
Polymorphism

- 6 -

Method Overloading

Method Overloading
Methods with different parameter lists but the same name.

public int max(int num1, int num2)
public double max(double num1, double num2)

 Overloaded methods must have different parameter types:
 you cannot overload methods based on modifiers or return types

Selection (Binding) of Overloaded Method Definitions
 (single parameter): look at the actual argument type and locate the
method with the most specific (‘narrowest’) accepting formal
parameter

–  Example: OverloadedNumbers.java

Method Polymorphism (Overriding)

Method redefines (‘overrides’) a method of the same name in the
parent class (e.g. toString() is often overridden)

Note similarity of overriding to variable masking: we are again re-
defining a symbol within a given scope.

- 7 -

- 8 -

Polymorphic Methods
public String toString()
Defined in Object, normally overridden to give text

description of object state
•  default output is “ClassName@HexAddress”

Loan loan = new Loan();

System.out.println(loan) //invokes loan.toString()

====>(output) Loan@15037e5

Implementing Overriding in Java
Achieved by redefining an inherited method in a child class.

Method signature must be the same.
e.g. in Circle, redefine toString() method inherited from Object:

public String toString() {

return “A Circle with color: “ + color +

“and is filled: “ + filled;}

- 9 -

Polymorphism and Method
Arguments

Method Arguments in Java
–  May be of any subtype of the formal parameter type.
–  public static void m(Object x) will accept any object x belonging to a

subclass of Object (i.e. from any class!)
–  public static void p(double x) accepts an x of any numeric type

(byte, short, int, long, float, double)
–  a widening type conversion (cast) will be performed for non-doubles

- 10 -

Example:
Overriding (left) vs. Overloading (right)

What is the output of each program?

- 11 -

Dynamic Binding
(for Method Polymorphism)

Definition
–  Selecting the definition of a method to invoke at runtime (i.e. which

definition to bind to the method call)
–  Must match method name; number, order and types for arguments
–  Relevant for overridden methods (e.g. toString())

Dynamic Binding In Java
The search for which definition to bind to a method call starts from the

actual (constructed) class of an object, or a named class, and
proceeds up the inheritance hierarchy towards Object.

Example
PolymorphismDemo.java

Student Person Object GraduateStudent

- 12 -

Subtle Point: Matching the Method vs.
Selecting the Method Definition

Matching the Method Signature (static)
–  For objects, the selection of which method signature to use is

determined at compile time based on the reference variable type
–  Put another way, the type of a reference to an object determines

which class contract is active for an object
–  If the active class contract does not define or inherit a desired

method, it will not be found.
•  e.g. Object o = new Circle(1); o.getRadius() // won’t work.
•  Object o = new Circle(1); ((Circle)o).getRadius() // will work.

Selecting the Method Definition (dynamic)
Is done dynamically at runtime (dynamic binding). The constructed

object type determines the implementation used.

- 13 -

Hiding Data and (Static) Methods

•  Static Methods and
•  Static/Instance Data Members

 cannot be overridden; only hidden. (Avoid this!)

Accessing Hidden Methods and Data
–  Using super() in the subclass
–  Using a reference variable of the superclass type (i.e. use the

superclass type (interface))
–  Unlike instance methods, static methods and data members are

bound at compile time (“statically”)
–  Example: HidingDemo.java
–  Static methods and fields can always be accessed directly using

the class name (if it is visible, using Class.staticMethod())

