R-I-1T

Huffman Coding
(Ch. 4.8, K&T)

Prof. Richard Zanibbi

Codes

Fixed Length Codes

Each symbol (e.g. letter) represented using
same number of bits (e.g. ASCII)

Variable Length Codes

Symbols represented by different numbers of
bits; normally reduces storage requirements

® Example: Morse code
RI-T

Codes, Contd

(Binary) Prefix Codes

Code such that the 0/ prefix for each
symbol is unique

e Example: a: |l b:0l c:001 d:10 e:000
® May be represented by a function, gamma:

y(a) =11

® Can be decoded easily; as soon we read far
ahead enough to match the code for a symbol
(which is unique by def’n), we return the

ro
™
e
l—

|.
%

Lo
.

]
=

Optimal Prefix Codes

We can represent the total length of our
encoding in bits using the formula below

® n is # symbols in the original message,f x the
frequency of symbol x; S the symbol alphabet

> nfoly(@)| =n X foly(@)
r€S TES
Optimization Problem

Given an alphabet and set of frequencies for
letters, we want a prefix code that minimizes
the average bits per letter (red box above)

/l

4

Prefix Codes as Binary
Trees

Note that symbols appear
at leaves: prefixes are disjoint

) [- [‘I © Copyright © 2005 Pearson Addison-Wesley. All rights reserved. /

T Figure 4.16 Parts (a), (b), and (c) of the figure depict three different prefix codes for
the alphabet S={a,b,c,d, e}.

Reformulation

Restatement of Optimization Problem

Find a binary tree T & labeling of the leaves of
this tree that minimizes average # bits/symbol:

Z f:z: | d@pthT(ﬂf)

r€eS

2

S |

.
-+
—

An insight...

(4.31) There is an optimal prefix
code (T*) in which the two lowest
frequency letters are siblings in T*

New merged letter
with sum of frequencies
/ \
/ \
/ \
O Q <—[Two lowest-frequency lettersj

Figure 4.17 There is an optimal solution in which the two lowest-frequency letters
label sibling leaves; deleting them and labeling their parent with a new letter having the
combined frequency yields an instance with a smaller alphabet.

Huffman’s Algorithm

To construct a prefix code for an alphabet S, with given frequencies:
If S has two letters then
Encode one letter using 0 and the other letter using 1
Else
Let y* and z* be the two lowest-frequency letters

Form a new alphabet S’ by deleting y* and z* and
replacing them with a new letter w of frequency fj +fz

Recursively construct a prefix code y’ for S, with tree T’
Define a prefix code for § as follows:

Start with T’
Take the leaf labeled w and add two children below it

labeled y* and z*
Endif

-
~
=
b
-

Optimality of Huffman’s
Algorithm

(4.32) ABL(T’) = ABL(T) - fu

(4.33) Huffman code for a given alphabet
achieves the minimum average number of
bits per letter of any prefix code

See course text for proofs
of these properties:
(4.32 - by definition)
(4.33 - by induction, base case for 2 symbols;
R-T-T >= 3 symbols by contradiction)

Analysis of Run Time

Naive implementation (O(k?))

k-1 recursive calls, finding low frequency symbols if O(k)

Priority Queue Implementation (O(k log k))

Store symbols in queue using frequency as the key: can
insert and extract symbols in O(log k) time

Each iteration: 2 deletions (min frequ. symbols), one
insertion (add w for combined symbol): O(log k)

/™~
 —
I—
.-
o

