11.4 The Pricing Method: Vertex Cover
Weighted vertex cover. Given a graph G with vertex weights, find a vertex cover of minimum weight.

Weight = 2 + 2 + 4

Weight = 9
Weighted Vertex Cover

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \geq 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

for each vertex i: \[\sum_{e=(i,j)} p_e \leq w_i \]

Claim. For any vertex cover S and any fair prices p_e: \[\sum_e p_e \leq w(S). \]

Proof.

\[\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S). \]

each edge e covered by at least one node in S

sum fairness inequalities for each node in S
Pricing Method

Pricing method. Set prices and find vertex cover simultaneously.

```plaintext
Weighted-Vertex-Cover-Approx(G, w) {
    foreach e in E
        p_e = 0
    while (∃ edge i-j such that neither i nor j are tight)
        select such an edge e
        increase p_e without violating fairness
    } 

    S ← set of all tight nodes
    return S
}
```

\[\sum_{e=(i,j)} p_e = w_i \]
Pricing Method

Figure 11.8
Theorem. Pricing method is a 2-approximation.

Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.

- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.

- Let S^* be optimal vertex cover. We show $w(S) \leq 2w(S^*)$.

\[
\begin{align*}
w(S) &= \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e = (i,j)} p_e \\ &= \sum_{i \in V} \sum_{e = (i,j)} p_e \\ &\leq 2 \sum_{e \in E} p_e \\ &\leq 2w(S^*).
\end{align*}
\]
11.6 LP Rounding: Vertex Cover
Weighted vertex cover. Given an undirected graph $G = (V, E)$ with vertex weights $w_i \geq 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

![Graph with weights]
Weighted vertex cover. Given an undirected graph $G = (V, E)$ with vertex weights $w_i \geq 0$, find a minimum weight subset of nodes S such that every edge is incident to at least one vertex in S.

Integer programming formulation.

- Model inclusion of each vertex i using a 0/1 variable x_i.

$$
\begin{align*}
 x_i &= \begin{cases}
 0 & \text{if vertex } i \text{ is not in vertex cover} \\
 1 & \text{if vertex } i \text{ is in vertex cover}
 \end{cases}
\end{align*}
$$

Vertex covers in 1-1 correspondence with 0/1 assignments:

$$
S = \{i \in V : x_i = 1\}
$$

- Objective function: maximize $\sum_i w_i x_i$.

- Must take either i or j: $x_i + x_j \geq 1$.

Weighted vertex cover. Integer programming formulation.

\[
(\text{ILP}) \quad \min \sum_{i \in V} w_i x_i \\
\text{s.t.} \quad x_i + x_j \geq 1 \quad (i,j) \in E \\
x_i \in \{0,1\} \quad i \in V
\]

Observation. If \(x^* \) is optimal solution to (ILP), then \(S = \{i \in V : x^*_i = 1\} \) is a min weight vertex cover.
Integer Programming

INTEGER-PROGRAMMING. Given integers a_{ij} and b_i, find integers x_j that satisfy:

$$\max \quad c^T x$$
$$\text{s.t.} \quad Ax \geq b$$
$$x \quad \text{integral}$$

$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \quad 1 \leq i \leq m$$
$$x_j \geq 0 \quad 1 \leq j \leq n$$
$$x_j \quad \text{integral} \quad 1 \leq j \leq n$$

Observation. Vertex cover formulation proves that integer programming is NP-hard search problem.

even if all coefficients are 0/1 and at most two variables per inequality
Linear Programming

Linear programming. Max/min linear objective function subject to linear inequalities.

- Input: integers c_j, b_i, a_{ij}.
- Output: real numbers x_j.

\[
(P) \quad \text{max } c^T x \\
\text{s.t. } Ax \geq b \\
x \geq 0
\]

Linear. No $x^2, xy, \arccos(x), x(1-x)$, etc.

LP Feasible Region

LP geometry in 2D.

The region satisfying the inequalities:
\[x_1 \geq 0, \ x_2 \geq 0 \]
\[x_1 + 2x_2 \geq 6 \]
\[2x_1 + x_2 \geq 6 \]
Weighted Vertex Cover: LP Relaxation

Weighted vertex cover. Linear programming formulation.

\[
\text{(LP) } \min \sum_{i \in V} w_i x_i \\
\text{s. t. } x_i + x_j \geq 1 \quad (i,j) \in E \\
x_i \geq 0 \quad i \in V
\]

Observation. Optimal value of (LP) is \(\leq \) optimal value of (ILP).

Pf. LP has fewer constraints.

Note. LP is not equivalent to vertex cover.

Q. How can solving LP help us find a small vertex cover?

A. Solve LP and round fractional values.
Weighted Vertex Cover

Theorem. If x^* is optimal solution to (LP), then $S = \{i \in V : x^*_i \geq \frac{1}{2}\}$ is a vertex cover whose weight is at most twice the min possible weight.

Pf. [S is a vertex cover]
- Consider an edge $(i, j) \in E$.
- Since $x^*_i + x^*_j \geq 1$, either $x^*_i \geq \frac{1}{2}$ or $x^*_j \geq \frac{1}{2} \Rightarrow (i, j)$ covered.

Pf. [S has desired cost]
- Let S^* be optimal vertex cover. Then

$$\sum_{i \in S^*} w_i \geq \sum_{i \in S} w_i x^*_i \geq \frac{1}{2} \sum_{i \in S} w_i$$

LP is a relaxation $x^*_i \geq \frac{1}{2}$
Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover.

Theorem. [Dinur-Safra 2001] If $P \neq NP$, then no ρ-approximation for $\rho < 1.3607$, even with unit weights.

$10 \sqrt{5} - 21$

Open research problem. Close the gap.