7.5 Bipartite Matching
Matching

- Input: undirected graph $G = (V, E)$.
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Max matching: find a max cardinality matching.
Bipartite matching.

- **Input**: undirected, bipartite graph $G = (L \cup R, E)$.
- $M \subseteq E$ is a matching if each node appears in at most edge in M.
- **Max matching**: find a max cardinality matching.

```
1  1'  
2  2'  
3  3'  
4  4'  
5  5'  
L    R
```

(matching: 1-2', 3-1', 4-5')
Bipartite Matching

Bipartite matching.
- Input: undirected, bipartite graph \(G = (L \cup R, E) \).
- \(M \subseteq E \) is a matching if each node appears in at most edge in \(M \).
- Max matching: find a max cardinality matching.

Max matching: \(1-1', 2-2', 3-3', 4-4' \)
Max flow formulation.

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from L to R, and assign infinite (or unit) capacity.
- Add source s, and unit capacity edges from s to each node in L.
- Add sink t, and unit capacity edges from each node in R to t.
Theorem. Max cardinality matching in $G = \text{value of max flow in } G'$.

Pf. \(\leq\)

- Given max matching M of cardinality k.
- Consider flow f that sends 1 unit along each of k paths.
- f is a flow, and has cardinality k. □
Theorem. Max cardinality matching in $G = \text{value of max flow in } G'$.

Pf. ≥

- Let f be a max flow in G' of value k.
- Integrality theorem $\Rightarrow k$ is integral and can assume f is 0-1.
- Consider $M = \text{set of edges from } L \to R \text{ with } f(e) = 1$.
 - Each node in L and R participates in at most one edge in M.
 - $|M| = k$: consider cut $(L \cup s, R \cup t)$.
Perfect Matching

Def. A matching $M \subseteq E$ is **perfect** if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.
- Clearly we must have $|L| = |R|$.
- What other conditions are necessary?
- What conditions are sufficient?
Perfect Matching

Notation. Let S be a subset of nodes, and let $N(S)$ be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \geq |S|$ for all subsets $S \subseteq L$.

Pf. Each node in S has to be matched to a different node in $N(S)$.

No perfect matching: $S = \{2, 4, 5\}$
$N(S) = \{2', 5'\}$.
Marriage Theorem.

Marriage Theorem. [Frobenius 1917, Hall 1935] Let $G = (L \cup R, E)$ be a bipartite graph with $|L| = |R|$. Then, G has a perfect matching iff $|N(S)| \geq |S|$ for all subsets $S \subseteq L$.

Pf. ⇒ This was the previous observation.

No perfect matching: $S = \{2, 4, 5\}$
$N(S) = \{2', 5'\}$.

\begin{center}
\begin{tikzpicture}
 \node (1) at (0,0) {1};
 \node (1') at (0,2) {1'};
 \node (2) at (1,1) {2};
 \node (2') at (1,3) {2'};
 \node (3) at (2,0) {3};
 \node (3') at (2,2) {3'};
 \node (4) at (3,1) {4};
 \node (4') at (3,3) {4'};
 \node (5) at (4,0) {5};
 \node (5') at (4,2) {5'};

 \draw (1) -- (1');
 \draw (2) -- (2');
 \draw (3) -- (3');
 \draw (4) -- (4');
 \draw (5) -- (5');

 \node at (-0.5, -0.5) {L};
 \node at (4.5, -0.5) {R};
\end{tikzpicture}
\end{center}
Proof of Marriage Theorem

Pf. \Leftarrow Suppose G does not have a perfect matching.
- Formulate as a max flow problem and let (A, B) be min cut in G'.
- By max-flow min-cut, $\text{cap}(A, B) < |L|$.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
- $\text{cap}(A, B) = |L_B| + |R_A|$.
- Since min cut can't use ∞ edges: $N(L_A) \subseteq R_A$.
- $|N(L_A)| \leq |R_A| = \text{cap}(A, B) - |L_B| < |L| - |L_B| = |L_A|$.
- Choose $S = L_A$.

G'

$L_A = \{2, 4, 5\}$
$L_B = \{1, 3\}$
$R_A = \{2', 5'\}$
$N(L_A) = \{2', 5'\}$
Bipartite Matching: Running Time

Which max flow algorithm to use for bipartite matching?
- Generic augmenting path: $O(m \text{ val}(f^*)) = O(mn)$.
- Capacity scaling: $O(m^2 \log C) = O(m^2)$.
- Shortest augmenting path: $O(m n^{1/2})$.

Non-bipartite matching.
- Structure of non-bipartite graphs is more complicated, but well-understood. [Tutte-Berge, Edmonds-Galai]
- Blossom algorithm: $O(n^4)$. [Edmonds 1965]
- Best known: $O(m n^{1/2})$. [Micali-Vazirani 1980]
7.6 Disjoint Paths
Disjoint path problem. Given a digraph $G = (V, E)$ and two nodes s and t, find the max number of edge-disjoint s-t paths.

Def. Two paths are edge-disjoint if they have no edge in common.

Ex: communication networks.
Disjoint path problem. Given a digraph \(G = (V, E) \) and two nodes \(s \) and \(t \), find the max number of edge-disjoint \(s-t \) paths.

Def. Two paths are **edge-disjoint** if they have no edge in common.

Ex: communication networks.
Edge Disjoint Paths

Max flow formulation: assign unit capacity to every edge.

```
  s  1  1  1  1  1  1  1  1  t
  1  1  1  1  1  1  1  1  1
  1  1  1  1  1  1  1  1  1
```

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≤

- Suppose there are k edge-disjoint paths P_1, \ldots, P_k.
- Set $f(e) = 1$ if e participates in some path P_i; else set $f(e) = 0$.
- Since paths are edge-disjoint, f is a flow of value k. ▪
Max flow formulation: assign unit capacity to every edge.

Theorem. Max number edge-disjoint s-t paths equals max flow value.

Pf. ≥
- Suppose max flow value is k.
- Integrality theorem ⇒ there exists 0-1 flow f of value k.
- Consider edge (s, u) with f(s, u) = 1.
 - by conservation, there exists an edge (u, v) with f(u, v) = 1
 - continue until reach t, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

can eliminate cycles to get simple paths if desired
Network Connectivity

Network connectivity. Given a digraph $G = (V, E)$ and two nodes s and t, find min number of edges whose removal disconnects t from s.

Def. A set of edges $F \subseteq E$ disconnects t from s if all s-t paths uses at least on edge in F.
Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤
- Suppose the removal of $F \subseteq E$ disconnects t from s, and $|F| = k$.
- All s-t paths use at least one edge of F. Hence, the number of edge-disjoint paths is at most k. □
Theorem. [Menger 1927] The max number of edge-disjoint s-t paths is equal to the min number of edges whose removal disconnects t from s.

Pf. \geq
- Suppose max number of edge-disjoint paths is k.
- Then max flow value is k.
- Max-flow min-cut \Rightarrow cut (A, B) of capacity k.
- Let F be set of edges going from A to B.
- $|F| = k$ and disconnects t from s. \blacksquare
7.7 Extensions to Max Flow
Circulation with Demands

Circulation with demands.

- Directed graph \(G = (V, E) \).
- Edge capacities \(c(e), e \in E \).
- Node supply and demands \(d(v), v \in V \).

\[\uparrow\]

Demand if \(d(v) > 0 \); supply if \(d(v) < 0 \); transshipment if \(d(v) = 0 \)

Def. A circulation is a function that satisfies:

- For each \(e \in E \): \(0 \leq f(e) \leq c(e) \) (capacity)
- For each \(v \in V \): \(\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v) \) (conservation)

Circulation problem: given \((V, E, c, d) \), does there exist a circulation?
Circulation with Demands

Necessary condition: sum of supplies = sum of demands.

\[
\sum_{v : d(v) > 0} d(v) = \sum_{v : d(v) < 0} -d(v) =: D
\]

Pf. Sum conservation constraints for every demand node \(v \).
Circulation with Demands

Max flow formulation.

G:

\[
\begin{array}{ccc}
 & -8 & \\
 3 & 7 & 7 \\
 10 & 4 & 9 \\
 -7 & 4 & \\
 3 & 10 & 0 \\
 6 & 7 & 11 \\
 -6 & supply & \\
 demand & 4 & \\
\end{array}
\]
Circulation with Demands

Max flow formulation.

- Add new source s and sink t.
- For each v with $d(v) < 0$, add edge (s, v) with capacity $-d(v)$.
- For each v with $d(v) > 0$, add edge (v, t) with capacity $d(v)$.
- Claim: G has circulation iff G' has max flow of value D.

G':

![Graph with labels and capacities showing max flow formulation](image)
Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for max flow.

Characterization. Given \((V, E, c, d)\), there does not exist a circulation iff there exists a node partition \((A, B)\) such that \(\sum_{v \in B} d_v > \text{cap}(A, B)\)

Pf idea. Look at min cut in \(G'\). demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B
Feasible circulation.

- Directed graph $G = (V, E)$.
- Edge capacities $c(e)$ and lower bounds $\underline{\alpha}(e)$, $e \in E$.
- Node supply and demands $d(v)$, $v \in V$.

Def. A circulation is a function that satisfies:

- For each $e \in E$: $\underline{\alpha}(e) \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem with lower bounds. Given $(V, E, \underline{\alpha}, c, d)$, does there exists a a circulation?
Idea. Model lower bounds with demands.

- Send $\Box(e)$ units of flow along edge e.
- Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. If all demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-valued.

Pf sketch. $f(e)$ is a circulation in G iff $f'(e) = f(e) - \Box(e)$ is a circulation in G'.
7.8 Survey Design
Survey Design

Survey design.
- Design survey asking n_1 consumers about n_2 products.
- Can only survey consumer i about a product j if they own it.
- Ask consumer i between c_i and c_i' questions.
- Ask between p_j and p_j' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when $c_i = c_i' = p_i = p_i' = 1$.
Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
- Include an edge \((i, j)\) if customer own product \(i\).
- Integer circulation \(\Leftrightarrow\) feasible survey design.
7.10 Image Segmentation
Image Segmentation

Image segmentation.
- Central problem in image processing.
- Divide image into coherent regions.

Ex: Three people standing in front of complex background scene. Identify each person as a coherent object.
Image Segmentation

Foreground / background segmentation.
- Label each pixel in picture as belonging to foreground or background.
- V = set of pixels, E = pairs of neighboring pixels.
- $a_i \geq 0$ is likelihood pixel i in foreground.
- $b_i \geq 0$ is likelihood pixel i in background.
- $p_{ij} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.

Goals.
- **Accuracy:** if $a_i > b_i$ in isolation, prefer to label i in foreground.
- **Smoothness:** if many neighbors of i are labeled foreground, we should be inclined to label i as foreground.
- Find partition (A, B) that maximizes:
 $$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i, j) \in E} p_{ij}$$
 subject to $|A \cap \{i, j\}| = 1$.
Image Segmentation

Formulate as min cut problem.

- Maximization.
- No source or sink.
- Undirected graph.

Turn into minimization problem.

- Maximizing \[\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E} p_{ij} \]
 is equivalent to minimizing
 \[\left(\sum_{i \in V} a_i + \sum_{j \in V} b_j \right) - \sum_{i \in A} a_i - \sum_{j \in B} b_j + \sum_{(i,j) \in E} p_{ij} \]
 a constant

- or alternatively
 \[\sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i,j) \in E} p_{ij} \]
Image Segmentation

Formulate as min cut problem.
- \(G' = (V', E') \).
- Add source to correspond to foreground; add sink to correspond to background
- Use two anti-parallel edges instead of undirected edge.
Image Segmentation

Consider min cut \((A, B)\) in \(G'\).

- \(A =\) foreground.

\[
\operatorname{cap}(A, B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{(i, j) \in E} p_{ij}
\]

- Precisely the quantity we want to minimize.

if \(i\) and \(j\) on different sides, \(p_{ij}\) counted exactly once