Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- \(L_0 = \{ s \} \).
- \(L_1 = \) all neighbors of \(L_0 \).
- \(L_2 = \) all nodes that do not belong to \(L_0 \) or \(L_1 \), and that have an edge to a node in \(L_1 \).
- \(L_{i+1} = \) all nodes that do not belong to an earlier layer, and that have an edge to a node in \(L_i \).

Theorem. For each \(i \), \(L_i \) consists of all nodes at distance exactly \(i \) from \(s \). There is a path from \(s \) to \(t \) iff \(t \) appears in some layer.
Breadth First Search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.
Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in $O(m + n)$ time if the graph is given by its adjacency list representation.

Pf.
- Easy to prove $O(n^2)$ running time:
 - at most n lists $L[i]$
 - each node occurs on at most one list; for loop executed $\leq n$ times
 - when we consider node u, there are $\leq n$ incident edges (u, v), and we spend $O(1)$ processing each edge

- Actually runs in $O(m + n)$ time:
 - when we consider node u, there are $\text{deg}(u)$ incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} \text{deg}(u) = 2m$

 Each edge (u, v) is counted exactly twice in sum: once in $\text{deg}(u)$ and once in $\text{deg}(v)$
Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$.
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.
Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

- Node: pixel.
- Edge: two neighboring lime pixels.
- Blob: connected component of lime pixels.

recolor lime green blob to blue
Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u,v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.
- BFS = explore in order of distance from s.
- DFS = explore in a different way.
3.4 Testing Bipartiteness
Bipartite Graphs

Def. An undirected graph $G = (V, E)$ is **bipartite** if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.
- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

![a bipartite graph](image)
Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.
An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

![Diagram](image_url)

bipartite (2-colorable)
not bipartite (not 2-colorable)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Case (i)

Case (ii)
Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in the same layer.
- By previous lemma, this implies all edges join nodes on same level.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.
Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0, \ldots, L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_j.
- Let $z = lca(x, y) =$ lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.

- Its length is $1 + (j-i) + (j-i)$, which is odd. □
Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.