
1

Computer Science II
4003-232-06 (Winter 2006-2007)

Week 5: Generics,
Java Collection Framework

Richard Zanibbi
Rochester Institute of Technology

Generic Types in Java

(Ch. 21 in Liang)

- 3 -

What are ‘Generic Types’ or
‘Generics’?

Definition
– Reference type parameters for use in class and method definitions
– Unlike formal parameters for methods, generic types define

‘macros:’ the class name replaces the type parameter in the source
code (“search and replace”)

Syntax
<C> for parameter, use as C elsewhere (C must be a class)

• public class Widget <C> { } // definition
• Widget<String> = new Widget<String>(); // instantiation
• public <C> void test(C o1, int x) { C temp; } // method

Purpose: Avoiding ‘Dangerous’ Polymorphism
Prevent run-time errors (exceptions) due to improper casting (type

errors)

- 4 -

Example: Comparable Interface
Prior to JDK 1.5 (and Generic Types):
public interface Comparable {
 public int compareTo(Object o) }

Comparable c = new Date();
System.out.println(c.compareTo(“red”));

JDK 1.5 (Generic Types):
public Interface Comparable<T> {
 public int compareTo(T o) }

Comparable<Date> c = new Date();
System.out.println(c.compareTo(“red”));

run-time error

compile-time error

- 5 -

“Raw Types” and
Associated Compiler Warnings

Raw Types
(Provided for backward compatability)
Generic types (classes) that are used without the type

parameter(s) defined
• e.g. Comparator c ~= Comparator<Object> c

Compiler Warnings
– javac will give a warning about possibly unsafe

operations (type errors) at run-time for raw types
• use -Xlint:unchecked flag

– javac will not compile programs whose generic types
cannot be properly defined
• e.g. Max.java, Max1.java (pp. 699-700 in Liang)

- 6 -

Wildcards and Expressions to Restrict
Generic Types

Purpose
Allow to define valid generic type sets, stipulate restrictions on these

The Wildcard (?)
Represents any reference type (i.e. any subclass of Object)

Restricting to subclasses
e.g. public static <T> void add(GenericStack<T> s1,

GenericStack<? super T>) { ... }
 public static <E extends Comparable<E>> C max(E o1, E o2)

// previous example

Restricting to superclasses
e.g. <? super MyClass>

2

- 7 -

Generic Types and
the Inheritance Hierarchy

** Generic class is shared by all instances of the class,
 regardless of concrete types for type parameters (<T,G>, etc.)

** Caution: A<Number> is not a superclass of A<Integer> (etc.)

See Figure 21.6, page 703 Overview: Data Structures and
Abstract Data Types

- 9 -

Storing Data in Java

Variables
Primitive type (int, double, boolean, etc.)

• Variable name refers to a memory location containing a primitive value
Reference type (Object, String, Integer, MyClass, etc.)

• Variable name refers to a memory location containing a reference value
for data belonging to an object

Data Structure
Formal organization for a set of data (e.g. variables)
e.g. Arrays: variables in an integer-indexed sequence

• int intArray[] = {1, 2}; int a = intArray[0]; intArray[1] = 5;
e.g. Objects: data member names representing variables

• player.name, player.hits, player.team ... player.hits = 100;

- 10 -

Abstract Data Types (ADTs)
Purpose
Define interfaces to data structures while hiding (abstracting) implementation

details

Examples of Common ADTs
List: Sequence of elements. Elements may be inserted or removed from any

position in the list
Stack: List with last-in, first-out (LIFO) behaviour (“most recent,” call stack)
Queue: List with first-in, first-out (FIFO) (“in-order”, lining up)
Set: Unordered group of unique items
Map: Set of entries, each with a unique key and a value

• (e.g. Student database: (StudentId, StudentRecordRef))
Tree: Graph with directed edges, each node has one parent (except root), no

cycles.

- 11 -

A
B C

D

s.add(E)

A
B C

D E

s.add(E)Set s

ABCD
l.add(E)

ABCDE
l.add(E,2)

ABECDE

List l

(2, Maria)

(1, Joe)

(2, Maria)

(1, Joe)

(3, Dina)

(2, Maria)

(1, John)

(3, Dina)

m.add((3,Dina)) m.add((1,John))

Map m

C

A

D

E

B

C

A

D

E

B F

(Binary Search) Tree t

t.add(F)

< >

m.add(2,Maria)

- 12 -

Example:
Implementing Abstract Data Types

List ADT
Represents series of elements, insertion and deletion of elements

Some Possible Implementations:
– An array and operations on it

• l.add(E) would copy E at the end of the array, l.get(4) returns 5th item in
array

– A set of objects with references to one another representing a simple
graph (a “linked list”) and operations on it
• L.add(E) would create a link from last node to a new node for E ; l.get(4)

traverses the graph and then returns the 5th item

Choosing an Implementation for an ADT
Depending on common operations, some better than others
– Finding elements in list faster for array implementation
– Inserting, deleting arbitrary elements faster for linked list

implementation

3

- 13 -

Ordering in ‘Unordered’ ADTs
‘Unordered’ on paper vs. in code
In practice, some type of order must be used to implement a set, as

memory and files contain ordered lists of bytes

Sets
By definition, a set is an unordered group of unique elements

Maps
By definition, a map is a set of (key,value) pairs

Ordering Sets and Maps
We can order the storage of set elements by:

1. A value computed for each element (“hash code”) that determines where
an element is stored (e.g. in a “hash table”, a sophisticated ADT built on
arrays); for maps, usually based on key value

2. The order in which elements are added (e.g. in a list)
3. The element (for map: key) values themselves (e.g. using a binary search

tree)
- 14 -

Exercise: Generics and ADTs
Part A
1. In one sentence, what is a generic type?
2. What errors are generic types designed to prevent?
3. Which javac flag will show details for (type) unsafe

operations?
4. What do the following represent:

a) <? extends MyClass>
b) <? super YourClass>
c) <E extends Comparator<E>>

5. Write a java class GenX which has a generic type
parameter T, a public data member identity of type T,
and a constructor that takes an initial value for
identity. Add a main method that constructs one
GenX object using type String, and another using
type Integer.

- 15 -

Part B
1. What is an abstract data type?
2. How is a list different from a set?
3. How are elements stored in a binary

search tree (BST)?
4. In what ways can we order the elements

of a set, or pairs of a map?
5. Are sets and map elements/pairs

ordered in their ADT definitions?

ADTs in Java:
The Java Collections Framework

- 17 -

The Java Collections Framework
Definition
Set of interfaces, abstract and concrete classes that define common

abstract data types in Java
• e.g. list, set, map, queue, stack

Part of the java.util package

Implementation
Extensive use of generic types, hash codes (e.g. hashCode()) , and

Comparable interface (compareTo(), e.g. for sorting)

Collection Interface
Defines common operations for sets and lists (‘unordered’ ops.)

Maps
Represented by separate interfaces

- 18 -

Java Collections Interfaces
(slide: Carl Reynolds)

Note: Some of the material on these slides was taken from the Java Tutorial at http://www.java.sun.com/docs/books/tutorial

Note: All of these classes have a generic
type parameter, e.g. Collection<E>:
see course text (Ch. 22)

See Figure 22.1,
22.2 in text for complete
inheritance hierarchy,
including abstract and
concrete classes.

4

- 19 -

Common List and Set Operations:
the Collection Interface

See Figure 22.3 (page 715)
List of operations to add, remove, and search for

elements (of a generic type (E)).
Operations:

• add elements (add/addAll) to a set/list
• Remove elements (remove/removeAll)
• Take intersection (for sets), keep a set of elements (for lists)

using retainAll()
• Search for elements in a collection (contains/containsAll)
• Many operations return a boolean value, to indicate whether an

operation was successful.
• Return an iterator, which allows us to visit each element in a set

or list one-at-a-time (similar to getting tokens from a Scanner
object)

- 20 -

Iterator Interface

Purpose
Provide uniform way to traverse sets and lists
Instance of Iterator given by iterator() method in Collection

Operations
– Check if all elements have been visited (hasNext())
– Get next element in order imposed by the iterator

(next())
– remove() the last element returned by next()
– Roughly similar to operations used in Scanner to obtain

a sequence of tokens

- 21 -

Implementation Classes
(slide derived from: Carl Reynolds)

HashTable
Properties

LinkedHashMapTreeMapHashMapMap

Vector
Stack

LinkedListArrayListList

LinkedHashSetTreeSetHashSetSet

HistoricalImplementationInterface

Note: When writing programs think about interfaces and not implementations. This way
the program does not become dependent on any added methods in a given
implementation, leaving the programmer with the freedom to change implementations.

- 22 -

Notes on ‘Unordered’ Collections
(Set, Map Implementations)

HashMap, HashSet
Hash table implementation of set/map
Use hash codes (integer values) to determine where set elements or

(key,value) pairs are stored in the hash table

LinkedHashMap, LinkedHashSet
Provide support for ordering set elements or (key,value) pairs by

order of insertion by adding a linked list within the hash table
elements

TreeSet, TreeMap
Use binary search tree implementations to order set elements by

value, or (key,value) pairs by key value

- 23 -

Set Classes

See Figure 22.4
Note that Set interface takes a generic type <T>
Sorted set classes (such as TreeSet) have

additional methods defined (e.g. first/last) as
well as the Collection interface methods

All set classes (really, any Collection (List/Set))
allow a new set to be defined using the
elements of an existing collection, using the
constructor.

- 24 -

HashSet
(Example: TestHashSet.java, p. 717)
Methods
Except for constructors, method interface identical to Collection

Element Storage:
‘Unordered,’ according to their hash codes
**All elements are unique
Do not expect to see elements in the order you add them

Hash Codes
– Most classes in Java API override the hashCode() method in the

Object class
– Need to be defined to properly disperse set elements in storage

(i.e. throughout the hash table)
– For two equivalent objects, hash codes must be the same

5

- 25 -

LinkedHashSet
(example: TestLinkedHashSet.java, p. 718)

Methods
Again, same as Collection Interface except for

constructors

Addition to HashSet
– Elements contain extra field defining order in which

elements are added (as a linked list)
– List (quietly) maintained by the class

Hash Codes
Notes from previous slide still apply (e.g. equivalent

objects, equivalent hash codes)

- 26 -

Ordered Sets: TreeSet
(example: TestTreeSet.java)

Methods
Add methods from SortedSet interface:
first(), last(), headSet(toElement: E), tailSet(fromElement: E)

Implementation
A binary search tree, such that either:
1. Objects (elements) implement the Comparable interface (compareTo())

(“natural order” of objects in a class), or
2. TreeSet is constructed using an object implementing the Comparator

interface (compare()), which may be used to compare objects of
different classes

One of these will determine the ordering of elements.

Notes
– It is faster to use a hash set to add elements, as TreeSet keeps

elements in a sorted order
– Can construct a tree set using an existing collection (e.g. a hash set)

- 27 -

List Interface
 (slide: Carl Reynolds)

// Positional Access
get(int):Object;
set(int,Object):Object; // Optional
add(int, Object):void; // Optional
remove(int index):Object; // Optional
addAll(int, Collection):boolean; // Optional

// Search
int indexOf(Object);
int lastIndexOf(Object);

// Iteration
listIterator():ListIterator;
listIterator(int):ListIterator;

// Range-view List
subList(int, int):List;

List

- 28 -

ListIterator
(slide: Carl Reynolds)

the ListIterator
interface extends
Iterator

Forward and reverse
directions are possible

ListIterator is
available for Java
Lists, such as the
LinkedList
implementation

hasNext():boolean;
next():Object;

hasPrevious():boolean;
previous(): Object;

nextIndex(): int;
previousIndex(): int;

remove():void;
set(Object o): void;
add(Object o): void;

ListIterator

- 29 -

List: Example

TestArrayAndLinkedList.java

- 30 -

Map Interface
 (slide: Carl Reynolds)

// Basic Operations
put(Ob ject, Ob ject) :Ob ject;
g et(Ob ject) :Ob ject;
remove(Ob ject) :Ob ject;
containsKey(Ob ject) :boolean;
containsValue(Ob ject) :boolean;
size() : int ;
isEmpty() :boolean;

// Bulk Operations
void putAll(Map t) :void ;
void clear() :void ;

// Collection Views
keySet() :Set;
values() :Collection;
entrySet() :Set;

Map

g etKey() :Ob ject;
g etValue() :Ob ject;
setValue(Ob ject) :Ob ject ;

EntrySet

6

- 31 -

Map Examples

TestMap.java
CountOccurranceOfWords.java

- 32 -

The Collections Class

Operations for Manipulating Collections
Includes static operations for sorting, searching,
replacing elements, finding max/min element, and
to copy and alter collections in various ways.
(using this in lab5)

Note!
Collection is an interface for an abstract data
type, Collections is a separate class for methods
operating on collections.

- 33 -

Comparator Interface
(a generic class similar to Comparable)

(comparator slides adapted from Carl Reynolds)

You may define an alternate ordering for objects of a
class using objects implementing the Comparator
Interface (i.e. rather than using compareTo())

Sort people by age instead of name
Sort cars by year instead of Make and Model
Sort clients by city instead of name
Sort words alphabetically regardless of case

- 34 -

Comparator<T> Interface

One method:
compare(T o1, T o2)

Returns:
negative if o1 < o2
Zero if o1 == o2
positive if o1 > o2

- 35 -

Example Comparator:
Compare 2 Strings regardless of case

import java.util.*;
public class CaseInsensitiveComparator implements Comparator<String> {
 public int compare(String stringOne, String stringTwo) {

 // Shift both strings to lower case, and then use the
 // usual String instance method compareTo()
 return stringOne.toLowerCase().compareTo(stringTwo.toLowerCase());
 }
}

- 36 -

Using a Comparator...
Collections.sort(myList, myComparator);
Collections.max(myCollection, myComparator);
Set myTree = new TreeSet<String>(myComparator);
Map myMap = new TreeMap<String>(myComparator);

import java.util.*;
public class SortExample2B {
 public static void main(String args[]) {

 List aList = new ArrayList<String>();

 for (int i = 0; i < args.length; i++) {
 aList.add(args[i]);
 }
 Collections.sort(aList , new CaseInsensitiveComparator());
 System.out.println(aList);
 }
}

