
Huffman Coding
(Ch. 4.8, K&T)

Prof. Richard Zanibbi

Codes

Fixed Length Codes

Each symbol (e.g. letter) represented using
same number of bits (e.g. ASCII)

Variable Length Codes

Symbols represented by different numbers of
bits; normally reduces storage requirements

• Example: Morse code
2

Codes, Cont’d

(Binary) Prefix Codes

Code such that the 0/1 prefix for each
symbol is unique

• Example: a: 11 b: 01 c: 001 d: 10 e: 000

• May be represented by a function, gamma:

• Can be decoded easily; as soon we read far
ahead enough to match the code for a symbol
(which is unique by def’n), we return the 3

γ(a) = 11

1

∑

x∈S
nfx|γ(x)| = n

∑

x∈S
fx|γ(x)|

1

Optimal Prefix Codes
We can represent the total length of our
encoding in bits using the formula below

• n is # symbols in the original message, f_x the
frequency of symbol x; S the symbol alphabet

Optimization Problem

Given an alphabet and set of frequencies for
letters, we want a prefix code that minimizes
the average bits per letter (red box above) 4

Prefix Codes as Binary
Trees

5
Copyright © 2005 Pearson Addison-Wesley. All rights reserved.

Note that symbols appear
at leaves: prefixes are disjoint

Reformulation

Restatement of Optimization Problem

Find a binary tree T & labeling of the leaves of
this tree that minimizes average # bits/symbol:

6

∑

x∈S
nfx|γ(x)| = n

∑

x∈S
fx|γ(x)|

∑

x∈S
fx · depthT (x)

1

An insight...

7

(4.31) There is an optimal prefix
code (T*) in which the two lowest
frequency letters are siblings in T*

Huffman’s Algorithm

8

Optimality of Huffman’s
Algorithm

(4.32) ABL(T’) = ABL(T) - fw

(4.33) Huffman code for a given alphabet
achieves the minimum average number of
bits per letter of any prefix code

9

See course text for proofs
of these properties:
(4.32 - by definition)

(4.33 - by induction, base case for 2 symbols;
>= 3 symbols by contradiction)

Analysis of Run Time

Naive implementation (O(k2))

k-1 recursive calls, finding low frequency symbols if O(k)

Priority Queue Implementation (O(k log k))

Store symbols in queue using frequency as the key: can
insert and extract symbols in O(log k) time

Each iteration: 2 deletions (min frequ. symbols), one
insertion (add w for combined symbol): O(log k)

10

