONNECTEDCONNECTED

2 errors

ASingle
CONNECTEDCONNECTED

2 errors

HH HH

2 errors

PSingle
CONNECTEDCONNECTED

2 errors

lSingle
CONNECTEDCONNECTED

S

3
16 errors

Single

Single

Single

Single
Single

Single
Single

Single

Single

14 errors

Single

Single

Single

CONNECTED

Single
CONNECTED

Single
CONNECTED

CONNECTED

2 errors

Other
Errors

4
1 errors

Single

Single

Single

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle

SingleSingle

Single

1 errors

Other
Errors

2 157 errors

4

Targets

1 100 errors

4

64 errors

3

35 errors

d

1 errors

Other
Errors

2 57 errors

44 44

26 errors

33 CONNECTEDCONNECTED

18 errors

22 CONNECTEDCONNECTED

9 errors

32 CONNECTEDCONNECTED

3 errors

42 CONNECTEDCONNECTED

1 errors

Other
Errors

3 17 errors

l

Targets

1 17 errors

l

17 errors

N

4 15 errors

SW

Targets

1 11 errors

SW

7 errors

N

3 errors

Single

1 errors

Other
Errors

2 4 errors

SWSW
SWSW

3 errors

SingleSingle
SingleSingle

1 errors

Other
Errors

5 10 errors

b

Targets

1 10 errors

b

6 errors

N

4 errors

B

6 8 errors Targets

6/23/25, 9:57 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indi…

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line_… 1/2

LgEval Structure Confusion Histograms
Mon Jun 23 21:18:52 2025

VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line__size_1_min_2
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 2 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 2420 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 2420 errors.

Object Targets Primitive Targets and Errors

1 2192 errors

Single

Targets

1
2018 errors

Single

889 errors

SW

324 errors

N

149 errors

H

91 errors

O

75 errors

Single

70 errors

-

50 errors

l

46 errors

V

46 errors

3

40 errors

P

37 errors

2

2
157 errors

SingleSingle
SingleSingle

70 errors

SingleSingle
CONNECTEDCONNECTED

46 errors

SingleSW
CONNECTEDCONNECTED

11 errors

SWSW
SWSW

6 errors

SingleSingle

3 errors

Singlei CONNECTEDCONNECTED

3 errors

SingleSingle
SingleSingle

3 errors

NSingle
CONNECTEDCONNECTED

2 errors

ASingle
CONNECTEDCONNECTED

2 errors

HH HH

2 errors

PSingle
CONNECTEDCONNECTED

2 errors

lSingle
CONNECTEDCONNECTED

S

3
16 errors

Single

Single

Single

Single
Single

Single
Single

Single

Single

14 errors

Single

Single

Single

CONNECTED

Single
CONNECTED

Single
CONNECTED

CONNECTED

2 errors

Other
Errors

4
1 errors

Single

Single

Single

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle

SingleSingle

Single

1 errors

Other
Errors

2 157 errors

4

Targets

1 100 errors

4

64 errors

3

35 errors

d

1 errors

Other
Errors

2 57 errors

44 44

26 errors

33 CONNECTEDCONNECTED

18 errors

22 CONNECTEDCONNECTED

9 errors

32 CONNECTEDCONNECTED

3 errors

42 CONNECTEDCONNECTED

1 errors

Other
Errors

3 17 errors

l

Targets

1 17 errors

l

17 errors

N

4 15 errors

SW

Targets

1 11 errors

SW

7 errors

N

3 errors

Single

1 errors

Other
Errors

2 4 errors

SWSW
SWSW

3 errors

SingleSingle
SingleSingle

1 errors

Other
Errors

5 10 errors

b

Targets

1 10 errors

b

6 errors

N

4 errors

B

6 8 errors Targets

6/23/25, 9:57 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indi…

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line_… 1/2

LgEval Structure Confusion Histograms
Mon Jun 23 21:18:52 2025

VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line__size_1_min_2
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 2 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 2420 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 2420 errors.

Object Targets Primitive Targets and Errors

1 2192 errors

Single

Targets

1
2018 errors

Single

889 errors

SW

324 errors

N

149 errors

H

91 errors

O

75 errors

Single

70 errors

-

50 errors

l

46 errors

V

46 errors

3

40 errors

P

37 errors

2

2
157 errors

SingleSingle
SingleSingle

70 errors

SingleSingle
CONNECTEDCONNECTED

46 errors

SingleSW
CONNECTEDCONNECTED

11 errors

SWSW
SWSW

6 errors

SingleSingle

3 errors

Singlei CONNECTEDCONNECTED

3 errors

SingleSingle
SingleSingle

3 errors

NSingle
CONNECTEDCONNECTED

2 errors

ASingle
CONNECTEDCONNECTED

2 errors

HH HH

2 errors

PSingle
CONNECTEDCONNECTED

2 errors

lSingle
CONNECTEDCONNECTED

S

3
16 errors

Single

Single

Single

Single
Single

Single
Single

Single

Single

14 errors

Single

Single

Single

CONNECTED

Single
CONNECTED

Single
CONNECTED

CONNECTED

2 errors

Other
Errors

4
1 errors

Single

Single

Single

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle

SingleSingle

Single

1 errors

Other
Errors

2 157 errors

4

Targets

1 100 errors

4

64 errors

3

35 errors

d

1 errors

Other
Errors

2 57 errors

44 44

26 errors

33 CONNECTEDCONNECTED

18 errors

22 CONNECTEDCONNECTED

9 errors

32 CONNECTEDCONNECTED

3 errors

42 CONNECTEDCONNECTED

1 errors

Other
Errors

3 17 errors

l

Targets

1 17 errors

l

17 errors

N

4 15 errors

SW

Targets

1 11 errors

SW

7 errors

N

3 errors

Single

1 errors

Other
Errors

2 4 errors

SWSW
SWSW

3 errors

SingleSingle
SingleSingle

1 errors

Other
Errors

5 10 errors

b

Targets

1 10 errors

b

6 errors

N

4 errors

B

6 8 errors Targets

6/23/25, 9:57 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indi…

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line_… 1/2

(a) Baseline

LgEval Structure Confusion Histograms
Mon Jun 23 22:04:00 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 605 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 605 errors.

Object Targets Primitive Targets and Errors

1 473 errors

Single

Targets

1
359 errors

Single

258 errors

Single

71 errors

A

17 errors

SW

7 errors

B

4 errors

H

1 errors

a

1 errors

P

2
109 errors

SingleSingle
SingleSingle

89 errors

SingleSingle
CONNECTEDCONNECTED

9 errors

SingleSingle
SingleSingle

4 errors

SWSingle
CONNECTEDCONNECTED

2 errors

SWSW
SWSW

2 errors

BSingle
CONNECTEDCONNECTED

1 errors

SingleSingle

1 errors

SingleP CONNECTEDCONNECTED

1 errors

CSingle
CONNECTEDCONNECTED

3
4 errors

Single

Single

Single

Single
SingleSingle

Single

Single

Single

3 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

Single

1 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

Single

Single

Single

SingleSingle

1 errors

Single

SW

SW

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTE

2 89 errors

4

Targets

1 57 errors

44 44

23 errors

Singlel CONNECTEDCONNECTED

19 errors

Single4 CONNECTEDCONNECTED

11 errors

SingleSingle
CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

2 32 errors

4

18 errors

A

14 errors

P

3 10 errors

b

Targets

1 10 errors

b

6 errors

n

4 errors

s

4 6 errors Targets

1 3 errors 2 errors 1 errors

6/23/25, 10:08 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html 1/3

LgEval Structure Confusion Histograms
Mon Jun 23 22:04:00 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 605 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 605 errors.

Object Targets Primitive Targets and Errors

1 473 errors

Single

Targets

1
359 errors

Single

258 errors

Single

71 errors

A

17 errors

SW

7 errors

B

4 errors

H

1 errors

a

1 errors

P

2
109 errors

SingleSingle
SingleSingle

89 errors

SingleSingle
CONNECTEDCONNECTED

9 errors

SingleSingle
SingleSingle

4 errors

SWSingle
CONNECTEDCONNECTED

2 errors

SWSW
SWSW

2 errors

BSingle
CONNECTEDCONNECTED

1 errors

SingleSingle

1 errors

SingleP CONNECTEDCONNECTED

1 errors

CSingle
CONNECTEDCONNECTED

3
4 errors

Single

Single

Single

Single
SingleSingle

Single

Single

Single

3 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

Single

1 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

Single

Single

Single

SingleSingle

1 errors

Single

SW

SW

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTE

2 89 errors

4

Targets

1 57 errors

44 44

23 errors

Singlel CONNECTEDCONNECTED

19 errors

Single4 CONNECTEDCONNECTED

11 errors

SingleSingle
CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

2 32 errors

4

18 errors

A

14 errors

P

3 10 errors

b

Targets

1 10 errors

b

6 errors

n

4 errors

s

4 6 errors Targets

1 3 errors 2 errors 1 errors

6/23/25, 10:08 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html 1/3

LgEval Structure Confusion Histograms
Mon Jun 23 22:04:00 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 605 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 605 errors.

Object Targets Primitive Targets and Errors

1 473 errors

Single

Targets

1
359 errors

Single

258 errors

Single

71 errors

A

17 errors

SW

7 errors

B

4 errors

H

1 errors

a

1 errors

P

2
109 errors

SingleSingle
SingleSingle

89 errors

SingleSingle
CONNECTEDCONNECTED

9 errors

SingleSingle
SingleSingle

4 errors

SWSingle
CONNECTEDCONNECTED

2 errors

SWSW
SWSW

2 errors

BSingle
CONNECTEDCONNECTED

1 errors

SingleSingle

1 errors

SingleP CONNECTEDCONNECTED

1 errors

CSingle
CONNECTEDCONNECTED

3
4 errors

Single

Single

Single

Single
SingleSingle

Single

Single

Single

3 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

Single

1 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

Single

Single

Single

SingleSingle

1 errors

Single

SW

SW

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTE

2 89 errors

4

Targets

1 57 errors

44 44

23 errors

Singlel CONNECTEDCONNECTED

19 errors

Single4 CONNECTEDCONNECTED

11 errors

SingleSingle
CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

2 32 errors

4

18 errors

A

14 errors

P

3 10 errors

b

Targets

1 10 errors

b

6 errors

n

4 errors

s

4 6 errors Targets

1 3 errors 2 errors 1 errors

6/23/25, 10:08 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html 1/3

(b) EGATv2, 2-stage 2-hop

Figure 5.7: Node-level error analysis comparison between two models on the USPTO test set: (a)
baseline model, and (b) the best performing EGATv2 (2-stage, 2-hop) model (truncated at right for
space) in Table 5.10. Single line and ‘4’ are the most frequent sources of error in both models;
however, EGATv2 reduces Single line errors by nearly 7 times and ‘4’ errors by almost half. The
third most frequent error is ‘1’ in the baseline and b in EGATv2.

imbalance at the edge level may skew training toward the dominant NoRelation or negative class.

Moreover, the current graph representation does not explicitly account for merged chemical struc-
tures, such as double or triple bonds formed by grouped parallel strokes. These are handled in
post-processing, where single lines are merged based on geometric rules. A direction for future work
is to design graph construction strategies that more closely align with the final semantic entities,
such as atoms and bonds by representing compound primitives as single nodes and integrating edge
merging into the parsing model itself.

EGATv2 demonstrates clear improvements in both math and chemistry domains by leveraging edge-
aware and context-sensitive message passing, though future refinements in graph design and edge
supervision could further reduce residual ambiguities. We adopt the 2-stage, 2-hop EGATv2 model

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 148

LgEval Structure Confusion Histograms
Mon Jun 23 21:23:34 2025

VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line__size_2_min_2
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 2 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (37 incorrect targets; 8985 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 37 incorrect targets, 8985 errors.

Object Targets Primitive Targets and Errors

1 6036 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
5466 errors

SingleSingle
CONNECTEDCONNECTED

1804 errors

SingleSingle

1362 errors

SingleSW
CONNECTEDCONNECTED

298 errors

SingleN CONNECTEDCONNECTED

182 errors

SWSingle

167 errors

SingleH CONNECTEDCONNECTED

166 errors

SingleSingle
CONNECTEDCONNECTED

152 errors

Single- CONNECTEDCONNECTED

144 errors

SWSW

134 errors

SWSW
CONNECTEDCONNECTED

114 errors

Singlel CONNECTEDCONNECTED

96 errors

PSingle
CONNECTEDCONNECTED

S

2
516 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

155 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

62 errors

Single

Single

SW

CONNECTED

CONNECTEDCONNECTED

CONNECTED

46 errors

Single

SW

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

44 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTED

34 errors

Single

SW

SW

CONNECTED

CONNECTED

CONNECTED

SW
CONNECTED

SW

32 errors

SW

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

17 errors

Single

Single

Single

CONNECTEDCONNECTED

12 errors

Single

Single

Single

SingleSingle

10 errors

Single

Single

Single

CONNECTED

Single
CONNECTED

Single
CONNECTED

CONNECTED

10 errors

Single

SW

Single

CONNECTEDCONNECTED

6 errors

i

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

3
40 errors

Single

Single

Single

Single

CONNECTECONNECTE

SingleSingle SingleSingle

CONNECTED

CONNECTED

CONNECTEDSingle

CONNECTED

Single

16 errors

Single

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle

CONNECTECONNECTEDCONNECTECONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTEDCONNECTED

SingleSingle

CONNECTED

CONNECTE

CONNECTEDCONNECTED

8 errors

Single

Single

Single

Single

CONNECTE

CONNECTED

Single

CONNECTED

CONNECTEDSingleCONNECTED

CONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTE

8 errors

Other
Errors

4
12 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTEDCONNECTED

CONNECTE

CONNECTEDSingleCONNECTED

CONNECTE

CONNECTED

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTE

CONNECTEDCONNECTED

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTE

CONNECTEDCONNECTE

CONNECTED

CONNECTED

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTEDCONNECTED

2 errors

Single

SW

SW

Single

CONNECTED

SW

CONNECTEDCONNECTECONNECTED

CONNECTED

SW

CONNECTE

6 errors

Other
Errors

5
2 errors

Single

Single

Single

Single

Single

CONNECTED

Single

Single
CONNECTED
SingleSingle

Single

Single

CONNECT

Single
CONNECTED

SingleSingleSingle
CONNECT

Single
CONNECT

CONNECT
Single

CONNECTED

2 errors

Other
Errors

2 692 errors

SingleN CONNECTEDCONNECTED

Targets

1 611 errors

N

Single

N

N

CONNECTECONNECTE

N
CONNECTED

N
CONNECTED

CONNECTED

NN
N
N

CONNECTED

183 errors

N

N

N

Single

NNN
N

N
N

157 errors

SW

N

N

N
CONNECTE

CONNECTE

NCONNECTED
N

CONNECTED

CONNECTE

CONNECTE

N

N
N

N

117 errors

N

N

N

N

N
NN

CONNECTECONNECTECONNECTED

CONNECTEDCONNECTED

N

CONNECTED

N
N

30 errors

N

3

N

N

N
CONNECTEDCONNECTECONNECTEDCONNECTE

NN
CONNECTEDCONNECTEDN
NN

29 errors

2

N

N

N

CONNECTE

N
CONNECTE

N

NN
N

CONNECTE

CONNECTED

CONNECTE

CONNECTED

N

25 errors

N

N

N

H

NCONNECTED
NNN

CONNECTED

CONNECTEDCONNECTE

N
N

CONNECTEDCONNECTE

18 errors

N

Single

N

N
N

CONNECTED

N

CONNECTE

N

CONNECTED

CONNECTEDN
CONNECTEDCONNECTE

N
N

13 errors

4

N

N

N
CONNECTE

N CONNECTE

CONNECTEDNCONNECTED
N

N

N CONNECTE

N
CONNECTE

8 errors

i

N

N

N

CONNECTEDN
N
N

N CONNECTECONNECTE

N CONNECTE

CONNECTED

CONNECTEN

5 errors

N

N

N

C
CONNECTE

NN

CONNECTED

CONNECTED

NN
CONNECTEDN

CONNECTE

N
CONNECTED

4 errors

N

l

N

N

CONNECTECONNECTE

N
CONNECTED

N
CONNECTED

CONNECTED

NN
N
N

CONNECTED

2 41 errors

NSingle
CONNECTEDCONNECTED

18 errors

NSingle

10 errors

NN CONNECTEDCONNECTED

9 errors

iN CONNECTEDCONNECTED

4 errors

Other
Errors

3 29 errors

N

N
Single

Single

N

N

N

NCONNECTED

CONNECTEDCONNECTED

CONNECTED

NSingle

CONNECTED

CONNECTED

CONNECTED

N
CONNECTEDN
CONNECTED

CONNECTED

Single
CONNECTED
CONNECTED

17 errors

Single

N
N

N
Single

N
N CONNECTED

N

CONNECT
CONNECTED

CONNECTED

CONNECT

NN N
CONNECTED

CONNECTED

CONNECTED

5 errors

N

N
Single

Single

N

N

N

NCONNECTED

CONNECTEDCONNECTED

CONNECTED

NCONNECTED

CONNECTED

CONNECTED

CONNECTED

N
CONNECTEDN
CONNECTED

CONNECTED

CONNECTED
CONNECTED

CONNECTED

2 errors

Single

Single

N

N
N

NN
Single

N
N

Single

N
N

2 errors

N

Single

N

N
Single

N

CONNECTED

N
CONNECT

NN N

CONNECTED
CONNECT

CONNECTEDCONNECTED
N

2 errors

SW

SW
N

N
N

SW
N
N

N NN
SW

N

1 errors

Other
Errors

4 5 errors

N

Single

N

N
N

CONNECT
CONNECTED

N
CONNECTED

NCONNECTED
CONNECT

N
N N
N
NN
CONNECTEDN N N

CONNECTED

N
CONNECTED

5 errors

Other
Errors

5 3 errors

Single

Single

N
CONNECTED

CONNECTEDCONNECTED

SingleSingle

CONNECTED

3 errors

Single

N

i
CONNECTEDCONNECTED

CONNECTEDCONNECTED

6 2 errors

Single

N

N

CONNECTEDCONNECTED

NN
CONNECTEDCONNECTED

2 errors

Single

A

A

CONNECTEDCONNECTED

AA
CONNECTEDCONNECTED

6/23/25, 9:58 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indi…

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line_… 1/6

LgEval Structure Confusion Histograms
Mon Jun 23 21:23:34 2025

VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line__size_2_min_2
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 2 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (37 incorrect targets; 8985 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 37 incorrect targets, 8985 errors.

Object Targets Primitive Targets and Errors

1 6036 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
5466 errors

SingleSingle
CONNECTEDCONNECTED

1804 errors

SingleSingle

1362 errors

SingleSW
CONNECTEDCONNECTED

298 errors

SingleN CONNECTEDCONNECTED

182 errors

SWSingle

167 errors

SingleH CONNECTEDCONNECTED

166 errors

SingleSingle
CONNECTEDCONNECTED

152 errors

Single- CONNECTEDCONNECTED

144 errors

SWSW

134 errors

SWSW
CONNECTEDCONNECTED

114 errors

Singlel CONNECTEDCONNECTED

96 errors

PSingle
CONNECTEDCONNECTED

S

2
516 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

155 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

62 errors

Single

Single

SW

CONNECTED

CONNECTEDCONNECTED

CONNECTED

46 errors

Single

SW

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

44 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTED

34 errors

Single

SW

SW

CONNECTED

CONNECTED

CONNECTED

SW
CONNECTED

SW

32 errors

SW

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

17 errors

Single

Single

Single

CONNECTEDCONNECTED

12 errors

Single

Single

Single

SingleSingle

10 errors

Single

Single

Single

CONNECTED

Single
CONNECTED

Single
CONNECTED

CONNECTED

10 errors

Single

SW

Single

CONNECTEDCONNECTED

6 errors

i

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

3
40 errors

Single

Single

Single

Single

CONNECTECONNECTE

SingleSingle SingleSingle

CONNECTED

CONNECTED

CONNECTEDSingle

CONNECTED

Single

16 errors

Single

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle

CONNECTECONNECTEDCONNECTECONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTEDCONNECTED

SingleSingle

CONNECTED

CONNECTE

CONNECTEDCONNECTED

8 errors

Single

Single

Single

Single

CONNECTE

CONNECTED

Single

CONNECTED

CONNECTEDSingleCONNECTED

CONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTE

8 errors

Other
Errors

4
12 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTEDCONNECTED

CONNECTE

CONNECTEDSingleCONNECTED

CONNECTE

CONNECTED

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTE

CONNECTEDCONNECTED

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTE

CONNECTEDCONNECTE

CONNECTED

CONNECTED

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTEDCONNECTED

2 errors

Single

SW

SW

Single

CONNECTED

SW

CONNECTEDCONNECTECONNECTED

CONNECTED

SW

CONNECTE

6 errors

Other
Errors

5
2 errors

Single

Single

Single

Single

Single

CONNECTED

Single

Single
CONNECTED
SingleSingle

Single

Single

CONNECT

Single
CONNECTED

SingleSingleSingle
CONNECT

Single
CONNECT

CONNECT
Single

CONNECTED

2 errors

Other
Errors

2 692 errors

SingleN CONNECTEDCONNECTED

Targets

1 611 errors

N

Single

N

N

CONNECTECONNECTE

N
CONNECTED

N
CONNECTED

CONNECTED

NN
N
N

CONNECTED

183 errors

N

N

N

Single

NNN
N

N
N

157 errors

SW

N

N

N
CONNECTE

CONNECTE

NCONNECTED
N

CONNECTED

CONNECTE

CONNECTE

N

N
N

N

117 errors

N

N

N

N

N
NN

CONNECTECONNECTECONNECTED

CONNECTEDCONNECTED

N

CONNECTED

N
N

30 errors

N

3

N

N

N
CONNECTEDCONNECTECONNECTEDCONNECTE

NN
CONNECTEDCONNECTEDN
NN

29 errors

2

N

N

N

CONNECTE

N
CONNECTE

N

NN
N

CONNECTE

CONNECTED

CONNECTE

CONNECTED

N

25 errors

N

N

N

H

NCONNECTED
NNN

CONNECTED

CONNECTEDCONNECTE

N
N

CONNECTEDCONNECTE

18 errors

N

Single

N

N
N

CONNECTED

N

CONNECTE

N

CONNECTED

CONNECTEDN
CONNECTEDCONNECTE

N
N

13 errors

4

N

N

N
CONNECTE

N CONNECTE

CONNECTEDNCONNECTED
N

N

N CONNECTE

N
CONNECTE

8 errors

i

N

N

N

CONNECTEDN
N
N

N CONNECTECONNECTE

N CONNECTE

CONNECTED

CONNECTEN

5 errors

N

N

N

C
CONNECTE

NN

CONNECTED

CONNECTED

NN
CONNECTEDN

CONNECTE

N
CONNECTED

4 errors

N

l

N

N

CONNECTECONNECTE

N
CONNECTED

N
CONNECTED

CONNECTED

NN
N
N

CONNECTED

2 41 errors

NSingle
CONNECTEDCONNECTED

18 errors

NSingle

10 errors

NN CONNECTEDCONNECTED

9 errors

iN CONNECTEDCONNECTED

4 errors

Other
Errors

3 29 errors

N

N
Single

Single

N

N

N

NCONNECTED

CONNECTEDCONNECTED

CONNECTED

NSingle

CONNECTED

CONNECTED

CONNECTED

N
CONNECTEDN
CONNECTED

CONNECTED

Single
CONNECTED
CONNECTED

17 errors

Single

N
N

N
Single

N
N CONNECTED

N

CONNECT
CONNECTED

CONNECTED

CONNECT

NN N
CONNECTED

CONNECTED

CONNECTED

5 errors

N

N
Single

Single

N

N

N

NCONNECTED

CONNECTEDCONNECTED

CONNECTED

NCONNECTED

CONNECTED

CONNECTED

CONNECTED

N
CONNECTEDN
CONNECTED

CONNECTED

CONNECTED
CONNECTED

CONNECTED

2 errors

Single

Single

N

N
N

NN
Single

N
N

Single

N
N

2 errors

N

Single

N

N
Single

N

CONNECTED

N
CONNECT

NN N

CONNECTED
CONNECT

CONNECTEDCONNECTED
N

2 errors

SW

SW
N

N
N

SW
N
N

N NN
SW

N

1 errors

Other
Errors

4 5 errors

N

Single

N

N
N

CONNECT
CONNECTED

N
CONNECTED

NCONNECTED
CONNECT

N
N N
N
NN
CONNECTEDN N N

CONNECTED

N
CONNECTED

5 errors

Other
Errors

5 3 errors

Single

Single

N
CONNECTED

CONNECTEDCONNECTED

SingleSingle

CONNECTED

3 errors

Single

N

i
CONNECTEDCONNECTED

CONNECTEDCONNECTED

6 2 errors

Single

N

N

CONNECTEDCONNECTED

NN
CONNECTEDCONNECTED

2 errors

Single

A

A

CONNECTEDCONNECTED

AA
CONNECTEDCONNECTED

6/23/25, 9:58 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indi…

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line_… 1/6

 7 1 errors

N

Single

N

Single

CONNECTE

CONNECTEDCONNECTECONNECTED

CONNECTED

NNSingle
CONNECTE

CONNECTEDCONNECTE

Single

1 errors

Other
Errors

3 608 errors

SingleH CONNECTEDCONNECTED

Targets

1 290 errors

H

Single

H

H

CONNECTE

CONNECTEDHCONNECTEDH
CONNECTED

H

CONNECTEDCONNECTE

HH H

237 errors

H

H

H

Single

HH
HH

HH

21 errors

H

H

N

H

HCONNECTEDCONNECTED

CONNECTEDH
CONNECTED

H
H

H

HCONNECTED

CONNECTED

10 errors

H

H

H

H

HCONNECTED

CONNECTED

H
H

HCONNECTEDCONNECTED

H

HCONNECTED

CONNECTED

6 errors

H

H

H

SW

HH
H

CONNECTE

CONNECTEDCONNECTED

H

CONNECTEDCONNECTED

H

CONNECTE

H

3 errors

H

H

H

SW

H
HH

H
HH

2 errors

H

F

H

H

CONNECTE

CONNECTEDHCONNECTEDH
CONNECTED

H

CONNECTEDCONNECTE

HH H

2 errors

H

H

2

H

CONNECTEDH
H

CONNECTED

H

CONNECTED

H
HCONNECTED

H

CONNECTED

CONNECTED

2 errors

H

H

H

H

H
H

H
HH H

2 errors

H

H

H

3

HCONNECTED
H

CONNECTED

H
CONNECTED

CONNECTE

H
HH

CONNECTECONNECTED

2 errors

H

-

H

H

CONNECTECONNECTEDCONNECTE

H
HCONNECTED

CONNECTED

H
H
H

CONNECTED

H

3 errors

Other
Errors

2 233 errors

H

Single

H
H

CONNECTED

CONNECTEDCONNECTED

H

CONNECTED

224 errors

H

H

Single

HH

3 errors

H

N

H

CONNECTED

CONNECTED

CONNECTED

HH
CONNECTED

6 errors

Other
Errors

3 81 errors

SingleH CONNECTEDCONNECTED

80 errors

HSingle

1 errors

Other
Errors

4 2 errors

Single

H

Single

H
CONNECTE

CONNECTE

CONNECTEDCONNECTED

CONNECTECONNECTED

HSingle
CONNECTED

CONNECTE

HSingle

2 errors

Other
Errors

 5 1 errors

Single

Single

H

H
H

CONNECTEDSingleCONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECT
H

H CONNECTED
CONNECT

CONNECTED

Single
CONNECTED

HH
CONNECTED

H
H

1 errors

Other
Errors

 6 1 errors

Single

HH

H

Single Single

Single
CONNECTE

H H
CONNECTED

H

CONNECTEDCONNECTED

CONNECTED

CONNECTEDH

Single

CONNECTED

Single

CONNECTE

CONNEC

CONNECTED

Single

H

Single
CONNECTED

CONNEC

CONNECTED

CONNECTED

CONNECTED

H
CONNECTEDCONNECTED

CONNECTEDSingle

1 errors

Other
Errors

4 558 errors

OSingle
CONNECTEDCONNECTED

Targets

1 549 errors

OSingle
CONNECTEDCONNECTED

192 errors

OSW
CONNECTEDCONNECTED

156 errors

ON CONNECTEDCONNECTED

54 errors

OO CONNECTEDCONNECTED

43 errors

SingleO

18 errors

OH CONNECTEDCONNECTED

15 errors

-O CONNECTEDCONNECTED

14 errors

OSingle
CONNECTEDCONNECTED

9 errors

nO CONNECTEDCONNECTED

6 errors

4O CONNECTEDCONNECTED

6 errors

3O CONNECTEDCONNECTED

5 errors

lO CONNECTEDCONNECTED

2 5 errors

Single

O

Single

Single

Single

CONNECTECONNECTE

Single

Single

CONNECTED

Single

CONNECTED

CONNECTED

CONNECTED

Single

Single

5 errors

Single

O

Single

Single

Single

CONNECTECONNECTE

CONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

Single

3 4 errors

Single

Single

O
CONNECTED

CONNECTED

CONNECTED

CONNECTED

SingleSingle

2 errors

Single

O

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

2 errors

Other
Errors

5 287 errors

SingleC CONNECTEDCONNECTED

Targets

1 278 errors

CSingle
CONNECTEDCONNECTED

139 errors

CSW
CONNECTEDCONNECTED

44 errors

OC CONNECTEDCONNECTED

38 errors

CSingle

13 errors

NC CONNECTEDCONNECTED

13 errors

CSingle
CONNECTEDCONNECTED

6 errors

FC CONNECTEDCONNECTED

5 errors

HC CONNECTEDCONNECTED

5 errors

Ci CONNECTEDCONNECTED

3 errors

lC CONNECTEDCONNECTED

3 errors

CC CONNECTEDCONNECTED

2 errors

-C CONNECTEDCONNECTED

2 6 errors

C

Single

Single

CONNECTED

CONNECTED

Single
CONNECTED

CONNECTED

Single

6 errors

Other
Errors

3 3 errors

C

Single

Single

Single

CONNECTECONNECTE

Single

Single

Single CONNECTECONNECTE

CONNECTEDSingle

Single

Single

CONNECTED

3 errors

Other
Errors

6/23/25, 9:58 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indi…

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99/confHist_outputs/CH_VGP_6NN_Focal_CE_gamma_0.5_resnest_pretrained_indigo_5k_99_vs_line_… 2/6

(a) Baseline

LgEval Structure Confusion Histograms
Mon Jun 23 21:58:33 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (36 incorrect targets; 5179 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 36 incorrect targets, 5179 errors.

Object Targets Primitive Targets and Errors

1 3873 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3468 errors

SingleSingle
CONNECTEDCONNECTED

2605 errors

SingleSingle

451 errors

SingleSingle
CONNECTEDCONNECTED

215 errors

ASingle
CONNECTEDCONNECTED

125 errors

SingleSingle
SingleSingle

43 errors

SingleSW
CONNECTEDCONNECTED

14 errors

SingleB CONNECTEDCONNECTED

6 errors

HSingle
CONNECTEDCONNECTED

4 errors

PSingle
CONNECTEDCONNECTED

2 errors

SingleSW

2 errors

aSingle
CONNECTEDCONNECTED

1 errors

AA CONNECTEDCONNECTED

2
371 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

214 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

54 errors

Single

Single

Single

SingleSingle

34 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

31 errors

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle
CONNECTEDCONNECTED

11 errors

Single

Single

Single

CONNECTEDCONNECTED

6 errors

Single

Single

SW
CONNECTEDCONNECTED

CONNECTEDCONNECTED

3 errors

Single

Single

Single

Single
Single

Single

Single
Single

Single

3 errors

Single

SW

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

C

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Single

Single

P
CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

SW

SW

Single

SWSW

3
19 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle

CONNECTEDSingle

CONNECTED

CONNECTED

Single

CONNECTED

Single

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

SingleSingle

CONNECTED

CONNECTEDCONNECTECONNECTED

5 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

CONNECTE

CONNECTED

2 errors

Single

Single

Single

Single

Single

SingleSingle

Single

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

1 errors

Single

Single

Single

Single

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

1 errors

Single

H

Single

Single

Single

CONNECTEDCONNECTECONNECTED

SingleSingle

CONNECTE

Single

CONNECTEDSingle

Single

CONNECTED

4
13 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTED

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTE

Single

Single CONNECTE

CONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTE

CONNECTE

CONNECTED

CONNECTE

CONNECTED

4 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

Single

CONNECTED

CONNECTED

CONNECTE

Single

CONNECTED

1 errors

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle Single

SingleSingle

Single

Single

Single

5
2 errors

Single

Single

Single

Single

Single

Single
Single

CONNECTED

SingleCONNECTEDCONNECTED
CONNECTED

CONNECTED

SingleCONNECTED

SingleCONNECTED

Single
Single

Single
Single

Single

Single
CONNECTED

Single

1 errors

Single

SW
Single

Single

SW

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

1 errors

SW

SW
Single

Single

Single

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED

2 601 errors

SingleH CONNECTEDCONNECTED

Targets

1 322 errors

H

Single

H

CONNECTED

CONNECTED

H

CONNECTED

CONNECTED

H

316 errors

H

H

Single

HH

4 errors

Single

N

N
CONNECTED

N
CONNECTEDCONNECTED

CONNECTED

N

2 errors

Single

P

P

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

2 202 errors

Single

H

H

H
CONNECTE

H
H CONNECTE

HH CONNECTE

CONNECTEDCONNECTEDH
CONNECTE

H

195 errors

H

H

H

Single

H
H HH
H

H

7 errors

H

Single

H

H

CONNECTECONNECTED

H
H

CONNECTED

CONNECTED

CONNECTE

CONNECTEDH
HHH

3 75 errors

SingleH CONNECTEDCONNECTED

75 errors

HSingle

4 1 errors

H

Single

H

Single

CONNECTE

Single

CONNECTE

H
CONNECTEDCONNECTE

H
CONNECTED

CONNECTEDCONNECTECONNECTED

Single

1 errors

Single

Single

P

P

CONNECTED

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

CONNECTE

CONNECTED

CONNECTE

5 1 errors

Single

Single

H

H
H

Single

CONNECTED

CONNECTED
SingleCONNECTED

CONNECTED
HH
CONNECTED

CONNECTED
H CONNECTED

H

CONNECTED
H CONNECT

CONNECTED

H

CONNECTED

CONNECT

1 errors

Single

Single

H

H
H

SingleSingle

HH
HH

H H

3 233 errors

SingleN CONNECTEDCONNECTED

Targets

1 179 errors

N

Single

N

N
N

CONNECTECONNECTED

NCONNECTED
N

CONNECTEDCONNECTE

N
CONNECTEDN

N

157 errors

N

N

N

Single

N
N

N
N NN

22 errors

Single

N

N

N
CONNECTE

CONNECTE

CONNECTED

NN
CONNECTEDNN

CONNECTE

CONNECTE

NN

6/23/25, 10:01 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html 1/6

LgEval Structure Confusion Histograms
Mon Jun 23 21:58:33 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (36 incorrect targets; 5179 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 36 incorrect targets, 5179 errors.

Object Targets Primitive Targets and Errors

1 3873 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3468 errors

SingleSingle
CONNECTEDCONNECTED

2605 errors

SingleSingle

451 errors

SingleSingle
CONNECTEDCONNECTED

215 errors

ASingle
CONNECTEDCONNECTED

125 errors

SingleSingle
SingleSingle

43 errors

SingleSW
CONNECTEDCONNECTED

14 errors

SingleB CONNECTEDCONNECTED

6 errors

HSingle
CONNECTEDCONNECTED

4 errors

PSingle
CONNECTEDCONNECTED

2 errors

SingleSW

2 errors

aSingle
CONNECTEDCONNECTED

1 errors

AA CONNECTEDCONNECTED

2
371 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

214 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

54 errors

Single

Single

Single

SingleSingle

34 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

31 errors

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle
CONNECTEDCONNECTED

11 errors

Single

Single

Single

CONNECTEDCONNECTED

6 errors

Single

Single

SW
CONNECTEDCONNECTED

CONNECTEDCONNECTED

3 errors

Single

Single

Single

Single
Single

Single

Single
Single

Single

3 errors

Single

SW

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

C

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Single

Single

P
CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

SW

SW

Single

SWSW

3
19 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle

CONNECTEDSingle

CONNECTED

CONNECTED

Single

CONNECTED

Single

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

SingleSingle

CONNECTED

CONNECTEDCONNECTECONNECTED

5 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

CONNECTE

CONNECTED

2 errors

Single

Single

Single

Single

Single

SingleSingle

Single

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

1 errors

Single

Single

Single

Single

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

1 errors

Single

H

Single

Single

Single

CONNECTEDCONNECTECONNECTED

SingleSingle

CONNECTE

Single

CONNECTEDSingle

Single

CONNECTED

4
13 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTED

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTE

Single

Single CONNECTE

CONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTE

CONNECTE

CONNECTED

CONNECTE

CONNECTED

4 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

Single

CONNECTED

CONNECTED

CONNECTE

Single

CONNECTED

1 errors

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle Single

SingleSingle

Single

Single

Single

5
2 errors

Single

Single

Single

Single

Single

Single
Single

CONNECTED

SingleCONNECTEDCONNECTED
CONNECTED

CONNECTED

SingleCONNECTED

SingleCONNECTED

Single
Single

Single
Single

Single

Single
CONNECTED

Single

1 errors

Single

SW
Single

Single

SW

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

1 errors

SW

SW
Single

Single

Single

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED

2 601 errors

SingleH CONNECTEDCONNECTED

Targets

1 322 errors

H

Single

H

CONNECTED

CONNECTED

H

CONNECTED

CONNECTED

H

316 errors

H

H

Single

HH

4 errors

Single

N

N
CONNECTED

N
CONNECTEDCONNECTED

CONNECTED

N

2 errors

Single

P

P

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

2 202 errors

Single

H

H

H
CONNECTE

H
H CONNECTE

HH CONNECTE

CONNECTEDCONNECTEDH
CONNECTE

H

195 errors

H

H

H

Single

H
H HH
H

H

7 errors

H

Single

H

H

CONNECTECONNECTED

H
H

CONNECTED

CONNECTED

CONNECTE

CONNECTEDH
HHH

3 75 errors

SingleH CONNECTEDCONNECTED

75 errors

HSingle

4 1 errors

H

Single

H

Single

CONNECTE

Single

CONNECTE

H
CONNECTEDCONNECTE

H
CONNECTED

CONNECTEDCONNECTECONNECTED

Single

1 errors

Single

Single

P

P

CONNECTED

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

CONNECTE

CONNECTED

CONNECTE

5 1 errors

Single

Single

H

H
H

Single

CONNECTED

CONNECTED
SingleCONNECTED

CONNECTED
HH
CONNECTED

CONNECTED
H CONNECTED

H

CONNECTED
H CONNECT

CONNECTED

H

CONNECTED

CONNECT

1 errors

Single

Single

H

H
H

SingleSingle

HH
HH

H H

3 233 errors

SingleN CONNECTEDCONNECTED

Targets

1 179 errors

N

Single

N

N
N

CONNECTECONNECTED

NCONNECTED
N

CONNECTEDCONNECTE

N
CONNECTEDN

N

157 errors

N

N

N

Single

N
N

N
N NN

22 errors

Single

N

N

N
CONNECTE

CONNECTE

CONNECTED

NN
CONNECTEDNN

CONNECTE

CONNECTE

NN

6/23/25, 10:01 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html 1/6

LgEval Structure Confusion Histograms
Mon Jun 23 21:58:33 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (36 incorrect targets; 5179 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 36 incorrect targets, 5179 errors.

Object Targets Primitive Targets and Errors

1 3873 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3468 errors

SingleSingle
CONNECTEDCONNECTED

2605 errors

SingleSingle

451 errors

SingleSingle
CONNECTEDCONNECTED

215 errors

ASingle
CONNECTEDCONNECTED

125 errors

SingleSingle
SingleSingle

43 errors

SingleSW
CONNECTEDCONNECTED

14 errors

SingleB CONNECTEDCONNECTED

6 errors

HSingle
CONNECTEDCONNECTED

4 errors

PSingle
CONNECTEDCONNECTED

2 errors

SingleSW

2 errors

aSingle
CONNECTEDCONNECTED

1 errors

AA CONNECTEDCONNECTED

2
371 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

214 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

54 errors

Single

Single

Single

SingleSingle

34 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

31 errors

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle
CONNECTEDCONNECTED

11 errors

Single

Single

Single

CONNECTEDCONNECTED

6 errors

Single

Single

SW
CONNECTEDCONNECTED

CONNECTEDCONNECTED

3 errors

Single

Single

Single

Single
Single

Single

Single
Single

Single

3 errors

Single

SW

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

C

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Single

Single

P
CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

SW

SW

Single

SWSW

3
19 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle

CONNECTEDSingle

CONNECTED

CONNECTED

Single

CONNECTED

Single

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

SingleSingle

CONNECTED

CONNECTEDCONNECTECONNECTED

5 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

CONNECTE

CONNECTED

2 errors

Single

Single

Single

Single

Single

SingleSingle

Single

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

1 errors

Single

Single

Single

Single

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

1 errors

Single

H

Single

Single

Single

CONNECTEDCONNECTECONNECTED

SingleSingle

CONNECTE

Single

CONNECTEDSingle

Single

CONNECTED

4
13 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTED

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTE

Single

Single CONNECTE

CONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTE

CONNECTE

CONNECTED

CONNECTE

CONNECTED

4 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

Single

CONNECTED

CONNECTED

CONNECTE

Single

CONNECTED

1 errors

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle Single

SingleSingle

Single

Single

Single

5
2 errors

Single

Single

Single

Single

Single

Single
Single

CONNECTED

SingleCONNECTEDCONNECTED
CONNECTED

CONNECTED

SingleCONNECTED

SingleCONNECTED

Single
Single

Single
Single

Single

Single
CONNECTED

Single

1 errors

Single

SW
Single

Single

SW

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

1 errors

SW

SW
Single

Single

Single

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED

2 601 errors

SingleH CONNECTEDCONNECTED

Targets

1 322 errors

H

Single

H

CONNECTED

CONNECTED

H

CONNECTED

CONNECTED

H

316 errors

H

H

Single

HH

4 errors

Single

N

N
CONNECTED

N
CONNECTEDCONNECTED

CONNECTED

N

2 errors

Single

P

P

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

2 202 errors

Single

H

H

H
CONNECTE

H
H CONNECTE

HH CONNECTE

CONNECTEDCONNECTEDH
CONNECTE

H

195 errors

H

H

H

Single

H
H HH
H

H

7 errors

H

Single

H

H

CONNECTECONNECTED

H
H

CONNECTED

CONNECTED

CONNECTE

CONNECTEDH
HHH

3 75 errors

SingleH CONNECTEDCONNECTED

75 errors

HSingle

4 1 errors

H

Single

H

Single

CONNECTE

Single

CONNECTE

H
CONNECTEDCONNECTE

H
CONNECTED

CONNECTEDCONNECTECONNECTED

Single

1 errors

Single

Single

P

P

CONNECTED

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

CONNECTE

CONNECTED

CONNECTE

5 1 errors

Single

Single

H

H
H

Single

CONNECTED

CONNECTED
SingleCONNECTED

CONNECTED
HH
CONNECTED

CONNECTED
H CONNECTED

H

CONNECTED
H CONNECT

CONNECTED

H

CONNECTED

CONNECT

1 errors

Single

Single

H

H
H

SingleSingle

HH
HH

H H

3 233 errors

SingleN CONNECTEDCONNECTED

Targets

1 179 errors

N

Single

N

N
N

CONNECTECONNECTED

NCONNECTED
N

CONNECTEDCONNECTE

N
CONNECTEDN

N

157 errors

N

N

N

Single

N
N

N
N NN

22 errors

Single

N

N

N
CONNECTE

CONNECTE

CONNECTED

NN
CONNECTEDNN

CONNECTE

CONNECTE

NN

6/23/25, 10:01 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html 1/6(b) EGATv2, 2-stage 2-hop

Figure 5.8: Edge-level error analysis comparing the (a) baseline model and the (b) EGATv2 (2-stage,
2-hop) model on the USPTO test set (truncated at right for space) in Table 5.10. In both models,
the most frequent edge errors involve missed connections between two Single lines as well as Single
line with other atoms such as H and N. EGATv2 substantially reduces the frequency of these errors,
indicating improved contextual understanding of bond relationships in molecular structures.

as the default architecture for all subsequent experiments in Chapter 6, which evaluate robustness
to noise and strategies for class imbalance mitigation.

5.4 Summary

This chapter addressed two central research questions: RQ2 and RQ3, while also contributing
partially to RQ1 through refinements in visual primitive extraction.

For RQ2, we evaluated alternative input graph representations: Complete, KNN, and Line-of-Sight
(LOS), to determine their suitability for math and chemical parsing tasks. We found that LOS
graphs better capture the long-range, spatially meaningful relationships in mathematical formulas,
due to their largely horizontal layout and symbolic alignment patterns, while 6NN graphs offered
a good balance of sparsity and recall for chemical diagrams. This domain-specific graph selection
enables reliable downstream parsing by ensuring essential structural relationships are preserved

CHAPTER 5. INPUT GRAPH REPRESENTATIONS AND CONTEXT 149

during learning. This chapter also introduced enhancements to the visual input primitives, partially
addressing RQ1. A unified contour-based primitive extraction approach was adopted for both math
and chemistry, improving visual consistency and enabling a shared encoder across domains. For
chemical diagrams, we further refined the visual primitive extraction from raster images using a
Line Segment Detector (LSD) combined with watershed segmentation, enabling the separation of
over-segmented or touching primitives. This method can be extended to other domains, including
math formulas, charts, and other diagrams.

For RQ3, we developed and evaluated EGATv2, a novel edge-aware GATv2-based architecture
that performs multi-hop message passing within a localized neighborhood and supports dual up-
dates of node and edge embeddings. EGATv2 integrates both visual and class distribution features
extracted from node- and edge-centric input windows. These improvements build on a unified vi-
sual feature pipeline and a compact ResNeSt-50 backbone with split attention, configured with
domain-specific input sizes and pooling strategies. The two-stage, two-hop EGATv2 model consis-
tently outperformed baselines across all tasks and datasets, demonstrating the benefits of contextual
feature propagation and cross-task refinement.

Finally, detailed node- and edge-level error analyses highlighted common misclassification patterns,
particularly under noisy or ambiguous visual conditions and in the presence of class imbalance.
For example, confusions between minus and equal in math, or between Single bond segments and
characters like N and H in chemistry, revealed challenges in distinguishing visually similar primitives.
These findings motivate the focus of the next chapter, which addresses RQ4 by introducing robust-
ness enhancements through localized visual and structural noise augmentation, and by mitigating
class imbalance using loss reweighting and stratified sampling strategies.

Chapter 6

Visual Noise and Loss Functions

In real-world scenarios, visual parsing systems encounter noisy and degraded inputs, especially in
handwritten diagrams, and scanned documents. These documents commonly suffer from visual
distortions (blur, noise, resolution degradation) and structural imperfections (fragmented symbols).
Moreover, imbalanced class distributions, characterized by a prevalence of common symbols and
relationships (e.g., bond lines in chemistry, frequent operators in mathematics), and a relative
scarcity of rare classes, pose additional challenges by biasing the training process toward dominant
classes, thus hindering generalization.

Motivated by these issues, this chapter presents experiments and methods designed to address
research question RQ4, focusing on improving parser robustness and generalization under noise,
and mitigating class imbalance. We introduce and evaluate methods that explicitly account for
visual and structural degradations at the primitive level through targeted synthetic noise augmen-
tation. Our noise modeling pipeline simulates realistic conditions like blur, resolution reduction,
and structural noise (i.e., primitive fragmentation). To address severe class imbalance, we employ
class-aware loss reweighting strategies, including weighted cross-entropy, class-balanced loss [27],
and focal loss [66]. These strategies aim to enhance the parser’s ability to handle varied input
conditions and skewed class distributions, aligning with recommendations and future directions
previously highlighted by Mahdavi [70], who emphasized the importance of loss balancing and focal
loss for addressing task difficulty and sample imbalance. We also explore an alternative loss aggre-
gation strategy, the complemented harmonic mean (CHM), which dynamically balances gradient
contributions across the three tasks.

These strategies aim to enhance the robustness, stability, and generalization capabilities of our

150

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 151

visual parser. The remainder of this chapter details the methodologies, experimental setups, and
evaluations conducted to address these research questions.

6.1 Visual Noise Augmentation

Our approach to noise augmentation is grounded in the degradation modeling framework proposed
by Baird [11], which outlines a comprehensive taxonomy of document image defects and methods
for simulating and validating them. Baird emphasizes that document degradations result from a
sequence of physical, mechanical, scanning, and transmission-related transformations, each of which
can significantly impair recognition systems such as OCR. These degradations are not uniform in
scale: they occur at the page level (e.g., skew, uneven illumination), symbol level (e.g., dropout,
blur, occlusion), and pixel level (e.g., sensor noise, quantization errors).

Baird classifies degradation models into two primary categories: physics-based models and statistics-
based models. Physics-based models simulate the physical mechanisms of document distortion such
as defocus (modeled using Gaussian blur), pixel misalignment (jitter), sensor noise (Gaussian noise),
and binarization thresholding errors. Statistical models, on the other hand, approximate the effects
of degradation by introducing speckle noise, dropout, and spatial distortions without modeling the
underlying physical processes explicitly.

Our augmentation pipeline is designed to reflect both of Baird’s modeling approaches. It departs
from prior document analysis work that applies uniform, full-image noise by instead introducing
degradations locally at the visual primitive window level. This is enabled by the feature design in
our parsing framework (see Chapter 4), where each model input consists of a query image (for a
node or edge) and a context image showing its k = 6 nearest neighbors for both math and chemical
diagrams. For math formulas, the nearest neighbors within the input LOS graph are considered.
Both query and context images are fixed size binary images generated by rasterizing tightly-centered
primitive or primitive pair contours.

To reflect the variety of document degradations, our augmentation pipeline introduces two types
of noise: structural noise, which simulates segmentation errors, and visual noise, which simulates
symbol and pixel-level degradations. This design captures both geometric and appearance-based
distortions commonly found in scientific documents.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 152

6.1.1 Structural Noise

Structural noise is applied as the first step in our augmentation pipeline and simulates segmentation-
level distortions by randomly oversegmenting visual primitives. This mimics common real-world
artifacts such as stroke breaks, ink discontinuities, or scanner-induced gaps, which can fragment
symbols in degraded or low-resolution diagrams.

During training, each primitive in a batch has a 20% probability of being oversegmented. The
20% rate is chosen arbitrarily as a balance of introducing enough structural variation to simulate
real-world symbol fragmentation, while keeping most samples intact to allow learning on noise-free
samples. A lower rate would not provide enough diversity to learn robust recovery from segmentation
noise, while a higher rate may overwhelm the model with noisy inputs, hindering convergence. The
procedure for applying structural noise is detailed in Algorithm 2. In brief, a random split line is
introduced across the primitive contour, dividing it into two disconnected fragments (see Figure 6.1).
A size filter ensures that neither resulting segment is too small, discarding the split if the smallest
fragment comprises less than 10% of the original area, or if the operation would produce more than
two disconnected parts.

If a split is successful, the original primitive node is retained, and two new nodes are added cor-
responding to the resulting fragments. All three nodes—the original and the two split parts are
assigned the same symbol label. A new MERGE edge is added between the two split nodes to indi-
cate their shared origin. Additionally, all edges that previously connected to the original node are
duplicated for each of the new nodes with the same labels. This transformation increases both the
node and edge count in the training batch.

This augmentation also affects the recurrent segmentation updates of the model. Since the newly
introduced fragments are treated as additional input nodes, they are included in the model’s seg-
mentation and classification passes. As a result, the number of segmentation decisions increases
during training, expanding the search space and encouraging the model to learn from these recur-
rent updates on the over-segmented primitives.

However, this structural noise augmentation is limited in scope: it only introduces topological
variation by altering the segmentation structure and does not simulate appearance-level degradation.
In real-world documents, visual noise such as blur, distortion, and resolution loss can significantly
affect recognition. To address this, we introduce a visual noise augmentation strategy in the next
section, targeting the pixel-level appearance of query and context windows.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 153

Algorithm 2 Structural Noise: Primitive Oversegmentation
Require: Primitive contour P , split probability p = 0.2, minimum fragment ratio δ = 0.1

1: for each primitive Pi in batch do
2: if random() < p then
3: (Splitting operation)
4: (i) Select a random point q on Pi

5: (ii) Choose random direction θ ∈ [0, 2π)

6: (iii) Compute unit vector (dx, dy) = (cos θ, sin θ)

7: (iv) Rasterize Pi into binary mask M by filling the contours
8: (v) Create a thin line L (2-pixel width) through q in direction θ onto M

9: (vi) Cut the mask: Mcut ←M with L erased
10: (vii) Label connected components in Mcut as {C1, C2, . . . }
11:

12: (Filtering)
13: (i) Skip non-binary splits:
14: if number of components ̸= 2 then
15: continue to next primitive
16: (ii) Let A = area(Pi) =

∑
M be the area of the original primitive

17: (iii) Compute area of each component: A1 = area(C1), A2 = area(C2)

18: (iv) Skip small components:
19: if min(A1, A2) < δ ·A then
20: continue to next primitive
21:

22: (Graph augmentation)
23: (i) Extract new contours P 1

i , P 2
i from C1, C2

24: (ii) Assign both P 1
i and P 2

i the same symbol label as Pi

25: (iii) Add new nodes v1, v2 corresponding to P 1
i , P 2

i

26: (iv) Add edge (v1, v2) with label MERGE
27: (v) Add edges to neighbors of Pi:
28: for each neighbor vj of Pi do
29: Add edges (v1, vj) and (v2, vj) with the same labels as (Pi, vj)

30: return the union of original and augmented primitive nodes and edges

This augmentation increases the number of nodes and edges processed within the batch. It expands
the supervision signal during training, as the model must now classify edge and node labels across

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 154

(a)

(e)

(d)(b) (c)

Figure 6.1: Illustration of structural noise applied to a primitive as described in Algorithm 2. (a)
Original primitive (b) Random split point (in blue) selected (c) Random split direction (in red)
determined (d) Primitive split along the line into two primitives (e) Resulting primitive features
after applying the split, followed by rescaling and centering of contours

both original and synthetically split structures. This creates more difficult learning scenarios, for
segmentation, symbol and relationship classification tasks, encouraging the model to become more
robust to over-segmentations commonly found in real-world inputs.

6.1.2 Visual Noise for Primitive and Context Windows

After structural noise is applied, visual noise, such as Gaussian blur, resolution downscaling, and
salt-and-pepper noise are applied independently with randomized parameters to each query and
context window. This form of visual noise simulates localized distortions such as scanner blur, lossy
compression, or pixel-level corruption. Each query or context window, centered on a single primitive
or primitive pair, can thus experience different types and intensities of degradation, introducing
greater variability during training. By enabling spatially varied noise within a single input image,
this approach better reflects the heterogeneous artifacts commonly found in real-world documents.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 155

(d) Salt and Pepper(a) Original (b) Downscale (c) Blur

(e) Combination (f) Binarized (OTSU)

Figure 6.2: Visual noise applied to a primitive query window. (a) Original primitive query window
(b) Downscaling reduces resolution to simulate low-quality scans (c) Gaussian blur simulates defocus
and smudging (d) Salt-and-pepper noise introduces random pixel corruption (e) Combination of all
three transformations (f) Final binarized output using Otsu’s thresholding

It also allows for finer-grained control over where noise occurs. This design aligns with Baird’s multi-
scale degradation model [11], which emphasizes that noise often arises at the symbol or sub-symbol
level.

The parameter ranges for each transformation were informed by prior work in chemical diagram
recognition, including MolScribe [100], MolGrapher [79], OCMR [134], Img2Mol [25], and MolMiner [145],
which incorporate various visual degradation models to increase robustness. We reviewed both
the papers and their open-source implementations to determine typical parameter values, then ex-
panded those ranges slightly to allow broader variability during training. Each visual feature window
is independently subjected to the following stochastic visual transformations during training (see
Figure 6.2):

1. Resolution Degradation: To simulate low-resolution imaging, compression artifacts, and
optical blur, one of the following is randomly applied:

• Downscaling: The image is resized using a randomly selected scale factor between 0.2
and 0.5 with cubic interpolation.

• Gaussian Blur: Applied with a randomly selected kernel size (k) of 3 × 3 or 5 × 5

to emulate defocus or scanner blur. The standard deviation σ for Gaussian blur is not

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 156

manually specified and is inferred from the kernel size using:

σ = 0.3

(
k − 1

2
− 1

)
+ 0.8

For example, σ ≈ 0.8 for a 3 × 3 kernel and σ ≈ 1.1 for a 5 × 5 kernel. Larger kernels
result in stronger blurring.

2. Salt-and-Pepper Noise: Simulates transmission defects and binarization artifacts by ran-
domly flipping pixel values with a corruption rate of p = 0.01.

Each of these transformations is applied during training with an independent probability of 0.5. For
blur and downscaling, one of the two is selected at random when applied (i.e., they are mutually
exclusive) since they have similar effects, while salt-and-pepper noise is applied independently. This
setup allows for combinations of degradations across different windows, introducing diverse noise
patterns within each training batch.

After applying the noise transformations, we perform Otsu’s binarization [95]. This step ensures
consistency with the downstream inference pipeline, which operates on binarized images of individ-
ual primitives. Otsu’s method assumes a bimodal intensity histogram and determines an optimal
threshold t∗ that minimizes the within-class variance σ2

w(t), which reflects how well the image is
separated into foreground (class 1) and background (class 2). It is defined as:

σ2
w(t) = q1(t)σ

2
1(t) + q2(t)σ

2
2(t)

Here, P (i) denotes the normalized histogram i.e., the probability of pixel intensity i, and q1(t) =∑t
i=1 P (i) is the probability of the foreground class. The corresponding mean and variance of the

foreground are:

µ1(t) =
t∑

i=1

iP (i)

q1(t)
, σ2

1(t) =
t∑

i=1

[i− µ1(t)]
2P (i)

q1(t)

The terms for the background class (class 2), i.e., q2(t), µ2(t), and σ2
2(t), are defined similarly over

the range i = t+ 1 to I, where I is the maximum intensity level (255 for 8-bit images).

The algorithm evaluates σ2
w(t) for all thresholds t ∈ [1, I] and selects the threshold t∗ that minimizes

this value. This results in the best class separation between background and foreground in terms of
intensity similarity.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 157

Once t∗ is identified, binarization is performed as:

pixel(x, y) =

0, if intensity(x, y) < t∗ (background)

255, otherwise (foreground)

In summary, our noise augmentation pipeline operationalizes Baird’s principles [11] by:

1. Simulating degradations that reflect real physical and digital processes,

2. Applying them for individual visual primitives, including both query and context windows
so that each symbol candidate experiences realistic local perturbations, which is crucial for
learning fine-grained distinctions in multi-task settings involving segmentation, classification,
and relationship prediction,

3. Validating their effectiveness through their impact on downstream parsing performance, as
discussed in Section 6.5.1.

6.2 Class Imbalance and Sampling Strategies

The chemical diagram and math formula parsing datasets exhibits substantial class imbalance within
each of the three learning tasks—segmentation, symbol classification, and relationship classifica-
tion—as well as across task types. For each task, the distribution of class labels are highly skewed:
a small number of classes dominates the majority of instances, while many classes are underrepre-
sented or rare. This intra-task imbalance affects all datasets and is particularly pronounced in the
chemical domain. In addition, differences in the relative sizes of the task-specific label sets (e.g.,
the number of symbol nodes vs. edge pairs) introduces further imbalance at the inter-task level.
Together, these issues pose challenges for training stability and generalization, especially for rare
classes and multi-task interactions. These issues motivate the need for better sampling strategies,
class-weighted loss functions and balanced loss aggregation to ensure balanced optimization across
tasks and improved learning for underrepresented classes.

6.2.1 Imbalance in Class Distributions

We observe significant class imbalance across both mathematical and chemical diagram datasets.
In the chemical domain, particularly within the PubChem-5k training set using the VGP6NN

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 158

Symbol class

P
er

ce
nt

ag
e

(%
)

0

10

20

30

40

50

60

Single H C F l 2 - r P u K A d V s g

Symbol class distribution

(a)

P
er

ce
nt

ag
e

(%
)

0.00

25.00

50.00

75.00

100.00

percentage

Merge NoMerge

Segmentation class distribution

(b)
Relation class

P
er

ce
nt

ag
e

(%
)

0.00

10.00

20.00

30.00

40.00

50.00

NoRelation CONNECTED ANNOTATION

Relation class distribution

(c)

Figure 6.3: Class distributions in the chemical dataset (PubChem-5k), across symbol, segmentation,
and relationship tasks: (a) symbol classes showing heavy skew; (b) segmentation labels dominated
by NoMerge; (c) relationship edge labels dominated by NoRelation.

graph, symbol labels exhibit extreme skewness: over 99% of node labels belong to fewer than 10
of the 67 available classes, with a single class—Single bond line constituting more than half of all
node instances (see Figure 6.3a). Segmentation edges show similarly severe imbalance, as negative
segmentation labels (NoMerge) represent over 90% of all edges (see Figure 6.3b). The NoRelation

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 159

Symbol class

P
er

ce
nt

ag
e

(%
)

0

2

4

6

8

10

12

equal two k a leq B u

BigRightPar
slash

MiddleRightPar L
rangle

partia
l Z infty

Theta
Omega

oplus
vartheta

Reject3 sim

DoubleBeginQuartation
notequiv rceil

bigotim
es

ominus

Symbol class distribution

(a)

P
er

ce
nt

ag
e

(%
)

0.00

25.00

50.00

75.00

100.00

percentage

Merge NoMerge

Segmentation class distribution

(b) Relation class

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

NoR
ela

tio
n

HORIZONTAL

RSUB
RSUP

PUNC

UPPER

UNDER
LS

UP
LS

UB

Relation class distribution

(c)

Figure 6.4: Class distribution in the math dataset (InftyMCDB-2), across symbol, segmentation, and
relationship tasks: (a) symbol classes showing high imbalance; (b) segmentation labels dominated
by NoMerge; (c) relationship edge labels dominated by NoRelation.

and CONNECTED labels are relatively balanced (see Figure 6.3c), as the nearest neighbor constraint
filters out a large portion of NoRelation edges. In contrast, ANNOTATION edges account for less than
5% of the total.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 160

In mathematical formulas from the InftyMCDB-2 training set (12,551 formulas), represented using
the VGPLOS graph, dominant classes such as common operators and digits account for more than
half of all symbol nodes. Rare symbols, including special characters like iota and bigoplus, occur
with extremely low frequency—comprising less than 0.001% of total nodes (see Figure 6.4a). Sim-
ilarly, the edge labels are predominantly negative, with approximately 80% labeled as NoRelation

and over 92% marked as NoMerge in segmentation tasks (see Figure 6.4c, 6.4b).

These pronounced imbalances pose significant challenges, requiring strategies to improve learning
and generalization across all tasks and class distributions.

Notably, the symbol frequency distributions exhibit a Zipf-like shape [98], where a few classes dom-
inate and many occur rarely, a phenomenon commonly observed in natural language and symbolic
systems. In a Zipfian distribution, the frequency f of the r-th most common class is approximately
inversely proportional to its rank:

f(r) ∝ 1

rs

where r is the rank of a class by frequency and s is a positive constant (often close to 1 in empirical
settings). This long-tailed structure amplifies the difficulty of training robust models for rare classes,
especially in multi-task settings where shared representations may be dominated by frequent classes
unless explicitly rebalanced.

6.2.2 Stratified Train-Validation Splits

To ensure balanced and representative model validation during training, we use a stratified splitting
procedure [87] when partitioning the dataset into training and validation sets. Unlike standard
random splits, which can inadvertently amplify class skew, this strategy aims to preserve the co-
occurrence structure of labels across the three tasks at the level of individual formulas. It ensures
that formulas in training and validation sets are similar in complexity and have similar class dis-
tributions across the three tasks, by preserving how these labels appear together within individual
formulas.

For example, formulas containing many symbols with two or more oversegmented primitives consist
of a higher proportion of merge labels, and formulas with complex spatial layouts or more symbols
have more positive relationship labels. Preserving these co-occurrence patterns ensures that the
model is evaluated on a validation set with a comparable structural and semantic composition to
the training set. This reduces sampling bias and results in more reliable estimates of generalization,
especially for tasks that involve interrelated decisions across multiple types of outputs.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 161

We stratify formulas based on a three-dimensional vector of discretized statistics. Each formula f

is assigned a bin index along three axes: the number of symbol nodes, the number of edges labeled
MERGE, and the number of edges labeled NoRelation. For example, a formula with many symbols
and mostly negative merge and relation edges would be placed in a stratum representing “high node
count, high no-merge, high no-relation.” These counts are discretized into n = 4 quantile-based bins
along each axis, resulting in up to 43 = 64 possible strata.

The stratum assignment is defined as a tuple

s(f) = (bsym(f), bseg=0(f), brel=0(f))

where each bi(f) ∈ {0, 1, 2, 3} denotes the quantile bin index for statistic i. We define the final
stratum assignment z(f) as a concatenated tuple of the bin indices:

z(f) = concat (bsym(f), bseg=0(f), brel=0(f))

Strata that contain only a single formula are excluded from the validation set and assigned to the
training set to avoid sampling issues with stratified splitting. Additionally, sparsely populated strata,
defined as those with fewer than two formulas, are excluded, and further merging is performed when
the number of strata exceeds the number of available validation samples. Specifically, the smallest
strata are iteratively merged until the number of strata is at most one more than the intended
number of validation formulas. This ensures that each stratum is sufficiently populated for stratified
sampling and maintains a representative distribution across structure size, segmentation sparsity,
and relation sparsity.

We then perform a stratified shuffle split by sampling formulas proportionally from each stratum
z, preserving the joint distribution of structure size and class sparsity across symbol, segmentation,
and relationship tasks. For each stratum z ∈ Z, if the total number of formulas is nz, we allocate
approximately (1 − r) · nz formulas to the validation set and the remaining r · nz formulas to the
training set, where r is the training ratio (e.g., r = 0.8).

The actual assignment of formulas is performed using random sampling without replacement within
each stratum, ensuring that the relative frequency of each stratum is preserved across both subsets.
This procedure maintains balance in the class and structural distributions, resulting in training and
validation sets that are statistically similar in composition. Such stratified sampling supports more
reliable model selection and evaluation by reducing sampling variance and ensuring coverage of rare
but important cases.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 162

6.2.3 Weighted random sampling

To address class imbalance within each of the three tasks, we adopt a weighted sampling approach in
which training instances are selected with probabilities proportional to their inverse class frequencies.
This method prioritizes underrepresented classes during training, thereby improving model exposure
to rare examples and promoting balanced learning.

Following prior work on class-balanced sampling strategies [27], we assign a weight to each node or
edge instance based on the frequency of its associated class. We first compute class weights for all
classes for each of the tasks based on the frequency of samples in the entire dataset. For a given
task, the unnormalized class weight w̃i for class i, which has ni labeled instances in the dataset, is
computed as:

w̃i =
N

Cni
(6.1)

where N =
∑

j nj is the total number of labeled instances across all classes in that task, C is the
number of classes for the task. For the symbol classification task, N corresponds to the number of
nodes, while for segmentation and relationship classification tasks, N corresponds to the number of
edges in the dataset.

To prevent distortion of the overall loss magnitude, the weights are normalized such that their mean
across all classes is equal to one [27]. Let C denote the total number of classes in the task. The
normalized weight wi for a task is then given by:

wi =
w̃i

1
C

∑C
j=1 w̃j

(6.2)

Here, the normalization ensures that the average class weight is one across the entire training
dataset and the total weight sum is equal to the number of classes in the dataset. This preserves
the relative importance of each class while maintaining a consistent loss scale across datasets and
training configurations. By preventing excessive overweighting of rare classes or underweighting
of common ones, it mitigates the risk of vanishing or exploding gradients due to extreme class
imbalance. As a result, class weights derived in this manner are well-suited not only for balancing
training data through sampling, but also for use as α coefficients to weight the cross-entropy or
focal loss, introduced in the next subsection.

This weighting scheme is applied independently to segmentation, symbol classification, and rela-
tionship classification tasks. The resulting per-instance weights are used to adjust the sampling

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 163

probabilities during mini-batch construction. Instead of uniformly sampling data points, training
instances are sampled with probabilities proportional to their assigned weights, allowing underrep-
resented classes to appear more frequently while reducing the dominance of overrepresented ones.
This sampling strategy ensures that the empirical distribution of classes seen during training more
closely approximates a balanced distribution, thereby improving generalization and reducing bias
toward majority classes.

Such weight-based sampling has been shown to be effective for addressing class imbalance in deep
learning, particularly in convolutional networks [18]. Mathematically, let {wi}Ni=1 denote the nor-
malized per-instance weights for a dataset of N samples. A training mini-batch is then constructed
by drawing indices i ∈ {1, . . . , N} independently from the categorical distribution using sampling
with replacement, defined by these weights:

P(i) =
wi∑N
j=1wj

6.3 Loss functions

In our work, we aim to utilize loss functions to further address class imbalance, and improve task-
specific learning within a multi-task framework for parsing mathematical and chemical diagrams.
As described in Chapter 4, the multi-task loss is defined over a batch of node queries Qn and edge
queries Qe as:

L(Qn, Qe) =
∑

qn∈Qn

LS(qn) +
∑

qe∈Qe

(LM (qe) + LR(qe)) , (6.3)

where LS , LM , and LR denote the loss terms for (S)ymbol classification, primitive (M)erge or
segmentation, and (R)elationship classification, respectively.

All losses including standard cross-entropy, weighted cross-entropy, class-balanced, focal, are used in
place of LS , LM , and LR, depending on the experimental setting. The final loss per batch remains
as given in Equation 6.3, with LS , LM , and LR, instantiated as any of the loss variants described
below based on the configuration.

A summary of the final formulations for each loss function is provided in Table 6.1 to facilitate
direct comparison of their components and weighting strategies across tasks. We describe each of
them in detail below.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 164

Table 6.1: Summary of Loss Function Variants, Formulations, and Parameter Settings

Loss Type Final Formulation (per query q) Parameter Range

Cross-Entropy (CE) LCE(q) = −
C∑

i=1

yi log pi –

Weighted Cross-Entropy (WCE) LWCE(q) = −
C∑

i=1

wi yi log pi –

Class-Balanced (CB) LCB(q) = −
C∑

i=1

wCB
i yi log pi,

where wCB
i = 1−β

1−βni normalized to mean 1

β ∈ {0.9, 0.99, 0.999}

Focal Loss (FL) LFL(q) = −
C∑

i=1

αi(1− pi)
γyi log(pi)

1
|B|

∑
j∈B αtj

,

with αi as normalized class weights wi

γ ∈ {0.5, 1, 2, 3}

6.3.1 Cross-Entropy Loss

The standard categorical cross-entropy loss is used as a baseline, where the loss for each task is
computed using predicted softmax probabilities and one-hot encoded targets. It is defined for a
single query q as:

LCE(q) = −
C∑
i=1

yi log pi, (6.4)

where C is the number of classes, yi is the one-hot encoded target label for class i, and pi is the
predicted probability for class i, obtained after applying the softmax function to the model’s logits:

pi =
exp(zi)∑C
j=1 exp(zj)

,

where zi denotes the logit score for class i.

The total multi-task loss under this setting follows Equation 6.3 with each Lt term (t ∈ {S,M,R})
defined as LCE

t .

6.3.2 Weighted Cross-Entropy Loss

Weighted Cross-Entropy (WCE) loss is a widely used strategy to mitigate the effects of class im-
balance in classification tasks. In standard cross-entropy, all classes contribute equally to the loss
function, which can result in poor performance on underrepresented classes when class distribu-
tions are highly skewed. WCE addresses this issue by assigning a weight wi to each class, thereby
amplifying or attenuating the contribution of each class to the total loss based on its frequency.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 165

The core idea is to give greater importance to rare classes by assigning them higher weights, and to
reduce the influence of frequent classes by assigning them lower weights. This forces the model to
attend more to misclassified examples from rare classes, helping to prevent the model from being
biased toward majority classes.

Mathematically, the WCE loss is defined as:

LWCE(q) = −
C∑
i=1

wi yi log pi, (6.5)

where, wi are normalized class weights. The weights wi are computed from inverse class frequencies
and normalized as described in Equation 6.2 to ensure a stable loss scale.

The use of WCE is particularly useful when the class distribution exhibits a long-tail behavior, as
is often the case in symbol classification, segmentation, and relationship classification in diagram
parsing. Without reweighting, the model would tend to optimize primarily for the head (majority)
classes, often neglecting the tail (minority) classes, leading to poor generalization on rare categories.

The multi-task loss in Equation 6.3 is instantiated with LS , LM , and LR corresponding to weighted
cross-entropy terms LWCE

t for each task t ∈ {S,M,R}.

6.3.3 Class-Balanced Loss

Class-balanced loss [86] addresses long-tailed class distributions by reweighting the standard cross-
entropy loss using the effective number of samples in each class. The effective number Ei captures
the diminishing returns of additional samples as class size increases, motivated by the observation
that the utility of each new sample grows logarithmically rather than linearly. Unlike inverse-
frequency weighting used in weighted cross-entropy loss, which can assign disproportionately large
weights to very rare classes, class-balanced loss provides a smoother and more stable adjustment.
This promotes better generalization in the presence of severe class imbalance. The effective number
is defined as:

Ei =
1− βni

1− β
, (6.6)

where ni is the number of samples in class i, and β ∈ [0, 1) is a hyperparameter that controls the
degree of weighting.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 166

Typical values for β range from 0.9 to 0.999. Smaller values (e.g., β = 0.9) provide modest class
reweighting, while larger values (e.g., β = 0.999) apply stronger emphasis on rare classes. In our
experiments, we explore multiple settings as shown in Table 6.1, with higher values favored due to
the extreme skew observed in class distributions (e.g., Figure 6.3a).

Using this, the unnormalized class-balanced weights are:

w̃CB
i =

1

Ei
=

1− β

1− βni
. (6.7)

To ensure stable training and a consistent loss scale, these weights are normalized using the same
strategy defined in Equation 6.2, yielding normalized weights wCB

i , such that their mean across all
classes is equal to one.

The class-balanced loss for a single query, LCB
t adopts the same formulation as Equation 6.5, with

the normalized class weights wi replaced by wCB
i . The corresponding multi-task loss for a batch

follows Equation 6.3, with each task-specific term Lt (where t ∈ {S,M,R}) instantiated as LCB
t

using class-balanced weights.

6.3.4 Focal Loss

Focal loss [66] was originally developed to address class imbalance in dense object detection by
reducing the loss contribution from well-classified examples. It modifies the standard cross-entropy
loss with a modulating factor (1− pi)

γ , where pi is the predicted probability for class i, and γ is a
focusing parameter that emphasizes harder, misclassified examples.

The modulating factor (1 − pi)
γ down-weights the loss contribution from well-classified examples

(where pi is high) and amplifies it for misclassified ones (where pi is low). This encourages the
model to focus on hard, uncertain predictions, which are typically associated with rare or ambiguous
classes, thereby improving robustness in imbalanced training scenarios.

We evaluated focal loss with γ ∈ {0.5, 1.0, 2.0, 3.0}, covering a spectrum from mild to strong
focusing on hard examples (see Table 6.1). Lower values (e.g., γ = 0.5) reduce the influence of
easy examples moderately, while higher values (e.g., γ = 3.0) sharply down-weight well-classified
examples and emphasize misclassified ones. These configurations allow us to explore the balance
between robustness to class imbalance and gradient stability.

To address both class imbalance and overconfidence on frequent classes, we adopt the α-balanced

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 167

variant of focal loss. This combines focal weighting with normalized class weights αi = wi, computed
using the strategy described in Equation 6.2. The loss for a single query is defined as:

LFL(q) = −
C∑
i=1

αi(1− pi)
γyi log(pi), (6.8)

where yi is the one-hot target label and C is the number of classes.

This formulation builds on the weighted cross-entropy loss (Equation 6.5) by down-weighting confi-
dent predictions and focusing more on misclassified or ambiguous inputs. The class weights αi act
similarly to those in class-balanced loss, but the focal factor provides an additional mechanism to
reduce bias from easy, high-frequency classes.

To ensure training stability and prevent gradient magnitudes from being dominated by large weights
in rare classes, we normalize the focal loss using the mean of class weights in the current batch. Let
B denote the batch of training samples, and αtj denote the weight for the ground truth class tj of
sample j. The normalized focal loss becomes:

LFL(q) = −
C∑
i=1

αi(1− pi)
γyi log(pi)

1
|B|

∑
j∈B αtj

. (6.9)

The final multi-task focal loss is computed using the general loss aggregation in Equation 6.3, with
each task-specific loss term Lt (t ∈ {S,M,R}) defined as LFL

t using the focal loss formulation in
Equation 6.9.

6.4 Loss Aggregation

While the choice of loss function directly affects learning within each individual task, multi-task
performance also depends on how the losses from different tasks are aggregated during optimization.
In our framework, symbol classification, segmentation (merge detection), and relationship classifi-
cation are trained jointly, each with a task-specific loss term Lt for t ∈ {S,M,R}. However, naïvely
summing these losses can lead to unbalanced training, especially if one task dominates the overall
loss due to imbalanced gradient magnitudes.

To address this, we investigate aggregation strategies that aim to balance the gradient contributions
across tasks, stabilize multi-task optimization, and encourage uniform performance improvements.
Specifically, we evaluate two aggregation approaches for the primary task losses.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 168

The first is a direct summation:
Lprimary =

∑
t∈{S,M,R}

Lt (6.10)

where LS , LM , and LR are the individual losses for symbol classification, segmentation (merge
detection), and relationship classification, respectively. This approach treats all tasks equally and
assumes their loss scales are comparable. While simple and widely used, this approach may bias
training toward tasks with larger loss magnitudes, leading to suboptimal learning for other tasks.

Complemented Harmonic Mean Aggregation. To address disparities in loss magnitudes
across tasks and promote balanced attention to difficult and easy tasks, we adopt a complemented
harmonic mean (CHM) strategy for aggregating the three primary task losses. This method adapts
the harmonic mean to emphasize high-loss tasks, counteracting the bias of the standard harmonic
mean which naturally prioritizes low-loss terms.

For each task t ∈ {S,M,R}, we begin by normalizing the batch loss using the total loss across all
three primary tasks:

L̃t(Q) =
Lt(Q)∑

t′∈{S,M,R} Lt′(Q)
. (6.11)

This step ensures that the losses are brought to a common scale and sum to 1. Next, we compute
the complemented harmonic mean over the complements of these normalized losses:

µCHM = 1− 3 ·

 ∑
t∈{S,M,R}

1

1− L̃t

−1

(6.12)

By applying the harmonic mean to 1 − L̃t, we invert the standard behavior: tasks with higher
normalized losses (i.e., harder tasks) now dominate the aggregation. This reversal ensures that
high-loss tasks receive more attention during training, counteracting the tendency of traditional
harmonic mean to emphasize already well-performing objectives. To preserve the original loss
directionality and obtain a total scalar loss, we apply a final complement to the harmonic value as
shown in Equation 6.12: To retain scale sensitivity to the absolute task losses, we reintroduce the
sum of unnormalized losses as a multiplicative term. The final complemented harmonic mean loss
is defined as:

LCHM =

1− 3 ·

 ∑
t∈{S,M,R}

1

1− L̃t

−1 · ∑
t∈{S,M,R}

Lt, (6.13)

This formulation maintains the bounded nature of the aggregation term (between 0 and 1), while
adaptively emphasizing tasks with higher normalized losses. By scaling this term with the sum

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 169

of raw task losses, we preserve meaningful gradient magnitudes for optimization. The result is
a dynamic, scale-aware aggregation strategy that balances training across tasks without requiring
manual weighting or hyperparameter tuning.

Unlike the arithmetic sum, which can lead to disproportionate dominance by tasks with large ab-
solute losses, the complemented harmonic mean (CHM) moderates this effect by incorporating
normalization. This prevents any single task from overwhelming the optimization process, while
still directing focus toward underperforming objectives. CHM thus promotes more equitable con-
vergence across tasks, especially in imbalanced or multi-objective settings.

This approach provides an implicit balancing mechanism that adaptively adjusts the relative impor-
tance of tasks based on their current loss magnitudes. CHM gives underperforming tasks sufficient
attention without entirely suppressing better-performing ones, allowing training to progress more
uniformly across tasks. Unlike weighted summation, CHM achieves this without requiring explicit
hyperparameter tuning for task weights, making it both principled and practically convenient for
multi-task learning.

Our adoption of this strategy is inspired in part by recent work on harmonic loss in single-task
settings [9], where Baek et al. propose a novel loss function based on harmonic softmax Their
approach promotes scale-invariant and interpretable convergence, and improves data efficiency in
low-resource settings. While we do not replace cross-entropy with harmonic loss at the individual
task level, we are motivated by the broader insight that harmonic formulations can improve multi-
task learning through balanced aggregation. In our case, rather than redefining the loss for each
task, we apply harmonic reasoning at the inter-task aggregation level.

6.5 Evaluation and Results

This section presents experiments evaluating the methods introduced in the preceding sections, ad-
dressing RQ4, which asks whether robustness and generalization in visual parsing can be improved
through noise augmentation and class imbalance mitigation. We study two complementary inter-
ventions: (1) structural and visual noise augmentation during training, and (2) loss reweighting
techniques for handling class imbalance across symbol, relationship, and segmentation tasks.

The datasets, evaluation metrics, and implementation setup remain consistent with those described
in the previous chapter (Chapter 5). To ensure consistent comparisons, we adopt a fixed baseline
configuration of control variables for all experiments, summarized in Table 6.2. This configuration

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 170

reflects the best-performing settings identified in the previous chapter, including optimal input graph
representations, primitive extraction methods, input feature sizes, spatial pooling regions, backbone
encoder, and EGATv2 architecture for each domain.

6.5.1 Noise Augmentation

As described in Section 6.1, we simulate real-world degradations through two types of synthetic
noise during training: (1) structural noise, (2) visual noise and (3) combination of both noise types.
Models are trained with and without these augmentations and evaluated on both clean and synthetic
noisy test images. To evaluate generalization under degraded conditions, we apply synthetic noise
to test samples using the same augmentation procedures as in training. Each primitive window
(consisting of both query and context windows) is independently subjected to two types of noise:
structural noise and visual noise, each applied with a probability of 0.5. This means that for each
primitive, structural noise (e.g., random splits) and visual noise (e.g., blur, salt-and-pepper) may
be applied individually, jointly, or not at all. As a result, the noisy test set contains a heterogeneous
mixture of samples—some clean, some with isolated noise, and others with overlapping degradations.
Clean test images are also retained to assess any trade-offs in performance due to augmentation.

Discussion. Models trained without augmentation performed well on clean images, achieving
high F1-scores across all tasks. However, their performance deteriorated sharply under noisy condi-
tions, with the most pronounced failures in expression-level accuracy, which dropped to zero due to
cascading errors in symbol and relationship classification. Structural noise disrupted spatial graph
integrity, while visual noise degraded the visual clarity of primitives, compounding the parsing

Table 6.2: Baseline configuration showing control variables for math and chemistry experiments.

Control variables Math Chemistry

Symbol classes 207 67
Edge classes 9 2 (Indigo) / 3 (RDKIT)
Segmentation classes 2 2

Input primitives CCs Line primitives
Input graph LOS graph 6NN graph
Feature size 64× 64 32× 32

Pooling regions 31 (1, 3H, 3V, 5H, 5V, 7H, 7V) 17 (1, 3H, 3V, 5H, 5V)
Backbone encoder ResNeSt ResNeSt
EGATv2 configuration 2 stage 2 hops 2 stage 2 hops

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 171

Table 6.3: Impact of noise-augmented training on parsing performance under different test con-
ditions on the InftyMCDB-2 dataset (6,830 formulas). F1-scores are reported for symbols and
relationships, and file-level structure and expression (structure + class) accuracy rates are reported.

Symbols Relationships Expressions
Detect. +Class Detect. +Class Structure +Class

Clean test images
No augmentation 99.31 97.65 97.18 96.45 92.21 87.99
Structure augmentation 99.35 97.61 97.12 96.42 92.40 88.10
Visual augmentation 99.28 97.78 97.25 96.58 92.50 88.30
Structure+Visual augmentation 99.40 97.90 97.40 96.75 92.70 88.60

Synthetic noisy images
No augmentation 96.02 80.11 78.45 78.32 0.00 0.00
Structure augmentation 98.95 89.32 85.60 85.40 39.70 34.25
Visual augmentation 98.30 95.12 94.80 94.71 62.70 54.23
Structure+Visual augmentation 99.11 96.80 96.15 96.08 78.45 71.36

Table 6.4: Impact of noise-augmented training on parsing performance under different test condi-
tions on the USPTO test set. F1-scores are reported for symbols and relationships, expression-level
structure and classification rates, and the percentage of exact SMILES string matches.

Symbols Relationships Expressions Exact SMILES
Detect. +Class Detect. +Class Structure +Class (%)

Clean test images
No augmentation 99.90 99.86 99.02 99.02 52.54 52.02 89.04
Structure augmentation 99.91 99.83 99.00 99.00 52.61 52.09 89.05
Visual augmentation 99.88 99.87 99.05 99.05 52.65 52.20 89.12
Structure+Visual augmentation 99.92 99.88 99.06 99.06 52.68 52.31 89.20

Synthetic noisy images
No augmentation 96.12 82.32 79.40 79.40 0.00 0.00 0.00
Structure augmentation 99.02 90.42 86.20 86.20 26.40 22.30 63.80
Visual augmentation 98.48 96.25 95.00 95.00 35.15 30.45 70.10
Structure+Visual augmentation 99.18 97.12 96.28 96.28 47.20 44.55 74.95

difficulty.

Training with structural augmentation alone mitigated these failures to some extent, improving
noisy-test symbol and relationship F1-scores by over 7% in math and chemistry, and recovering
partial structure and expression correctness. Visual augmentation yielded substantially greater
robustness in both domains, improving symbol classification and relationship classification by over
14% under noise.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 172

Combined structural and visual augmentation consistently provided the best generalization. In
math, noisy-test expression recognition (structure + classification) improved by over 71% compared
to the unaugmented model, with less than a 1% drop in clean test accuracy. In chemistry, a similar
pattern was observed: expression structure and classification accuracy rose from 0% to 44.55%, and
exact SMILES match increased from 0% to 74.95%.

These results suggest that the parser is highly sensitive to noise in both input modalities: graph
structure and visual appearance, but can be effectively regularized through targeted augmentations.
Notably, visual noise appears to have a greater impact on robustness than structural noise alone.
Expression-level correctness serves as a useful summary metric, revealing the compounded effects
of upstream recognition errors, while SMILES accuracy provides a downstream validation of graph
fidelity in the chemical domain. Overall, joint augmentation yields the most balanced model across
both domains, capable of handling clean and degraded inputs with high accuracy.

6.5.2 Class Imbalance

As described in Section 6.2, class imbalance poses a consistent challenge across all three parsing
tasks: symbol classification, segmentation, and relationship detection. Skewed class distributions
lead to undertraining of rare classes, degrading generalization and stability during learning. To
mitigate this, we evaluate several loss functions designed to rebalance gradients by emphasizing
underrepresented classes.

We compare the following loss formulations: standard cross-entropy (CE), weighted cross-entropy
(WCE), class-balanced loss (CB), and focal loss (FL). Each loss is applied uniformly across the
symbol, segmentation, and relationship heads, with task-level losses combined using the default
summation strategy. Note that all models in this experiment are trained with the combination
of both structural and visual noise augmentations, as described in the previous setup. However,
evaluation is performed exclusively on clean test images to isolate the effects of class imbalance
handling.

Discussion. Among the reweighting strategies, class-balanced (CB) loss consistently improved
performance across tasks in both mathematical and chemical domains. Performance improved
monotonically with higher values of β: the strongest gains were observed with β = 0.999, which
outperformed both β = 0.9 and 0.99 in symbol, relationship, and expression-level metrics. In
math, expression structure+class accuracy increased from 88.60% (CE) to 89.40% with β = 0.999,

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 173

Table 6.5: Comparison of different loss functions on parsing performance for the InftyMCDB-2 test
data. F1-scores are reported for symbol and relationship prediction, and file-level structure and
structure+class accuracy for expressions.

Loss Function
Symbols Relationships Expressions

Detect. +Class Detect. +Class Structure +Class

Cross-Entropy (CE) 99.40 97.90 97.40 96.75 92.70 88.60
Class-Balanced Loss

β = 0.9 99.43 98.00 97.50 96.90 92.85 88.90
β = 0.99 99.47 98.30 97.80 97.20 93.00 89.20
β = 0.999 99.50 98.40 97.90 97.25 93.10 89.40

Weighted CE 99.52 98.50 98.00 97.30 93.20 89.90
Focal Loss

γ = 0.5 99.55 98.94 98.20 97.85 94.13 91.75
γ = 1 99.53 98.70 98.05 97.40 93.60 90.10
γ = 2 99.35 98.20 97.20 96.70 91.50 86.50
γ = 3 99.25 98.00 96.90 96.30 90.60 84.70

Table 6.6: Comparison of different loss functions on parsing performance for the USPTO test
set. F1-scores are reported for symbol and relationship prediction, expression-level structure and
classification accuracy, and exact SMILES match percentage.

Loss Function
Symbols Relationships Expressions Exact SMILES

Detect. +Class Detect. +Class Structure +Class (%)

Cross-Entropy (CE) 99.92 99.88 99.06 99.06 52.68 52.31 89.20
Class-Balanced Loss

β = 0.9 99.91 99.87 99.08 99.08 52.72 52.36 89.30
β = 0.99 99.91 99.88 99.10 99.10 52.76 52.40 89.40
β = 0.999 99.92 99.89 99.11 99.11 52.78 52.45 89.50

Weighted CE 99.92 99.89 99.14 99.14 52.95 52.65 89.70
Focal Loss

γ = 0.5 99.92 99.89 99.20 99.20 53.45 53.22 91.99
γ = 1 99.90 99.86 99.14 99.14 53.00 52.70 90.75
γ = 2 99.85 99.80 99.00 99.00 52.40 51.65 88.60
γ = 3 99.78 99.74 98.88 98.88 51.85 51.10 87.45

and relationship classification improved from 96.75% to 97.25%. In chemistry, similar gains were
observed: structure+class accuracy rose from 52.31% to 52.45%, and exact SMILES match improved
from 89.20% to 89.50%. This trend reflects the effect of extreme class imbalance, where stronger
reweighting is needed to ensure sufficient learning for rare classes.

This pattern continues with inverse-frequency weighting, used in the Weighted Cross-Entropy (WCE)
setting, which can be interpreted as the limiting case of class-balanced loss as β → 1. WCE pro-

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 174

vided even better results in both domains, particularly in expression-level metrics: structure+class
accuracy rose to 89.90% in math and 52.65% in chemistry, while SMILES accuracy increased to
89.70%. These results suggest that direct inverse-frequency weighting may be more effective under
high imbalance, especially when class distributions are extremely skewed.

Focal loss yielded the best overall performance. With a moderate focusing parameter (γ = 0.5), the
model achieved the highest F1-scores for symbol and relationship classification in both datasets.
In math, this resulted in a +3.15% improvement in expression+class accuracy over CE; in chem-
istry, it improved structure+class accuracy to 53.22% and SMILES match to 91.99%—the highest
observed. These results highlight focal loss’s ability to emphasize informative, harder examples
while suppressing overrepresented classes. However, higher values of γ (e.g., γ = 2 or 3) sharply re-
duced performance. This is likely because excessive down-weighting of easy examples can destabilize
learning and lead to undertraining on frequent but important classes, especially in multi-task set-
tings where the learning signal must remain balanced across segmentation, symbol, and relationship
tasks. As γ increases, the model becomes overly focused on rare or ambiguous examples, resulting
in poorer generalization and lower expression-level accuracy. For instance, at γ = 3, structure+class
accuracy dropped by 4–5% and SMILES accuracy fell to 87.45% in chemistry.

Overall, focal loss (γ = 0.5) provided the best trade-off between rare-class emphasis and optimiza-
tion stability, followed by WCE and CB loss with β = 0.999. These findings confirm that under
extreme imbalance, stronger reweighting—either via high-β CB loss or inverse-frequency weight-
ing—substantially improves parsing accuracy, particularly at the expression level, by improving
learning on rare symbols, relationships, and segments. Focal loss offers the combined benefits of
class-aware reweighting and difficulty-based modulation. The base term implicitly incorporates
a class-balancing effect (through normalization across predictions), while the modulating factor
(1 − pt)

γ selectively emphasizes hard, misclassified examples. This dual mechanism enables focal
loss to adaptively prioritize both minority classes and ambiguous samples, making it particularly
well-suited for multi-task visual parsing under heavy class imbalance.

Error Analysis (Math). Figures 6.5 and 6.6 provide a comparison of node- and edge-level
error patterns between models trained with cross-entropy (CE) loss and focal loss (γ = 0.5) on the
InftyMCDB-2 test set. At the node level (Figure 6.5), the CE model shows frequent misclassifications
of visually similar symbols such as minus and equal, equivalence, and dot and ldots, comma,

semicolon. The focal loss model reduces the overall frequency of these errors, suggesting improved
disambiguation through targeted weighting of difficult examples.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 175

LgEval Structure Confusion Histograms
Mon Jun 23 18:16:10 2025

VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (131 incorrect targets; 821 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 131 incorrect targets, 821 errors.

Object Targets Primitive Targets and Errors

1 62 errors

minus

Targets

1 59 errors

minus

22 errors

minus

5 errors

equal

5 errors

leqq

4 errors

zero

3 errors

T

20 errors

Other
Errors

 2 1 errors

minus

minus

minus

minus

minusminus

minus

minusminus

minusminus

minus

minus

minus

minus

minus

1 errors

Other
Errors

 3 1 errors

minusminus
minusminus

1 errors

Other
Errors

 4 1 errors

minus

minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

2 56 errors

equal

Targets

1 56 errors

equalequal
equalequal

20 errors

equivequiv
equivequiv

14 errors

leqqleqq
leqqleqq

13 errors

minusminus
minusminus

4 errors

geqqgeqq
geqqgeqq

3 errors

congcong
congcong

2 errors

Other
Errors

3 34 errors

dot

Targets

1 34 errors

dot

12 errors

comm

6 errors

i

3 errors

ldots

13 errors

Other
Errors

6/23/25, 6:28 PM CH_VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/19

LgEval Structure Confusion Histograms
Mon Jun 23 18:16:10 2025

VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (131 incorrect targets; 821 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 131 incorrect targets, 821 errors.

Object Targets Primitive Targets and Errors

1 62 errors

minus

Targets

1 59 errors

minus

22 errors

minus

5 errors

equal

5 errors

leqq

4 errors

zero

3 errors

T

20 errors

Other
Errors

 2 1 errors

minus

minus

minus

minus

minusminus

minus

minusminus

minusminus

minus

minus

minus

minus

minus

1 errors

Other
Errors

 3 1 errors

minusminus
minusminus

1 errors

Other
Errors

 4 1 errors

minus

minus

minus

minus
minus

minus

minus
minus

minus

1 errors

Other
Errors

2 56 errors

equal

Targets

1 56 errors

equalequal
equalequal

20 errors

equivequiv
equivequiv

14 errors

leqqleqq
leqqleqq

13 errors

minusminus
minusminus

4 errors

geqqgeqq
geqqgeqq

3 errors

congcong
congcong

2 errors

Other
Errors

3 34 errors

dot

Targets

1 34 errors

dot

12 errors

comm

6 errors

i

3 errors

ldots

13 errors

Other
Errors

6/23/25, 6:28 PM CH_VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/19(a) CE loss

LgEval Structure Confusion Histograms
Mon Jun 23 19:56:22 2025

VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (130 incorrect targets; 547 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 130 incorrect targets, 547 errors.

Object Targets Primitive Targets and Errors

1 36 errors

minus

Targets

1
32 errors

minus

10 errors

minus

8 errors

equal

2 errors

tilde

2 errors

x

2 errors

lambd

1 errors

partial

1 errors

underbra

1 errors

f

1 errors

underlin

1 errors

geqq

1 errors

two

2
1 errors

minus

minus

minus

minus

minus

minus

minus minusminus

minus

minus minus

minus

minus

minus

minus

1 errors

minus

minus

minus

minus

minus

HORIZONTALHORIZONTAL

minus

HORIZONTA

HORIZONTAL

3
1 errors

minus

minus

minus

minus

minus

minus

minus

minus

minus
minusminusminus

minus
minus

minus
minus

minus
minus

minusminusminus

minusminus

minusminus

minus

minus

minus
minusminus

minus

minus

minus

minus

minusminus

minus

minus

minusminus

minus

minus

minus
minus

minus

minus
minus

minus

minus

minusminusminus

minusminusminusminusminus

minus

minus

minus

minusminusminusminus

1 errors

minus

minus

minus

minus

minus

minus

minus

minus

minusminus

HORIZONTAL

HORIZONTALminus
HORIZONTAL

minus

HORIZONTA

HORIZONTAL

HORIZONTAL

HORIZONTAL

minus

minus
minus

HORIZO

minus
minus

minus

minus
minusminus

minus

minus

HORIZONTAL

HORIZONTALHORIZONTAL

minus

HORIZONTAL

HORIZONTAL
minus

minus
minus

minus
HORIZONTAL

minus
minus

minus

minus
HORIZON

minus
minus

4
1 errors

minusminus
minusminus

1 errors

twominus

5
1 errors

minus

minus

minus

minus
minus

minusminus
minus

minus

1 errors

minus

minus

n

2 20 errors

dot

Targets

1
20 errors

dot

3 errors

ldots

3 errors

comm

2 errors

semicol

2 errors

j

2 errors

lambd

1 errors

three

1 errors

five

1 errors

i

1 errors

partial

1 errors

f

1 errors

colon

3 18 errors

equal

Targets

1 18 errors

equalequal
equalequal

7 errors

minusminus
minusminus

6 errors

equivequiv
equivequiv

2 errors

leqqleqq
leqqleqq

2 errors

equalequal
equalequal

1 errors

geqqgeqq
geqqgeqq

4 17 errors

l

Targets

1 16 errors

l

7 errors

i

7 errors

one

1 errors

colon

1 errors

h

2 1 errors

ll ll

1 errors

II II

5 17 errors

i

Targets

1 15 errors

ii ii

8 errors

ii ii

2 errors

ii

2 errors

dotdot
dotdot

1 errors

jj jj

1 errors

iV RSUB

1 errors

ff ff

2 1 errors 1 errors

6/23/25, 7:58 PM CH_VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_1_min_1.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/17

LgEval Structure Confusion Histograms
Mon Jun 23 19:56:22 2025

VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (130 incorrect targets; 547 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 130 incorrect targets, 547 errors.

Object Targets Primitive Targets and Errors

1 36 errors

minus

Targets

1
32 errors

minus

10 errors

minus

8 errors

equal

2 errors

tilde

2 errors

x

2 errors

lambd

1 errors

partial

1 errors

underbra

1 errors

f

1 errors

underlin

1 errors

geqq

1 errors

two

2
1 errors

minus

minus

minus

minus

minus

minus

minus minusminus

minus

minus minus

minus

minus

minus

minus

1 errors

minus

minus

minus

minus

minus

HORIZONTALHORIZONTAL

minus

HORIZONTA

HORIZONTAL

3
1 errors

minus

minus

minus

minus

minus

minus

minus

minus

minus
minusminusminus

minus
minus

minus
minus

minus
minus

minusminusminus

minusminus

minusminus

minus

minus

minus
minusminus

minus

minus

minus

minus

minusminus

minus

minus

minusminus

minus

minus

minus
minus

minus

minus
minus

minus

minus

minusminusminus

minusminusminusminusminus

minus

minus

minus

minusminusminusminus

1 errors

minus

minus

minus

minus

minus

minus

minus

minus

minusminus

HORIZONTAL

HORIZONTALminus
HORIZONTAL

minus

HORIZONTA

HORIZONTAL

HORIZONTAL

HORIZONTAL

minus

minus
minus

HORIZO

minus
minus

minus

minus
minusminus

minus

minus

HORIZONTAL

HORIZONTALHORIZONTAL

minus

HORIZONTAL

HORIZONTAL
minus

minus
minus

minus
HORIZONTAL

minus
minus

minus

minus
HORIZON

minus
minus

4
1 errors

minusminus
minusminus

1 errors

twominus

5
1 errors

minus

minus

minus

minus
minus

minusminus
minus

minus

1 errors

minus

minus

n

2 20 errors

dot

Targets

1
20 errors

dot

3 errors

ldots

3 errors

comm

2 errors

semicol

2 errors

j

2 errors

lambd

1 errors

three

1 errors

five

1 errors

i

1 errors

partial

1 errors

f

1 errors

colon

3 18 errors

equal

Targets

1 18 errors

equalequal
equalequal

7 errors

minusminus
minusminus

6 errors

equivequiv
equivequiv

2 errors

leqqleqq
leqqleqq

2 errors

equalequal
equalequal

1 errors

geqqgeqq
geqqgeqq

4 17 errors

l

Targets

1 16 errors

l

7 errors

i

7 errors

one

1 errors

colon

1 errors

h

2 1 errors

ll ll

1 errors

II II

5 17 errors

i

Targets

1 15 errors

ii ii

8 errors

ii ii

2 errors

ii

2 errors

dotdot
dotdot

1 errors

jj jj

1 errors

iV RSUB

1 errors

ff ff

2 1 errors 1 errors

6/23/25, 7:58 PM CH_VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_1_min_1.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LOS… 1/17

(b) Focal loss, γ = 0.5

Figure 6.5: Node-level error analysis comparing two models (see Table 6.5) on the InftyMCDB-
2 test set: (a) trained with standard cross-entropy (CE) loss, and (b) trained with Focal loss,
γ = 0.5 (truncated at right for space). The Focal loss variant shows reduced frequency of common
misclassification errors, particularly for similar symbols such as minus and equal

This reduction in symbol-level confusion propagates to edge-level improvements as seen in Figure 6.6.
Errors related to HORIZONTAL relationships between minus primitives or between equal components
are frequent in the CE model due to the symbol-level ambiguity. The focal loss model demonstrates
fewer such mistakes.

These results align with quantitative findings in Table 6.5, where focal loss achieved the highest
F1-scores for both node and edge predictions. The improvement stems from focal loss’s ability to
suppress overrepresented classes while emphasizing uncertain, misclassified instances.

Error Analysis (Chem). Figures 6.7 and 6.8 show node- and edge-level error distributions on
the USPTO test set for models trained with cross-entropy (CE) loss and focal loss (γ = 0.5). At
the node level (Figure 6.7), both models show dominant misclassifications involving the Single

line primitive and symbols such as 4, N, b. These confusions arise in part due to the visual
simplicity of Single lines and high class frequency in the dataset as described in Chapter 5. The
model trained with focal loss exhibits a reduction in these errors, especially in the top-ranked

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 176

LgEval Structure Confusion Histograms
Mon Jun 23 19:04:05 2025

VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (1171 incorrect targets; 1724 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 1171 incorrect targets, 1724 errors.

Object Targets Primitive Targets and Errors

1 14 errors

minusminus
HORIZONTAL

Targets

1
14 errors

minusminus
HORIZONTAL

3 errors

minusminus
minusminus

3 errors

minusminus

3 errors

minusequal
HORIZONTAL

1 errors

minusj

1 errors

minusminus
PUNC

1 errors

eightminus
HORIZONTAL

1 errors

twominus

1 errors

minusminus
HORIZONTAL

2 13 errors

minusequal
HORIZONTAL

Targets

1
13 errors

equal

equal

minus

HORIZONTAL

equal

HORIZONTAL

equal

3 errors

equal

equal

equal

equal

HORIZONTAL

equal
HORIZONTAL

2 errors

geqq

geqq

minus

HORIZONTAL

geqq

HORIZONTAL

geqq

2 errors

minus

minus

minus

HORIZONTAL

minusminus
HORIZONTAL

2 errors

leqq

leqq

minus

HORIZONTAL

HORIZONTAL

leqqleqq

1 errors

minus

minus

minus

minus
minusminus

minus

minus

minus

1 errors

equal

equal

minus

HORIZONTAL

equal
HORIZONTAL

equal

1 errors

equal

equal

i

equalequal

1 errors

minus

minus

i

minusminus

3 10 errors

equalRightPar

HORIZONTAL

Targets

1 10 errors

equal

equal

RightPar

HORIZONTAL

equalequal
HORIZONTAL

2 errors

minus

minus

RightPar

HORIZONTAL

minusminus
HORIZONTAL

2 errors

equal

equal

RightPar

equalequal

2 errors

leqq

leqq

RightPar

leqq

HORIZONTAL

leqq
HORIZONTAL

1 errors

geqq

geqq

RightPar

HORIZONTAL

geqqgeqq
HORIZONTAL

1 errors

equiv

equiv

RightPar

equiv
HORIZONTAL

HORIZONTAL

equiv

1 errors

equal

equal

S
HORIZONTAL

HORIZONTAL

equalequal

1 errors

cong

cong

RightPar

cong

HORIZONTAL

HORIZONTAL

cong

4 10 errors

LeftPaf HORIZONTAL

Targets

1 8 errors

LeftPaf HORIZONTAL

3 errors

BigLeftPf HORIZONTAL

2 errors

LeftPaf HORIZONTAL

1 errors

LeftPaT HORIZONTAL

1 errors

LeftPaf

1 errors

ff ff

2 1 errors

f

f

LeftPar

f

HORIZONTAL

HORIZONTAL

f

1 errors

f

f

LeftPar

f

HORIZONTAL

HORIZONTAL

f

3 1 errors

LeftPa

LeftPar

f
HORIZONTAL

HORIZONTAL

LeftParLeftPar

1 errors

K

K

f
HORIZONTAL

HORIZONTAL

KK

5 9 errors

oneminus
UPPER

Targets

1 7 errors

oneminus
UPPER

3 errors

minusminus
minusminus

1 errors

oneone
oneone

1 errors

onefive
UPPER

1 errors

twoone

1 errors

oneT UPPER

2 1 errors 1 errors

6/23/25, 7:05 PM CH_VGP_LOS_gat_infty_12551_53_vs_test_merged_class_punc_contours__size_2_min_1.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LO… 1/144

(a) CE loss

LgEval Structure Confusion Histograms
Mon Jun 23 19:56:09 2025

VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (915 incorrect targets; 1252 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 915 incorrect targets, 1252 errors.

Object Targets Primitive Targets and Errors

1 9 errors

minusminus
HORIZONTAL

Targets

1 9 errors

minusminus
HORIZONTAL

2 errors

minusminus
HORIZONTAL

2 errors

minusminus
minusminus

2 errors

minusequal
HORIZONTAL

2 errors

minusminus

1 errors

lambdlambda
lambdalambda

2 9 errors

twominus
UNDER

Targets

1 7 errors

twominus
UNDER

2 errors

minustwo

1 errors

minustwo
UPPER

1 errors

minustwo
LSUP

1 errors

lambdlambda
lambdalambda

1 errors

twotwo
twotwo

1 errors

congminus

2 1 errors

minus

minus

two
UNDER

minus
UNDER

minus

1 errors

two

two

minus

twotwo

3 1 errors

two

two

minus

two

UNDER
UNDER

two

1 errors

two

two

minus

twotwo

3 9 errors

LeftParho
HORIZONTAL

Targets

1 8 errors

LeftParho
HORIZONTAL

7 errors

LeftParho

1 errors

yrho
HORIZONTAL

2 1 errors

rho

rho

LeftPar

HORIZONTAL

rhorho

HORIZONTAL

1 errors

rho

rho

LeftPar

rhorho

6/23/25, 7:58 PM CH_VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_2_min_1.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LO… 1/138

LgEval Structure Confusion Histograms
Mon Jun 23 19:56:09 2025

VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (915 incorrect targets; 1252 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 915 incorrect targets, 1252 errors.

Object Targets Primitive Targets and Errors

1 9 errors

minusminus
HORIZONTAL

Targets

1 9 errors

minusminus
HORIZONTAL

2 errors

minusminus
HORIZONTAL

2 errors

minusminus
minusminus

2 errors

minusequal
HORIZONTAL

2 errors

minusminus

1 errors

lambdlambda
lambdalambda

2 9 errors

twominus
UNDER

Targets

1 7 errors

twominus
UNDER

2 errors

minustwo

1 errors

minustwo
UPPER

1 errors

minustwo
LSUP

1 errors

lambdlambda
lambdalambda

1 errors

twotwo
twotwo

1 errors

congminus

2 1 errors

minus

minus

two
UNDER

minus
UNDER

minus

1 errors

two

two

minus

twotwo

3 1 errors

two

two

minus

two

UNDER
UNDER

two

1 errors

two

two

minus

twotwo

3 9 errors

LeftParho
HORIZONTAL

Targets

1 8 errors

LeftParho
HORIZONTAL

7 errors

LeftParho

1 errors

yrho
HORIZONTAL

2 1 errors

rho

rho

LeftPar

HORIZONTAL

rhorho

HORIZONTAL

1 errors

rho

rho

LeftPar

rhorho

6/23/25, 7:58 PM CH_VGP_LOS_infty_12551_99_vs_test_merged_class_punc_contours__size_2_min_1.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset_maths/test_6830/Results_VGP_LO… 1/138

(b) Focal loss, γ = 0.5

Figure 6.6: Edge-level error analysis comparing two models (see Table 6.5) on the InftyMCDB-
2 test set: (a) trained with standard cross-entropy (CE) loss, and (b) trained with Focal loss,
γ = 0.5. The Focal loss variant reduces the frequency of edge errors linked to propagated symbol
misclassifications, such as confusion between minus and equal

categories. This improvement can be attributed to the class-balancing behavior implicit in focal
loss: by down-weighting the contribution of easy, high-frequency examples like correctly classified
Single lines, and up-weighting harder, less frequent misclassifications, the model is encouraged to
devote more learning capacity to discriminating between ambiguous cases. As a result, it is better
able to differentiate between actual Single primitives and visually similar strokes belonging to other
symbol categories, leading to improved node classification performance under class imbalance.

At the edge level (Figure 6.8), both models struggle with missed connections involving Single lines.
The most frequent errors correspond to failed detection of bonds between two Single primitives or
between a Single line and atom primitives like H or N. These errors are often downstream effects of
incorrect node predictions, but can also result from local ambiguity in line proximity and direction.
The focal loss model shows reduced error counts in the top two edge categories.

However, many of these missing edge connections are ultimately corrected during postprocessing,
when bond multiplicity is inferred by merging adjacent Single lines into double or triple bonds. This
suggests a representational limitation of the primitive-level visual graph: many true edges are not

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 177

LgEval Structure Confusion Histograms
Mon Jun 23 22:04:00 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 605 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 605 errors.

Object Targets Primitive Targets and Errors

1 473 errors

Single

Targets

1
359 errors

Single

258 errors

Single

71 errors

A

17 errors

SW

7 errors

B

4 errors

H

1 errors

a

1 errors

P

2
109 errors

SingleSingle
SingleSingle

89 errors

SingleSingle
CONNECTEDCONNECTED

9 errors

SingleSingle
SingleSingle

4 errors

SWSingle
CONNECTEDCONNECTED

2 errors

SWSW
SWSW

2 errors

BSingle
CONNECTEDCONNECTED

1 errors

SingleSingle

1 errors

SingleP CONNECTEDCONNECTED

1 errors

CSingle
CONNECTEDCONNECTED

3
4 errors

Single

Single

Single

Single
SingleSingle

Single

Single

Single

3 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

Single

1 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

Single

Single

Single

SingleSingle

1 errors

Single

SW

SW

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTE

2 89 errors

4

Targets

1 57 errors

44 44

23 errors

Singlel CONNECTEDCONNECTED

19 errors

Single4 CONNECTEDCONNECTED

11 errors

SingleSingle
CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

2 32 errors

4

18 errors

A

14 errors

P

3 10 errors

b

Targets

1 10 errors

b

6 errors

n

4 errors

s

4 6 errors Targets

1 3 errors 2 errors 1 errors

6/23/25, 10:08 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html 1/3

LgEval Structure Confusion Histograms
Mon Jun 23 22:04:00 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 605 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 605 errors.

Object Targets Primitive Targets and Errors

1 473 errors

Single

Targets

1
359 errors

Single

258 errors

Single

71 errors

A

17 errors

SW

7 errors

B

4 errors

H

1 errors

a

1 errors

P

2
109 errors

SingleSingle
SingleSingle

89 errors

SingleSingle
CONNECTEDCONNECTED

9 errors

SingleSingle
SingleSingle

4 errors

SWSingle
CONNECTEDCONNECTED

2 errors

SWSW
SWSW

2 errors

BSingle
CONNECTEDCONNECTED

1 errors

SingleSingle

1 errors

SingleP CONNECTEDCONNECTED

1 errors

CSingle
CONNECTEDCONNECTED

3
4 errors

Single

Single

Single

Single
SingleSingle

Single

Single

Single

3 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

Single

1 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

Single

Single

Single

SingleSingle

1 errors

Single

SW

SW

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTE

2 89 errors

4

Targets

1 57 errors

44 44

23 errors

Singlel CONNECTEDCONNECTED

19 errors

Single4 CONNECTEDCONNECTED

11 errors

SingleSingle
CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

2 32 errors

4

18 errors

A

14 errors

P

3 10 errors

b

Targets

1 10 errors

b

6 errors

n

4 errors

s

4 6 errors Targets

1 3 errors 2 errors 1 errors

6/23/25, 10:08 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html 1/3

LgEval Structure Confusion Histograms
Mon Jun 23 22:04:00 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (13 incorrect targets; 605 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 13 incorrect targets, 605 errors.

Object Targets Primitive Targets and Errors

1 473 errors

Single

Targets

1
359 errors

Single

258 errors

Single

71 errors

A

17 errors

SW

7 errors

B

4 errors

H

1 errors

a

1 errors

P

2
109 errors

SingleSingle
SingleSingle

89 errors

SingleSingle
CONNECTEDCONNECTED

9 errors

SingleSingle
SingleSingle

4 errors

SWSingle
CONNECTEDCONNECTED

2 errors

SWSW
SWSW

2 errors

BSingle
CONNECTEDCONNECTED

1 errors

SingleSingle

1 errors

SingleP CONNECTEDCONNECTED

1 errors

CSingle
CONNECTEDCONNECTED

3
4 errors

Single

Single

Single

Single
SingleSingle

Single

Single

Single

3 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

Single

1 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

Single

Single

Single

SingleSingle

1 errors

Single

SW

SW

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTE

2 89 errors

4

Targets

1 57 errors

44 44

23 errors

Singlel CONNECTEDCONNECTED

19 errors

Single4 CONNECTEDCONNECTED

11 errors

SingleSingle
CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

2 32 errors

4

18 errors

A

14 errors

P

3 10 errors

b

Targets

1 10 errors

b

6 errors

n

4 errors

s

4 6 errors Targets

1 3 errors 2 errors 1 errors

6/23/25, 10:08 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_1_min_1.html 1/3

(a) CE loss

LgEval Structure Confusion Histograms
Mon Jun 23 21:21:34 2025

VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (12 incorrect targets; 587 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 12 incorrect targets, 587 errors.

Object Targets Primitive Targets and Errors

1 467 errors

Single

Targets

1
348 errors

Single

150 errors

Single

98 errors

SW

71 errors

H

11 errors

B

5 errors

N

5 errors

A

3 errors

i

5
errors

Other
Errors

2
107 errors

SingleSingle
SingleSingle

50 errors

SingleSingle
CONNECTEDCONNECTED

27 errors

SWSingle
CONNECTEDCONNECTED

10 errors

SingleSingle
SingleSingle

9 errors

SWSW
SWSW

11 errors

Other
Errors

3
11 errors

Single

Single

Single

Single
Single

Single
Single

Single

Single

6 errors

Single

Single

Single

CONNECTED

CONNECTED

Single
CONNECTED

CONNECTED

Single

5 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

SingleSingle

Single

SingleSingle

Single

1 errors

Other
Errors

2 71 errors

4

Targets

1 51 errors

4

21 errors

H

18 errors

d

9 errors

3

3 errors

A

2 20 errors

44 44

11 errors

3Single
CONNECTEDCONNECTED

4 errors

33 CONNECTEDCONNECTED

4 errors

43 CONNECTEDCONNECTED

1 errors

Other
Errors

3 18 errors

N

Targets

1 16 errors

N

16 errors

l

 2 1 errors 1 errors

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 1/3

LgEval Structure Confusion Histograms
Mon Jun 23 21:21:34 2025

VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (12 incorrect targets; 587 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 12 incorrect targets, 587 errors.

Object Targets Primitive Targets and Errors

1 467 errors

Single

Targets

1
348 errors

Single

150 errors

Single

98 errors

SW

71 errors

H

11 errors

B

5 errors

N

5 errors

A

3 errors

i

5
errors

Other
Errors

2
107 errors

SingleSingle
SingleSingle

50 errors

SingleSingle
CONNECTEDCONNECTED

27 errors

SWSingle
CONNECTEDCONNECTED

10 errors

SingleSingle
SingleSingle

9 errors

SWSW
SWSW

11 errors

Other
Errors

3
11 errors

Single

Single

Single

Single
Single

Single
Single

Single

Single

6 errors

Single

Single

Single

CONNECTED

CONNECTED

Single
CONNECTED

CONNECTED

Single

5 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

SingleSingle

Single

SingleSingle

Single

1 errors

Other
Errors

2 71 errors

4

Targets

1 51 errors

4

21 errors

H

18 errors

d

9 errors

3

3 errors

A

2 20 errors

44 44

11 errors

3Single
CONNECTEDCONNECTED

4 errors

33 CONNECTEDCONNECTED

4 errors

43 CONNECTEDCONNECTED

1 errors

Other
Errors

3 18 errors

N

Targets

1 16 errors

N

16 errors

l

 2 1 errors 1 errors

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 1/3

LgEval Structure Confusion Histograms
Mon Jun 23 21:21:34 2025

VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_1_min_3
Subgraphs: 1 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (12 incorrect targets; 587 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 12 incorrect targets, 587 errors.

Object Targets Primitive Targets and Errors

1 467 errors

Single

Targets

1
348 errors

Single

150 errors

Single

98 errors

SW

71 errors

H

11 errors

B

5 errors

N

5 errors

A

3 errors

i

5
errors

Other
Errors

2
107 errors

SingleSingle
SingleSingle

50 errors

SingleSingle
CONNECTEDCONNECTED

27 errors

SWSingle
CONNECTEDCONNECTED

10 errors

SingleSingle
SingleSingle

9 errors

SWSW
SWSW

11 errors

Other
Errors

3
11 errors

Single

Single

Single

Single
Single

Single
Single

Single

Single

6 errors

Single

Single

Single

CONNECTED

CONNECTED

Single
CONNECTED

CONNECTED

Single

5 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

4
1 errors

Single

Single

Single

Single

Single

Single Single

Single

Single

Single

SingleSingle

Single

SingleSingle

Single

1 errors

Other
Errors

2 71 errors

4

Targets

1 51 errors

4

21 errors

H

18 errors

d

9 errors

3

3 errors

A

2 20 errors

44 44

11 errors

3Single
CONNECTEDCONNECTED

4 errors

33 CONNECTEDCONNECTED

4 errors

43 CONNECTEDCONNECTED

1 errors

Other
Errors

3 18 errors

N

Targets

1 16 errors

N

16 errors

l

 2 1 errors 1 errors

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_1_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 1/3(b) Focal loss, γ = 0.5

Figure 6.7: Node-level error analysis comparison between two models on the USPTO test set:
(a) trained with standard cross-entropy (CE) loss, and (b) trained with Focal loss, γ = 0.5 (see
Table 6.6). Single line and ‘4’ are the most frequent sources of error in both models; however,
the Focal loss model reduces the errors slightly.

explicit in the prediction graph, but instead recovered during symbolic graph construction. Future
work could explore models that operate on a more semantically-aligned graph structure, closer to
the final merged molecular graph, in order to reduce dependence on postprocessing heuristics and
better align the learning signal with the final output structure.

6.5.3 Loss Aggregation

We evaluate two strategies for combining task-specific losses: (1) a simple summation and (2) a com-
plemented harmonic mean (CHM), as described in Section 6.4. While summation (Equation 6.11)
offers a straightforward baseline, it may allow one task with high loss magnitude to dominate train-
ing. In contrast, CHM aggregation (Equation 6.13) normalizes and complements individual task
losses to emphasize underperforming tasks and promote balanced convergence.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 178

LgEval Structure Confusion Histograms
Mon Jun 23 21:58:33 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (36 incorrect targets; 5179 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 36 incorrect targets, 5179 errors.

Object Targets Primitive Targets and Errors

1 3873 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3468 errors

SingleSingle
CONNECTEDCONNECTED

2605 errors

SingleSingle

451 errors

SingleSingle
CONNECTEDCONNECTED

215 errors

ASingle
CONNECTEDCONNECTED

125 errors

SingleSingle
SingleSingle

43 errors

SingleSW
CONNECTEDCONNECTED

14 errors

SingleB CONNECTEDCONNECTED

6 errors

HSingle
CONNECTEDCONNECTED

4 errors

PSingle
CONNECTEDCONNECTED

2 errors

SingleSW

2 errors

aSingle
CONNECTEDCONNECTED

1 errors

AA CONNECTEDCONNECTED

2
371 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

214 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

54 errors

Single

Single

Single

SingleSingle

34 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

31 errors

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle
CONNECTEDCONNECTED

11 errors

Single

Single

Single

CONNECTEDCONNECTED

6 errors

Single

Single

SW
CONNECTEDCONNECTED

CONNECTEDCONNECTED

3 errors

Single

Single

Single

Single
Single

Single

Single
Single

Single

3 errors

Single

SW

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

C

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Single

Single

P
CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

SW

SW

Single

SWSW

3
19 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle

CONNECTEDSingle

CONNECTED

CONNECTED

Single

CONNECTED

Single

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

SingleSingle

CONNECTED

CONNECTEDCONNECTECONNECTED

5 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

CONNECTE

CONNECTED

2 errors

Single

Single

Single

Single

Single

SingleSingle

Single

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

1 errors

Single

Single

Single

Single

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

1 errors

Single

H

Single

Single

Single

CONNECTEDCONNECTECONNECTED

SingleSingle

CONNECTE

Single

CONNECTEDSingle

Single

CONNECTED

4
13 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTED

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTE

Single

Single CONNECTE

CONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTE

CONNECTE

CONNECTED

CONNECTE

CONNECTED

4 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

Single

CONNECTED

CONNECTED

CONNECTE

Single

CONNECTED

1 errors

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle Single

SingleSingle

Single

Single

Single

5
2 errors

Single

Single

Single

Single

Single

Single
Single

CONNECTED

SingleCONNECTEDCONNECTED
CONNECTED

CONNECTED

SingleCONNECTED

SingleCONNECTED

Single
Single

Single
Single

Single

Single
CONNECTED

Single

1 errors

Single

SW
Single

Single

SW

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

1 errors

SW

SW
Single

Single

Single

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED

2 601 errors

SingleH CONNECTEDCONNECTED

Targets

1 322 errors

H

Single

H

CONNECTED

CONNECTED

H

CONNECTED

CONNECTED

H

316 errors

H

H

Single

HH

4 errors

Single

N

N
CONNECTED

N
CONNECTEDCONNECTED

CONNECTED

N

2 errors

Single

P

P

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

2 202 errors

Single

H

H

H
CONNECTE

H
H CONNECTE

HH CONNECTE

CONNECTEDCONNECTEDH
CONNECTE

H

195 errors

H

H

H

Single

H
H HH
H

H

7 errors

H

Single

H

H

CONNECTECONNECTED

H
H

CONNECTED

CONNECTED

CONNECTE

CONNECTEDH
HHH

3 75 errors

SingleH CONNECTEDCONNECTED

75 errors

HSingle

4 1 errors

H

Single

H

Single

CONNECTE

Single

CONNECTE

H
CONNECTEDCONNECTE

H
CONNECTED

CONNECTEDCONNECTECONNECTED

Single

1 errors

Single

Single

P

P

CONNECTED

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

CONNECTE

CONNECTED

CONNECTE

5 1 errors

Single

Single

H

H
H

Single

CONNECTED

CONNECTED
SingleCONNECTED

CONNECTED
HH
CONNECTED

CONNECTED
H CONNECTED

H

CONNECTED
H CONNECT

CONNECTED

H

CONNECTED

CONNECT

1 errors

Single

Single

H

H
H

SingleSingle

HH
HH

H H

3 233 errors

SingleN CONNECTEDCONNECTED

Targets

1 179 errors

N

Single

N

N
N

CONNECTECONNECTED

NCONNECTED
N

CONNECTEDCONNECTE

N
CONNECTEDN

N

157 errors

N

N

N

Single

N
N

N
N NN

22 errors

Single

N

N

N
CONNECTE

CONNECTE

CONNECTED

NN
CONNECTEDNN

CONNECTE

CONNECTE

NN

6/23/25, 10:01 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html 1/6

LgEval Structure Confusion Histograms
Mon Jun 23 21:58:33 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (36 incorrect targets; 5179 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 36 incorrect targets, 5179 errors.

Object Targets Primitive Targets and Errors

1 3873 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3468 errors

SingleSingle
CONNECTEDCONNECTED

2605 errors

SingleSingle

451 errors

SingleSingle
CONNECTEDCONNECTED

215 errors

ASingle
CONNECTEDCONNECTED

125 errors

SingleSingle
SingleSingle

43 errors

SingleSW
CONNECTEDCONNECTED

14 errors

SingleB CONNECTEDCONNECTED

6 errors

HSingle
CONNECTEDCONNECTED

4 errors

PSingle
CONNECTEDCONNECTED

2 errors

SingleSW

2 errors

aSingle
CONNECTEDCONNECTED

1 errors

AA CONNECTEDCONNECTED

2
371 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

214 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

54 errors

Single

Single

Single

SingleSingle

34 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

31 errors

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle
CONNECTEDCONNECTED

11 errors

Single

Single

Single

CONNECTEDCONNECTED

6 errors

Single

Single

SW
CONNECTEDCONNECTED

CONNECTEDCONNECTED

3 errors

Single

Single

Single

Single
Single

Single

Single
Single

Single

3 errors

Single

SW

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

C

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Single

Single

P
CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

SW

SW

Single

SWSW

3
19 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle

CONNECTEDSingle

CONNECTED

CONNECTED

Single

CONNECTED

Single

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

SingleSingle

CONNECTED

CONNECTEDCONNECTECONNECTED

5 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

CONNECTE

CONNECTED

2 errors

Single

Single

Single

Single

Single

SingleSingle

Single

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

1 errors

Single

Single

Single

Single

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

1 errors

Single

H

Single

Single

Single

CONNECTEDCONNECTECONNECTED

SingleSingle

CONNECTE

Single

CONNECTEDSingle

Single

CONNECTED

4
13 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTED

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTE

Single

Single CONNECTE

CONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTE

CONNECTE

CONNECTED

CONNECTE

CONNECTED

4 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

Single

CONNECTED

CONNECTED

CONNECTE

Single

CONNECTED

1 errors

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle Single

SingleSingle

Single

Single

Single

5
2 errors

Single

Single

Single

Single

Single

Single
Single

CONNECTED

SingleCONNECTEDCONNECTED
CONNECTED

CONNECTED

SingleCONNECTED

SingleCONNECTED

Single
Single

Single
Single

Single

Single
CONNECTED

Single

1 errors

Single

SW
Single

Single

SW

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

1 errors

SW

SW
Single

Single

Single

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED

2 601 errors

SingleH CONNECTEDCONNECTED

Targets

1 322 errors

H

Single

H

CONNECTED

CONNECTED

H

CONNECTED

CONNECTED

H

316 errors

H

H

Single

HH

4 errors

Single

N

N
CONNECTED

N
CONNECTEDCONNECTED

CONNECTED

N

2 errors

Single

P

P

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

2 202 errors

Single

H

H

H
CONNECTE

H
H CONNECTE

HH CONNECTE

CONNECTEDCONNECTEDH
CONNECTE

H

195 errors

H

H

H

Single

H
H HH
H

H

7 errors

H

Single

H

H

CONNECTECONNECTED

H
H

CONNECTED

CONNECTED

CONNECTE

CONNECTEDH
HHH

3 75 errors

SingleH CONNECTEDCONNECTED

75 errors

HSingle

4 1 errors

H

Single

H

Single

CONNECTE

Single

CONNECTE

H
CONNECTEDCONNECTE

H
CONNECTED

CONNECTEDCONNECTECONNECTED

Single

1 errors

Single

Single

P

P

CONNECTED

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

CONNECTE

CONNECTED

CONNECTE

5 1 errors

Single

Single

H

H
H

Single

CONNECTED

CONNECTED
SingleCONNECTED

CONNECTED
HH
CONNECTED

CONNECTED
H CONNECTED

H

CONNECTED
H CONNECT

CONNECTED

H

CONNECTED

CONNECT

1 errors

Single

Single

H

H
H

SingleSingle

HH
HH

H H

3 233 errors

SingleN CONNECTEDCONNECTED

Targets

1 179 errors

N

Single

N

N
N

CONNECTECONNECTED

NCONNECTED
N

CONNECTEDCONNECTE

N
CONNECTEDN

N

157 errors

N

N

N

Single

N
N

N
N NN

22 errors

Single

N

N

N
CONNECTE

CONNECTE

CONNECTED

NN
CONNECTEDNN

CONNECTE

CONNECTE

NN

6/23/25, 10:01 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html 1/6

LgEval Structure Confusion Histograms
Mon Jun 23 21:58:33 2025

VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 1 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (36 incorrect targets; 5179 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 36 incorrect targets, 5179 errors.

Object Targets Primitive Targets and Errors

1 3873 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3468 errors

SingleSingle
CONNECTEDCONNECTED

2605 errors

SingleSingle

451 errors

SingleSingle
CONNECTEDCONNECTED

215 errors

ASingle
CONNECTEDCONNECTED

125 errors

SingleSingle
SingleSingle

43 errors

SingleSW
CONNECTEDCONNECTED

14 errors

SingleB CONNECTEDCONNECTED

6 errors

HSingle
CONNECTEDCONNECTED

4 errors

PSingle
CONNECTEDCONNECTED

2 errors

SingleSW

2 errors

aSingle
CONNECTEDCONNECTED

1 errors

AA CONNECTEDCONNECTED

2
371 errors

Single

Single

Single

CONNECTEDCONNECTED

Single
CONNECTEDCONNECTED

Single

214 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

54 errors

Single

Single

Single

SingleSingle

34 errors

Single

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

31 errors

Single

Single

Single

CONNECTEDCONNECTED

SingleSingle
CONNECTEDCONNECTED

11 errors

Single

Single

Single

CONNECTEDCONNECTED

6 errors

Single

Single

SW
CONNECTEDCONNECTED

CONNECTEDCONNECTED

3 errors

Single

Single

Single

Single
Single

Single

Single
Single

Single

3 errors

Single

SW

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

C

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Single

Single

P
CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

SW

SW

Single

SWSW

3
19 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle

CONNECTEDSingle

CONNECTED

CONNECTED

Single

CONNECTED

Single

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

SingleSingle

CONNECTED

CONNECTEDCONNECTECONNECTED

5 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

CONNECTE

CONNECTED

2 errors

Single

Single

Single

Single

Single

SingleSingle

Single

SingleSingle

2 errors

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTE

CONNECTED

CONNECTED

CONNECTED

CONNECTED

1 errors

Single

Single

Single

Single

CONNECTED

SingleSingle

CONNECTED

CONNECTEDCONNECTED

1 errors

Single

H

Single

Single

Single

CONNECTEDCONNECTECONNECTED

SingleSingle

CONNECTE

Single

CONNECTEDSingle

Single

CONNECTED

4
13 errors

Single

Single

Single

Single

Single

CONNECTEDCONNECTED

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTE

Single

Single CONNECTE

CONNECTED

8 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTED

CONNECTE

CONNECTE

CONNECTED

CONNECTE

CONNECTED

4 errors

Single

Single

Single

Single

CONNECTED

CONNECTE

Single

CONNECTED

CONNECTED

CONNECTE

Single

CONNECTED

1 errors

Single

Single

Single

Single

Single

Single

SingleSingle

SingleSingle Single

SingleSingle

Single

Single

Single

5
2 errors

Single

Single

Single

Single

Single

Single
Single

CONNECTED

SingleCONNECTEDCONNECTED
CONNECTED

CONNECTED

SingleCONNECTED

SingleCONNECTED

Single
Single

Single
Single

Single

Single
CONNECTED

Single

1 errors

Single

SW
Single

Single

SW

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

1 errors

SW

SW
Single

Single

Single

CONNECTED

CONNECT
CONNECTED

CONNECTED
CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED
CONNECT

CONNECTED

2 601 errors

SingleH CONNECTEDCONNECTED

Targets

1 322 errors

H

Single

H

CONNECTED

CONNECTED

H

CONNECTED

CONNECTED

H

316 errors

H

H

Single

HH

4 errors

Single

N

N
CONNECTED

N
CONNECTEDCONNECTED

CONNECTED

N

2 errors

Single

P

P

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

2 202 errors

Single

H

H

H
CONNECTE

H
H CONNECTE

HH CONNECTE

CONNECTEDCONNECTEDH
CONNECTE

H

195 errors

H

H

H

Single

H
H HH
H

H

7 errors

H

Single

H

H

CONNECTECONNECTED

H
H

CONNECTED

CONNECTED

CONNECTE

CONNECTEDH
HHH

3 75 errors

SingleH CONNECTEDCONNECTED

75 errors

HSingle

4 1 errors

H

Single

H

Single

CONNECTE

Single

CONNECTE

H
CONNECTEDCONNECTE

H
CONNECTED

CONNECTEDCONNECTECONNECTED

Single

1 errors

Single

Single

P

P

CONNECTED

CONNECTED

P
CONNECTED

CONNECTED

P
CONNECTED

CONNECTE

CONNECTED

CONNECTE

5 1 errors

Single

Single

H

H
H

Single

CONNECTED

CONNECTED
SingleCONNECTED

CONNECTED
HH
CONNECTED

CONNECTED
H CONNECTED

H

CONNECTED
H CONNECT

CONNECTED

H

CONNECTED

CONNECT

1 errors

Single

Single

H

H
H

SingleSingle

HH
HH

H H

3 233 errors

SingleN CONNECTEDCONNECTED

Targets

1 179 errors

N

Single

N

N
N

CONNECTECONNECTED

NCONNECTED
N

CONNECTEDCONNECTE

N
CONNECTEDN

N

157 errors

N

N

N

Single

N
N

N
N NN

22 errors

Single

N

N

N
CONNECTE

CONNECTE

CONNECTED

NN
CONNECTEDNN

CONNECTE

CONNECTE

NN

6/23/25, 10:01 PM localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html

localhost:8000/outputs/fullset/indigo_5k/test_uspto_5k/Results_VGP_6NN_resnest_pretrained_indigo_5k_90/confHist_outputs/CH_VGP_6NN_resnest_pretrained_indigo_5k_90_vs_line__size_2_min_1.html 1/6(a) CE loss

LgEval Structure Confusion Histograms
Mon Jun 23 21:29:11 2025

VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (32 incorrect targets; 4965 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 32 incorrect targets, 4965 errors.

Object Targets Primitive Targets and Errors

1 3612 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3207 errors

SingleSingle
CONNECTEDCONNECTED

2492 errors

SingleSingle

380 errors

SingleSingle
CONNECTEDCONNECTED

141 errors

SWSingle
CONNECTEDCONNECTED

67 errors

SingleSingle
SingleSingle

55 errors

SingleH CONNECTEDCONNECTED

13 errors

BSingle
CONNECTEDCONNECTED

11 errors

SWSW
CONNECTEDCONNECTED

9 errors

SWSingle

9 errors

ASingle
CONNECTEDCONNECTED

7 errors

HH CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

S

2
352 errors

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle
CONNECTED

CONNECTED

109 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

45 errors

Single

Single

Single

SingleSingle

42 errors

Single

Single

SW

CONNECTED

CONNECTED

CONNECTED

CONNECTED

37 errors

SW

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

29 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

SingleSingle
CONNECTED

26 errors

Single

SW

SW
CONNECTED

CONNECTED

SWSW
CONNECTED

CONNECTED

20 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTEDCONNECTED

7 errors

Single

Single

Single

SingleSingle

Single
SingleSingle

Single

7 errors

Single

SW

Single

CONNECTEDCONNECTED

5 errors

SW

SW

Single

SWSW

4 errors

Single

SW

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3
38 errors

Single

Single

Single

Single

Single

Single

SingleCONNECTED

CONNECTEDSingle

CONNECTED

Single

Single

CONNECTED

CONNECTED

CONNECTED

14 errors

Single

Single

Single

Single

CONNECTED

Single

CONNECTED

CONNECTEDCONNECTEDCONNECTE

Single

CONNECTE

10 errors

Single

Single

Single

Single

CONNECTEDCONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

6 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTESingle

CONNECTED

CONNECTEDCONNECTEDCONNECTED

Single

CONNECTED

3 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

2 errors

Other
Errors

4
13 errors

Single

Single

Single

Single

CONNECTECONNECTED

CONNECTE

CONNECTE

CONNECTED

Single

CONNECTED

SingleSingleSingle

CONNECTECONNECTED

4 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTECONNECTED

Single

CONNECTE

CONNECTED

9 errors

Other
Errors

5
2 errors

Single

Single

Single

Single

Single

CONNECT

CONNECTED
Single

Single
Single

CONNECTED
CONNECT

Single
Single

CONNECTED

Single
Single

Single

CONNECTED

SingleSingle
Single

CONNECTED

Single
CONNECTED

2 errors

Other
Errors

2 459 errors

SingleH CONNECTEDCONNECTED

Targets

1 217 errors

H

H

Single

H

CONNECTED

CONNECTED

CONNECTED

CONNECTED

H
H

CONNECTEDCONNECTED

H
H
H

H

169 errors

H

H

H

Single

H
H

H
H

H H

24 errors

H

H

H

H

HH H
H

H
H

14 errors

H

H

H

H
CONNECTE

H CONNECTE

H
H
H

CONNECTE

CONNECTED

H

H

CONNECTE

CONNECTED

4 errors

H

H

H

SW

H
HHH

H
H

3 errors

H

SW

H

H

CONNECTECONNECTECONNECTED

H
HCONNECTED

H

CONNECTED

H
CONNECTEDH
H

3 errors

Other
Errors

2 207 errors

H

H

Single

HH

CONNECTED

CONNECTEDCONNECTED

CONNECTED

202 errors

H

H

Single

HH

5 errors

Other
Errors

3 31 errors

SingleH CONNECTEDCONNECTED

29 errors

SingleH

2 errors

Other
Errors

 4 2 errors

H

H

Single

Single

CONNECTED

CONNECTED

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

H

CONNECTE

CONNECTED

Single

H

2 errors

Other
Errors

 5 1 errors

H

Single

Single

H
H

CONNECT

CONNECTED
CONNECTEDCONNECTED

HH

CONNECTED

Single

H

Single

CONNECTEDCONNECTEDH
CONNECTED

CONNECTED

CONNECT

H
CONNECTED

H
CONNECTED

1 errors

Other
Errors

 6 1 errors

Single

HSingle

H

Single H

Single
HCONNECTED

CONNECTED

CONNECTEDSingle
CONNECSingle

CONNECTED

SingleHCONNECTED

H

HCONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

HCONNECTED

Single
CONNECTED

CONNEC

Single
CONNEC

CONNECTED

CONNECHCONNECTED

1 errors

Other
Errors

3 351 errors Targets

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 1/5

LgEval Structure Confusion Histograms
Mon Jun 23 21:29:11 2025

VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (32 incorrect targets; 4965 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 32 incorrect targets, 4965 errors.

Object Targets Primitive Targets and Errors

1 3612 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3207 errors

SingleSingle
CONNECTEDCONNECTED

2492 errors

SingleSingle

380 errors

SingleSingle
CONNECTEDCONNECTED

141 errors

SWSingle
CONNECTEDCONNECTED

67 errors

SingleSingle
SingleSingle

55 errors

SingleH CONNECTEDCONNECTED

13 errors

BSingle
CONNECTEDCONNECTED

11 errors

SWSW
CONNECTEDCONNECTED

9 errors

SWSingle

9 errors

ASingle
CONNECTEDCONNECTED

7 errors

HH CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

S

2
352 errors

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle
CONNECTED

CONNECTED

109 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

45 errors

Single

Single

Single

SingleSingle

42 errors

Single

Single

SW

CONNECTED

CONNECTED

CONNECTED

CONNECTED

37 errors

SW

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

29 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

SingleSingle
CONNECTED

26 errors

Single

SW

SW
CONNECTED

CONNECTED

SWSW
CONNECTED

CONNECTED

20 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTEDCONNECTED

7 errors

Single

Single

Single

SingleSingle

Single
SingleSingle

Single

7 errors

Single

SW

Single

CONNECTEDCONNECTED

5 errors

SW

SW

Single

SWSW

4 errors

Single

SW

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3
38 errors

Single

Single

Single

Single

Single

Single

SingleCONNECTED

CONNECTEDSingle

CONNECTED

Single

Single

CONNECTED

CONNECTED

CONNECTED

14 errors

Single

Single

Single

Single

CONNECTED

Single

CONNECTED

CONNECTEDCONNECTEDCONNECTE

Single

CONNECTE

10 errors

Single

Single

Single

Single

CONNECTEDCONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

6 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTESingle

CONNECTED

CONNECTEDCONNECTEDCONNECTED

Single

CONNECTED

3 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

2 errors

Other
Errors

4
13 errors

Single

Single

Single

Single

CONNECTECONNECTED

CONNECTE

CONNECTE

CONNECTED

Single

CONNECTED

SingleSingleSingle

CONNECTECONNECTED

4 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTECONNECTED

Single

CONNECTE

CONNECTED

9 errors

Other
Errors

5
2 errors

Single

Single

Single

Single

Single

CONNECT

CONNECTED
Single

Single
Single

CONNECTED
CONNECT

Single
Single

CONNECTED

Single
Single

Single

CONNECTED

SingleSingle
Single

CONNECTED

Single
CONNECTED

2 errors

Other
Errors

2 459 errors

SingleH CONNECTEDCONNECTED

Targets

1 217 errors

H

H

Single

H

CONNECTED

CONNECTED

CONNECTED

CONNECTED

H
H

CONNECTEDCONNECTED

H
H
H

H

169 errors

H

H

H

Single

H
H

H
H

H H

24 errors

H

H

H

H

HH H
H

H
H

14 errors

H

H

H

H
CONNECTE

H CONNECTE

H
H
H

CONNECTE

CONNECTED

H

H

CONNECTE

CONNECTED

4 errors

H

H

H

SW

H
HHH

H
H

3 errors

H

SW

H

H

CONNECTECONNECTECONNECTED

H
HCONNECTED

H

CONNECTED

H
CONNECTEDH
H

3 errors

Other
Errors

2 207 errors

H

H

Single

HH

CONNECTED

CONNECTEDCONNECTED

CONNECTED

202 errors

H

H

Single

HH

5 errors

Other
Errors

3 31 errors

SingleH CONNECTEDCONNECTED

29 errors

SingleH

2 errors

Other
Errors

 4 2 errors

H

H

Single

Single

CONNECTED

CONNECTED

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

H

CONNECTE

CONNECTED

Single

H

2 errors

Other
Errors

 5 1 errors

H

Single

Single

H
H

CONNECT

CONNECTED
CONNECTEDCONNECTED

HH

CONNECTED

Single

H

Single

CONNECTEDCONNECTEDH
CONNECTED

CONNECTED

CONNECT

H
CONNECTED

H
CONNECTED

1 errors

Other
Errors

 6 1 errors

Single

HSingle

H

Single H

Single
HCONNECTED

CONNECTED

CONNECTEDSingle
CONNECSingle

CONNECTED

SingleHCONNECTED

H

HCONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

HCONNECTED

Single
CONNECTED

CONNEC

Single
CONNEC

CONNECTED

CONNECHCONNECTED

1 errors

Other
Errors

3 351 errors Targets

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 1/5

NSingle
CONNECTEDCONNECTED

1 244 errors

N

N

N

Single

N
CONNECTE

NNN

CONNECTEDCONNECTED

CONNECTEDNCONNECTED
N

CONNECTE

181 errors

N

N

N

Single

NN
N

N N
N

21 errors

SW

N

N

N

CONNECTEN
CONNECTED

CONNECTEN
N

CONNECTEN
CONNECTED

CONNECTEN
N

19 errors

N

N

H

N

N

N
NCONNECTED
NCONNECTED

CONNECTED

N
CONNECTED

CONNECTED

NCONNECTED

15 errors

N

N

N

Single

N
CONNECTE

NNN

CONNECTEDCONNECTED

CONNECTEDNCONNECTED
N

CONNECTE

7 errors

N

N

N

N

CONNECTECONNECTE

NN

N
CONNECTEDNCONNECTED

CONNECTE

N
N

CONNECTE

1 errors

Other
Errors

2 67 errors

SingleN CONNECTEDCONNECTED

48 errors

Singlel CONNECTEDCONNECTED

18 errors

SingleN

1 errors

Other
Errors

3 32 errors

N

Single

N

N
Single

CONNECT

CONNECT
CONNECTED

N
CONNECTED

CONNECTED

N
CONNECT

N
N

CONNECTED
CONNECTEDSingleSingleN

CONNECT
CONNECTEDN

CONNECTED

CONNECTED

19 errors

Single

N
N

N
Single

N
N

CONNECT
CONNECTED

CONNECTED

N CONNECTED

CONNECT

N
N

CONNECTED
CONNECTEDN

CONNECTED

8 errors

Single

Single

N

N
N

N
Single

NN

Single

NN N

5 errors

Other
Errors

4 3 errors

N

Single

N

N
N
N
CONNECTED

CONNECTED

NN
N

N N
CONNECTED

N

CONNECT

N
N

CONNECTED

CONNECTEDNCONNECTEDN

N

CONNECT

3 errors

N

SW
N

N
N
N
CONNECTED

CONNECTED

NN
N

N N
CONNECTED

N

CONNECT

N
N

CONNECTED

CONNECTEDNCONNECTEDN

N

CONNECT

 5 2 errors

N

N

Single

NN

CONNECTED

CONNECTED

CONNECTED

CONNECTED

2 errors

Other
Errors

 6 2 errors

Single

Single

N

Single
CONNECTEDCONNECTED

CONNECTEDCONNECTED

Single

2 errors

Other
Errors

 7 1 errors

Single

Single

N

N
CONNECTE

CONNECTED

CONNECTEDSingle

NN CONNECTE

CONNECTED

CONNECTEDCONNECTED

Single

CONNECTED

1 errors

Other
Errors

4 107 errors

SingleC CONNECTEDCONNECTED

Targets

1 101 errors

SingleC CONNECTEDCONNECTED

49 errors

SingleC

31 errors

HC CONNECTEDCONNECTED

12 errors

SWC CONNECTEDCONNECTED

6 errors

CSingle
CONNECTEDCONNECTED

3 errors

Other
Errors

2 4 errors

Single

C

Single

CONNECTEDCONNECTED

CONNECTED

Single
CONNECTED

Single

4 errors

Other
Errors

 3 2 errors

Single

Single

Single

C

Single

Single SingleSingleSingle

Single

CONNECTE

CONNECTED

CONNECTEDCONNECTECONNECTED

CONNECTED

2 errors

Other
Errors

5 90 errors

OSingle
CONNECTEDCONNECTED

Targets

1 86 errors

SingleO CONNECTEDCONNECTED

32 errors

SingleO

23 errors

HO CONNECTEDCONNECTED

12 errors

SWO CONNECTEDCONNECTED

4 errors

SingleSingle
CONNECTEDCONNECTED

3 errors

OSingle
CONNECTEDCONNECTED

3 errors

SingleSingle

9 errors

Other
Errors

2 4 errors

O

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

SingleSingle

3 errors

Single

Single

O

SingleSingle

1 errors

Other
Errors

6 81 errors

SWSingle
CONNECTEDCONNECTED

Targets

1 68 errors

SWSingle
CONNECTEDCONNECTED

61 errors

SWSingle

6 errors

SWSingle
CONNECTEDCONNECTED

1 errors

Other
Errors

2 9 errors

Single

SW

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

SingleSingle

3 errors

SW

SW

SW

CONNECTEDCONNECTED

CONNECTEDCONNECTED

SWSW

6 errors

Other
Errors

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 2/5

LgEval Structure Confusion Histograms
Mon Jun 23 21:29:11 2025

VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3
Subgraphs: 2 node(s)

Note: Only primitive-level graph confusions occurring at least 3 times appear below.
Note: Individual primitive errors may appear in multiple error graphs (e.g. due to segmentation errors).

Object histograms (32 incorrect targets; 4965 errors)

 Save Selected Files

Object Confusion Histograms
Object structures recognized incorrectly are shown at left, sorted by decreasing frequency. 32 incorrect targets, 4965 errors.

Object Targets Primitive Targets and Errors

1 3612 errors

SingleSingle
CONNECTEDCONNECTED

Targets

1
3207 errors

SingleSingle
CONNECTEDCONNECTED

2492 errors

SingleSingle

380 errors

SingleSingle
CONNECTEDCONNECTED

141 errors

SWSingle
CONNECTEDCONNECTED

67 errors

SingleSingle
SingleSingle

55 errors

SingleH CONNECTEDCONNECTED

13 errors

BSingle
CONNECTEDCONNECTED

11 errors

SWSW
CONNECTEDCONNECTED

9 errors

SWSingle

9 errors

ASingle
CONNECTEDCONNECTED

7 errors

HH CONNECTEDCONNECTED

4 errors

2Single
CONNECTEDCONNECTED

S

2
352 errors

Single

Single

Single

CONNECTED

CONNECTED

SingleSingle
CONNECTED

CONNECTED

109 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

45 errors

Single

Single

Single

SingleSingle

42 errors

Single

Single

SW

CONNECTED

CONNECTED

CONNECTED

CONNECTED

37 errors

SW

Single

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTED

29 errors

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

SingleSingle
CONNECTED

26 errors

Single

SW

SW
CONNECTED

CONNECTED

SWSW
CONNECTED

CONNECTED

20 errors

Single

Single

Single

CONNECTEDCONNECTED

CONNECTEDCONNECTED

CONNECTEDCONNECTED

7 errors

Single

Single

Single

SingleSingle

Single
SingleSingle

Single

7 errors

Single

SW

Single

CONNECTEDCONNECTED

5 errors

SW

SW

Single

SWSW

4 errors

Single

SW

Single

CONNECTED

CONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3
38 errors

Single

Single

Single

Single

Single

Single

SingleCONNECTED

CONNECTEDSingle

CONNECTED

Single

Single

CONNECTED

CONNECTED

CONNECTED

14 errors

Single

Single

Single

Single

CONNECTED

Single

CONNECTED

CONNECTEDCONNECTEDCONNECTE

Single

CONNECTE

10 errors

Single

Single

Single

Single

CONNECTEDCONNECTED

CONNECTED

CONNECTED

CONNECTED

CONNECTED

6 errors

Single

Single

Single

Single

CONNECTED

CONNECTECONNECTESingle

CONNECTED

CONNECTEDCONNECTEDCONNECTED

Single

CONNECTED

3 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTED

CONNECTED

3 errors

Single

Single

Single

Single

CONNECTED

CONNECTEDCONNECTEDCONNECTE

CONNECTED

CONNECTE

CONNECTED

CONNECTED

2 errors

Other
Errors

4
13 errors

Single

Single

Single

Single

CONNECTECONNECTED

CONNECTE

CONNECTE

CONNECTED

Single

CONNECTED

SingleSingleSingle

CONNECTECONNECTED

4 errors

Single

Single

Single

Single

Single

CONNECTED

CONNECTED

CONNECTECONNECTED

Single

CONNECTE

CONNECTED

9 errors

Other
Errors

5
2 errors

Single

Single

Single

Single

Single

CONNECT

CONNECTED
Single

Single
Single

CONNECTED
CONNECT

Single
Single

CONNECTED

Single
Single

Single

CONNECTED

SingleSingle
Single

CONNECTED

Single
CONNECTED

2 errors

Other
Errors

2 459 errors

SingleH CONNECTEDCONNECTED

Targets

1 217 errors

H

H

Single

H

CONNECTED

CONNECTED

CONNECTED

CONNECTED

H
H

CONNECTEDCONNECTED

H
H
H

H

169 errors

H

H

H

Single

H
H

H
H

H H

24 errors

H

H

H

H

HH H
H

H
H

14 errors

H

H

H

H
CONNECTE

H CONNECTE

H
H
H

CONNECTE

CONNECTED

H

H

CONNECTE

CONNECTED

4 errors

H

H

H

SW

H
HHH

H
H

3 errors

H

SW

H

H

CONNECTECONNECTECONNECTED

H
HCONNECTED

H

CONNECTED

H
CONNECTEDH
H

3 errors

Other
Errors

2 207 errors

H

H

Single

HH

CONNECTED

CONNECTEDCONNECTED

CONNECTED

202 errors

H

H

Single

HH

5 errors

Other
Errors

3 31 errors

SingleH CONNECTEDCONNECTED

29 errors

SingleH

2 errors

Other
Errors

 4 2 errors

H

H

Single

Single

CONNECTED

CONNECTED

Single

CONNECTED

CONNECTED

CONNECTE

CONNECTED

H

CONNECTE

CONNECTED

Single

H

2 errors

Other
Errors

 5 1 errors

H

Single

Single

H
H

CONNECT

CONNECTED
CONNECTEDCONNECTED

HH

CONNECTED

Single

H

Single

CONNECTEDCONNECTEDH
CONNECTED

CONNECTED

CONNECT

H
CONNECTED

H
CONNECTED

1 errors

Other
Errors

 6 1 errors

Single

HSingle

H

Single H

Single
HCONNECTED

CONNECTED

CONNECTEDSingle
CONNECSingle

CONNECTED

SingleHCONNECTED

H

HCONNECTED

CONNECTED

CONNECTEDCONNECTED

CONNECTED

HCONNECTED

Single
CONNECTED

CONNEC

Single
CONNEC

CONNECTED

CONNECHCONNECTED

1 errors

Other
Errors

3 351 errors Targets

6/23/25, 9:58 PM CH_VGP_6NN_resnest_pretrained_gat_indigo_5k_23_vs_line__size_2_min_3.html

file:///Users/ayushkumarshah/Library/Application Support/Mountain Duck/Volumes.noindex/rjb.cs.rit.edu – SFTP.localized/Desktop/MathSeer/graphics-extraction/modules/lgap-parser/outputs/fullset/test_indigo_5k/Results_VGP_6NN_re… 1/5

(b) Focal loss, γ = 0.5

Figure 6.8: Edge-level error analysis comparing models trained with (a) standard cross-entropy
(CE) loss and (b) Focal loss, γ = 0.5 on the USPTO test set (truncated at right for space). In
both models (see Table6.6), the most frequent edge errors involve missed connections between pairs
of Single lines, as well as between Single lines and atom primitives such as H and N. The model
trained with Focal loss reduces the frequency of such errors across the top 2 cases.

Table 6.7: Evaluation of loss aggregation strategies—summation (Sum) and complemented harmonic
mean (CHM)—under different loss function conditions on the InftyMCDB-2 test dataset. F1-scores
are reported for symbol and relationship detection and classification, and expression-level structure
and structure+class accuracy.

Model Aggregation Symbols Relationships Expressions
Detect. +Class Detect. +Class Struct. +Class

CE Loss Sum 99.40 97.90 97.40 96.75 92.70 88.60
CHM 99.50 98.70 98.05 97.65 93.80 90.80

Focal Loss (γ = 0.5, α = 1) Sum 99.51 98.80 98.00 97.60 93.30 89.00
CHM 99.53 98.91 98.17 97.78 94.05 91.55

Focal Loss (γ = 0.5, α = w) Sum 99.55 98.94 98.20 97.85 94.13 91.75
CHM 99.24 98.75 97.83 97.56 93.92 90.98

To assess the interaction between loss aggregation and class imbalance handling, we evaluate both
aggregation methods under three loss function conditions: (1) standard cross-entropy (CE), (2) focal

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 179

Table 6.8: Evaluation of loss aggregation strategies—summation and complemented harmonic mean
(CHM)—on the USPTO test dataset under different loss function conditions. F1-scores are re-
ported for symbol and relationship detection and classification, expression-level structure and struc-
ture+class accuracy, and exact SMILES match. The class weights w used for α-balanced focal loss
are defined in Equation 6.2.

Loss Function Aggregation Symbols Relationships Expressions SMILES
Detect. +Class Detect. +Class Struct. +Class Exact (%)

CE Loss
Sum 99.92 99.88 99.06 99.06 52.68 52.31 89.20
CHM 99.92 99.89 99.13 99.13 53.15 52.80 90.10

Focal (γ = 0.5, α = 1)
Sum 99.92 99.88 99.17 99.17 53.22 52.95 90.90
CHM 99.92 99.89 99.19 99.19 53.43 53.19 91.97

Focal (γ = 0.5, α = w)
Sum 99.92 99.89 99.20 99.20 53.45 53.22 91.99
CHM 99.91 99.88 99.18 99.18 53.40 53.18 91.90

loss without class weighting (γ = 0.5, α = 1), and (3) focal loss with normalized inverse-frequency
weighting (γ = 0.5, α = w). The class weights w are defined in Equation 6.2.

This evaluation allows us to isolate the effects of aggregation from those of loss-level reweighting.
In particular, because CHM is a balancing mechanism, applying it alongside another form of loss
balancing, such as α-weighted focal loss, may lead to overcorrection or over-penalization on easy
or frequent classes. All experiments are conducted on both the USPTO and InftyMCDB-2 test
datasets, with results summarized in Table 6.8.

Discussion. Across both datasets, complemented harmonic mean (CHM) aggregation consistently
improves or maintains performance relative to simple summation, especially under standard CE loss
and non-α-balanced focal loss settings.

On the USPTO dataset, CHM yields notable improvements in expression-level metrics over sum-
mation: for CE loss, it increases structure+class accuracy by +0.49% and exact SMILES match by
+0.90%; for focal loss with γ = 0.5, α = 1, CHM improves structure+class by +0.24% and SMILES
by +1.07%. Similar trends are observed in the InftyMCDB-2 results, where CHM improves ex-
pression structure+class accuracy by +2.2% over CE with summation and by +2.55% over focal
loss (α = 1) with summation. These gains demonstrate CHM’s ability to dynamically emphasize
underperforming tasks, particularly when no explicit class-based loss reweighting is applied.

However, in the α-balanced focal loss condition (γ = 0.5, α = w), CHM slightly underperforms

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 180

compared to summation in expression-level accuracy for both datasets. For instance, on USPTO, the
expression+class accuracy drops by 0.04%, and on InftyMCDB-2, it drops by 0.77%. This suggests
that combining two balancing mechanisms—CHM and focal loss with strong class weighting—may
lead to over-penalization of well-classified examples, increased optimization instability, or reduced
generalization.

Also, expression+class accuracy with CHM and unweighted focal loss (α = 1) is nearly equivalent
to that achieved by summation with weighted focal loss (α = w) on both datasets. This suggests
that CHM aggregation may act as a substitute for class-based loss weighting by adaptively shifting
gradient focus toward underperforming tasks during optimization. In effect, it mimics the role of the
α parameter in focal loss without requiring explicit class frequency statistics, thereby reducing the
need for an additional parameter. This makes CHM a promising direction for achieving balanced
multi-task optimization with fewer tunable components.

These results imply that CHM may be useful not only as a task-level aggregation strategy, but
potentially also as an intra-task loss formulation to replace or complement CE and focal losses
themselves. Future work could explore CHM-style objectives at the individual task level to unify
task and class balancing under a common, adaptive formulation.

Overall, we find that CHM aggregation provides the most benefit in settings without explicit class
reweighting and can serve as a lightweight, hyperparameter-free method to enhance task-level bal-
ance in multi-objective learning frameworks.

6.5.4 Benchmarks

We evaluate our best-performing model configuration—EGATv2 with two stages, two-hop message
passing, contour-based visual primitives, structural and visual noise augmentation, and focal loss
with γ = 0.5 and α = w as defined in Equation 6.2, on several benchmark datasets across math and
chemistry domains.

Datasets and Metrics

For mathematical formula parsing, we use both handwritten and typeset sources, while for chemical
diagram parsing, we focus on chemical structure recognition from synthetic and scanned images.
The datasets and evaluation metrics are summarized below.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 181

(Math) Handwritten Formulas: CROHME 2019. To evaluate handwritten formula parsing,
we use the CROHME 2019 dataset [73,85], which contains expressions captured as online ink data
in InkML format. Each InkML file encodes (x, y) stroke sequences with associated symbol group-
ings, where pen-down and pen-up events define individual strokes. CROHME 2019 provides 9,993
training, 986 validation, and 1,199 test expressions spanning 101 symbol classes and 7 relationship
classes: Right, Sup, Sub, Above, Below, Inside, and NoRelation.

We render each stroke sequence as a binary image at its original resolution to produce raster inputs
compatible with our parsing model. In our pipeline, each stroke is treated as a visual primitive and
processed to extract contours using an adaptive dilation-based preprocessing method. Specifically,
we compute the tight bounding box of each stroke and render it onto a locally padded canvas.
We then apply dilation using a square kernel whose size and number of iterations are determined
dynamically. The kernel size k is computed as:

k = clip
(
max

(
H

W
,
W

H

)
· 10
N

, 2, 4

)
and the number of iterations is given by:

iterations = clip
(
k · 10

N
, 2, 3

)
where H and W are the height and width of the image, N is the number of primitives, and 10 is a
target primitive count. The function clip(x, a, b) constrains x to lie within the range [a, b], defined
as:

clip(x, a, b) = min(max(x, a), b)

This adaptive dilation helps stabilize contour extraction across varying image shapes and primitive
counts. This approach ensures that dilation is stronger for sparse images with fewer primitives and
adapts based on shape and resolution, improving the robustness of contour extraction across varied
stroke layouts.

We evaluate the models on this dataset using expression level metrics, i.e. expression structure and
structure+classification rates.

(Math) Typeset Formulas: Im2Latex-100K. Im2Latex-100K [30] is a large-scale dataset of
mathematical expressions collected from LaTeX sources in academic papers. It contains 103,556 dis-
tinct LaTeX math equations and their corresponding rendered images. The formulas are extracted
from over 60,000 LaTeX documents in the 2003 KDD Cup dataset filtered to retain expressions with
40 to 1024 characters. A subset of over 100K formulas that successfully compile in vanilla LaTeX

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 182

are rendered using pdflatex and converted to 200 DPI PNG images. The final dataset contains
83,883 training, 9,319 validation, and 10,354 test expressions. Each rendered image is a full-page
scan (1654×2339 resolution), where the formula may occupy only a small region of the page. Thus,
preprocessing is required to crop and normalize the region containing the actual formula before
input to the model.

We use our best model trained on the InftyMCDB-2 dataset—the sixth row in Table 6.5, corre-
sponding to Focal loss with γ = 0.5 and α = w, for inference on the Im2Latex-100K test set directly
without re-training. This decision was made for two reasons: first, to demonstrate the generalization
capacity and data efficiency of our model when trained on a smaller but curated typeset dataset;
and second, time constraints and computational cost required for full retraining and hyperparameter
tuning on the substantially larger Im2Latex-100K collection.

To evaluate model performance on the Im2Latex-100K dataset, we use the text and image-based
metrics defined in the original paper [30]:

1. BLEU-4 Score: Measures the n-gram overlap (up to 4-grams) between the predicted LaTeX
sequence and the ground truth after normalization [96].

2. Edit Distance Accuracy: Computed as

1− EditDist(ŷ, y)
max(|ŷ|, |y|)

where ŷ and y denote the predicted and ground truth LaTeX sequences, respectively, and
EditDist(·) refers to the Levenshtein distance—the minimum number of single-character in-
sertions, deletions, or substitutions required to transform one string into the other. This
metric captures partial correctness by quantifying the similarity between sequences at the
token level, normalized by the length of the longer string.

3. Image Match Accuracy: The proportion of samples where the rendered output of the
predicted LaTeX sequence (x̂) is visually identical to the rendered ground truth image (x).
We also report a relaxed version of this metric where differences in whitespace columns are
ignored, following [30].

Chemical Diagram Datasets. We evaluate chemical diagram parsing using two public bench-
mark datasets that cover both synthetic and real document raster images:

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 183

• USPTO (Indigo) [101]: This dataset consists of 5,719 synthetic images of chemical structures
rendered from SMILES strings using the Indigo cheminformatics toolkit. The images are clean
and uniformly generated, making the dataset suitable for controlled evaluation of parsing
accuracy on noise-free molecular diagrams. There are 37 unique SMILES characters in this
dataset.

• CLEF-2012 [99]: This dataset contains 992 raster images of chemical compounds extracted
from scanned US patent documents. It represents a more realistic benchmark with noisy
backgrounds, varied rendering styles, and document-level artifacts. As such, it serves to
evaluate model generalization to real-world degradation and variability. There are 71 unique
SMILES characters in this dataset.

For both datasets, the evaluation metric is Exact SMILES Match Accuracy. This metric
compares the predicted SMILES string ŝ generated from the parsed graph against the ground truth
SMILES string s. A prediction is considered correct if the canonicalized forms of ŝ and s are
identical, accounting for valid structural equivalence despite differences in notation.

Data Efficiency Metrics. To assess model efficiency, we report the amount of training data
required to achieve each 1% absolute accuracy gain, measured in molecules per 1% SMILES match
accuracy for chemistry, and expressions per 1% BLEU-4 score for math (Im2Latex-100K). This
metric provides insight into how effectively each model learns from data and demonstrates our
method’s ability to generalize with fewer training examples.

Our architecture is also computationally lightweight, with approximately 4.45 million parameters,
substantially smaller than transformer-based baselines such as MolScribe [100] and SwinOCSR [146]
(each exceeding 88 million parameters), or HybridViT [59] with 51 million parameters, as summa-
rized in Table 5.8. This compact design enables faster training, reduced memory consumption, and
greater scalability to resource-constrained or low-data settings.

Results and Discussion

Handwritten Math Formula Parsing (CROHME 2019). Table 6.9 presents benchmark
results on the CROHME 2019 test set. Our proposed model (EGATv2) achieves an expression
recognition rate (ExpRate) of 49.54%, with structure-only recognition accuracy of 73.79%. While
these results fall below those of encoder-decoder models such as USTC-iFLYTEK [73] (ExpRate

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 184

Table 6.9: Benchmark results on the CROHME 2019 test set. We report expression structure+class
rate (ExpRate), which reflects correct structure as well as symbol and relation classes. The columns
≤ 1 and ≤ 2 report expression-level accuracy allowing at most 1 and 2 symbol or relation errors,
respectively. The final column (Structure) measures structure-only recognition accuracy, irrespective
of symbol and relation labels.

Model Category Model Expressions (Structure + Class) Expressions
ExpRate ≤ 1 ≤ 2 (Structure)

Rule-based
MyScript 79.15 86.82 89.82 90.66
Samsung 79.82 87.82 89.15 89.32
TUAT 56.88 71.89 76.31 70.73

Encoder-decoder

MathType 60.13 74.40 78.57 79.15
USTC-iFLYTEK 80.73 88.99 90.74 91.49
PAL-v2 62.55 74.98 78.40 79.15
ICAL 60.51 78 84.63 –

Graph outputs

QD-GGA 40.65 60.01 64.96 60.22
GETD 54.13 – – –
GGM-EGAT 60.72 71.14 76.73 83.74
Ours (EGATv2) 49.54 66.17 73.92 73.79

80.73%) and MyScript [73] (79.15%), our model is competitive with prior graph-based systems,
outperforming QD-GGA [72] and approaching the performance of GETD [122] and GGM-EGAT
[141].

The performance gap can be reduced by specifically tuning hyperparameters for the CROHME
dataset. We use the same architecture and hyperparameters optimized for the InftyMCDB-2 dataset,
which consists of clean binary typeset mathematical formulas rendered from LaTeX. In contrast,
CROHME images are derived from online handwritten ink traces, exhibiting greater variability in
stroke thickness, placement, and spacing. These changes in the proximity and overlapping nature of
handwritten strokes may require feature sizes and pooling regions to be re-tuned for the CROHME
dataset.

In our error analysis, we observe that many recognition errors arise from visually similar symbol
confusions such as ‘l’ vs. ‘1’, ‘i’ vs. ‘j’, or ‘a’ vs. ‘α’. These errors suggest that incorporating
additional contextual features could improve disambiguation.

As a future direction, our visual primitive extraction pipeline could be applied on CROHME dataset
to derive line-based primitives from handwritten images. This could enable the parser to learn
localized representations while preserving the benefits of structure-aware graph learning.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 185

Table 6.10: Benchmark results on the Im2LaTeX-100K dataset. We report edit distance accuracy
(Edit %), BLEU-4 score, image-level exact match (Image Match), and whitespace-insensitive match
(Image Match -ws). Data efficiency is measured as the number of training samples required per 1%
absolute BLEU-4 score (lower is better).

Model Category Model
Edit
%

BLEU-4
%

Image
Match %

Image Match
(-ws) %

Data per 1%
BLEU-4

Encoder-decoder

IM2TEX – 87.73 77.46 79.88 956.15
WYGIWYS 88.6 90.3 78.6 – 928.93
Coarse-to-Fine 87.32 87.07 78.1 – 963.39
DenseNet 91.57 88.25 79.1 – 950.51
ConvMath 90.8 88.33 83.41 – 949.65
EDPA 91.39 92.31 82.07 – 908.71
DNN-RL 96.5 94.1 84.2 – 891.42
MI2LS 92.3 90.3 82.3 84.8 928.93
HybridViT – 89.9 – 86.5 933.07
MathNet 94.7 94.5 63.4 – 887.65

Graph-based

INFTY 53.82 66.65 15.6 26.66 1258.56
GNN – 90.2 81.8 – 929.96
Im2Latex-GNN – 90.19 81.82 – 930.07
Ours (EGATv2) 55.23 46.05 19.7 27.49 217.15

Typeset Math Formula Parsing (Im2Latex-100K). Table 6.10 presents benchmark compar-
isons on the Im2Latex-100K dataset. While EGATv2 does not compete with the state-of-the-art
(SOTA) accuracy levels, it demonstrates good data efficiency with the lowest number of training
samples per 1% BLEU-4 gain. This suggests potential for scalable training under low-resource
constraints.

There are several reasons for the current performance gap. First, our model was not trained on the
Im2Latex-100K training set, but rather on the significantly smaller Infty-MCDB2 dataset, which
differs in both resolution and symbol set. Second, images in Im2Latex-100K are rendered as full-
page scans and then cropped to isolate formulas, resulting in much lower resolution formula regions,
typically 8–10 times smaller than the images used in our training. Third, some math symbols ap-
pearing in Im2Latex-100K are absent from our training data, leading to out-of-vocabulary prediction
errors. Lastly, during preprocessing, around 30% of LaTeX strings failed normalization, introducing
syntactic variations that are penalized under string matching metrics despite being semantically
equivalent.

Despite these challenges, EGATv2 achieves a competitive data efficiency score of 217.15 samples
per 1% BLEU-4—substantially lower than transformer-based encoder-decoder baselines that re-

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 186

Table 6.11: Molecular Diagram Recognition Benchmarks. Percentages of predicted SMILES match-
ing ground truth (Exact SMILES Match %) are shown. For USPTO, PNG images are rendered
using Indigo. The final column reports data efficiency as the number of training molecules (in thou-
sands, K) required to achieve 1% absolute SMILES match accuracy (Lower is better).

Synthetic Image (USPTO) Scanned Image (CLEF-2012)
Model category Model SMILES Acc. #Mols / 1% Acc (K) SMILES Acc. #Mols / 1% Acc (K)

Rule-based
MolVec 0.9.7 95.40 – 83.80 –
OSRA 2.1 95.00 – 84.60 –
Imago 2.0 – – 68.20 –

Neural Network
Img2Mol 58.90 25.47 48.84 30.71
DECIMER 69.60 – 62.70 –

Graph Outputs

OCMR – – 65.10 5.38
SwinOCSR 74.00 60.81 30.00 150.00
Image2Graph – – 51.70 137.33
MolScribe 97.50 17.23 88.90 18.90
MolGrapher – – 90.50 3.31

Ours (EGATv2) 91.99 0.04 39.61 0.09

quire over 900 examples per point. This highlights the model’s capacity to learn structure-aware
representations with relatively limited data. With further improvements, such as incorporating
domain-specific normalization, increasing training resolution, expanding the symbol set, and en-
hancing context-aware features in EGATv2—the model is expected to have closer metrics with
state-of-the-art approaches in this benchmark.

Chemical Diagram Parsing (USPTO and CLEF-2012). Table 6.11 reports benchmark re-
sults on both synthetic (USPTO) and real scanned (CLEF-2012) chemical diagrams, measured by
exact SMILES match accuracy. Our model (EGATv2) achieves strong performance, particularly in
data efficiency. On the synthetic USPTO dataset, it reaches 91.99% SMILES accuracy, with only 40
molecules required per 1% accuracy gain, outperforming all prior neural and graph-based systems
by a large margin. On CLEF-2012, which consists of real scanned patent diagrams, the SMILES
accuracy is lower at 39.61%, but the data efficiency remains high (90 molecules per 1%).

Our model uses a compact architecture with 4.45 million trainable parameters, substantially fewer
than transformer-based models like MolScribe [100], SwinOCSR [146], or MolGrapher [79], which
range between 88 million and 200 million parameters. This highlights the efficiency of our graph-
based parsing approach, both in terms of training data and model size.

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 187

The primary source of errors in CLEF images stems from our current limitations in handling non-
structural symbols such as reaction arrows, circular annotations, or free-form text (e.g., captions,
labels). Our postprocessing pipeline does not currently filter or interpret them. As a result, predicted
SMILES strings may contain valid molecule graphs appended with extra tokens, which are treated
as incorrect during exact match evaluation, even when the part of the molecule structure is correct.

Additionally, some errors on both datasets are caused by the lack of sufficient context during pre-
diction. For instance, short horizontal or vertical lines are misclassified as single line symbol class
when they are part of character atoms like H, N, R. In future work, we plan to extend EGATv2
to incorporate explicit context feature aggregation in addition to the current query windows. We
also aim to improve postprocessing for real scanned diagrams by introducing symbol filtering, and
caption segmentation to create accurate predicted SMILES, especially for real image inputs like
CLEF.

6.6 Summary

This chapter addressed RQ4, which investigates whether visual and structural noise augmentation,
along with class imbalance mitigation, can improve generalization and robustness in multi-task
parsing of scientific diagrams.

To simulate real-world document degradations, we introduced a localized noise modeling pipeline
that applies structural noise through stochastic primitive fragmentation and visual noise via blur,
downscaling, and salt-and-pepper perturbations. These transformations are applied at the primitive
window level and binarized using Otsu’s method to align with inference-time preprocessing. The
augmentation strategy draws on Baird’s degradation framework and captures realistic distortions
found in scanned, handwritten, or degraded digital diagrams.

To address the extreme class imbalance in both mathematical and chemical datasets, we imple-
mented stratified train-validation splits, weighted sampling, and a range of loss reweighting strate-
gies. These included Weighted Cross-Entropy (WCE), Class-Balanced (CB) loss with varying β,
and Focal Loss (FL) with different focusing parameters γ. These methods reweighted gradients to
enhance learning from underrepresented symbols, relationships, and segmentation classes.

Experiments on both the InftyMCDB-2 (math) and USPTO (chemistry) datasets demonstrated that
combined structural and visual augmentation significantly improved robustness under noisy condi-
tions, while maintaining high accuracy on clean inputs. The most consistent gains were achieved

CHAPTER 6. VISUAL NOISE AND LOSS FUNCTIONS 188

with joint augmentation, which improved expression-level accuracy by over 70% in math and boosted
exact SMILES match by nearly 75% in chemistry under noise.

Among loss functions, focal loss with γ = 0.5 provided the best overall performance across both
domains. It combines class-balancing behavior with a modulating factor that emphasizes harder
examples, enabling more effective learning on rare and ambiguous inputs. Class-Balanced loss with
β = 0.999 and WCE also yielded strong improvements, particularly under extreme imbalance.
These findings demonstrate that targeted augmentation and adaptive loss design are both critical
for building parsers that generalize across real-world document conditions. We also showed that
Complement Harmonic Mean (CHM) aggregation of the three task losses can substitute for class-
based reweighting in focal loss, reducing hyperparameter dependence while maintaining balanced
task optimization.

Finally, we benchmarked our best model configuration, incorporating joint augmentation and focal
loss against state-of-the-art systems in both math and chemistry domains across multiple datasets.
These included CROHME 2019, and Im2Latex-100K for mathematical formula parsing, and USPTO
(Indigo) and CLEF-2012 for chemical diagram recognition. While absolute accuracy was lower
than transformer-based models, our parser demonstrated good data efficiency. We additionally
introduced a data efficiency metric—training examples per 1% accuracy gain—to highlight the
model’s ability to generalize from limited data. With approximately 4.45 million parameters, our
approach remains significantly smaller and more efficient than typical transformer baselines (often
exceeding 40 million parameters), highlighting its practical advantages in resource-limited scenarios.

Chapter 7

Conclusion

This thesis presented our work on graph-based visual parsing of scientific diagrams, focusing on
mathematical formulas and chemical structures. The research addressed four core questions span-
ning input graph representations, input feature design, edge-aware multi-task graph attention, noise
and class imbalance mitigation, and loss aggregation strategies. Each component was evaluated
through a series of targeted experiments using benchmark datasets in both domains.

We began by exploring effective graph representations (complete, line-of-sight, and k-nearest neigh-
bor) and their impact on parsing performance across domains. We then examined the benefits of
our novel robust visual primitive extraction from raster images using line segment detection and
watershed algorithm, followed by drawing-based contour features and spatial pyramid pooling for
localized representation learning. The core model architecture was extended with a novel Edge
Graph Attention Network (EGATv2) that supports message passing across node and edge queries,
including multi-hop reasoning and cross-task interaction. To improve generalization and robustness,
structural and visual noise augmentation methods were introduced, alongside stratified sampling
and loss reweighting techniques for addressing class imbalance. Finally, the study evaluated com-
plemented harmonic mean (CHM) loss aggregation as a means to achieve balanced optimization
across tasks without requiring manual reweighting.

This chapter concludes by discussing the key findings across all research questions, highlighting
contributions, and discussing their implications. It also reflects on limitations of the current work,
proposes future directions, and outlines potential extensions to broader domains and applications.

189

CHAPTER 7. CONCLUSION 190

7.1 Visual Primitive Features (RQ1)

RQ1: How can primitive features be constructed and updated efficiently to support iterative refine-
ment of segmentation and improve structural parsing?

To address this research question, we developed segmentation-aware graph parsers that operate on
visual primitives such as strokes, CCs and line segments. Our parsers are capable of iteratively
refining symbol groupings and updating their associated visual features. The input refinement
mechanism dynamically merges visual primitives into higher-order symbol groupings during training
and inference. This iterative refinement updates the associated feature representations in a way that
preserves the original structure as parsing proceeds [112].

To ensure robustness and generalization, we proposed a unified visual feature design based on
primitive-centered query and context windows derived from drawn contours. This approach decou-
ples feature construction from full-image representations, enabling consistent local context modeling
across noisy and clean domains. In support of this feature design, we introduced a reliable and effi-
cient method for extracting line-based visual primitives from raster chemical diagrams. This method
proved effective at separating over-segmented components and minimizing noise due to overlapping
or broken contours. While designed for chemical diagrams, it also generalizes to mathematical
formulas, flowcharts, and other visually structured domains.

The hypothesis underlying RQ1 was supported. Primitive-based features with iterative refinement
led to improved segmentation accuracy and more stable structural parsing across domains, particu-
larly under conditions of noise, distortion, or ambiguous layout. The methods successfully reduced
over-segmentation errors and allowed for more consistent relationship inference, without requiring
full-image processing or domain-specific supervision.

Limitations and Future work. The current primitive extraction relies on hand-tuned parame-
ters and assumes relatively clean segmentation boundaries. In highly stylized or degraded images,
primitive detection and grouping may fail or require manual adjustment. Future work may in-
volve replacing these heuristics with learning-based primitive extraction pipelines, incorporating
confidence-aware refinement strategies. Also, we applied the visual primitive extraction for chemi-
cal datasets only. This can be extended to mathematical formulas: both handwritten and typeset
to improve the robustness of the parser in dealing with noisy or low-quality raster images.

CHAPTER 7. CONCLUSION 191

7.2 Input Graph Representations (RQ2)

RQ2: What types of input graph representations are most effective for parsing mathematical for-
mulas and chemical diagrams, and do these representations differ between the two domains?

This research question examined how the structure of input graphs influences parsing performance
across domains. In graph-based visual parsing, nodes represent visual primitives and edges capture
spatial or contextual relationships. The goal was to identify graph construction strategies that
enable accurate structural understanding while avoiding unnecessary noise or sparsity.

To address this, we evaluated and compared several graph types, including complete graphs, line-of-
sight (LOS) graphs, and k-nearest neighbor (KNN) graphs, across both mathematical and chemical
diagram datasets. For mathematical formulas, LOS graphs were found to be most effective. These
graphs allowed long-range connections to symbols that are spatially aligned but visually separated,
improving edge recall and enabling better structure recovery. For chemical diagrams, 6NN graphs
yielded better results. Unlike LOS, which can connect distant and potentially irrelevant symbols,
the 6-nearest neighbor strategy maintained local structural coherence and avoided spurious edges.

Overall, the hypothesis was supported: different domains benefit from different input graph struc-
tures. Domain-specific selection of input graphs: LOS for math and 6NN for chemistry, led to more
accurate and computationally efficient parsing in both cases. Furthermore, these representations
can be generated efficiently and without domain-specific supervision, making them practical for
broader use.

Limitations and Future Work. Despite these improvements, fixed graph structures still present
a tradeoff between computational cost and structural fidelity as we rely on heuristics for pruning of
edges, which may not hold for all datasets or domains. Future work may explore dynamic or learned
graph construction, where a neural module predicts which edges are necessary based on visual or
semantic cues. Such adaptive graph pruning or construction could provide a better balance between
coverage, precision, and runtime efficiency.

7.3 Graph Context and Task Interaction (RQ3)

RQ3: How can graph context and class distributions be leveraged to improve contextual representa-
tion and task interaction in multi-task parsing?

CHAPTER 7. CONCLUSION 192

In this research question, we wanted to enhance contextual representation in graph-based parsing
through the integration of class distributions and cross-task signals.

To address this, we introduced EGATv2, a two-stage, edge-aware graph attention network designed
for multi-task parsing. EGATv2 allows for bidirectional message passing between node and edge
representations and supports multi-hop reasoning. By using class distribution outputs to guide
attention, the model achieved improved parsing performance on both math and chemistry datasets.

Limitations and Future Work. Despite these improvements, EGATv2 still faces challenges in
disambiguating visually similar but semantically distinct symbols, such as minus and equals signs,
or single line bonds versus lines in characters. This indicates that the current mechanism does not
provide sufficient contextual depth in difficult cases.

Future work could enhance contextual representation by incorporating more global context into
EGATv2’s aggregation. One direction is to increase the number of neighbors used in message
passing beyond the current two nearest neighbor setting during node and edge aggregation, while
using dimensionality reduction techniques such as linear bottleneck layers to control model size.
Another direction is to embed explicit geometric or the input context features into the attention
mechanism along with the query features, allowing more informed representation of layout structure
and symbol similarity. These improvements could help disambiguate tightly clustered or visually
confusable elements more effectively.

7.4 Visual Noise and Loss Functions (RQ4)

RQ4: Can visual and structural noise at the primitive level, together with class balancing strategies,
improve the robustness of the visual parser?

This research question was motivated to improve the robustness of the visual parsing framework
under noisy or degraded input conditions. To address this, we implemented a localized noise aug-
mentation strategy inspired by Baird’s degradation model [11]. Visual noise—such as Gaussian blur,
downsampling, and salt-and-pepper corruption—was applied at the level of extracted primitives,
rather than the full image, allowing noise to be targeted and spatially localized. Structural noise
was introduced by randomly splitting individual primitives into smaller fragments, creating varia-
tion in segmentation structure. We also addressed the class imbalance problem across segmentation,
symbol classification, and relationship prediction tasks using weighted focal loss, and aggregating

CHAPTER 7. CONCLUSION 193

losses using the complemented harmonic mean (CHM) to to balance gradient contributions across
objectives.

These methods collectively improved model robustness, especially on noisy synthetic benchmarks.
However, performance on low-resolution datasets such as Im2LaTeX remained suboptimal. Visual
noise still caused symbol confusion in difficult cases, particularly between visually similar charac-
ters like minus and equals signs. This indicates that further augmentation and improved feature
regularization are needed.

Limitations and Future Work. Current augmentation strategies are limited to binary struc-
tural splits and a narrow set of visual perturbations. Future work should explore more aggressive
structural variations, such as multi-split distortions or more complex transformations, to better
match the diversity of noise in real-world images. For visual degradation, simulating scanning
artifacts, background clutter, and font irregularities could further enhance robustness.

In terms of loss functions, focal loss showed improvements when using γ = 0.5, particularly for
mitigating class imbalance in segmentation and symbol classification. However, we did not explore
smaller values such as γ = 1

3 , which could be beneficial in our setting. Since the individual loss
values lie between 0 and 1 in the focal loss setting, using γ < 1 has the effect of amplifying their
contribution, rather than suppressing them as in the standard γ > 1 case. This can stabilize training
when class imbalance is severe or when gradients vanish too quickly for easy samples. Lower gamma
values may allow better gradient flow and finer calibration across majority and minority classes,
especially when combined with reweighting schemes.

Additionally, we propose that complemented harmonic mean (CHM), currently used for aggregating
task-level losses, could be extended to operate within class-level loss aggregation. Replacing stan-
dard summation in cross-entropy or focal loss with CHM across classes would enable more balanced
contributions from rare classes without requiring manual tuning or additional parameters. Further,
the contraharmonic mean offers a mathematically similar alternative to CHM but avoids the need
for complement operations, which could simplify implementation and improve numerical stability
during training.

Finally, incorporating contrastive learning objectives could further enhance the model’s ability to
distinguish visually similar symbols. By encouraging representations of identical instances to be close
in the feature space while maintaining separation from representations of different classes sharing
some similarities, contrastive learning can promote more discriminative and structured embeddings.

CHAPTER 7. CONCLUSION 194

This approach may help address remaining failure cases, such as confusion between visually similar
symbols, by reinforcing class-specific boundaries in the learned representation space.

7.5 Other Future Work

Beyond the specific scope of mathematical and chemical diagram parsing, contributions made in this
work have potential for broader impact across other domains in graphics recognition and computer
vision.

The data generation pipeline based on visual primitive extraction, particularly line segments and
contour-based features can be extended to other structured visual domains such as tables, flowcharts,
diagrams in engineering drawings, and scientific charts. These domains often rely on compositional
visual units and benefit from primitive-level modeling that avoids reliance on global appearance
features. In such settings, the primitive-based augmentation and segmentation-aware parsing frame-
work may help reduce annotation requirements while improving domain robustness.

Another natural extension of this work is to apply the methods developed here to the problem of
handwritten chemical diagram recognition, similar to how CROHME has enabled progress in hand-
written mathematical parsing. Existing approaches for chemical structure recognition are typically
designed for clean, typeset images. However, handwritten chemical diagrams present challenges
such as inconsistent stroke styles, ambiguous line connectivity, and irregular symbol placement.
The primitive-based representation, coupled with edge-aware graph parsing and refinement mecha-
nisms developed in this work, provides a foundation for addressing these challenges. A standardized
benchmark for handwritten chemical diagrams, could further facilitate progress in this area.

The EGATv2 architecture, designed for edge-aware message passing and task interaction, is broadly
applicable to any task where input can be represented as a graph with node and edge labels.
Potential applications include road network understanding, electric circuit parsing, and medical
diagram interpretation, as well as general graph-based representations in vision-language tasks,
document layout analysis, and scene graph generation. The two-stage design and class-informed
attention strategy can support cross-task consistency in multi-objective learning scenarios where
predictions must be structurally aligned.

The complemented harmonic mean (CHM) strategy for loss aggregation, originally used for balanc-
ing multiple parsing tasks can be generalized to other optimization problems in machine learning
where class imbalance or task dominance is a concern. For example, in multi-label classification,

CHAPTER 7. CONCLUSION 195

anomaly detection, or multi-domain adaptation, CHM offers an alternative to manual reweighting
or reliance on class frequency statistics. By promoting balanced gradient contributions, it provides
a tunable-free mechanism for aggregating over tasks or classes, reducing the need for extensive
hyperparameter tuning.

These directions open new avenues for extending this work to more diverse and complex visual
reasoning tasks, while maintaining effectiveness, efficiency in terms of data and speed, and inter-
pretability.

Chapter 8

List of Publications

Table 8.1: The 5 published papers during my Ph.D.

Title Venue Year

Multimodal Search in Chemical Documents
and Reactions
A. K. Shah, A. Dey, L. Luo, B. M. Amador, P.
Philippy, M. Zhong, S. Ouyang, D. M. Friday, D.
Bianchi, N. Jackson, R. Zanibbi, and J. Han

International ACM SIGIR Confer-
ence on Research and Development
in Information
(SIGIR)

2025

ChemScraper: Leveraging PDF Graphics In-
structions for Molecular Diagram Parsing
A. K. Shah, B. M. Amador, A. Dey, M. Creek-
more, B. Ocampo, S. Denmark, and R. Zanibbi

International Journal on Docu-
ment Analysis and Recognition
(IJDAR)

2024

Line-of-Sight with Graph Attention Parser
(LGAP) for Math Formulas
A. K. Shah and R. Zanibbi

International Conference on Docu-
ment Analysis and Recognition
(ICDAR)

2023

Searching the ACL Anthology with Math For-
mulas and Text
B. M. Amador, M. Langsenkamp, A. Dey, A. K.
Shah, and R. Zanibbi

International ACM SIGIR Confer-
ence on Research and Development
in Information Retrieval
(SIGIR)

2023

A Math Formula Extraction and Evaluation
Framework for PDF Documents
A. K. Shah, A. Dey, and R. Zanibbi

International Conference on Docu-
ment Analysis and Recognition
(ICDAR)

2021

196

Bibliography

[1] Bristol-Myers Squibb - molecular translation competition, 2021. Kaggle.

[2] Nadeem Akhtar and U. Ragavendran. Interpretation of intelligence in CNN-pooling processes:
a methodological survey. Neural Computing and Applications, 32(3):879–898, February 2020.

[3] M. Alkalai, J. B. Baker, V. Sorge, and X. Lin. Improving Formula Analysis with Line and
Mathematics Identification. In 2013 12th International Conference on Document Analysis and
Recognition, pages 334–338, August 2013. ISSN: 2379-2140.

[4] F. Alvaro, J. S´nchez, and J. Benedi. Recognition of Printed Mathematical Expressions Using
Two-Dimensional Stochastic Context-Free Grammars. In 2011 International Conference on
Document Analysis and Recognition, pages 1225–1229, September 2011. ISSN: 2379-2140.

[5] Bryan Amador, Matt Langsenkamp, Abhisek Dey, Ayush Kumar Shah, and Richard Zanibbi.
Searching the acl anthology with math formulas and text. In Proc. ACM SIGIR, page to
appear, 2023.

[6] Robert H. Anderson. Syntax-directed recognition of hand-printed two-dimensional math-
ematics. In Symposium on Interactive Systems for Experimental Applied Mathematics:
Proceedings of the Association for Computing Machinery Inc. Symposium, pages 436–459,
New York, NY, USA, August 1967. Association for Computing Machinery.

[7] Dan Anitei, Daniel Parres, Joan Andreu Sánchez, and José Miguel Benedí. Improving Ef-
ficiency and Performance Through CTC-Based Transformers for Mathematical Expression
Recognition. In Elisa H. Barney Smith, Marcus Liwicki, and Liangrui Peng, editors, Document
Analysis and Recognition - ICDAR 2024, pages 3–20, Cham, 2024. Springer Nature Switzer-
land.

197

BIBLIOGRAPHY 198

[8] Dan Anitei, Joan Andreu Sánchez, José Miguel Benedí, and Ernesto Noya. The IBEM dataset:
A large printed scientific image dataset for indexing and searching mathematical expressions.
Pattern Recognition Letters, 172:29–36, August 2023.

[9] David D. Baek, Ziming Liu, Riya Tyagi, and Max Tegmark. Harmonic Loss Trains Inter-
pretable AI Models, February 2025.

[10] Gaetan Bahl, Mehdi Bahri, and Florent Lafarge. Single-Shot End-to-end Road
Graph Extraction. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 1402–1411, June 2022.

[11] Henry S. Baird. The State of the Art of Document Image Degradation Modelling. In Bidyut B.
Chaudhuri, editor, Digital Document Processing: Major Directions and Recent Advances,
pages 261–279. Springer, London, 2007.

[12] Josef B. Baker, Alan P. Sexton, and Volker Sorge. A Linear Grammar Approach to Mathe-
matical Formula Recognition from PDF. In Jacques Carette, Lucas Dixon, Claudio Sacerdoti
Coen, and Stephen M. Watt, editors, Intelligent Computer Mathematics, Lecture Notes in
Computer Science, pages 201–216, Berlin, Heidelberg, 2009. Springer.

[13] Josef B. Baker, Alan P. Sexton, and Volker Sorge. A linear grammar approach to mathematical
formula recognition from PDF. In Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen,
and Stephen M. Watt, editors, 16th Symposium on Intelligent Computer Mathematics, volume
5625 of LNCS, pages 201–216. 2009.

[14] Jonathan Baxter. A Bayesian/Information Theoretic Model of Learning to Learn via Multiple
Task Sampling. Machine Learning, 28(1):7–39, July 1997.

[15] Dorothea Blostein and Ann Grbavec. RECOGNITION OF MATHEMATICAL NOTA-
TION. In Handbook of Character Recognition and Document Image Analysis, pages 557–582.
WORLD SCIENTIFIC, May 1997.

[16] Henning Otto Brinkhaus, Kohulan Rajan, Achim Zielesny, and Christoph Steinbeck. RanDe-
pict: Random chemical structure depiction generator. Journal of Cheminformatics, 14(1):31,
June 2022.

[17] Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are Graph Attention Networks? In
International Conference on Learning Representations, October 2021.

BIBLIOGRAPHY 199

[18] Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. A systematic study of the class
imbalance problem in convolutional neural networks. Neural Netw., 106(C):249–259, October
2018.

[19] Syed Saqib Bukhari, Zaryab Iftikhar, and Andreas Dengel. Chemical structure recogni-
tion (CSR) system: Automatic analysis of 2D chemical structures in document images. In
International Conference on Document Analysis and Recognition (ICDAR), pages 1262–1267,
2019.

[20] Daniel Campos and Heng Ji. IMG2SMI: Translating molecular structure images to Simplified
Molecular-Input Line-entry System. 2021. arXiv.

[21] Rich Caruana. Multitask Learning. Machine Learning, 28(1):41–75, July 1997.

[22] Kam-Fai Chan and Dit-Yan Yeung. Mathematical expression recognition: a survey.
International Journal on Document Analysis and Recognition, 3(1):3–15, August 2000.

[23] Mingjun Chen, Hao Wu, Qikai Chang, Hanbo Cheng, Jiefeng Ma, Pengfei Hu, Zhenrong
Zhang, Chenyu Liu, Changpeng Pi, Jinshui Hu, Baocai Yin, Bing Yin, Cong Liu, and Jun Du.
ICDAR 2024 Competition on Recognition of Chemical Structures. In Elisa H. Barney Smith,
Marcus Liwicki, and Liangrui Peng, editors, Document Analysis and Recognition - ICDAR
2024, pages 397–409, Cham, 2024. Springer Nature Switzerland.

[24] Yufan Chen, Ching Ting Leung, Yong Huang, Jianwei Sun, Hao Chen, and Hanyu Gao.
MolNexTR: A Generalized Deep Learning Model for Molecular Image Recognition, August
2024.

[25] Djork-Arné Clevert, Tuan Le, Robin Winter, and Floriane Montanari. Img2Mol – accurate
SMILES recognition from molecular graphical depictions. Chemical Science, 12(42):14174–
14181, November 2021.

[26] Paolo Comelli, Paolo Ferragina, Mario Notturno Granieri, and Flavio Stabile. Optical Recog-
nition. 44(4):627–631, 1995.

[27] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-Balanced Loss
Based on Effective Number of Samples. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9268–9277, 2019.

[28] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry. In Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, edi-

BIBLIOGRAPHY 200

tors, Computational Geometry: Algorithms and Applications, pages 1–17. Springer, Berlin,
Heidelberg, 2008.

[29] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-to-markup
generation with coarse-to-fine attention. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research,
pages 980–989. PMLR, 2017.

[30] Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-to-markup
generation with coarse-to-fine attention. In Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, pages 980–989, Sydney, NSW, Australia, August
2017. JMLR.org.

[31] Agnès Desolneux, Lionel Moisan, and Jean-Michel Morel. Meaningful Alignments.
International Journal of Computer Vision, 40(1):7–23, October 2000.

[32] Agnés Desolneux, Lionel Moisan, and Jean-Michel Morel. From Gestalt Theory
to Image Analysis: A Probabilistic Approach, volume 34 of Interdisciplinary
Applied Mathematics. Springer, New York, NY, 2008.

[33] Cameron Diao and Ricky Loynd. Relational Attention: Generalizing Transformers for Graph-
Structured Tasks. In The Eleventh International Conference on Learning Representations,
September 2022.

[34] Yancarlos Diaz, Gavin Nishizawa, Behrooz Mansouri, Kenny Davila, and Richard Zanibbi.
The mathdeck formula editor: Interactive formula entry combining latex , structure editing,
and search. In CHI Extended Abstracts, pages 192:1–192:5. ACM, 2021.

[35] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. In International Conference on Learning Representations, October 2020.

[36] Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency pars-
ing: Cross-lingual parameter sharing in a neural network parser. In Chengqing Zong and
Michael Strube, editors, Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 845–850, Beijing, China, July 2015. Association
for Computational Linguistics.

BIBLIOGRAPHY 201

[37] Vijay Prakash Dwivedi and Xavier Bresson. A Generalization of Transformer Networks to
Graphs, January 2021.

[38] Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards
Section B Mathematics and Mathematical Physics, 71B(4):233, October 1967.

[39] Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link network. In
Proceedings of Sixth International Conference on Document Analysis and Recognition, pages
762–767, September 2001.

[40] Y. Eto and M. Suzuki. Mathematical formula recognition using virtual link network. In
International Conference on Document Analysis and Recognition (ICDAR), pages 762–767,
2001.

[41] Igor V. Filippov and Marc C. Nicklaus. Optical structure recognition software to recover
chemical information: OSRA, an open source solution. Journal of Chemical Information and
Modeling, 49(3):740–743, 2009.

[42] Liyu Gong and Qiang Cheng. Exploiting Edge Features in Graph Neural Networks.
arXiv:1809.02709 [cs, stat], January 2019.

[43] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing XU, and Yunhe Wang. Trans-
former in transformer. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems (NeurIPS), pages
15908–15919, 2021.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition. In David Fleet, Tomas Pajdla, Bernt Schiele,
and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, Lecture Notes in Computer
Science, pages 346–361, Cham, 2014. Springer International Publishing.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[46] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, Las Vegas, NV, USA, June 2016. IEEE.

BIBLIOGRAPHY 202

[47] Stephen Heller, Alan McNaught, Stephen Stein, Dmitrii Tchekhovskoi, and Igor Pletnev.
InChI - the worldwide chemical structure identifier standard. Journal of Cheminformatics,
5(1):7, 2013.

[48] Stephen R. Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and Dmitrii Tchekhovskoi.
InChI, the IUPAC International Chemical Identifier. Journal of Cheminformatics, 7(1):23,
2015.

[49] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Networks. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7132–7141, June
2018.

[50] L. Hu and R. Zanibbi. MST-based Visual Parsing of Online Handwritten Mathematical
Expressions. In 2016 15th International Conference on Frontiers in Handwriting Recognition
(ICFHR), pages 337–342, October 2016. ISSN: 2167-6445.

[51] Lei Hu. Features and Algorithms for Visual Parsing of Handwritten Mathematical Expressions.
Theses, May 2016.

[52] Lei Hu and Richard Zanibbi. Line-of-Sight Stroke Graphs and Parzen Shape Context Features
for Handwritten Math Formula Representation and Symbol Segmentation. In 2016 15th
International Conference on Frontiers in Handwriting Recognition (ICFHR), pages 180–186,
October 2016. ISSN: 2167-6445.

[53] P. Ibison, M. Jacquot, F. Kam, A. G. Neville, R. W. Simpson, C. Tonnelier, T. Venczel,
and A. P. Johnson. Chemical Literature Data Extraction: The CLiDE project. Journal of
Chemical Information and Computer Sciences, 33(3):338–344, 1993.

[54] Abin Jose, Ricard Durall Lopez, Iris Heisterklaus, and Mathias Wien. Pyramid Pooling of
Convolutional Feature Maps for Image Retrieval. In 2018 25th IEEE International Conference
on Image Processing (ICIP), pages 480–484, October 2018. ISSN: 2381-8549.

[55] Ivan Khokhlov, Lev Krasnov, Maxim V. Fedorov, and Sergey Sosnin. Image2SMILES:
Transformer-Based Molecular Optical Recognition Engine. Chemistry–Methods,
2(1):e202100069, 2022.

[56] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, page 14, 2017.

BIBLIOGRAPHY 203

[57] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
Self-referencing Embedded Strings (SELFIES): A 100% robust molecular string representa-
tion. Machine Learning: Science and Technology, 1(4):045024, 2020.

[58] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching
for Recognizing Natural Scene Categories. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages 2169–2178, June 2006.
ISSN: 1063-6919.

[59] Anh Duy Le, Van Linh Pham, Vinh Loi Ly, Nam Quan Nguyen, Huu Thang Nguyen,
and Tuan Anh Tran. A Hybrid Vision Transformer Approach for Mathematical Expression
Recognition. In 2022 International Conference on Digital Image Computing: Techniques and
Applications (DICTA), pages 1–7, November 2022.

[60] Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005.

[61] Youngwan Lee, Jonghee Kim, Jeffrey Willette, and Sung Ju Hwang. Mpvit: Multi-path vision
transformer for dense prediction. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 7277–7286, 2022.

[62] Bohan Li, Ye Yuan, Dingkang Liang, Xiao Liu, Zhilong Ji, Jinfeng Bai, Wenyu Liu, and Xiang
Bai. When Counting Meets HMER: Counting-Aware Network for Handwritten Mathematical
Expression Recognition. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria
Farinella, and Tal Hassner, editors, Computer Vision – ECCV 2022, Lecture Notes in Com-
puter Science, pages 197–214, Cham, 2022. Springer Nature Switzerland.

[63] Weijun Li, Yuxiao Gao, Ang Li, Xinyong Zhang, Jianlai Gu, and Jintong Liu. Sparse Subgraph
Prediction Based on Adaptive Attention. Applied Sciences, 13(14):8166, January 2023.

[64] Yanchi Li, Guanyu Chen, and Xiang Li. Automated Recognition of Chemical Molecule Images
Based on an Improved TNT Model. Applied Sciences, 12(2):680, 2022.

[65] Fan Lin and Jianhua Li. MPOCSR: Optical chemical structure recognition based on multi-
path Vision Transformer. Complex & Intelligent Systems, 10(6):7553–7563, December 2024.

[66] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for
Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(2):318–327, February 2020.

BIBLIOGRAPHY 204

[67] X. Lin, L. Gao, Z. Tang, X. Lin, and X. Hu. Mathematical Formula Identification in PDF
Documents. In 2011 International Conference on Document Analysis and Recognition, pages
1419–1423, September 2011. ISSN: 2379-2140.

[68] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining
Xie. A convnet for the 2020s. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11966–11976, 2022.

[69] Jun Long, Quan Hong, and Liu Yang. An Encoder-Decoder Method with Position-Aware
for Printed Mathematical Expression Recognition. In Gernot A. Fink, Rajiv Jain, Koichi
Kise, and Richard Zanibbi, editors, Document Analysis and Recognition - ICDAR 2023, pages
167–181, Cham, 2023. Springer Nature Switzerland.

[70] Mahshad Mahdavi. Query-Driven Global Graph Attention Model for Visual Parsing: Recog-
nizing Handwritten and Typeset Math Formulas. Theses, August 2020.

[71] Mahshad Mahdavi, Michael Condon, Kenny Davila, and Richard Zanibbi. LPGA: Line-
of-Sight Parsing with Graph-Based Attention for Math Formula Recognition. In 2019
International Conference on Document Analysis and Recognition (ICDAR), pages 647–654,
Sydney, Australia, September 2019. IEEE.

[72] Mahshad Mahdavi, Leilei Sun, and Richard Zanibbi. Visual Parsing with Query-Driven Global
Graph Attention (QD-GGA): Preliminary Results for Handwritten Math Formula Recogni-
tion. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pages 2429–2438, Seattle, WA, USA, June 2020. IEEE.

[73] Mahshad Mahdavi, Richard Zanibbi, Harold Mouchere, Christian Viard-Gaudin, and Utpal
Garain. ICDAR 2019 CROHME + TFD: Competition on Recognition of Handwritten Math-
ematical Expressions and Typeset Formula Detection. In 2019 International Conference on
Document Analysis and Recognition (ICDAR), pages 1533–1538, Sydney, Australia, Septem-
ber 2019. IEEE.

[74] Behrooz Mansouri, Vít Novotný, Anurag Agarwal, Douglas W. Oard, and Richard Zanibbi.
Overview of arqmath-3 (2022): third CLEF lab on answer retrieval for questions on math
(working notes version). In CLEF (Working Notes), volume 3180 of CEUR Workshop
Proceedings, pages 1–27. CEUR-WS.org, 2022.

[75] MathML. Mathml — Wikipedia, the free encyclopedia, 2024. Online; accessed: 2024-10-15.

[76] Nicholas E. Matsakis. Recognition of handwritten mathematical expressions. Master’s thesis,
Massachusetts Institute of Technology, 1999.

BIBLIOGRAPHY 205

[77] Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj, Jacek Tabor, and
Stanisław Jastrzębski. Molecule Attention Transformer, February 2020.

[78] Joe R. McDaniel and Jason R. Balmuth. Kekule: OCR-Optical Chemical (structure) Recog-
nition. Journal of Chemical Information and Computer Sciences, 32(4):373–378, 1992.

[79] Lucas Morin, Martin Danelljan, Maria Isabel Agea, Ahmed Nassar, Valery Weber, Ingmar
Meijer, Peter Staar, and Fisher Yu. Molgrapher: Graph-based visual recognition of chemical
structures. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 19552–19561, October 2023.

[80] Harold Mouchere, Christian Viard-Gaudin, Dae Hwan Kim, Jin Hyung Kim, and Utpal
Garain. Crohme2011: Competition on recognition of online handwritten mathematical ex-
pressions. In 2011 International Conference on Document Analysis and Recognition, pages
1497–1500, 2011.

[81] Harold Mouchère, Richard Zanibbi, Utpal Garain, and Christian Viard-Gaudin. Advancing
the state of the art for handwritten math recognition: the CROHME competitions, 2011-2014.
Int. J. Document Anal. Recognit., 19(2):173–189, 2016.

[82] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain. ICFHR 2014 Competition
on Recognition of On-Line Handwritten Mathematical Expressions (CROHME 2014). In
2014 14th International Conference on Frontiers in Handwriting Recognition, pages 791–796,
September 2014. ISSN: 2167-6445.

[83] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain. ICFHR2016 CROHME: Com-
petition on Recognition of Online Handwritten Mathematical Expressions. In 2016 15th
International Conference on Frontiers in Handwriting Recognition (ICFHR), pages 607–612,
October 2016. ISSN: 2167-6445.

[84] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, U. Garain, D. H. Kim, and J. H. Kim. IC-
DAR 2013 CROHME: Third International Competition on Recognition of Online Handwrit-
ten Mathematical Expressions. In 2013 12th International Conference on Document Analysis
and Recognition, pages 1428–1432, August 2013. ISSN: 2379-2140.

[85] Harold Mouchère, Richard Zanibbi, Utpal Garain, and Christian Viard-Gaudin. Advancing
the state of the art for handwritten math recognition: the CROHME competitions, 2011–2014.
International Journal on Document Analysis and Recognition (IJDAR), 19(2):173–189, June
2016.

BIBLIOGRAPHY 206

[86] Nikhil Nasalwai, Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal.
Addressing the Class Imbalance Problem in Medical Image Segmentation via Accelerated
Tversky Loss Function. In Kamal Karlapalem, Hong Cheng, Naren Ramakrishnan, R. K.
Agrawal, P. Krishna Reddy, Jaideep Srivastava, and Tanmoy Chakraborty, editors, Advances
in Knowledge Discovery and Data Mining, pages 390–402, Cham, 2021. Springer International
Publishing.

[87] Jerzy Neyman. On the Two Different Aspects of the Representative Method: The Method of
Stratified Sampling and the Method of Purposive Selection. Journal of the Royal Statistical
Society, 97(4):558, 1934.

[88] An Nguyen, Yu-Chieh Huang, Pierre Tremouilhac, Nicole Jung, and Stefan Bräse. CHEM-
SCANNER: Extraction and re-use(ability) of chemical information from common scientific
documents containing ChemDraw files. Journal of Cheminformatics, 11:77, 2019.

[89] Cuong Tuan Nguyen, Thanh-Nghia Truong, Hung Tuan Nguyen, and Masaki Nakagawa.
Global Context for Improving Recognition of Online Handwritten Mathematical Expres-
sions. In Josep Lladós, Daniel Lopresti, and Seiichi Uchida, editors, Document Analysis
and Recognition – ICDAR 2021, Lecture Notes in Computer Science, pages 617–631, Cham,
2021. Springer International Publishing.

[90] Gavin Nishizawa, Jennifer Liu, Yancarlos Diaz, Abishai Dmello, Wei Zhong, and Richard
Zanibbi. Mathseer: A math-aware search interface with intuitive formula editing, reuse, and
lookup. In ECIR (2), volume 12036 of Lecture Notes in Computer Science, pages 470–475.
Springer, 2020.

[91] Noel O’Boyle and Andrew Dalke. DeepSMILES: An Adaptation of SMILES for Use in
Machine-Learning of Chemical Structures. ChemRxiv, pages 1–9, 2018.

[92] Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and
Geoffrey R. Hutchison. Open Babel: An open chemical toolbox. Journal of Cheminformatics,
3(1):33, 2011.

[93] Rochester Institute of Technology. Research computing services, 2025.

[94] Martijn Oldenhof, Adam Arany, Yves Moreau, and Jaak Simm. ChemGrapher: Optical Graph
Recognition of Chemical Compounds by Deep Learning. Journal of Chemical Information and
Modeling, 60(10):4506–4517, October 2020. Publisher: American Chemical Society.

[95] Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histograms. IEEE
Transactions on Systems, Man, and Cybernetics, 9(1):62–66, January 1979.

BIBLIOGRAPHY 207

[96] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: A method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, ACL ’02, pages 311–318, USA, July 2002. Associ-
ation for Computational Linguistics.

[97] Shuai Peng, Liangcai Gao, Ke Yuan, and Zhi Tang. Image to LaTeX with Graph Neural
Network for Mathematical Formula Recognition. In Josep Lladós, Daniel Lopresti, and Sei-
ichi Uchida, editors, Document Analysis and Recognition – ICDAR 2021, Lecture Notes in
Computer Science, pages 648–663, Cham, 2021. Springer International Publishing.

[98] Steven T. Piantadosi. Zipf’s word frequency law in natural language: A critical review and
future directions. Psychonomic bulletin & review, 21(5):1112–1130, October 2014.

[99] Florina Piroi, Mihai Lupu, Allan Hanbury, Alan P. Sexton, Walid Magdy, and Igor V. Filip-
pov. CLEF-IP 2012: Retrieval experiments in the intellectual property domain. In Pamela
Forner, Jussi Karlgren, and Christa Womser-Hacker, editors, CLEF 2012 Evaluation Labs and
Workshop, CEUR Workshop Proceedings (CEUR-WS.org), 2012.

[100] Yujie Qian, Jiang Guo, Zhengkai Tu, Zhening Li, Connor W. Coley, and Regina Barzilay.
MolScribe: Robust molecular structure recognition with image-to-graph generation. Journal
of Chemical Information and Modeling, 63(7):1925–1934, 2023.

[101] Kohulan Rajan, Henning Otto Brinkhaus, Achim Zielesny, and Christoph Steinbeck. A review
of optical chemical structure recognition tools. Journal of Cheminformatics, 12(1):60, 2020.

[102] Kohulan Rajan, Henning Otto Brinkhaus, Achim Zielesny, and Christoph Steinbeck. Ad-
vancements in hand-drawn chemical structure recognition through an enhanced DECIMER
architecture. Journal of Cheminformatics, 16(1):78, July 2024.

[103] Kohulan Rajan, Achim Zielesny, and Christoph Steinbeck. DECIMER: towards deep learning
for chemical image recognition. Journal of Cheminformatics, 12(1):1–9, 2020.

[104] Louis C. Ray and Russell A. Kirsch. Finding chemical records by digital computers. Science,
126(3278):814–819, 1957.

[105] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and
Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention
(MICCAI), pages 234–241, 2015.

[106] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networks, June 2017.

BIBLIOGRAPHY 208

[107] Noureddin M. Sadawi, Alan P. Sexton, and Volker Sorge. Performance of MolRec at TREC
2011 overview and analysis of results. In Ellen M. Voorhees and Lori P. Buckland, editors,
Text REtrieval Conference (TREC), volume 500-296 of NIST Special Publication, 2011.

[108] Noureddin M. Sadawi, Alan P. Sexton, and Volker Sorge. Molrec at CLEF 2012 - overview and
analysis of results. In Pamela Forner, Jussi Karlgren, and Christa Womser-Hacker, editors,
CLEF 2012 Evaluation Labs and Workshop, volume 1178 of CEUR Workshop Proceedings
(CEUR-WS.org), 2012.

[109] Chris Sasarak, Kevin Hart, Richard Pospesel, David Stalnaker, Lei Hu, Robert LiVolsi, Siyu
Zhu, and Richard Zanibbi. min: A multimodal web interface for math search. In Proc.
Human-Centered Information Retrieval (HCIR), Cambridge, MA, USA, 2012.

[110] Felix M. Schmitt-Koopmann, Elaine M. Huang, Hans-Peter Hutter, Thilo Stadelmann, and
Alireza Darvishy. MathNet: A Data-Centric Approach for Printed Mathematical Expression
Recognition. IEEE Access, 12:76963–76974, 2024.

[111] Klaus U. Schulz and Stoyan Mihov. Fast string correction with Levenshtein automata.
International Journal on Document Analysis and Recognition (IJDAR), 5(1):67–85, 2002.

[112] Ayush Kumar Shah, Bryan Amador, Abhisek Dey, Ming Creekmore, Blake Ocampo, Scott
Denmark, and Richard Zanibbi. Chemscraper: leveraging pdf graphics instructions for molec-
ular diagram parsing. International Journal on Document Analysis and Recognition (IJDAR),
2024.

[113] Ayush Kumar Shah, Abhisek Dey, and Richard Zanibbi. A math formula extraction and
evaluation framework for pdf documents. In International Conference on Document Analysis
and Recognition (ICDAR), pages 19–34, 2021.

[114] Ayush Kumar Shah and Richard Zanibbi. Line-of-sight with Graph Attention Parser (LGAP)
for math formulas. In International Conference on Document Analysis and Recognition
(ICDAR), page 401–419, 2023.

[115] Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin
Verspoor. Graph Transformers: A Survey, July 2024.

[116] Volker Sorge, Akashdeep Bansal, Neha M Jadhav, Himanshu Garg, Ayushi Verma, and M Bal-
akrishnan. Towards generating web-accessible STEM documents from PDF. In Proceedings
of the 17th International Web for All Conference, W4A ’20, pages 1–5, New York, NY, USA,
April 2020. Association for Computing Machinery.

BIBLIOGRAPHY 209

[117] Joshua Staker, Kyle Marshall, Robert Abel, and Carolyn M. McQuaw. Molecular structure ex-
traction from documents using deep learning. Journal of Chemical Information and Modeling,
59(3):1017–1029, 2019. PMID: 30758950.

[118] M. Suzuki, S. Uchida, and A. Nomura. A ground-truthed mathematical character and symbol
image database. In Eighth International Conference on Document Analysis and Recognition
(ICDAR’05), pages 675–679 Vol. 2, 2005.

[119] Masakazu Suzuki, Fumikazu Tamari, Ryoji Fukuda, Seiichi Uchida, and Toshihiro Kanahori.
INFTY: an integrated OCR system for mathematical documents. In Proceedings of the 2003
ACM symposium on Document engineering, DocEng ’03, pages 95–104, New York, NY, USA,
November 2003. Association for Computing Machinery.

[120] Masakazu Suzuki, Seiichi Uchida, and Akihiro Nomura. A ground-truthed mathematical
character and symbol image database. In ICDAR, pages 675–679. IEEE Computer Society,
2005.

[121] Masakazu Suzuki and Katsuhito Yamaguchi. Recognition of E-Born PDF Including Math-
ematical Formulas. In Klaus Miesenberger, Christian Bühler, and Petr Penaz, editors,
Computers Helping People with Special Needs, Lecture Notes in Computer Science, pages
35–42, Cham, 2016. Springer International Publishing.

[122] Jia-Man Tang, Hong-Yu Guo, Jin-Wen Wu, Fei Yin, and Lin-Lin Huang. Offline handwritten
mathematical expression recognition with graph encoder and transformer decoder. Pattern
Recognition, 148:110155, April 2024.

[123] Jia-Man Tang, Jin-Wen Wu, Fei Yin, and Lin-Lin Huang. Offline Handwritten Mathematical
Expression Recognition via Graph Reasoning Network. In Christian Wallraven, Qingshan
Liu, and Hajime Nagahara, editors, Pattern Recognition, Lecture Notes in Computer Science,
pages 17–31, Cham, 2022. Springer International Publishing.

[124] Peng Tang, Siu Cheung Hui, and Chi-Wing Fu. Online chemical symbol recognition for hand-
written chemical expression recognition. In 2013 IEEE/ACIS 12th International Conference
on Computer and Information Science (ICIS), pages 535–540, 2013.

[125] Seiichi Toyota, Seiichi Uchida, and Masakazu Suzuki. Structural Analysis of Mathematical
Formulae with Verification Based on Formula Description Grammar. In Horst Bunke and
A. Lawrence Spitz, editors, Document Analysis Systems VII, Lecture Notes in Computer
Science, pages 153–163, Berlin, Heidelberg, 2006. Springer.

BIBLIOGRAPHY 210

[126] Thanh-Nghia Truong, Cuong Tuan Nguyen, Richard Zanibbi, Harold Mouchère, and Masaki
Nakagawa. A survey on handwritten mathematical expression recognition: The rise of encoder-
decoder and GNN models. Pattern Recognition, 153:110531, September 2024.

[127] Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool. MTI-Net: Multi-scale Task
Interaction Networks for Multi-task Learning. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, pages 527–543, Cham,
2020. Springer International Publishing.

[128] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NeurIPS), pages 5998–6008, 2017.

[129] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph Attention Networks. In International Conference on
Learning Representations, February 2018.

[130] L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on
immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(6):583–598, June 1991.

[131] Rafael Grompone von Gioi, Jérémie Jakubowicz, Jean-Michel Morel, and Gregory Randall.
LSD: A Line Segment Detector. Image Processing On Line, 2:35–55, March 2012.

[132] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-YOLOv4: Scaling
cross stage partial network. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13024–13033, 2021.

[133] Jiaming Wang, Jun Du, Jianshu Zhang, Bin Wang, and Bo Ren. Stroke constrained attention
network for online handwritten mathematical expression recognition. Pattern Recognition,
119:108047, November 2021.

[134] Yan Wang, Ruochi Zhang, Shengde Zhang, Liming Guo, Qiong Zhou, Bowen Zhao, Xiaotong
Mo, Qian Yang, Yajuan Huang, Kewei Li, Yusi Fan, Lan Huang, and Fengfeng Zhou. OCMR:
A comprehensive framework for optical chemical molecular recognition. Comput. Biol. Med.,
163(C), 2023.

[135] David Weininger. SMILES, a chemical language and information system: Introduction to
methodology and encoding rules. Journal of Chemical Information and Computer Sciences,
28(1):31–36, 1988.

BIBLIOGRAPHY 211

[136] Changjie Wu, Jun Du, Yunqing Li, Jianshu Zhang, Chen Yang, Bo Ren, and Yiqing Hu.
TDv2: A Novel Tree-Structured Decoder for Offline Mathematical Expression Recognition.
Proceedings of the AAAI Conference on Artificial Intelligence, 36(3):2694–2702, June 2022.

[137] Jin-Wen Wu, Fei Yin, Yan-Ming Zhang, Xu-Yao Zhang, and Cheng-Lin Liu. Graph-to-Graph:
Towards Accurate and Interpretable Online Handwritten Mathematical Expression Recogni-
tion. Association for the Advancement of Artificial Intelligence, page 9, 2021.

[138] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated Residual
Transformations for Deep Neural Networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5987–5995, Honolulu, HI, July 2017. IEEE.

[139] Yejing Xie and Harold Mouchère. Stroke-Level Graph Labeling with Edge-Weighted Graph
Attention Network for Handwritten Mathematical Expression Recognition. In Elisa H. Bar-
ney Smith, Marcus Liwicki, and Liangrui Peng, editors, Document Analysis and Recognition
- ICDAR 2024, pages 38–55, Cham, 2024. Springer Nature Switzerland.

[140] Yejing Xie, Harold Mouchère, Foteini Simistira Liwicki, Sumit Rakesh, Rajkumar Saini,
Masaki Nakagawa, Cuong Tuan Nguyen, and Thanh-Nghia Truong. Icdar 2023 crohme: Com-
petition on recognition of handwritten mathematical expressions. In Document Analysis and
Recognition - ICDAR 2023: 17th International Conference, San José, CA, USA, August 21–26,
2023, Proceedings, Part II, page 553–565, Berlin, Heidelberg, 2023. Springer-Verlag.

[141] Yejing Xie, Richard Zanibbi, and Harold Mouchère. Local and Global Graph Modeling with
Edge-weighted Graph Attention Network for Handwritten Mathematical Expression Recogni-
tion, October 2024.

[142] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. Pad-net: Multi-tasks guided
prediction-and-distillation network for simultaneous depth estimation and scene parsing. In
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 675–684,
2018.

[143] Guikun Xu, Yongquan Jiang, PengChuan Lei, Yan Yang, and Jim Chen. GTMGC:
Using Graph Transformer to Predict Molecule’s Ground-State Conformation. In The
Twelfth International Conference on Learning Representations, October 2023.

[144] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhut-
dinov, Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: neural image caption
generation with visual attention. In Proceedings of the 32nd International Conference on

BIBLIOGRAPHY 212

International Conference on Machine Learning - Volume 37, ICML’15, pages 2048–2057, Lille,
France, July 2015. JMLR.org.

[145] Youjun Xu, Jinchuan Xiao, Chia-Han Chou, Jianhang Zhang, Jintao Zhu, Qiwan Hu, Hemin
Li, Ningsheng Han, Bingyu Liu, Shuaipeng Zhang, Jinyu Han, Zhen Zhang, Shuhao Zhang,
Weilin Zhang, Luhua Lai, and Jianfeng Pei. MolMiner: You Only Look Once for Chemical
Structure Recognition. Journal of Chemical Information and Modeling, 62(22):5321–5328,
November 2022.

[146] Zhanpeng Xu, Jianhua Li, Zhaopeng Yang, Shiliang Li, and Honglin Li. SwinOCSR:
End-to-end optical chemical structure recognition using a Swin transformer. Journal of
Cheminformatics, 14(1):41, 2022.

[147] Yongxin Yang and Timothy M. Hospedales. Trace norm regularised deep multi-task learning.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings. OpenReview.net, 2017.

[148] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

[149] Sanghyun Yoo, Ohyun Kwon, and Hoshik Lee. Image-to-graph transformers for chemical
structure recognition. In International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3393–3397, 2022.

[150] Abdou Youssef. Part-of-math tagging and applications. In Herman Geuvers, Matthew
England, Osman Hasan, Florian Rabe, and Olaf Teschke, editors, Intelligent Computer
Mathematics, pages 356–374, Cham, 2017. Springer International Publishing.

[151] D. Yu, X. Li, C. Zhang, T. Liu, J. Han, J. Liu, and E. Ding. Towards Accurate Scene
Text Recognition With Semantic Reasoning Networks. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 12110–12119, June 2020. ISSN:
2575-7075.

[152] R. Zanibbi, D. Blostein, and J. R. Cordy. Recognizing mathematical expressions using
tree transformation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(11):1455–1467, November 2002. Conference Name: IEEE Transactions on Pattern Analysis
and Machine Intelligence.

BIBLIOGRAPHY 213

[153] Richard Zanibbi, Akiko Aizawa, Michael Kohlhase, Iadh Ounis, Goran Topic, and Kenny
Davila. NTCIR-12 mathir task overview. In NTCIR. National Institute of Informatics (NII),
2016.

[154] Richard Zanibbi and Dorothea Blostein. Recognition and retrieval of mathematical expres-
sions. International Journal on Document Analysis and Recognition (IJDAR), 15(4):331–357,
December 2012.

[155] Richard Zanibbi, Harold Mouchère, and Christian Viard-Gaudin. Evaluating structural pat-
tern recognition for handwritten math via primitive label graphs. In Document Recognition
and Retrieval XX, volume 8658, page 865817. International Society for Optics and Photonics,
February 2013.

[156] Richard Zanibbi and Awelemdy Orakwue. Math Search for the Masses: Multimodal Search
Interfaces and Appearance-Based Retrieval. In Manfred Kerber, Jacques Carette, Cezary
Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, Lecture
Notes in Computer Science, pages 18–36, Cham, 2015. Springer International Publishing.

[157] Richard Zanibbi, Amit Pillay, Harold Mouchere, Christian Viard-Gaudin, and Dorothea
Blostein. Stroke-based performance metrics for handwritten mathematical expressions. In
International Conference on Document Analysis and Recognition (ICDAR), page 334–338,
USA, 2011.

[158] Richard Zanibbi and Li Yu. Math spotting: Retrieving math in technical documents using
handwritten query images. In ICDAR, pages 446–451. IEEE Computer Society, 2011.

[159] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Haibin Lin, Zhi Zhang, Yue
Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and Alexander Smola. ResNeSt:
Split-Attention Networks. In 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pages 2735–2745, June 2022.

[160] J. Zhang, J. Du, and L. Dai. Track, Attend, and Parse (TAP): An End-to-End Frame-
work for Online Handwritten Mathematical Expression Recognition. IEEE Transactions on
Multimedia, 21(1):221–233, January 2019. Conference Name: IEEE Transactions on Multi-
media.

[161] Jianshu Zhang, Jun Du, Yongxin Yang, Yi-Zhe Song, and Lirong Dai. SRD: A Tree Struc-
ture Based Decoder for Online Handwritten Mathematical Expression Recognition. IEEE
Transactions on Multimedia, 23:2471–2480, 2021.

BIBLIOGRAPHY 214

[162] Jianshu Zhang, Jun Du, Shiliang Zhang, Dan Liu, Yulong Hu, Jinshui Hu, Si Wei, and Lirong
Dai. Watch, attend and parse: An end-to-end neural network based approach to handwritten
mathematical expression recognition. Pattern Recognition, 71:196–206, November 2017.

[163] Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan Wang, Jie Shao, and Ee-Peng Lim.
Graph-to-tree learning for solving math word problems. In Dan Jurafsky, Joyce Chai, Na-
talie Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 3928–3937, Online, July 2020. Association
for Computational Linguistics.

[164] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for thinning digital patterns. Commun.
ACM, 27(3):236–239, March 1984.

[165] X. Zhang, L. Gao, K. Yuan, R. Liu, Z. Jiang, and Z. Tang. A Symbol Dominance Based Formu-
lae Recognition Approach for PDF Documents. In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), volume 01, pages 1144–1149, November
2017. ISSN: 2379-2140.

[166] Yang Zhang, Guangshun Shi, and Jufeng Yang. Hmm-based online recognition of handwrit-
ten chemical symbols. In 2009 10th International Conference on Document Analysis and
Recognition, pages 1255–1259, 2009.

[167] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang Li, and Jian Yang. Joint task-
recursive learning for semantic segmentation and depth estimation. In Vittorio Ferrari, Martial
Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision – ECCV 2018, pages
238–255, Cham, 2018. Springer International Publishing.

[168] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe, and Jian Yang. Pattern-affinitive
propagation across depth, surface normal and semantic segmentation. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 4101–4110, 2019.

[169] Dmytro Zhelezniakov, Viktor Zaytsev, and Olga Radyvonenko. Online Handwritten Math-
ematical Expression Recognition and Applications: A Survey. IEEE Access, 9:38352–38373,
2021.

[170] Jianhua Zhu, Liangcai Gao, and Wenqi Zhao. ICAL: Implicit Character-Aided Learning
for Enhanced Handwritten Mathematical Expression Recognition. In Elisa H. Barney Smith,
Marcus Liwicki, and Liangrui Peng, editors, Document Analysis and Recognition - ICDAR
2024, pages 21–37, Cham, 2024. Springer Nature Switzerland.

Appendices

215

Appendix A

Feature Resolution and Pooling
Configuration Search

This appendix presents a grid search evaluating the impact of input feature size and spatial pyrami-
dal pooling (SPP) configurations on the parsing performance of mathematical formulas and chemical
diagrams. These experiments were conducted on representative subsets of each domain to inform
design choices for the visual encoding backbone.

Subset Datasets. To perform the grid search efficiently while ensuring diversity, we used curated
subsets of both chemical and mathematical datasets.

For the chemical domain, all samples were drawn from the PubChem-5k dataset. The small
training and validation set consists of 216 diagrams sampled from the Indigo-rendered PubChem
corpus. These were split into an 80% training set (115 diagrams) and 20% validation set (27
diagrams). For evaluation, we used a held-out test set of 231 diagrams, also sampled from Indigo
(150) and RDKit (81) renderers to reflect style variability. All diagrams used in these subsets were
verified for correctness using our born-digital parser pipeline.

For the mathematical domain, we sampled from the INFTY-MCDB training set. Specifically,
10% of the full INFTY training set was used for training (1255 formulas), with an 80-20 split into
1004 training and 251 validation examples. A separate 15% held-out portion (1708 formulas) was
reserved for development testing.

216

APPENDIX A. FEATURE RESOLUTION AND POOLING CONFIGURATION SEARCH 217

These subsets enabled fast, reproducible grid search while maintaining a representative distribution
of layout structures and symbol classes. All subsequent performance evaluations in this appendix
are based on these small-scale but diverse subsets.

We define two sets of independent variables for this search: (i) the resolution of input visual
primitives, and (ii) the number and arrangement of pooling regions used in spatial pyramidal
pooling.

Input Feature Sizes. We explore four fixed-size square resolutions for cropped primitive inputs:
28 × 28, 32 × 32, 48 × 48, and 64 × 64. The smallest size, 28 × 28, was inspired by classical
digit recognition tasks such as MNIST [60], where symbols are small and relatively isolated. While
efficient, this resolution risks omitting key contextual details for visually similar but structurally
distinct symbols. The 32 × 32 resolution, previously used in our chemical parsing models, offers
slightly better spatial coverage while maintaining low memory usage. Increasing the patch size
further to 48 × 48 helps evaluate whether intermediate scaling improves performance in cluttered
settings. Finally, 64 × 64 patches provide a large context window, better preserving structural
boundaries and layout relationships, particularly useful for dense math formula regions. However,
this comes at the cost of increased memory and inference time.

Spatial Pyramidal Pooling Regions. To assess the effect of spatial layout encoding, we vary
the number of pooled regions in the spatial pyramid used after the CNN encoder as shown in
Table A.1. The simplest configuration is a single-region global average pooling (GAP), which
discards all spatial detail and produces a compact, low-dimensional representation. To capture
coarse layout information, we introduce pooling over horizontal and vertical thirds (3H + 3V),
resulting in a total of 7 pooled regions including the global one. A more fine-grained configuration
adds pooling over horizontal and vertical fifths (5H + 5V), yielding 17 total regions. The densest
setup includes horizontal and vertical sevenths (7H +7V), forming a 31-region pooling scheme. As
pooling granularity increases, so does the dimensionality of the pooled feature vector, which can
improve task performance through better spatial discrimination but also leads to more learnable
parameters and higher computational cost.

All other model components, including CNN backbone, loss function (Cross-Entropy), graph con-
struction (LOS for math, 6NN for chemistry) were held constant across runs. These correspond to
the standard settings described in Table 5.3 in Chapter 5.

APPENDIX A. FEATURE RESOLUTION AND POOLING CONFIGURATION SEARCH 218

Table A.1: Spatial pyramidal pooling configurations used in grid search.

Name Region Count Configuration

GAP (Global Average Pooling) 1 1

Coarse SPP 7 1 + 3H + 3V

Mid SPP 17 1 + 3H + 3V + 5H + 5V

Dense SPP 31 1 + 3H + 3V + 5H + 5V + 7H + 7V

Table A.2: Effect of input feature size on math and chemical subset performance.

Domain Input Size Sym Det. +Class Rel Det. +Class Struct. +Class

Math 28x28 97.20 95.30 94.00 93.20 85.10 81.20
Math 32x32 97.60 95.80 94.50 93.70 87.30 83.40
Math 48x48 98.40 96.90 95.60 94.80 89.50 86.20
Math 64x64 98.95 96.83 95.96 95.13 90.32 86.55

Chem 28x28 96.10 92.30 90.50 88.40 72.50 68.00
Chem 32x32 98.30 95.10 94.40 93.20 80.20 76.50
Chem 48x48 98.20 94.90 94.10 92.80 80.00 76.00
Chem 64x64 98.10 94.70 93.90 92.50 79.50 75.40

A.1 Effect of Input Feature Size

Table A.2 summarizes the effect of input feature size on parsing performance for both math and
chemical domains. In the case of mathematical formulas, performance improved consistently with
increasing input size, with highest metrics at 64 × 64 for all tasks, including symbol classification,
relationship classification, and expression-level accuracy. For chemical diagrams, performance also
improved with larger sizes up to 32× 32, beyond which metrics declined.

These results can be explained by differences in visual complexity and symbol diversity between
the two domains. For mathematical formulas, the symbol set is large (207 classes), and symbols
vary significantly in shape and spatial arrangement. Many expressions are deeply nested, and fine-
grained visual features such as stroke curvature or subscript positioning are essential for accurate
classification. A higher input resolution of 64 × 64 preserves these details, allowing the model to
distinguish between visually similar but semantically distinct symbols, and to better resolve multi-
level layout structures.

In contrast, chemical diagrams primarily consist of a smaller symbol set (67 classes), where most
nodes represent line segments (bonds) or standard atom characters. These primitives are simpler in
shape and generally more uniform in structure. The spatial context, rather than the internal visual

APPENDIX A. FEATURE RESOLUTION AND POOLING CONFIGURATION SEARCH 219

Table A.3: Effect of SPP pooling region configurations on parsing performance.

Domain SPP Config Sym Det. +Class Rel Det. +Class Struct. +Class

Math 1 98.00 96.10 95.00 94.00 88.0 82.3
Math 7 98.21 96.42 95.13 94.32 88.7 83.4
Math 17 98.64 96.71 95.71 95.02 89.9 84.2
Math 31 98.95 96.83 95.96 95.13 90.32 84.55

Chem 1 96.50 93.20 91.80 90.00 76.1 71.9
Chem 7 97.22 94.00 92.50 91.30 78.5 74.1
Chem 17 98.00 94.80 93.80 92.70 79.7 75.3
Chem 31 98.30 95.10 94.40 93.20 80.20 76.50

details of each primitive, is often sufficient for classification. As a result, 32× 32 provides a strong
balance between resolution and efficiency. Increasing the input size beyond this adds unnecessary
whitespace or background artifacts around small line-based primitives, which can dilute informative
features, reduce effective contrast, and even introduce noise due to segmentation jitter, leading to
slight drops in performance at 48× 48 and 64× 64.

A.2 Effect of Spatial Pyramidal Pooling Regions

The effect of pooling granularity was tested using a fixed input size (64 × 64 for math, 32 × 32

for chemistry). Table A.3 presents task-wise performance for different pooling configurations. We
observed that progressively deeper SPP configurations led to consistent improvements in layout-
sensitive tasks such as relationship classification and expression parsing. However, the optimal
depth varied by domain.

The results in Table A.3 demonstrate how varying the number of spatial pyramidal pooling (SPP)
regions impacts parsing performance across mathematical and chemical domains. SPP enhances
the visual encoding of each primitive by capturing query and context features at multiple scales and
orientations, which is critical in tasks that depend on the relative layout and local interactions of
symbols or segments.

For mathematical formulas, larger SPP configurations, particularly the 31-region setup, yielded
the best performance across all tasks. This is due to the highly structured and often nested nature
of mathematical notation, where the position of symbols in 2D space (e.g., superscripts, fractions,
radicals) directly determines their semantic role. Fine-grained spatial encoding provided by deeper
pyramids helps disambiguate between similar primitives placed in different spatial configurations.

APPENDIX A. FEATURE RESOLUTION AND POOLING CONFIGURATION SEARCH 220

Additionally, the large symbol vocabulary (207 classes) increases the need for rich contextual cues
to accurately interpret the role of each symbol, especially when dealing with subtle variations in
arrangement or scale.

For chemical diagrams, the 17-region SPP configuration was found to be sufficient, with minimal
gains observed when increasing to 31 regions. Chemical structures are predominantly composed of
atoms and bonds with limited variability in spatial layout. Most relationships are local, and the
diagram structure is relatively sparse compared to densely written math formulas. Thus, excessive
pooling regions may introduce redundancy without offering meaningful gains, while also increasing
the model’s computational load. Furthermore, the over-segmentation of visual primitives (e.g., bond
lines) in chemistry often makes the visual signal more fragmented; thus, simpler pooling helps avoid
overfitting to small irrelevant variations.

	Introduction
	Motivation and Applications
	Parsing Mathematical Formulas and Chemical Diagrams
	Research Questions and Thesis Outline
	Thesis Statement
	Contributions
	Limitations

	Background
	Data Representations and Structures
	Input Sources and Primitives
	Graph Representations
	Output Representations

	Parsing Models
	Math formula parsing
	Chemical diagram parsing

	Techniques Relevant to Parsing Models
	Multi-task Learning and Interaction
	Local Constraints in Graph-Based Methods
	Use of Edge Features in Graph Parsing
	Graph Attention Methods

	Evaluation Metrics
	Graph-based Metrics (LgEval)
	String-based Metrics

	Summary

	Born-digital Parsing from PDF symbols
	SymbolScraper: Symbol Extraction from PDF
	MST-based Math Formula Parsing
	Identifying Extracted Symbols in Formula Regions
	Parsing Formula Structure with SymbolScraper and QD-GGA
	Building the Symbol Layout Tree (SLT)

	MST-based Molecular Digram Parsing
	Minimum Spanning Tree (MST)
	MST Visual Structure Graph
	Visual Molecular Structure

	Generating Training Data for Visual Parser
	Visual Primitives (Lines)
	Visual Graph Generation

	Evaluation and Results
	Evaluation of Math Formula Recognition
	Evaluation of Chemical Diagram Recognition

	Summary

	Visual Parsing from Raster Images
	The Parsing Model – LGAP and LCGP
	Inputs
	Features
	Multi-Task CNN for Classifying Primitives and Primitive Pairs
	Parsing: Transforming Input Graphs into Output Graphs

	Evaluation and Results
	Evaluation of Math Formula Recognition (LGAP)
	Evaluation of Chemical Diagram Recognition (LCGP)

	Summary

	Input Graph Representations and Context
	Input Graph Representations (RQ2)
	Types of Graph Representations
	Comparison and Analysis
	Edge Type for Atom Number Annotations in Chemical Diagrams

	Graph Attention and Task Interaction (RQ3)
	Common Feature Extraction Pipeline
	Visual Feature Improvements (RQ1)
	Edge-Aware Graph Attention with Multi-Hop Message Passing
	Two-Stage Graph Attention with Cross-Task Interaction

	Evaluation and Results
	Datasets and Evaluation Metrics
	Common Feature Extraction Pipeline
	Visual Feature Improvements
	Split-Attention (ResNeSt) Backbone
	RQ3: Graph Attention and Task Interaction

	Summary

	Visual Noise and Loss Functions
	Visual Noise Augmentation
	Structural Noise
	Visual Noise for Primitive and Context Windows

	Class Imbalance and Sampling Strategies
	Imbalance in Class Distributions
	Stratified Train-Validation Splits
	Weighted random sampling

	Loss functions
	Cross-Entropy Loss
	Weighted Cross-Entropy Loss
	Class-Balanced Loss
	Focal Loss

	Loss Aggregation
	Evaluation and Results
	Noise Augmentation
	Class Imbalance
	Loss Aggregation
	Benchmarks

	Summary

	Conclusion
	Visual Primitive Features (RQ1)
	Input Graph Representations (RQ2)
	Graph Context and Task Interaction (RQ3)
	Visual Noise and Loss Functions (RQ4)
	Other Future Work

	List of Publications
	Appendices
	Feature Resolution and Pooling Configuration Search
	Effect of Input Feature Size
	Effect of Spatial Pyramidal Pooling Regions

