Huffman Coding
(Ch. 4.8, K&T)

Prof. Richard Zanibbi
Codes

Fixed Length Codes
Each symbol (e.g. letter) represented using same number of bits (e.g. ASCII)

Variable Length Codes
Symbols represented by different numbers of bits; normally reduces storage requirements

• Example: Morse code
(Binary) Prefix Codes

Code such that the 0/1 prefix for each symbol is unique

- Example: a: 11 b: 01 c: 001 d: 10 e: 000
- May be represented by a function, gamma:
 \[\gamma(a) = 11 \]
- Can be decoded easily; as soon we read far ahead enough to match the code for a symbol (which is unique by def’n), we return the
Optimal Prefix Codes

We can represent the total length of our encoding in bits using the formula below

- n is the number of symbols in the original message, f_x the frequency of symbol x; S the symbol alphabet

\[\sum_{x \in S} n f_x |\gamma(x)| = n \sum_{x \in S} f_x |\gamma(x)| \]

Optimization Problem

Given an alphabet and set of frequencies for letters, we want a prefix code that minimizes the average bits per letter (red box above)
Prefix Codes as Binary Trees

Note that symbols appear at leaves: prefixes are disjoint.

Figure 4.16 Parts (a), (b), and (c) of the figure depict three different prefix codes for the alphabet $S = \{a, b, c, d, e\}$.
Reformulation

Restatement of Optimization Problem

Find a binary tree T & labeling of the leaves of this tree that minimizes average # bits/symbol:

$$\sum_{x \in S} f_x \cdot depth_T(x)$$
An insight...

There is an optimal prefix code \((T^*) \) in which the two lowest frequency letters are siblings in \(T^* \).

Figure 4.17 There is an optimal solution in which the two lowest-frequency letters label sibling leaves; deleting them and labeling their parent with a new letter having the combined frequency yields an instance with a smaller alphabet.
Huffman’s Algorithm

To construct a prefix code for an alphabet S, with given frequencies:

If S has two letters then

 Encode one letter using 0 and the other letter using 1

Else

 Let y^* and z^* be the two lowest-frequency letters
 Form a new alphabet S' by deleting y^* and z^* and
 replacing them with a new letter ω of frequency $f_{y^*} + f_{z^*}$
 Recursively construct a prefix code γ' for S', with tree T'
 Define a prefix code for S as follows:
 Start with T'
 Take the leaf labeled ω and add two children below it
 labeled y^* and z^*

Endif
Optimality of Huffman’s Algorithm

(4.32) $\text{ABL}(T') = \text{ABL}(T) - f_w$

(4.33) Huffman code for a given alphabet achieves the minimum average number of bits per letter of any prefix code

See course text for proofs of these properties:
- (4.32 - by definition)
- (4.33 - by induction, base case for 2 symbols; ≥ 3 symbols by contradiction)
Analysis of Run Time

Naive implementation \((O(k^2)) \)

\(k-1 \) recursive calls, finding low frequency symbols if \(O(k) \)

Priority Queue Implementation \((O(k \log k)) \)

Store symbols in queue using frequency as the key: can insert and extract symbols in \(O(\log k) \) time

Each iteration: 2 deletions (min frequ. symbols), one insertion (add \(w \) for combined symbol): \(O(\log k) \)