
Exceptions and Exception Handling

- 3 -

Three Types of Programming Errors
1. Syntax Errors
–  Source code (e.g. Java program) does not follow the
syntax rules for the language.
–  Caught by the compiler (e.g. javac)

2. Logic Errors
–  Algorithm(s) defined or implemented incorrectly
(program compiles, but is incorrect)
–  Caught using testing, repaired through ‘debugging’

3. Runtime Errors (“Exceptions”)
During execution, program requests an operation that is
impossible to carry out.

- 4 -

Examples of Runtime Errors
(Exceptions)

•  Invalid input
•  Attempt to open file that doesn’t exist
•  Network connection broken
•  Array index out of bounds

- 5 -

Method Call Stack and Stack Trace
Method Call Stack (“Call Stack”)
– The stack that records data associated with the chain of method

calls leading to the current method being executed

Stack Trace: A record of method invocations
– Summary of call stack contents
– Listed from most (top) to least (bottom) recent method. main()

normally at the bottom of the method call stack
•  source line numbers for statements that invoke a method and the last

statement executed in the current method are given.
– If an exception is not caught, a Java program will display the

exception and stack trace, and then stop (e.g. ExceptionDemo.java)
•  The first (active) method will have thrown the exception

- 6 -

Catching and Handling Exceptions

Catching Exceptions
When a runtime error occurs, program given the
state of execution (stack trace), and the type of
error

Exception ‘Handlers’
Code executed when exceptions are caught; allow
a program to recover from and/or repair the
problem (rather than stop execution)

- 7 -

Catching Exceptions
Using try-catch

try {
 // statements that might throw an exception
 statement1;
 statement2;
}
catch (Exception1 e1) {
 // handler for Exception1
}
catch (Exception2 e2) {
 // handler for Exception2
}
...
catch {ExceptionN eN) {
 // handler for ExceptionN
}

// Statements after try-catch
nextStatement;

If exception occurs here, jump out of
try block before next instruction

If exception occurred, search list of ‘catch’
statements for first matching exception

type & execute associated handler. Then
execute first statement after catch blocks.

(NOTE: exceptions must be listed from
most to least specific class because of

search order!)

If no ‘catch’ matches the exception,
the exception is passed back to the
calling method, current method is

exited.

- 8 -

Catching and Handling Exceptions
Continued

Try-Catch Block Structure
• Define a scope for a set of commands that may produce

exceptions (‘try’), and
•  A subsequent list of exception handlers (‘catch’ statements) to

invoke when exceptions are ‘thrown’ (occur)

Control Flow in a ‘try-catch’ Block
–  When an exception occurs in a ‘try’ block, execution
jumps to the end of the ‘try’ block (the end brace ‘}’).
–  Java then searches the list of ‘catch’ statements in
order, selecting the first matching handler

•  (see: HandleExceptionDemo.java)

- 9 -

Addition to try-catch:
the finally clause (try-catch-finally)
Purpose
– Define a block of code that will execute regardless of
whether an exception is caught or not for a try block
(executes after try and catch blocks)
– Finally block will execute even if a return statement
precedes it in a try block or catch block (!)

Example Uses
I/O programming: ensure that a file is always closed.
Define error-handling code needed for different errors in
one place within a method.

- 10 -

FinallyDemo.java (from text)

public class FinallyDemo {
 public static void main(String[] args) {
 java.io.PrintWriter output = null;

 try {
 // Create a file
 output = new java.io.PrintWriter("text.txt");

 // Write formatted output to the file
 output.println("Welcome to Java");
 }
 catch (java.io.IOException ex) {
 ex.printStackTrace();
 }
 finally {
 // Close the file
 if (output != null) output.close();
 }}}

- 11 -

Declaring, Throwing, and Catching
Exceptions

Exception Type

•  “Throwing” an exception means to use the “throw” command to generate
a message (an object that is a subclass of Exception)

•  “Declaring” an exception means to add it to a list of (checked) exceptions
at the end of a method signature, e.g.

 public void myMethod() throws Exception1,, ExceptionN { ... }

this list must contain all checked exceptions that the method may throw.

- 12 -

Cases to consider: in method2, throwing Exception3, Exception2, Exception1,
SomeOtherException objects (each type being a subclass of ‘Exception’)

- 13 -

Getting Information from Exceptions

Example: TestException.java (p. 586)

(The message is a text string associated with the
Throwable object (e.g. exception))

- 14 -

Exception (Runtime Error) Types in Java
System Errors (Error)
– Thrown by the Java Virtual Machine (JVM)
–  Internal system errors (rare), such as incompatibility

between class files, JVM failures

Runtime Exceptions (RuntimeException)
– Also normally thrown by JVM
– Usually unrecoverable programming errors (e.g. divide

by 0, array index error, null reference)

(“Normal”) Exceptions (Exception)
– Errors that may be caught and handled (e.g. file not

found)

- 15 -

- 16 -

Unchecked and Checked Exceptions

Unchecked Exceptions
– Error, RuntimeException, and subclasses
– These exceptions are normally not recoverable (cannot

be handled usefully, e.g. NullPointerException)
– The javac compiler does not force these exceptions to

be declared or caught (to keep programs shorter), but
they can be.

Checked Exceptions
– Exception class and subclasses (excluding

RuntimeException)
– Compiler forces the programmer to catch and handle

these.

- 17 -

Defining New Exception Classes

Java Exception Classes
Are numerous; use these where possible.

New Exception Classes
Are derived from Exception or a subclass of Exception.

Constructors for Exception Classes
Constructors are normally either no-arg, or one argument

(takes the string message as an argument)

- 18 -

public class InvalidRadiusException extends Exception {
 private double radius;

 /** Construct an exception */
 public InvalidRadiusException(double radius) {
 super("Invalid radius " + radius);
 this.radius = radius;
 }

 /** Return the radius */
 public double getRadius() {
 return radius;
 }
}

Example Use:
 if (x <= 0)
 throw new InvalidRadiusException(x);

- 19 -

When Do I Use Exceptions?
(Course text) “The point is not to abuse exception
handling as a way to deal with a simple logic test.”

try { System.out.println(refVar.toString()); }
catch (NullPointerException ex) { System.out.println(“refVar is null”);}

vs.

if (refVar != null)
 System.out.println(refVar.toString());
else
 System.out.println(“refVar is null”);

Use exceptions for ‘unexpected’ errors (unusual situations). Simple
errors specific to a method should be handled within the method
(locally), as above.

Requires creation of a NullPointerException
object, propagating the exception

