
- 7 -

Storing Data in Java

Variables
Primitive type (int, double, boolean, etc.)

•  Variable name refers to a memory location containing a primitive value
Reference type (Object, String, Integer, MyClass, etc.)

•  Variable name refers to a memory location containing a reference value
for data belonging to an object

Data Structure
A formal organization of a set of data (e.g. variables)
e.g. Arrays: variables of a given type in an integer-indexed sequence

•  int intArray[] = {1, 2}; int a = intArray[0]; intArray[1] = 5;
e.g. Objects: data member names used to index variables

•  player.name, player.hits, player.team ... player.hits = 100;

- 8 -

Abstract Data Types (ADTs)
Purpose
Define interfaces for complex data structures

•  Hide (abstract) implementation details of operations that query and update
•  Operations defined independent of the element type (Java: “generic”)

Some Common ADTs
 List: Sequence of elements. Elements may be inserted or
removed from any position in the list

 Stack: List with last-in, first-out (LIFO) behaviour (“most recent”)
 e.g. call stack

 Queue: List with first-in, first-out (FIFO) (“in-order”)
 e.g. lining up at a fast-food restaurant or bank

- 9 -

Common ADTs, Cont’d
Tree: Graph with directed edges, each node has one parent

(except root), no cycles.
e.g. Decision tree representing possible moves in a game of
tic-tac-toe.

Set: Unordered group of unique items
e.g. Students in a class, the set of words in a text file

Map: Set of entries, each with unique key and (possibly non-
unique) value
e.g. Student grade sheet: (StudentId, Grade)
e.g. Frequency of words in a text file (Word, Count)

- 10 -

A
B C

D

s.add(E)

A
B C

D E

s.add(E) Set s

ABCD
l.add(E)

ABCDE
l.add(E,2)

ABECDE

List l

(2, Maria)

(1, Joe)

(2, Maria)

(1, Joe)

(3, Dina)

(2, Maria)

(1, Bob)

(3, Dina)

m.add((3,Dina)) m.add((1,Bob))

Map m

C

A

D

E

B

C

A

D

E

B F

(Binary Search) Tree t

t.add(F)

< >

m.add(2,Maria)

- 11 -

Example:
Implementing Abstract Data Types

List ADT
Represents series of elements, insertion and deletion of elements

Some Possible Implementations:
–  Arrays:

L.add(E) would copy E at the end of the array, L.get(4) returns 5th item in
array

–  Linked List: (objects forming a chain of references)
L.add(E) would create a link from last node to a new node for E ; l.get(4)

traverses the graph and then returns the 5th item

Choosing an Implementation for an ADT
Depending on common operations, some better than others
–  Retrieving elements in list faster for array implementation
–  Inserting, deleting elements faster for linked list implementation in

general case

- 12 -

Ordering in ‘Unordered’ Sets and Maps
‘Unordered’ in Theory vs. in Code
In practice, an ordering of elements is used to implement a set, as

memory and files store data as lists of bytes.

Sets
By definition, a set is an unordered group of unique elements

Maps
By definition, a map is a set of (key,value) pairs, where all keys are

unique.

Ordering Sets and Maps
We can order the storage of set elements by:

1.  The order in which elements are added (e.g. in a list)
2.  The values of keys or data elements themselves (e.g. using a binary

search tree)
3.  A value computed for each element (“hash code”) that determines

where an element is stored in a “hash table” (sophisticated ADT built on
arrays); for maps, hash code computed using key value

