
Computer Science II 
4003-232-08 (20082) 

Week 1: Review and Inheritance 

Richard Zanibbi 
Rochester Institute of Technology 



Review of CS-I 



- 3 - 

Syntax and Semantics 
of Formal (e.g. Programming) Languages 

Syntax 
The rules defining legal statements and their combination 

e.g. Rules for valid Rochester area phone numbers 
e.g. Rules for constructing legal Java programs 

Semantics 
The meaning of statements in the language (what 
statements represent). Often depends on context of use 

e.g. What does the following represent: 
  “349-5313” 

e.g. What does the following Java statement represent:  
  System.out.println(x); 



- 4 - 

A “Waterfall” Model of Software Development 

Requirements 
Specification 

System Analysis 
(Data Flow) 

System Design 
(Components) 

Implementation 

Testing 

Deployment 

Maintenance 

CS2 focus 



- 5 - 

Miscellaneous CS1 Java Topics 
Primitive Data and Operations 
•  Variable declaration, initialization, and assignment 

•  Constants (‘final’)  
•  Arguments (pass-by-value) and local variables  

•  Floating point vs. integer arithmetic 
•  Type conversions (widening and narrowing), and casting 
•  Operator precedence and associativity (Liang Appendix 

C) 

Object-Oriented Features 
•  Class and method syntax: constructors, return types 

(e.g. void, int, double) 
•  The new operator (instantiates objects from classes) 
•  Visibility modifiers (public and private) 



- 6 - 

Variable Properties 

1.  Location (in memory) 
2.  Identifier (name) 

•  A symbol representing the location  
3.  Type (of encoding used for stored data) 

•  Primitive (e.g. int, boolean), or 
•  Reference (address in memory of a class instance 

(object)) 
4.  Value 

•  The primitive value or reference (for objects) stored 
at the variable location 



- 7 - 

Memory Diagrams: 
Illustrating Variable Properties 

Variable Storage (Memory Locations)  
Represented using a box 

Variable Identifiers and Types 
Indicated using labels outside the box (e.g. x : int) 
For static variables, indicate ‘static’ and class name  

•  e.g. x : int (static Widget)  

Variable Values 
–  Primitive types: show value in the box (e.g. for integers, show decimal 

value) 
–  Reference variables: draw arrow from box to object data 

Objects 
Drawn as circles, with internal boxes to represent data members  
Strings are a ‘special case’ (see next slide) 



- 8 - 

1050 

i : int 

false 

j : boolean 

myString : String 

“Hello World” 

Program: 

int i = 1050; 
boolean j = false; 
String myString = new String(“Hello World”); 



- 9 - 

1982 

year : int 

2 

22 

day : int 

month : int 

name : String 

birthDate : BirthDate 

true 

active : boolean 

“John Smith” 

current : Student 

18952 

numberStudents : int  
(static Student) 



- 10 - 

Numeric Type Casting 

Type Casting 
Changes the type (representation or encoding) of a 
variable or constant 

Narrowing Conversion 
Convert from a larger range of values to a smaller range 
of values 

•  e.g. int x = (int) 5.32; 

Widening Conversion 
Convert from a smaller to a larger range of values 

•  e.g. double x = (double) 5; 



- 11 - 

Testing Reference Variable Values (==)  
vs. Object States ( .equals() ) 

Equivalent References ( == ) 
Tests whether the memory location referred to by reference 
variables is identical  

( A == B ): Does String variable A refer to the same memory location as 
String variable B?  

Equivalent Object States ( .equals() ) 
A method defined for the Object class, and overwritten by other Java 
classes (e.g. String) that normally tests for identical object states 

( A.equals(B)): Does String variable A have the same state (characters) 
as String variable B?  

WARNING: for Object class, equals() and == are the 
same 



- 12 - 

Variable Scope 
Definition 

The program statements from which a variable may be referenced 

Local variable 
–  A variable declared within a method 
–  May be referenced only in block in which they are declared  
–  Formal method parameters define local variables that may be 

referenced within the body of a method 
•  Actual parameters (arguments) provide initial value for formal 

parameters (Java has a pass-by-value semantics for parameters) 

Variable Masking or Shadowing 
–  Local variable definition “assumes the identity” (identifier) of 

variable in the parent scope 
–  References in the local scope are to the locally declared variable 
–  Local variables may mask instance or static variables in a method 



- 13 - 

Space for main() 
k:  
result: 1 
j: 2 
i: 5 

Space for max() 
result: 
num2: 2 
num1: 5 
Space for main() 
k:  
result: 1 
j: 2 
i: 5 

Space for main() 
k: 5 
result: 1 
j: 2 
i: 5 

main() invoked max() invoked max() returns main() returns 

public class TestMax {   
  public static int max(int num1, int num2) {  

 int result; …; return result;} 

  public static void main(String[] args) { 
    int i = 5, j = 2; 
    int result = 1; 
    int k = max(i, j); 

    System.out.println(“Max is " + k + “ , result = “ + 
 result); 

  }}  



- 14 - 

Organizing Variables: Arrays 
Purpose 

Allow us to organize variables in a structure 

One-dimensional (1D) Arrays 
•  A rectangular “box” containing “slots” for variables 

•  Really a group of adjacent memory locations for storing variables 

•  Treated as a list with elements indexed starting from 0, 
up to array size – 1 

•  Reason: array name represents location of first element; index 
is offset 

•  Eliminates the need to provide a different name for every 
variable in the array 

•  Arrays may contain primitive or reference data types 



- 15 - 

1D Array: Primitive Data 

0 intArray[0] 

1 intArray[1] 

2 intArray[2] 

3 intArray[3] 

4 intArray[4] 

int intArray[] = new int[5]; 
for ( int i=0; i < intArray.length; i++ ) 
    intArray[i] = i; 

 vs. 

int intArray[] = { 0, 1, 2, 3, 4 }; 

intArray : int[] 



- 16 - 

1D Array: Reference Data 

null strArray[0] 

null strArray[1] 

null strArray[2] 

null strArray[3] 

null strArray[4] 

strArray : String[] 

String[] strArray = new String[5]; 



- 17 - 

strArray[0] 

strArray[1] 

strArray[2] 

strArray[3] 

strArray[4] 

strArray : String[] 

String[] strArray = new String[5]; 
for ( int i=0; i < strArray.length; i++) 
    strArray[i] = new Integer(i).toString(); 

“0” 

“1” 

“2” 

“3” 

“4” 



Mutli-Dimensional Arrays 
Example 

We might represent 150 marks as 

–  A one-dimensional array of 150 (double) floating point numbers 

double[] marks = new double[150]; marks[0] = 95.1;


–  A 2-D array of 15 (students) x 10 ((double) marks per student) 

double[][] marks = new double[15][10]; marks[0][0]= 95.1;


–  A 3-D array of 15 (students) x 5 (quizzes) x 2 ((double) mark for each 
section of each quiz, e.g. programming and short answer) 

double[][][] marks = new double[15][5][2]; 

marks[0][0][0] = 95.1; marks[0][0][1]=85.0;


- 18 - 



(Side Note) Ragged Arrays 
Ragged Array Example 

Array of 15 (students) x *different* sized arrays for each student, to 
represent the case where some students miss quizzes 

•   double[][] marks = new double[15][]; 

   marks[0] = new double[2]; 


 marks[1] = new double[3];


•  Possible because java implements 2D and higher dimensional 
arrays as *arrays of arrays* 

- 19 - 



- 20 - 

Control Flow 
Definition 

–  The order in which statements in a program are executed 
–  “Simple” control flow: sequential execution of statements  

•  “do a, then b, then c” 

Conditional Statements (if, switch) 
Change control flow by defining different branches of execution followed 

depending on Boolean conditions (expressions) 
•   “if C is true then do a, else do b” 
•   “if C is true then do {a, then b, then c}, else do {d, then e, then f}” 

Iteration Statements (while, do...while, for) 
Change control flow by repeating a statement or block (compound 

statement) while a Boolean condition holds 
•  “while C is true, do {a, then b, then c }” 

Method Invocation 
Produces a “jump” to the instructions in a method invocation 

 **also changes context (e.g. local variables): see earlier “TestMax” 
example on slide 14 



- 21 - 

What is ‘this’ ? 
Definition 

–  A reference to ‘myself’ for an object 
–  Used within instance methods for object invoking the method 
–  All instance variable references and method invocations 

implicitly refer to ‘this’   
•  Within an instance method: x = 2 same as this.x = 2;  toString() 

same as this.toString() ) 

Some Uses 
1.  Prevent masking of variables, e.g. formal params. and instance 

variables in a constructor:


public MyClass(int x){ this.x = x; } 

2.  Invoke other constructors within a class 
–  Note: this(arg-list) must be first statement in constructor definition 


public MyClass(int x){ this(); this.x = x; } 
3.  Have object pass itself as a method argument  

 someClass.printFancy(this);




- 22 - 

Exercise: Variables 
A. What are the four variable properties we 

discussed? Name and define each in point form. 

B. Draw memory diagrams for the following.  
1.  int x = 5; double y = 2.0; y = x;  
2.  String s1 = “first”;  String s2 = “second”; s1 = s2; 
3.  String strArray[ ] = { “a”, “b”, “c”, “d” }; 
4.  boolean f[ ][ ] = new boolean[3][2]; 
5.  int y[ ][ ] = { { 1, 2, 3 }, { 4, 5, 6, 7} }; 

C. Are the following legal? Why? 
1.  double y = (double) 5; 
2.  int x = 5.0; 
3.  int x = (int) 5.0; 



- 23 - 

Exercise: Variables (Cont’d) 
What is output by the following program? How do 
     the definitions for x and y differ? What kind 
     of parameter and variable is args? 

class SimpleExample { 
    static int x = 5; 
    int y = 2; 

    public static void main(String args[ ]) { 
        int x = 4;  

   y = 9; 
        System.out.println(x + y); 
    } 
} 



- 24 - 

Exercise: Methods 
A.  What is produced as output by the following? 
int a = 2; 
switch (a) { 
    case 2: System.out.println(“Case 2”); 
    case 1: System.out.println(“Case 1”); break; 
    default: System.out.println(“Default Case”); } 

C.  Answer the following in 1-2 sentences each. 
1.  In what way are an if statement and a while statement the same?  
2.  How do an if statement and a while statement differ? 
3.  What extra elements are added to the conditional test in a while 

loop to produce a for loop? 



- 25 - 

Exercise: Methods, cont’d 

C. What is wrong with the following? 
class MethodExample { 
    private int x = 5; 
    static private int y = 3; 

  public int methodOne() {return methodTwo();} 
    public int methodOne(int x) {this.x = x; return x;} 

    static public int methodTwo() {return y + methodOne(2); } 
    static public int methodTwo(int x) { this.x = x; return x;} 
} 


