Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two or more sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.
6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.

- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.
Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.
Weighted Interval Scheduling

Notation. Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Def. \(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \).

Ex: \(p(8) = 5 \), \(p(7) = 3 \), \(p(2) = 0 \).
Dynamic Programming: Binary Choice

Notation. \(OPT(j) = \text{value of optimal solution to the problem consisting of job requests 1, 2, ..., j.} \)

- **Case 1:** \(OPT \) selects job \(j \).
 - can’t use incompatible jobs \{ \(p(j) + 1, p(j) + 2, ..., j - 1 \) \}
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(p(j) \)

- **Case 2:** \(OPT \) does not select job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(j-1 \)

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{ v_j + OPT(p(j)), \ OPT(j-1) \right\} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(\(v_j + \text{Compute-Opt}(p(j)) \), \text{Compute-Opt}(j-1))
}
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \(\Rightarrow \) exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
p(1) = 0, \ p(j) = j-2
\]
Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

Input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

Compute $p(1), p(2), \ldots, p(n)$

for $j = 1$ to n
 $M[j] = \text{empty} \leftarrow$ global array

$M[j] = 0$

$\text{M-Compute-Opt}(j) \{$
 if (M[j] is empty)
 $M[j] = \max(w_j + \text{M-Compute-Opt}(p(j)), \text{M-Compute-Opt}(j-1))$
 return $M[j]$
$\}$
Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes $O(n \log n)$ time.
- Sort by finish time: $O(n \log n)$.
- Computing $p(\cdot)$: $O(n)$ after sorting by start time.

- $\text{M-Compute-Opt}(j)$: each invocation takes $O(1)$ time and either
 - (i) returns an existing value $M[j]$
 - (ii) fills in one new entry $M[j]$ and makes two recursive calls

- Progress measure $\Phi = \#$ nonempty entries of $M[]$.
 - initially $\Phi = 0$, throughout $\Phi \leq n$.
 - (ii) increases Φ by 1 \Rightarrow at most $2n$ recursive calls.

- Overall running time of $\text{M-Compute-Opt}(n)$ is $O(n)$. ▪
Automated Memoization

Automated memoization. Many functional programming languages (e.g., Lisp) have built-in support for memoization.

Q. Why not in imperative languages (e.g., Java)?

Lisp (efficient)

```
(defun F (n)
  (if
   (<= n 1)
   n
   (+ (F (- n 1)) (F (- n 2)))))
```

Java (exponential)

```
static int F(int n) {
  if (n <= 1) return n;
  else return F(n-1) + F(n-2);
}
```
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (v_j + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

- # of recursive calls ≤ n ⇒ O(n).
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

\begin{itemize}
\item \textbf{Input:} \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)
\item \textbf{Sort} jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).
\item \textbf{Compute} \(p(1), p(2), \ldots, p(n) \)
\end{itemize}

Iterative-Compute-Opt \{
\begin{align*}
M[0] & = 0 \\
\text{for } j = 1 \text{ to } n \\
M[j] & = \max(v_j + M[p(j)], M[j-1])
\end{align*}
\}

6.3 Segmented Least Squares
Least squares.
- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\).
- Find a line \(y = ax + b\) that minimizes the sum of the squared error:

\[
SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2
\]

Solution. Calculus \(\Rightarrow\) min error is achieved when

\[
a = \frac{n \sum_i x_i y_i - (\sum_i x_i)(\sum_i y_i)}{n \sum_i x_i^2 - (\sum_i x_i)^2}, \quad b = \frac{\sum_i y_i - a \sum_i x_i}{n}
\]
Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given n points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with
 \(x_1 < x_2 < \ldots < x_n\), find a sequence of lines that minimizes \(f(x)\).

Q. What's a reasonable choice for \(f(x)\) to balance accuracy and parsimony?

![Graph showing goodness of fit vs. number of lines](image)

- ↑ goodness of fit
- ↑ number of lines
Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given \(n \) points in the plane \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) with \(x_1 < x_2 < \ldots < x_n \), find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors \(E \) in each segment
 - the number of lines \(L \)
- Tradeoff (penalty) function: \(E + cL \), for some constant \(c > 0 \).
Dynamic Programming: Multiway Choice

Notation.
- \(\text{OPT}(j) = \text{minimum cost for points } p_1, p_{i+1}, \ldots, p_j. \)
- \(e(i, j) = \text{minimum sum of squares for points } p_i, p_{i+1}, \ldots, p_j. \)

To compute \(\text{OPT}(j): \)
- Last segment uses points \(p_i, p_{i+1}, \ldots, p_j \) for some \(i. \)
- Cost = \(e(i, j) + c + \text{OPT}(i-1). \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\min_{1 \leq i \leq j} \left\{ e(i, j) + c + \text{OPT}(i-1) \right\} & \text{otherwise}
\end{cases}
\]
Segmented Least Squares: Algorithm

INPUT: n, p₁,…,pₙ, c

Segmented-Least-Squares() {
 M[0] = 0
 for j = 1 to n
 for i = 1 to j
 compute the least square error eᵢⱼ for the segment pᵢ,…, pⱼ

 for j = 1 to n
 M[j] = min₁≤ᵢ≤ⱼ (eᵢⱼ + c + M[i-1])

 return M[n]
}

Running time. $O(n^3)$. can be improved to $O(n^2)$ by pre-computing various statistics

- Bottleneck = computing $e(i, j)$ for $O(n^2)$ pairs, $O(n)$ per pair using previous formula.