3.5 Connectivity in Directed Graphs
Directed Graphs

Directed graph. $G = (V, E)$

- Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.
Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.
Def. Node \(u \) and \(v \) are **mutually reachable** if there is a path from \(u \) to \(v \) and also a path from \(v \) to \(u \).

Def. A graph is **strongly connected** if every pair of nodes is mutually reachable.

Lemma. Let \(s \) be any node. \(G \) is strongly connected iff every node is reachable from \(s \), and \(s \) is reachable from every node.

Pf. \(\Rightarrow \) Follows from definition.

Pf. \(\Leftarrow \) Path from \(u \) to \(v \): concatenate \(u-s \) path with \(s-v \) path.

Path from \(v \) to \(u \): concatenate \(v-s \) path with \(s-u \) path.

\[\text{\small ok if paths overlap} \]
Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.

1. Pick any node s.
2. Run BFS from s in G.
3. Run BFS from s in G^{rev}.
4. Return true iff all nodes reached in both BFS executions.
5. **Correctness follows immediately from previous lemma.**

![Strongly connected graph]

strongly connected

![Not strongly connected graph]

not strongly connected
3.6 DAGs and Topological Ordering
Directed Acyclic Graphs

Def. An **DAG** is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A **topological order** of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, ..., v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).

![A DAG and a topological ordering](image)
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.
- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\).
- Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. ▪
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. □
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
- **Base case:** true if $n = 1$.
- **Given DAG on $n > 1$ nodes, find a node v with no incoming edges.**
- **$G - \{ v \}$ is a DAG, since deleting v cannot create cycles.**
- **By inductive hypothesis, $G - \{ v \}$ has a topological ordering.**
- **Place v first in topological ordering; then append nodes of $G - \{ v \}$ in topological order. This is valid since v has no incoming edges.**

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{v\}$ and append this order after v
Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.
- Maintain the following information:
 - $\text{count}[w] = \text{remaining number of incoming edges}$
 - $S = \text{set of remaining nodes with no incoming edges}$
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $\text{count}[w]$ hits 0
 - this is $O(1)$ per edge