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SUMMARY
Several techniques for discriminant analysis are applied to a set of data from patients with
severe head injuries, for the purpose of prognosis. The data are such that multidimen-
sionality, continuous, binary and ordered categorical variables and missing data must be

coped with. The various methods are compared using criteria of prognostic success and
reliability. In general, performance varies more with choice of the set of predictor variables

than with that of the discriminant rule.
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1. INTRODUCTION

THE purpose of this paper is to discuss the application of several methods of discriminant
analysis to a large complex data set. The complexity was caused by multidimensionality, the
inclusion of data which could be regarded as being categorical or continuous, and the
occurrence of missing data. The particular data set which we used was from the medical field,
made up of patients with severe head injury, and discriminant analysis was used for prognosis
(to predict the future outcome), as opposed to the more common application of assisting
diagnosis. In statistical terms, however, the problems are technically identical. In both, data are
used to estimate the probability that a given patient belongs to a certain class or category.

The medical literature already contains reports of the application of discriminant analysis
based on an independence model for this data set (Jennett et al., 1975, 1976, 1979; Teasdale et al.,
1979b; see also Becker, 1979, who criticized the use of such a model). This paper compares the
performance of several discriminant analysis techniques, some of which have been developed
since work began on this data set 10 years ago.

Before describing the data set in detail, it is convenient to introduce the notation and
terminology of discriminant analysis (Duda and Hart, 1973; Aitchison and Dunsmore, 1975,
Chapter 11; Lachenbruch, 1975).

(i) Individuals in the study are assumed to belong to one or other of k outcome categories
iy ooy Ty

(i) Associated with these outcome categories there may be a set of prior probabilities,

arrival rates or relative incidences, p(n,),..., p(m,), which sum to unity.

(ili) Information is available on each individual in the form of measurements on feature

variables or indicants, making up a feature vector.
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(iv) A discriminant rule is set up for assigning an individual to one of the'outcome categories
or for specifying appropriate odds for the different outcome categories given the feature
vector, y, appropriate to that individual

(V) A training data set D of n individuals whose outcome categories and feature vectors are
known, represented as

D = {(cpx)y i =1,...,n}.

The outcome category of individual i is denoted by ¢; and the feature vector by x;. D is
used to construct the discriminant rule.

(vi) In comparative studies such as this we require a test data set, also of individuals whose
outcome categories and feature vectors are known, for the purpose of evaluation of the
different discriminant rules used. Often the training set and the test set are the same and
less biased evaluation can be achieved provided cross-validatory assessment is used
(Lachenbruch and Mickey, 1968) but in the sample considered here there are enough
data to permit separate test and training sets.

In this paper, a discriminant rule will be a procedure for obtaining, for an individual having

feature vector y, conditional probabilities of the form

{p(m|y, D)y i = 1,...,k},

which may or may not be used to assign that individual to a single outcome category.
In general this means that we are trying to estimate, using D, some model

{p(mi|y)i=1,..,k} (1)

and there are two possible approaches, called by Dawid (1976) the diagnostic paradigm and the
sampling paradigm. In the former, direct models are proposed for (1), whereas the sampling
paradigm approach exploits the fact that, by Bayes’ Theorem,

p(ni|y)oc p(y|m)p(m), i =1,....k ©)
Both components of the right-hand side are modelled. Most effort has to go into the first
factor which means that density estimation, parametric or otherwise, is of prime concern. This
latter approach tends to give wider scope for different methods and indeed, of the techniques
used in this study, only the logistic (see Section 3) represents the diagnostic paradigm principle.
The basic structure is well known, as is the variety of density estimation procedures. We now
give empirical illustration of application of a few techniques to a medical problem in which the
feature vector from an individual or patient is multivariate and possibly incomplete, in that
certain measurements are missing.

2. HISTORY AND DESCRIPTION OF THE DATA

The data set is a series of 1000 patients with severe head injury collected prospectively by
neurosurgeons between 1968 and 1976. This head injury study was initiated in the Institute of
Neurological Sciences, Glasgow. After 4 years two Netherlands centres (Rotterdam and
Groningen) joined the study, and later data came also from Los Angeles.

The original purpose of the head injury study was to investigate the feasibility of predicting
the degree of recovery which individual patients would attain, using data collected shortly after
injury. Severely head injured patients require intensive and expensive treatment; even with such
care, almost half of them die and some survivors remain seriously disabled for life. Clinicians are
concerned to recognize which patients have potential for recovery, so as to concentrate their
endeavours on them. Facilities for this kind of treatment are limited even in the most affluent
countries, and the rational allocation of resources requires the identification of which patients to
treat, or to continue to treat if they do not respond favourably.

The details of data collection have been reported in the clinical literature (Jennett et al.,
1979). Patients entered the study on the basis of a minimum degree of brain damage; all were in
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coma for at least 6 hours, where coma was rigorously defined. Outcome was categorized
according to the Glasgow Outcome Scale (Jennett and Bond, 1975), but the five categories
described therein were reduced to three for the purpose of prediction in the present paper. These
were

(a) dead or vegetative;

(b) severe disability;

(c) moderate disability or good recovery.

Death usually occurs within a month of injury, but recovery in survivors can be a slow
process. However, analysis of the survivors suggests that few improve sufficiently to move from
category (b) to category (c) after six months. We have so far limited our work to estimating the
probability of attaining one or other of the three outcome categories six months after injury;
comparisons of such predictions with actual recovery are based on the patient’s actual state at
six months, even if his condition changes at a later date.

Apart from the patient’s age, the most important predictive factors are the various indicators
of the degree of brain damage, as reflected in brain dysfunction . The various factors considered
in this paper are listed in Table 1, and these include measures of the depth of coma, state of
pupils, motor responses in all four limbs and eye movements. The clinicians concerned with data
collection spent much time and effort in evolving these measures, which included conducting
observer-error studies to discover what aspects of the patient’s state could be reliably recorded
by different clinicians in different countries (Teasdale et al., 1978; van den Berge et al., 1979). One
particularly powerful indicator is the EMV score (see Table 1) which has become known in the
medical literature as the Glasgow Coma Scale (Teasdale and Jennett, 1974; Teasdale et al., 1979a).
It can be seen that the variables are all categorical and are either binary or ordered. This means,
among other things, that methods based on continuous data might be considered as possible,
albeit unsatisfactory, alternatives to categorical data techniques. '

TABLE 1
The feature variables used in the comparisons

Variable Description

Age Age, grouped into decades 0-9, 10-19, ... , 60-69, 70+

E score Eye opening in response to stimulation, graded 1 (nil) to 4 (normal), but grouped as 1 and 24 for
these comparisons

M score Motor response of best limb in response to stimulation, graded 1 (nil) to 6 (normal)

V score Verbal response to stimulation, graded 1 (nil) to 5 (normal), but grouped as 1 and 2-5 for these
comparisons

EMY score The sum of the raw E, M and V scores, in the range 3 to 15, but grouped as 3,4, 5, 6,7, 8, 9—15 for
these comparisons

MRP Motor response pattern, an overall summary of the motor responses in all four limbs, graded 1 (nil)
to 7 (normal)

Change Change in neurological function over the first 24 hours, graded 1 (deteriorating), 2 (static) or 3
(improving)

Pupils Pupil reaction to light, graded 1 (non-reacting) or 2 (reacting)

SEM Spontaneous eye movements, graded 1 (nil) to 4 (normal).

OCS Oculocephalics, graded 1 (nil) to 4 (normal)

OVvS Oculovestibulars, graded 1 (nil) to 4 (normal)

Eye indicant A summary of SEM, OCS and OVS, graded 1 (bad), 2 (impaired) or 3 (good)

Indicators of brain dysfunction can vary considerably during the few days after injury.
Measurements were therefore taken frequently, and for each indicant the best and worst states
during each of a number of successive time periods were recorded. The predictions in the present
study are based on the best state during the first 24 hours after onset of coma.

The different subsets of variables were chosen to compare how well the various methods
were able to exploit the information in subsets of different sizes, and to see how the methods
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reacted to the degree of dependence among the variables and to the proportion of missing data.
The four subsets used are given in Table 2. Set I consists of four weakly dependent variables with
appreciable missing data, whereas set II consists of four highly dependent variables with little
missing data. Set II1 is an extension of set I, and set IV is obtained from set III by expanding the
“created indicants” EMV score and Eye indicant. There is therefore high dependence and
appreciable missing data with set IV.

TABLE 2
The subsets of feature variables used in the comparisons
Variable

set Variables
I Age, EMV score, Change, Eye indicant
I Age, E score, M score, V score
111 Age, EMYV score, MRP, Change, Pupils, Eye indicant
v Age, E score, M score, V score, MRP, Change, Pupils, SEM, OCS, OVS

Since comparisons will be made on specific sets of predictor variables, which were not
chosen according to formal statistical criteria, no discussion will be given on methods of variable
selection although this is a very important aspect of applied discriminant analysis.

The dimensionalities of the four data sets are 4, 4, 6 and 10 respectively. The data set of 1000
cases is unusually large for a medical application of discriminant analysis and, as remarked
earlier, this allowed us to use separate training and test sets. The set of 1000 cases was split
randomly into two groups of 500 for this purpose which gave the distribution of outcomes
tabulated here.

Frequencies

Training set Test set
Dead/vegetative 259 250
Severely disabled 52 48
Moderate or good 189 202
recovery
Total 500 500

The proportions among the training cases were used as plug-in estimates of the prior
probabilities or relative incidences {p(n,), p(n,), p(n3)}, in (2) for instance.

Table 3 gives an indication of the amount of missing data on the different feature variables
by showing the number of times that each variable was observed jointly with each other
variable. It can be seen that the bulk of the gaps occurs on the variables Change, SEM, OCS,
OVS and Eye indicant. Indeed the Eye indicant was devised to overcome the problem of the high
proportion of missing data on SEM, OCS and OV S. It summarizes these three variables and can
be obtained whenever at least one of them is recorded.

3. THE REPERTOIRE OF STATISTICAL TECHNIQUES USED

The statistical methods used can be brought together under the following general headings.
(i) Independence-based models for unordered categorical data, allowing for a single
overall association parameter.

(i) Lancaster first-order interaction models for unordered categorical data.

(i) Latent class models.

(iv) Kernel-based procedures for categorical data.

(v) “Linear and quadratic” discrimination based on normality assumptions.

(vi) Linear logistic discrimination.
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TABLE 3
The number of times each two variables are observed jointly among the 500 training cases

Age 500
E score 488 488
M score 495 488 495
V score 478 472 478 478
EMYV score 472 472 472 472 472
MRP 479 471 478 462 456 479
Change 368 359 366 353 347 368 368
Pupils 487 479 484 467 463 471 359 487
SEM 326 321 324 313 310 319 272 322 326
0oCS 328 323 326 316 313 318 292 322 273 328
ovs 230 229 229 224 224 222 207 228 190 225 230
Eye indicant 390 384 386 375 372 378 321 384 326 328 230 390
2
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As remarked in Section 1, all but (vi) boil down to density estimation in one form or another.
We now give brief notes about the different techniques, with references and specific remarks
about the facility for dealing with missing data.

3.1. Independence Models
In these, perhaps the simplest models, the density estimates took the form, for y complete,

d B
Py |7 D)o {”1 %/—f—} , )

where

d is the number of variables,
¥, denotes the rth component of y,
n(y,) is the number of patients in the training set in outcome category =; with
score y, on variable r,
C, is the number of categories in variable r,
N(r) is the number of patients in the training set in outcome category x; with
variable r not missing,
and B denotes an overall association factor representing the “proportion of non-
redundant information” in the variables; see Hilden and Bjerregaard (1976). A
small amount of smoothing is therefore imposed. In the most familiar case of
B=1, p(y|n,D) is given as the product of the estimates of the marginal
probabilities. This is essentially the model originally used with these data (Jennett
et al., 1976; Teasdale et al., 1979b). When y, is missing, the appropriate factor on
the right-hand side of (3) is replaced by unity.

Three choices of B were used, 1-0, 0-8 and 0-5, and these values characterize the
methods which we shall call INDEP1, INDEP2 and INDEP3.

3.2. Lancaster Models

The structure of Lancaster models is described for example in Zentgraf (1975) or Goldstein
and Dillon (1978). With a factorial-type structure, which for binary variables simplifies to the
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Bahadur expansion (Moore, 1973), they permit a full range of models from basic independence
models to the full multinomial. A natural version to try is that containing only first-order
interactions. Difficulties arise when fitting these models. In particular (Moore, 1973; Trampisch,
1976),

(i) some of the probability estimates may be negative;

(i) all cells in all two-dimensional cross-tabulations are used, and have consequently to be
established from the training samples. Thus further grouping of the variables would be
desirable to reduce the number of parameters in the model. However, this was not done in
this paper, in order to have better comparability with the other approaches.

Problem (i) was combatted by reverting to the independence model whenever it occurred.

Missing data treatment is straightforward, as in the independence models, and the

probability estimates are based on the non-missing cases. The two-dimensional marginal
estimates were taken as

ni rJs + 1 Cr Cs .
P(yr,ys]ni,D,s)= W )Jifz(r,i)-/lfl )} for each i, r, s,

where D,, n(y,, y;) and N (r,s) are analogous to D,, n{y,) and N(r) in the independence case.

When the independence model was used to avoid problem (i), three choices of B were again
made, 1-0, 0-8 and 0-5, and these values characterize the methods which we shall call LANCI,
LANC2 and LANC3.

3.3. Latent Class Models

In latent class analysis, mixture models are assumed for the density functions being
estimated. Thus, for each =, it is assumed that

p(y|m) = j=21 wip(y),

where L denotes the number of terms in the mixture, i.e. the number of latent classes and {w;;}
are, for each i, a set of mixing weights; see Fielding (1977). If, for fixed L, maximum likelihood
estimation is used, the EM algorithm provides a convenient, if potentially slow, iterative
technique and, if it is assumed that the mixed densities {p(-), j = 1,..., L} represent independence
models, the M-step (Dempster et al., 1977) is easy, whether or not there is missing data; see Skene
(1978). This conditional independence structure was used here and for each data set two sets of
results are quoted, LATCL1 and LATCL2. These correspond to the two best “consecutive”
numbers of latent classes.

3.4. Kernel-based Procedures
If the density function p(-|n;) is estimated by the non-parametric kernel method then

1N
p(yl iy D) = Fjgl K(Y"‘.’j» /1),

where
N; = number of patients in the training set in category =,
(x;1,-.-, X;) denote their feature vectors,
K(|x, ) is a probability density over the sample space of y,

and A, possibly a vector, describes the degree of smoothing of the relative frequencies achieved
by this method of estimation.
As in Aitchison and Aitken (1976), we take the kernel function to be of factorized form

d
K(y I xij’ ’1) = rIJI Kr(yr l xg'), j'r)
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where d denotes, as before, the dimensionality of y, 4, is a scalar smoothing parameter and x{} is
the rth component of x;;.
The basic kernel used when there is no missing data takes the form

K, | X7, 2,) = 4, if y, = x®
=c(y,x")(1-4,) if y,#x®

For a nominal (unordered-categories) variable of g categories the natural choice is
C(y,, x(r)) = (q— 1)_ 1' if yr9éx(r)'

Titterington (1980) suggests formulae for {c(y,, x")} which satisfy properties demanded by
Aitchison and Aitken (1976) for kernels for ordered-category variables. An advantage of kernels
of the form (4) is that optimal smoothing parameters {4,} according to a minimum mean
squared error criterion can be calculated explicitly on a marginal basis: see Titterington (1980)
where a more complicated multivariate pseudo-Bayesian updating technique is also described.
Two techniques were used for dealing with missing data. These involved using the kernels (for
ordered or unordered variables) described in Murray and Titterington (1978) or regarding
missing as an extra category for each variable. The latter means that the ordered nature of the
categories is destroyed.

The following kernel methods were used.

KERUN1: Kernel of Murray and Titterington (1978), unordered categories, smoothing
parameters chosen marginally.

KERUN2: As KERUNI1 but smoothing parameters chosen by multivariate pseudo-Bayes.

KERORDI1, KERORD2: As KERUN1, KERUN2 but assuming ordered categories.

KEREX1, KEREX2: Marginal and multivariate choices of smoothing parameters treating

“missing” as an extra category.

KEREX3: “Missing” treated as an extra category, but a single smoothing parameter, u, for all
dimensions, chosen on the lines of Habbema et al. (1978a). Take O<u<1 and, for a ¢
category variable, A = 1 —(q—1)/ug.

)

For this data set a suitable u was chosen rather subjectively to perform as well as possible for
the criteria described in Section 4.

3.5. Normal-based Methods

These methods follow the common if dubious practice of assuming multivariate normality
and estimating mean vectors and covariance matrices by maximum likelihood. They lead to
linear or quadratic discriminant rules depending on whether or not the covariance matrices are
assumed equal. They are justified a priori here only on the grounds that their performance
would be viewed with interest and that, since the categories in the non-binary variables are
ordered, the feature variables can be given meaningful scores. Results from three methods are
reported.

NORLIN1: Covariance matrices are assumed equal and sample means from available data are
substituted for missing values. o '
NORLIN2: As NORLIN1, but with proper maximum likelihood treatment for missing data via the

EM algorithm.

NORQUAD: As for NORLIN2, but without the assumption of equal covariance matrices. With all
three methods the incomplete test cases were classified on the basis of the relevant marginal
distributions.

3.6. Linear Logistic Method
As remarked earlier, this is the only method in which models are set up directly for
{p(n,-| y),i = 1,...,k}. The models take the parametric form

p(m;| )/p(m | y) = exp(o+pFy), i=1,.,k=1,
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where {;} and {f,;} are to be estimated. The technicalities are described by Anderson (1972),
where the links between this and some of the density estimation techniques are made. In the
absence of more sophisticated ideas, missing values were replaced by group means in the
training cases and grand means in the test cases, giving the method to be called LINLOG.

3.7. Other Methods not used

The above does not exhaust the range of procedures that are available. As well as quadratic
logistic discrimination (Anderson, 1975) there are other density estimation techniques. For
categorical data some are given in Goldstein and Dillon (1978) and a few are listed below.

(i) Loglinear models

It is possible to construct models of this class to deal with ordered categories (Haberman,
1974) and to cope with missing data (Chen and Fienberg, 1974). The calculations are however
likely to be very heavy and this method was not used. Perhaps this can be excused in view of the
inferior performance of the Lancaster models relative to the independence models.

(i) Non-parametric methods based on orthogonal series (Goldstein and Dillon, 1978).

These have not as yet been adapted to cope with missing values or high dimensional data,
and so they are not included.

(iii) Continuous kernel methods

If we can assume normality as in Section 3.5, there seems no reason why we should not try
kernel methods based on continuity of the data. This could be done for at least some of the
variables, such as Age, M score, V score and EMV score, thus regarding the data as of mixed
type. Kernel methods do exist for such data (Aitchison and Aitken, 1976, Habbema et al., 1978a)
and research into useful ways of coping with missing data is under way but still embryonic.

(iv) Location model |
This is a parametric approach to mixed data (Krzanowski, 1975) and, again, dealing with
missing data is, at best, difficult, in conjunction with parameter estimation.

(v) Others

A criticism of the independence and latent class models is that the basic models, such as the
conditional (on the latent class) densities do not reflect the ordered nature of the variables. This
could be rectified either by assuming continuity (latent structure, Fielding, 1977) or by setting up
discrete distributions appropriate to ordered categories; see McCullagh (1978).

In the analysis of all models the mechanism by which a measurement became “missing” was
ignored. In fact, the data were implicitly assumed to be “missing at random” within each
prognostic category. Here, “at random” is according to the following definition given by Little
(1979) as being equivalent to that given by Rubin (1976). If we have n d-variate observations,
denote the (n x d) data matrix by X = {x;;} and define the (n x d) random matrix R = {r;;} by
r;; =0 or 1 according to whether x;; is missing or observed. Then any missing values are
“missing at random” if the distribution function of the conditional distribution of R given X is
functionally independent of the missing values. In particular, the probability that a value X;; 1s
observed must not depend on the value x;; (thus excluding truncation from the definition),
although it might depend on the values of an observed variable x;. Rubin (1976) gives this as the
weakest definition of missing at random which allows us to ignore the mechanism generating
the missing values. It is fair to say that this is unrealistic in this application. It is, however,
difficult to avoid this assumption by convenient realistic modelling and, in the case of the Head
Injury Study, the incorporation of the incomplete data using the above techniques does add
useful information. This can be demonstrated by carrying out similar analyses on complete



1981] TITTERINGTON ET AL— Comparison of Discrimination Techniques 153

feature vectors only, and for the categorical models, carrying out similar analyses where
“missing” is taken to be an additional category (Murray, 1979).

4. CRITERIA FOR EVALUATION OF THE DISCRIMINANT RULES

Two quite separate aspects of performance must be considered when trying to assess a
discriminant rule. The more important aspect is how well the groups corresponding to the
outcome categories are separated but we should also like to know whether any probabilities
assigned to each group for a given feature vector are realistic. For example, if there are two
outcome categories, a rule which invariably assigns a probability of 0-51 to the correct group
gives perfect separation but unrealistic probabilities. At the other extreme, a rule which for every
case just assigns the arrival rate probabilities gives, in a sense, accurate probabilities but is not
useful for separation.

Habbema et al. (1978b, 1980), Habbema and Hilden (1980) and Hilden et al. (1978a, b) give a
wide discussion of these points and present a large number of measures of efficiency for a
discrimination procedure. We shall give results for only a few.

4.1. Measures of Separation
Error rate

This most commonly used measure of separation is the proportion of cases in the test set
allocated to an incorrect class. It is very insensitive because it takes no account of the relative
seriousness of different errors, or of “near misses”, although it does have respectable decision
theoretic foundations.

Average logarithmic score
For a patient whose true category is, say, 7, his logarithmic score is

y,D) = —logp,, say.

—log p(m,

Average quadratic score
For the above patient the quadratic score is

k
(1=p)*+ X pi-
i=2
Both these scores take account of the actual probabilities assigned and the different
discriminant rules are assessed using the average scores over the test set. The logarithmic score is
sensitive to small values of the probability, p,, although this can be dampened by setting a lower
limit to p, in the formula.

Average loss

A criticism of the logarithmic and quadratic scores is that they still do not reflect the relative
seriousness of the different types of error. This is particularly relevant to the Head Injury Study
in which it is clearly a far worse error to predict that a patient will die when he actually recovers
than to predict recovery when, in fact, he dies. The neurosurgeons involved in this study were
asked to construct a loss matrix which would reflect, albeit in a crude and arbitrary way, how
they would judge the relative losses associated with the different errors. This matrix, developed
in 1975 by Dr R. Knill-Jones, was adopted by us to assign patients to that outcome category
which was associated with minimum expected loss; see Table 4.

The average loss measure has the drawback of being very sensitive to minor modifications to
the discriminant rule. In fact research is currently under way where the rather unrealistic
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TABLE 4
The loss matrix used for head injury predictions

Predicted outcome

1% SEV  M/G

DIV 0 10 75
Actual outcome SEV 10 0 90
M/G 750 100 0

requirements of the fixed loss values are relaxed, giving rise to so-called stochastic loss measures
which do not suffer from this oversensitivity; see Habbema and Hilden (1980).

For good performance from the point of view of separation we should desire all these
measures to be close to zero, and a useful benchmark for comparison is the performance
obtained by assigning the prior probabilities to each case. This discriminant rule would score
0-500, 0-939, 0-579 and 45-4, respectively, on the four measures.

4.2. Measures of Reliability

Reliability, or trustworthiness, of the probabilities resulting from a discriminant rule is in
general assessed by comparing the degree of separation which is actually obtained by the rule
with the degree of separation which should be expected if the probabilities given by the rule were
perfectly reliable. When the actual separation equals the expected one, apart from random
fluctuations, the rule may be called reliable. If not so, the discriminant rule is overconfident
when the actual separation is less then the expected one, and underconfident when the actual
separation is greater than the expected one.

The most thorough way of checking the reliability of the probability assessments obtained
would be to obtain a large number of patients for each possible feature vector and see what
proportions do actually attain the different levels of recovery. These proportions should be close
to the predicted probabilities afforded by the discriminant rule. This procedure is out of the
question because of the very large number of cases involved, but what can be done is to group
cases with similar predictions and see what proportions of these groups attain the various
outcome levels.

A set of three probabilities can be represented, in terms of areal coordinates, as a point in an
equilateral triangle. The following method of constructing a reliability measure is suggested.

Divide the triangle into suitable smaller ones {Tj,...,T,}. Let {p;:j=1,2,3} be the
probability triple at the centroid of T;. Suppose n; patients in the test set have predicted
probabilities falling in 7; and suppose that, for each j, n;; of them came from outcome category j.
For T; evaluate

3
D; = % (ny/n;)log(ny/n; py), i=1,..,m
j=1

These are weighted to obtain an overall measure

m
DT= % n; Dyn,
i=1
where n is the total number in the test set, in our case 500.

This was evaluated using 25 small equilateral triangles. Against this rather large choice of 25
can be weighted the criticism that there will be, on average, only two “severe” cases in each small
triangle.

For the independence and Lancaster models another approach was used in assessing the
reliability. There, the expected quadratic score was computed under the hypothesis of perfect
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reliability, and deviations from this expected score gave the measure DQ; see Hilden et al.
(1978a). Both measures are given for the latent class and logistic methods.
For both these reliability measures, high reliability is represented by scores close to zero.

5. RESULTS AND DISCUSSION FOR HEAD INJURY STUDY
The results are given in full in Tables 5-8. With 19 methods, 4 sets of variables and 6
performance criteria there are obviously many comparisons which can be made and we shall
break down the discussion into three sections. Firstly we shall make comparisons within groups
of similar methods, then among groups of similar methods and finally, we shall make an overall
comparison among the sets of variables. The reliability measures will be compared only within
groups of similar methods.

TABLE 5
The results for variable set 1: Age, EMYV score, Change, Eye indicant

Measures of separation
Measures of

Average Average reliability
Error logarithmic quadratic Average

Method rate score score loss DT DQ
INDEPI 0-278 0-685 0-377 233 0-010
INDEP2 0268 0-681 0-379 228 —0023
INDEP3 0-268 0-708 0-400 232 —0-068
LANC1 0-292 0-737 0-397 273 0-031
LANC2 0294 0-735 0-398 263 0-021
LANC3 0-296 0-742 0-404 266 0-008
LATCLI 0-264 0-719 0-390 257 0-037 —-0-012
LATCL2 0-290 0-752 0-409 252 0-028 —0-009
KERUN1 0-316 0-934 0467 32:5 0-075

KERUN2 0-308 0-925 0-449 301 0-078

KERORDI 0-292 0-874 0-443 316 0-078

KERORD2 0-302 0-900 0-430 28-8 0-075

KEREX! 0-320 0-889 0-453 324 0-076

KEREX2 0-328 1-037 0477 324 0-102

KEREX3 0-282 0-800 0-420 244 0-042

NORLINI 0-286 0-707 0-396 254 0-054

NORLIN2 0-284 0-702 0-396 259 0-040

NORQUAD 0-294 0-779 0-404 345 0-040

LINLOG 0-290 0-721 0-400 264 0-045 —0010

5.1. Comparisons within Groups of Similar Methods

We shall consider first the discrete parametric models, namely the independence, Lancaster
and latent class models. For variable set I the simple independence model (INDEP1) performs
well, with INDEP2 giving similar results. Those for INDEP3 are poorer, as were those for the latent
class models. There is little to choose among the Lancaster models, whose performance is
inferior to the simpler independence models.

The variables in set II are highly dependent, yet the independence model, INDEP1, still does
well. INDEP2 gives a slight improvement but, perhaps surprisingly, INDEP3 is not better than
INDEP2. Again there is little to choose between the three Lancaster models, but their
performance is now superior to the independence models in terms of error rate, average loss and
reliability. It is only for the average logarithmic score that the independence models better the
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TABLE 6
The results for variable set 11: Age, E score, M score, V score

Measures of separation

Measures of

Average Average reliability
Error logarithmic quadratic Average

Method rate score score loss DT DQ
INDEP! 0-338 0775 0-438 290 0-055
INDEP2 0-340 0762 0436 29-5 0018
INDEP3 0-338 0771 0-445 29-0 —0037
LANCI 0298 0-808 0435 267 0039
LANC2 0-298 0-809 0-437 269 0029
LANC3 0-296 0-818 0-445 256 0018
LATCLI 0-328 0-819 0-447 313 0032 —0007
LATCL2 0-310 0-822 0-446 302 0037 —0011
KERUNI 0-364 0924 0-481 339 0072

KERUN2 0-328 0872 0463 24-9 0071

KERORD1 0-352 0905 0471 325 0-055

KERORD?2 0-332 0-856 0454 269 0-068

KEREXI 0-334 0953 0-491 352 0074

KEREX2 0-326 0903 0-475 29-4 0-063

KEREX3 0-340 0-852 0-466 254 0-058

NORLINI 0316 0-760 0433 26'6 0-040

NORLIN2 0:306 0757 0431 262 0035

NORQUAD 0-304 0-884 0450 349 0052

LINLOG 0314 0-764 0436 257 0031 —0010

Lancaster ones. The latent class results are generally poor, except that, as in variable set I, the
reliability scores are good.

For variable set III there is little to choose among the independence models, and again there
is little to choose among the Lancaster models. However the Lancaster results are consistently
poorer than the independence ones and the latent class results display a now familiar pattern.

Variable set IV is perhaps the most interesting, because the differences in results are quite
marked. INDEP3 clearly betters INDEP2, which in turn betters INDEP1, and we see the same
pattern for the three Lancaster models, with LANC3 bettering LANC2, which in turn betters
LANCI1. We also see that INDEP3 is superior to LANC3, and that for this variable set alone the
latent class models perform well.

The comparisons among the discrete kernel models are quite clear cut with KEREX3 standing
out as being easily the best. Although the methods based on marginally chosen smoothing
parameters are to be favoured on computational grounds they give density estimates which are
too sharp from a multivariate point of view. For this data set the pseudo-Bayesian method too
has not produced enough smoothing. This has however been achieved much more successfully
with KEREX3, although by a subjective method of choice.

The final set of models comprises the continuous parametric models, NORLIN1, NORLIN2 and
NORQUAD. We shall also include LINLOG with this group, although strictly speaking it is not
restricted in application to continuous data. With these models we see a clear pattern over the
four variable sets with the quadratic method always performing poorly. With the linear method
it is always preferable to use the EM algorithm for parameter estimation. The differences with
and without the EM algorithm (which admittedly requires considerable computation) are small
for the first three variable sets, but marked for set IV. The results for the linear logistic method
are comparable with those of NORLIN2 for variable sets I-II1, but its performance drops off with
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TABLE 7
The results for variable set 111: Age, EMV score, MRP, Change, Pupils, Eye indicant

Measures of separation

Measures of

Average Average reliability
Error logarithmic quadratic Average

Method rate score score loss DT DQ
INDEP! 0-248 0-686 0-364 219 0-073
INDEP2 0-246 0-656 0-358 219 0-030
INDEP3 0-232 0-652 0-362 213 —0-046
LANCI 0-254 0738 0-382 22:9 0-057
LANC2 0-256 0-728 0-378 22:9 0-040
LANC3 0-244 0-727 0376 229 0013
LATCLI 0-298 0-726 0412 252 0-019 —0-002
LATCL2 0-262 0-718 0-372 269 0-026 —0-003
KERUNI 0-332 1-103 0-500 338 0-150

KERUN2 0-338 1-267 0-537 359 0-190

KERORDI 0-328 1-030 0-482 312 0-158

KERORD?2 0-316 1-270 0-514 307 0-177

KEREX! 0-310 1013 0-467 363 0-116

KEREX2 0-344 1-412 0-548 366 0-197

KEREX3 0-278 0769 0-395 22:5 0-046

NORLINI1 0-256 0-665 0-368 228 0-056

NORLIN2 0-258 0-661 0-367 217 0-048

NORQUAD 0-276 0-907 0411 305 0-080

LINLOG 0272 0676 0-370 244 0-046 —0-007

set IV. However, when one considers how crudely the missing data were handled with LINLOG
this can be regarded as a good result for the linear logistic method, and further work on the
treatment of missing values in logistic models might well be rewarding.

5.2. Comparisons among Groups of Similar Methods

Table 9 gives a summary of Tables 5-8. In it we have chosen, for each variable set, the best
method from each of the three groups of methods discussed in Section 5.1. In cases where it was
not obvious which method was best, they were ordered by their average quadratic scores.

It can be seen that the kernel methods have disappointing logarithmic and quadratic scores
and it is only for variable set II that they even approach the other methods. This is perhaps quite
simply because we are trying to be too ambitious in using a discrete kernel approach in this
problem. For variable set IV, for instance, we are dealing with a contingency table with over
500 000 cells, while imposing very little structure on the cell probabilities. The sparseness of the
data can be illustrated by the fact that when, as in KEREX1, KEREX2 and KEREX3, “missing” is
regarded as an extra category, only 37 out of the test set of 500 have feature vectors matching one
of the training set. This means that, because of the type of smoothing produced by the kernel
method, very small probability estimates are obtained for {p(y [ n, D), 1,...,k}, leading to
unreliable {p(m;|y,D), i = 1,...,k}. If even a small extra smoothing factor is introduced, for
example adding 001 to all cell frequencies, results are obtained comparable to simple
multinomial smoothing and therefore, for this data set, to assignment simply by the prior
probabilities. In some of the methods this insufficient smoothing may be due to the fact that
marginally-chosen smoothing parameters are used in a multivariate context.

The results for the linear method are remarkably similar to those achieved with the discrete
models. For sets I and III the discrete models have the edge and for sets IT and IV the dominance
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TABLE 8
The results for variable set IV: Age, E score, M score, V score, MRP, Change, Pupils,
SEM, OCS, OVS

Measures of separation

Measures of

Average Average reliability
Error logarithmic quadratic Average

Method rate score score loss DT DQ
INDEP1 0272 0-839 0-399 281 0-166
INDEP2 0-264 0757 0-385 254 0-121
INDEP3 0264 0673 0-368 239 0029
LANCI 0-286 0-829 0-410 267 0-146
LANC2 0-286 0-800 0403 253 0128
LANC3 0-280 0-768 0-395 22:9 0097
LATCLI 0-282 0-726 0-396 274 0022 —0015
LATCL2 0-244 0-709 0-381 253 0032 —0011
KERUNI 0-350 1417 0-566 392 0-240

KERUN2 0-390 1932 0-645 44:3 0-304

KERORD1 0-340 1-414 0-543 315 0219

KERORD?2 0-374 1923 0628 393 0-302

KEREXI 0-388 1-645 0-634 360 0-303

KEREX2 0-398 2:143 0652 453 0-301

KEREX3 0-298 0-806 0412 227 0049

NORLIN1 0-270 0-804 0-404 263 0052

NORLIN2 0250 0663 0-361 232 0053

NORQUAD 0-274 0-947 0-424 275 0-103

LINLOG 0-286 0772 0412 27-8 0053 —0035

TABLE 9

An overall summary of the results

Average Average

Error logarithmic quadratic Average Variable
Method rate score score loss set
INDEPI 0-278 0-685 0377 233
KEREX3 0-282 0-800 0420 244 I
NORLIN2 0-284 0-702 0:396 259
LANCI 0-298 0-808 0435 267
KERORD?2 0-332 0-856 0454 269 I
NORLIN2 0-306 0757 0431 262
INDEP2 0-246 0656 0-358 219
KEREX3 0-278 0:769 0-395 22-5 111
NORLIN2 0-258 0661 0367 217
INDEP3 0-264 0673 0-368 239
KEREX3 0-298 0-806 0412 227 v
NORLIN2 0-250 0663 0361 232

is reversed, although the differences are so small as to be of little importance in practice.
However, it should be said that with the linear method we have a single method which performs
very well for each variable set, whereas with the discrete models the choice of the appropriate
model can be critical.
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5.3. Comparisons among the Variable Sets

So far we have seen how the various methods perform relative to each other for each data set,
but there still remains the important question of which variable set gives the best overall
performance. Indeed we see, from Table 9, that the variation in performance among the methods
tends to be smaller than that among the variable sets. The best overall set of results is obtained
with method INDEP2 on variable set III, and it is interesting that, although set IV contains
strictly more information, the discrete models cannot exploit this. In contrast, we see that, with
the linear method, the performance improves as we go from set I to set III to set IV, although the
results for sets III and IV are very similar. This again emphasizes the robustness of the linear
approach, which appears to make sensible use of the available information, whereas the discrete
parametric models have to be matched carefully to the variables being used.

This suggests the general feeling that the linear approach, with the EM algorithm, is
preferable for a quick, uninformed analysis, but, with more effort and using prior background
information, as in our illustration from the neurosurgeons, to combine groups of highly
dependent variables into single “created indicants”, it should be possible to achieve similar, if
not better, performances using a much simpler independence model. This certainly was true for
this problem.

This simplicity of the independence model relative to the linear rule could well make the
difference between an acceptable and an unacceptable system in the clinical environment and
this is particularly so if predictions have to be based on incomplete feature vectors. This is
achieved easily with the simple independence model, but to implement it with the linear model it
is necessary to invert the relevant part of the covariance matrix to evaluate the coefficients.

At the hospitals where the Head Injury Study is based there are excellent computing
facilities, and even the heavy computations involved in predicting a new patient using a kernel
technique are quite feasible. However, these facilities are exceptional, and to assess the feasibility
of making predictions in a more realistic setting we conducted a trial in Glasgow where the
junior doctors responsible for the data collection made predictions themselves based on an
independence model using a programmable calculator. This proved to be quite practicable, and
was readily accepted, but until now it has been the policy not to give the predictions to the
doctors treating the patients. This was so that the predictions would not affect the management
of the patients in any way, thus avoiding any accusations of making self-fulfilling prophecies.
One other interesting point which emerged from this trial was that once the doctors had had
some experience of making predictions their own prognositic accuracy increased markedly.

In Rotterdam, a set of tables is under construction where the probabilistic prognosis can be
read off for all kinds of symptom combinations.

Some further comments should be made about the success of discriminant rules in general
when applied to the Head Injury data.

One of the more important aims is to identify, at an early stage, the small proportion of
persons who will be severely disabled, and thus in need of continuing medical and social care. It
must be admitted that no method has been very successful in this context. This is undoubtedly
due to the fact that, geometrically, the severe group is overlapped by those in the other two
outcome categories whose members dominate the total sample numerically. This ordering of the
outcome categories should perhaps be acknowledged and developments of the methods of
McCullagh (1978) would be useful here. It should also be stated that, by considering data from
the patients at later epochs than 24 hours from onset of coma, somewhat better separation of the
outcome categories can be achieved; see Braakman et al. (1980) and Teasdale et al. (1979b).

6. GENERAL CONCLUSIONS

Some general points have emerged from this particular case study which we consider have
wide import to complex discrimination problems in general. They are as follows.
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(i) The robustness of independence models, allied to the ease with which incomplete data
are dealt with.

(i) The robustness of the normal based linear discriminant rule, in particular the favour it
receives over the quadratic rule (cf. Aitchison et al., 1977), and its facility for recognizing
ordered categories.

In view of (i) and (ii) there is the strong suggestion that latent structure models (Fielding,
1977) should be tried. Skene (1978) describes such an application to a restricted version of this
data-set.

(iii) The lack of success of the straightforward application of categorical interaction models,

which also involve complications with parameter estimation.

(iv) The lack of success of the kernel methods, particularly with high dimensional data. This
emphasizes the need for further work on the choice of suitable smoothing parameters.

(v) Itshould be emphasized that a final choice of a “best” method and variable set depends
also on non-statistical criteria specific to the practical problem under investigation, as in
the use of prior knowledge to construct sensible “created indicants”.
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DISCUSSION OF THE PAPER BY DR TITTERINGTON ET AL.

DrJ. A. ANDERSON (University of Newcastle upon Tyne): It is a great pleasure to be able to propose the
vote of thanks tonight, particularly as it is a “Glasgow” paper. I realize that a minority of the authors are
from Glasgow but the work described is essentially “Glasgow”. I have been interested in statistical
diagnosis for many years and have found colleagues in Glasgow, medical and statistical, to be a valuable
source of stimulus.

The paper before us bears witness to an immense amount of hard work by an immense number of
people and is destined to become a classic in the field of discrimination. Hence, in the best traditions of the
Society, I propose to interpret the results of the paper from a different viewpoint. A partiality for the linear
logistic method may be detected.
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There is a dilemma which faces anyone proposing to compare statistical techniques of practical
interest. Should one attempt a theoretical approach and derive results which apply to a family or families of
distributions? At its worst, this leads to conclusions such as normal distribution methods are best for
normally distributed data. Alternatively, should one compare the methods using a real data set and run the
risk that this is atypical in some way? The authors have taken this braver, second course and invested it
with some authority by choosing four different sub-sets of the data with different dependence properties
and varying incidences of missing values. This is valuable, but I doubt whether their results are applicable
in all contexts. For example, there must be problems where quadratic discrimination is better than linear
discrimination.

The paper is concerned with comparisons and choice between discriminant methods but it omits two
important considerations. Firstly, there is no mention of the necessity to look at the data before starting to
use any method. Standard practice is to consider the data for possible transformations, outliers,
collinearity and anything else relevant. Secondly, there is no mention of the effect of sample size on the
complexity of model that we are prepared to analyse. Thus, it is sensible to use simple models for small
samples. These considerations enable a better choice of model to be made.

Moving on through the paper, I would like to comment on the methods selected for discrimination.
One unifying feature of the independence, normal-based and linear logistic methods is that they all give rise
to linear discriminators, as consideration of the log-likelihood ratios indicates. The difference between
them is in the method of estimating the coefficients.

The independence model has been used here in its most basic “naive Bayes” form which insists on
prediction variables that are nominal categorical variables. As we are assuming independence, we can use
any convenient model for the marginal distributions. In particular, continuous variables can be used as
such if we assume normal margins (after transforming if necessary). This would still give a linear
discriminant; ordered variables could be “scored” and handled this way or more complicated models
(McCullagh, 1979) could be considered.

There appears to be imbalance in the amount of polish allowed for the techniques. This is perhaps
inevitable. There is a world of difference between “a poor thing—but mine own” and “a poor thing but his”.
For example, the independence model has a choice of three values of the discount factor B allowed. This
corresponds exactly to shrinking the coefficients in the linear discriminant by the factor B. Shrinkage
factors are also available for the normal-based and linear logistic methods but have not been used.

The choice of missing value techniques shows some unevenness. For the normal-based approach, two
methods are given, a computationally cheap but crude approach (substituting the overall mean for any
missing value), and a computationally expensive and complex approach, using the EM-algorithm.
However, a straightforward alternative is available which may be preferable. This is to estimate the means
and covariances from all observations and pairs of observations that are not missing. A linear discriminant
function can then be calculated and amended for any missing values at the cost of one matrix inversion.
This provides a useful compromise between the above alternatives and information about its operating
characteristics would have been useful.

The missing value technique for the linear logistic method is again to substitute overall means and this
is acknowledged to be crude. Better methods are being developed in Newcastle but have not yet been fully
tested. These methods have not been needed so far as the medical collaborators of adherents of the linear
logistic method have been trained to produce complete data sets.

Guilt is expressed because the ordered nature of some of the variables has not been utilized. I would like
to give some reassurance on this point as I believe the potential gain here is likely to be small. John
Pemberton, also at Newcastle, and I have investigated the performance of three methods of dealing with
ordered categorical predictor variables where the response variable is binary. We considered “binarizing”
the ordered variable, scoring it or allowing the ordering to be expressed. There was very little difference
between the methods with our data set.

The yardsticks for assessing performance of the discriminant rates do not distinguish between inferential
and decision contexts. Statistical diagnosis tends to be concerned with inference but decision problems do
occur. For example, I have been concerned in a project designed to select patients for preoperative
anticoagulant therapy to reduce the risk of postoperative deep vein thrombosis (Crandon et al., 1980). In
contexts like this, a near miss is as good as a mile and the error rate is a good yardstick.

I question the conclusion that the independence method is much simpler to use than the normal-based
for missing values provided the alternative approach is taken instead of the approach based on the EM-
algorithm. In any case, missing values are rarely as common when a diagnostic method has been
established and predictors are known to be required. I agree that for clinical practice, simple methods are
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still desirable for many reasons. However, the disadvantage of unrealistic models, like the independence
model, is that it is not clear how to proceed with them for any problems other than discrimination. For
example, if we assume independence, it is not clear how we can select good diagnostic predictors from a
large pool of possibles, and yet this is generally regarded as being very important. To take the other
extreme, in some diagnostic or prognostic problems, there are very few possible predictors, perhaps one or
two. If these are subject to significant measurement or biological variability, a diagnostic system can be
improved by replication. How many replicate measurements should be taken if any? It appears that the
independence model cannot provide answers to questions like these, whereas the normal-based and linear
logistic models can.

I now consider the Head Injuries study itself. Sufficient detail has been given to indicate what an
important and exciting field this is but we have not been told about the impact of statistical diagnosis on
clinical practice. Are any of the diagnostic methods discussed here thought to be worthwhile by the doctors
concerned? Are any methods in routine use? I note that the authors feel that they have failed in one of their
primary objectives, to identify the small number of cases who will be severely disabled. For those who are
not familiar with this field, it is worth noting that statistical methods have made useful contributions in
several diagnostic areas. For example, the linear logistic approach to the selection of patients for
preoperative anticoagulant therapy (Crandon et al., 1980) was generally considered to be very successful
from the clinical viewpoint.

Finally, I return to the choice between methods. I do not believe there is an overall best method. Each
diagnostic problem should be considered on its own merits, taking into account characteristics of the data,
the sample size, the context and the objectives. This will eliminate some possible methods and the paper
before us will help in the choice between the remaining contenders.

I have pleasure then in proposing the vote of thanks.

Dr C. C. SpICER (University of Exeter): I warmly welcome this paper as a contribution to the problems
of discriminant analysis in medicine. It is perhaps worth pointing out that methods of the kind discussed
are equally applicable both to diagnosis and prognosis though the latter is that discussed tonight. The
difficulties that arise are mainly due to two peculiarities of the medical approach: first the use of categorical
or binary variates and second the tendency to use these in large numbers compared with other branches of
biology. It is not unusual in these studies for the doctor to propose 100 or more indicants as possibly
relevant to prognosis or diagnosis.

No statistician could view with satisfaction the state of his subject in this field.

My own approach was initially based on the idea that the assumption of independence between the
indicants was so unreal that a realistic model would certainly pay dividends in reducing the number of tests
used and associating them in groups whose clinical meaning was plausible. It also appeared to me that
these were some basic statistical tools to hand which would be particularly helpful since the problem can be
stated in terms of large sparse dimensional contingency tables. The sample paradigm consists in estimating
the frequencies separately in the cells of the table for each of the diseases or conditions to be differentiated
and combining these with the priors. In prognosis it seems more natural to use what Dawid has called the
“Diagnostic” paradigm in which each cell of the table contains the fraction of cases in which, say, death or
recovery has occurred. The ordering of the categories is usually intended by the clinician to reflect the
severity of the conditions and the usual methods of linear modelling can then be used to estimate the
predictive capacities of the indicants (and their interactions).

In the purely diagnostic problem the categories frequently have no such meaning.

I started by using the model of contingency tables put forward by Lancaster but abandoned it when
Nelder and Wedderburn first produced the GLIM system of programs. In any case I do not think
Lancaster’s model is appropriate to the current problem.

To sum up my own experience in trying these methods I would say that although they are frequently
useful and illuminating, and above all economical, they are never quite as good in prediction as the cruder
and more empirical methods discussed in this evening’s paper. They are also much more liable to be
invalidated by missing data. Until some new type of mathematical model is devised in which the number of
parameters can be kept within reasonable bounds, the methods discussed by the authors tonight are likely
to be the mainstay of statistics as an aid to medical decision making.

I was interested, though not too surprised, that the linear discriminant came through so well. I have
used this a great deal in stepwise mode to try and reduce the total number of indicants. What seems to
happen is that it either works reasonably well or it is hopeless. In the latter case this is usually quite obvious
as it will not even classify the training set effectively. In this connection I should like to emphasize that the
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linear discriminant is not dependent on the assumption of multivariate normality. It was introduced by
Fisher as a function which maximized the ratio of two quadratic forms representing variation between
and within groups. It will do this regardless of the type of numerical variate involved, if there is a reasonable
separation of groups in some multidimensional space. I do not think that the quadratic discriminant is
necessarily a natural generalization of the linear and can be quite unsuitable.

The general question of linear and quadratic discriminants in which the scaling matrix is not
necessarily a covariance matrix has been admirably discussed by Day and Kerridge (1967) and Day (1969).

I would advise anyone who is involved in this kind of work to try out a linear discriminant as it is often
illuminating and failures can be discreetly suppressed.

I was glad to see that the clinicians were well integrated into this investigation. There is little possibility
of achieving accurate and complete recording of the data unless one or more (preferably senior) clinicians
are involved. Doctors do not like filling in long pro-formas and are apt to feel that if a technique merely
confirms their own opinions in the first dozen or so patients that it has nothing to teach them.

It would be nice to end this contribution with some trenchant criticisms of the paper and suggestions on
the way forward. I have no major objection to the methodology though some criticisms are implied,
perhaps, in what I have already said. In this field the Bayesian can usually lie down with the frequentist. But
I think that if some Bayesian could come up with a more suitable prior distribution than the Dirichlet,
which seems to be the usual choice for contingency tables, some real progress might be made. Unless
something quite new in the way of statistical methodology appears then I feel that the next ad vances lie in
machine intelligence and/or the use of micro-computers and software of the “perceptron” variety. (In one
experiment of mine the perceptron did about as well as the independent Bayes.)

In view of the recent rumpus about the diagnosis of brain death, which is closely related to prognosis of
head injury, it is not necessary to stress the practical side of the present paper. It gives me great pleasure to
second the vote of thanks to the authors for their valuable contribution and for bringing this important
subject to the notice of statisticians.

The vote of thanks was passed by acclamation.

Dr R. P. KniLL-JoNES (Department of Community Medicine, University of Glasgow). I also
congratulate the authors on an interesting and timely paper and hope that similar comparisons of
discrimination techniques will be undertaken on different data sets in the future. It would be unwise to
overgeneralize from the results of this study until other discrimination problems have been examined in
this way.

There have been relatively few attempts to compare techniques in the past, and certainly none as
extensive as in this paper. However, Croft and Machol (1974) did use ten different discrimination
techniques on a large body of data from patients with liver disease—1991 training cases and 437 test cases.
There were 20 disease classes and 50 indicants of which 38 were discrete. Assessment was by error rate only.
The independence model gave the best results compared both to a number of linear discriminant functions,
and to classification procedures using a nearest neighbour rule. There were some difficulties in using the
latter methods because of singular matrices.

The construction of loss matrices for medical problems has improved in recent years. Technically a loss
matrix is equivalent to a matrix of regrets (a regret being the difference between the utility of a state of
health following optimal treatment, and that following suboptimal treatment consequent upon a wrong
allocation to a diagnostic class). Formal construction of a regret matrix may be carried out by a
combination of ranking the individual regrets, followed by a wagering procedure using indifference points.
A good agreement between clinicians has been found (Le Minor et al., 1981) and a “consensus” matrix may
be useful for evaluating discrimination rules.

Construction of a regret matrix may be feasible when the preferred classical approach of obtaining
utilities of the health states of each consequence is infeasible because of the complexity of the decision
structure of the problem.

A more precise overall association parameter for each set of variables used with the independence
model could easily be obtained from the training data set by simulation and numerical approximation. It
might also be possible to obtain a maximum likelihood estimate for this parameter. Either method would
improve the reliability (or calibration) of posterior probabilities produced by the independence model.

Dr P. J. BROWN, (Imperial College, London): Problems associated with medical diagnosis and sparse
contingency tables have tried and tested many statisticians over recent years. The problems are
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considerable, and tonight’s authors are to be congratulated on producing such definitive answers for us to
examine. Perhaps they could have been braver and allowed us a few data tabulations, but maybe we have
sufficient to go on.

I wonder about the adopted separation of model formulation and method of estimation. If one insists
on maximum likelihood or some computationally cheap surrogate, indeed problems will arise if many
variables and many parameters are included. However, if estimation methods are allowed which smooth in
a data-based fashion, problems need not arise. Why jump from all main effects to all main effects plus
interactions, for example? If such implicit exchangeabilities are really a priori meaningful, why not
introduce a prior assumption to the effect that interactions are likely to be smaller than main effects? One
formulation of this would lead to procedures analogous to ridge regression arising in normal theory
models. Or, more traditionally one can test whether certain interactions or main effects should be set equal
or equal to zero. Indeed, model criticism, re-emphasized recently by Box (1980) is rather absent from
tonight’s paper. The weakness of assumptions in non-parametric kernel methods, for me, is a serious
handicap because consequently they do not allow such modelling.

In this general context, perhaps the authors could explain their notion of comparability given in
Section 3.2(ii).

Another aspect that might be modelled is the multicentre nature of the data. Are the data consistent
from centre to centre? Certainly, protocols of safety, for example in wearing of crash helmets on
motorcycles, differ from country to country. Since the authors sensibly choose to split their data at
random, the various centres will be represented similarly in the validation and training set, but of course
this need not be the case in any future application. If between-centre differences are real, this could be
important at least for those methods which do not model outcome conditional on symptoms. Such
modelling may still require some different parameters for different centres for example if effective patient
care varies, but avoids the intercentre weighting difficulty and focuses attention on the important
discriminatory variables. The advantage is not specific to logistic models, and it is shared, for example, by
rather more specialized key models which I have given in an earlier paper, in 1973. Separate population
modelling of outcomes contributed to the difficulties exposed in Brown (1976).

Finally, a not unimportant technical detail is that, by definition, maximum likelihood estimates of
probabilities for Lancaster models cannot be negative since the likelihood is zero for negative probabilities.
If many estimates turn out to be zero, or rather unstable, this may be an indication that the model needs
modification. The method of moments used by the authors has the virtue of simplicity, but considering the
computational slack available when this method is compared to kernel methods perhaps the more efficient
maximum likelihood method is warranted, in the absence, that is, of more genuine parametric smoothing.

Professor J. B. Copas (University of Salford): However much mathematical theory we have about
statistical methods, a thorough study of how well such methods work on real data is always to be
welcomed, and I am sure that tonight’s paper is an important contribution to the practice of discriminant
analysis. If I were allowed just one criticism I think it would be that relatively little attention is given to a
preliminary analysis of the data. For instance, when the incidence rates are tabulated against the
explanatory variables taken 2 or 3 at a time, how large are the interactions? Is it really sensible to fit a very
complicated model unless there is reason to believe that these various interactions are important? The fact
that some of the measures of separation given in the tables exceed the null values given at the end of Section
4.1, meaning that the relevant method is actually worse than ignoring the data altogether, suggests that
some of the models are grossly overfitted. I doubt if I am the only person here tonight whose reaction to the
paper is “Interesting, but what a pity they haven’t tried my favourite method”. My method would depend
on a preliminary analysis of the data, and would probably end up with a linear discriminant or logistic
regression based on whatever variables and interactions seemed to be important as judged from both
empirical and clinical points of view.

Many of the methods in the paper are essentially linear; even the independence model can be viewed as
a sum of estimated marginal log likelihood ratios. If we have a linear score 'y, then over the test data its
variance will be §'Vp where Vis the variance-covariance matrix of y. Similarly, the score as estimated, By,
will have variance p' VB which, on average, will exceed §'Vp by a positive amount tr (¥ var (B)). Thus the
predicted scores will tend to be too extreme, particularly when the dimension of the model is large. The fact
that DT for LINLOG increases with dimension, and is always better than that for NORQUAD, suggests that the
variance inflation dominates the reliability assessment. Rather than use omnibus measures of accuracy as
proposed in the paper, it is perhaps worthwhile to monitor this effect directly. This can be done graphically
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by displaying, for any pair of outcomes (i, ),

2(1os—x) v (1022~

against x. Here,  is a suitable kernel window function, and the summations are over the test cases in 7; and
n;. This estimates the actual log probability ratio of n;: 7; as a function of the estimated value of this ratio. A
method which is “reliable” in the sense of the paper will give a slope equal to 1; variance inflation will result
in a slope less than 1. It is likely that this slope will be particularly small for the more complicated models,
indicating that estimated probabilities are considerably biased.

Professor A. P. DAWID (The City University): In the early days of the century, before anybody knew
about sufficiency or the Cramér—Rao inequality, several papers were written on the possibility of finding a
better unbiased estimator than the sample average for the mean of a normal distribution. The subject
provided ample scope for ingenious suggestions, for their theoretical and empirical study, and for the
comparison of competing ideas; but of course it was ultimately fruitless. Whatever empirical support a
contending estimator may once have possessed, or however useful it might be as a robust estimator when
normality is in doubt, no one would now prefer it if the model of normality were truly believed. Where
modelling rules undisputed, empiricism must give way.

Tonight's paper is a masterful collaborative empirical comparison of a number of ingenious
suggestions in the field of discrimination. However, the authors have completely ignored any theoretical
considerations of the suitability of different models for the data considered. In this problem of prognosis,
the feature vector yis measured soon after injury; the outcome = is assessed 6 months later. Is it not obvious
that the probability p(nl y) is directly meaningful, and describes the natural evolution of the recovery
process over time? On the contrary, the “backward” probability p( y|m) is a contorted and meaningless
product of an irrelevant analogy with the problem of diagnosis, in which the disease exists prior to the
symptoms it produces. I therefore strongly dispute the statement in the first paragraph: “In statistical
terms, however, the problems [of prognosis and diagnosis] are technically identical.”

However well methods based on modelling p(y| ) may turn out empirically, it seems to me misguided
to use such a logically unsatisfactory approach. More effort should be applied to extending direct analyses
of the LINLOG type. Not only did this perform moderately well, but the estimated p(n | y) is a meaningful
quantity. Moreover, what I have called the diagnostic paradigm (but would here be better called the
prognostic paradigm) offers the only hope of taking into account changes in the outcome category over
time. (An exception might perhaps be made for the latent class models, in which the latent class is imagined
determined at injury, and itself governs the development of both y and 7, independently; then we should
need to model the separate factors of p(y,m,1) = p(y|1) p(z | 1) p(]).)

My final point is that the empirical comparisons of this paper constitute the outcome of a single trial. If
the series had been divided into two or more subseries, and the methods of construction and assessment
applied to each such subseries (itself divided into training and test sets), we would have had some valuable
empirical information on the reliability of the comparative results presented.

Mr G. J. GooDHARDT (Thames Polytechnic, London). I very much welcome empirical studies
comparing different statistical techniques. The authors were fortunate in having as many as 1000 cases to
deal with. This enabled them to divide the data into a training set and a totally independent test set. The
more usual situation is that, due to scarcity of data, we are forced to use all the available cases as the
training set. We may still try a number of different procedures but the only way we can compare their
expected efficiency for future classifications is to assess them on the way they classify the cases we already
have. That is, we use the training set as a test set. This clearly gives us a biassed estimate of the power of each
procedure, but we console ourselves with the thought that the bias is possibly much the same for all
procedures and so the comparison may not be affected. But is this in fact so?

Could the authors of tonight’s paper cast some light on this problem? What would happen if they were
to apply their 19 different methods to the cases in the training set and were to assess their relative
performance there? If the rank orderings of the methods on the various criteria were the same as obtained
on the independent test set, this would be very reassuring to those who are used to making the best they can
of much smaller data sets.

Finally, despite the last sentence in the paper, would the authors be prepared to say which of the 19
methods they thought was the best—or would there be seven different answers to that question?
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Drs GRAHAM TEASDALE and BrRYAN JENNETT (Institute of Neurological Sciences, Southern General
Hospital, Glasgow): Doctors are gradually accepting the value of applying the techniques of statistics and
the tools of computing to ordinary clinical practice, as well as in research. Unfortunately, what too often
happened in the past was that data were handed over to statisticians with inadequate information either
about the limitations of the process of data collection or the uses likely to be made of the analyses. A
consequence has been that doctors can be provoked into controversy, each championing what “his
statistician” has told him about the relative validity of their own work and that of others. This has already
happened in the application of discriminant techniques to the problem of predicting outcome after severe
head injury (Jennett, 1980). By contrast, the study that formed the basis for this paper was characterized by
extremely close collaboration between clinicians and statisticians, over a period of many years, as was
recommended by Professor Healy in his recent inaugural address (Healy, 1979). One component of this
collaboration was an extensive analysis of the data available in the bank, from which those prognostic
factors were identified that were most appropriate, both from clinical and statistical standpoints.

The data collected in the International Collaborative Study have already been used to compare the
efficacy of different methods of treatment, by analysing the effect of alternative methods on actual outcome,
as compared with that predicted (Jennett, 1980; Jennett et al., 1980). However, predictions have not yet
been used in making management decisions about individual patients. One reason for delaying this
application was the need first to explore the “best” statistical methods. An important finding of the present
study is the demonstration that arguments about the relative value of different methods of discriminant
analysis are of little profit, particularly when taken out of context of the nature of the data analysed. What
is now to be discovered is if calculated outcome probabilities will, in practice, aid clinicians in taking
decisions such as whether or not a severely injured patient needs, or can benefit from, a certain type of
treatment; or alternatively, whether it is appropriate that he be entered into a trial of some new form of
treatment (Teasdale, 1980). Doctors should be reminded that this is really not a new or threatening step.
Over 200 years ago, while Bayes was still alive, but before his work was published, Sir Percival Potts, a
London surgeon, in his book Observations on the Nature and Consequences of Wounds and Contusions of
the Brain wrote “In matters of this sort, positive proof and conviction are not in our power; all that we can
do is, by making a comparison of the conduct and event of a number of similar cases, to come as near to the
truth as we can, and to get probability on our side” (Potts, 1768).

Professor M. AITKIN (University of Lancaster): The linear logistic model has had its hands tied behind
its back in being restricted to main effects. This is particularly noticeable in set IV: in sets I and II it
performs as well as the latent class models, and in set III substantially better. It is not clear why the training
set was not modelled by an appropriate logistic model incorporating necessary interactions, and then this
model evaluated on the test data set.

Missing data can be handled for the log-linear or logistic model by the EM algorithm just as for the
normal regression or discriminant analysis model, but a model is then required for the joint distribution of
all the explanatory variables. When these explanatory variables are categorical, they can be modelled by a
suitable log-linear model.

Professor D. R. Cox (Imperial College, London): This very interesting paper represents an impressive
collaborative effort. It is similar in spirit to investigations on the forecasting of time series, in which
different procedures are applied in a fairly mechanical fashion to empirical series and success measured say
be mean squared error. While such studies are interesting, they inevitably raise the question of explanation:
what aspects of the series are critical in influencing choice of predictor or discriminator? It would be most
helpful if the authors in their reply would indicate the features of the data they think “explain” their
conclusions.

Stability of relations in time and between centres is important. What checks of this have been made?

The following contributions were received in writing after the meeting.

Mrs BARBARA GREGSON (University of Newcastle upon Tyne): As an applied statistician using
discriminant analysis, I welcome this paper devoted to a case-study and its practical implications.
Unfortunately, the authors have excluded the question of variable selection and taken little account of the
information that the outcome variable is ordered. I am concerned that these omissions bias their
comparison of alternative methods against linear logistic discrimination. This method is well equipped in
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both respects and any practical application of it to this dataset would exploit both these advantages to the
full.

We in the Health Care Research Unit have developed a procedure for applying LINLOG to problems
arising from our research in the N.H.S. More recently we have extended this procedure to the case where
the outcome variable is not binary but ordered, by substituting ordinal logistic discrimination (Anderson
and Philips, 1981) for the original method of discrimination between unordered populations (Anderson,
1972). We would therefore approach the analysis of the authors’ dataset along the following lines.

We would apply ordinal logistic discrimination in stepwise fashion. At each stage the criterion for the
inclusion of a variable in the discriminant function would require that it should increase the log likelihood
by more than any other variable and by at least §y3(« per cent). a is chosen so that account is taken of the
number of simultaneous comparisons, as suggested by Russell (1977).

When there are few missing values they can be dealt with quite conveniently: in binary variables they
can be replaced by the midrange and in ordinal variables by the median group value. In this dataset,
however, five of the variables are missing in more than 20 per cent of the cases. Whether one of these
variables is recorded could be as important as its value when recorded. Therefore we would create five
additional binary variables to indicate whether each of these five variables is missing. These additional
variables would compete for inclusion in the discriminant function. Our experience has shown that such
additional variables are rarely needed where there are few data missing, since they usually do not increase
the maximum log likelihood significantly.

A similar approach would be used to choose whether the EMYV score or its constituent scores should
appear in the discriminant function.

Dr P. A. LACHENBRUCH (University of Iowa): Lack of symmetry seems to affect normal theory models
seriously, particularly quadratic discriminants. This does not seem to be the case here possibly because
most of the variates are dichotomies; those with more categories have a clear upper limit. How bad was the
skewness? Could a transformation have helped? The results regarding the independence model(s) are
found repeatedly in simulation studies. A recent dissertation (Chang, 1980) found that for small sample
sizes in categorical models, the independence model performed well. Log-linear models including
interactions often could not be fit, and when they were they did not do as well as independence models.
However, if the samples were large enough (twice the number of cells works) categorical models are
satisfactory. For ordered categories they do better than scoring methods with discriminant functions
because of the many ties.

In missing values problems, there are usually patterns among the missing observations. Does the EM
algorithm account for these patterns? Also, in this study it might be more likely that a poor outcome was
associated with missing values. Thus, the number of missing values might be a good predictor, although it
would have little use in practice.

Finally all the centres were pooled. Were there differences among centres? If so, this might be useful for
the clinicians to know.

Dr PETER MCCULLAGH (Imperial College, London): Tonight’s paper raises many points, some general
and some specific to the particular data set. I restrict my comments to a general point which is partly,
although not entirely, a matter of terminology and concerns the distinction between response variables
and explanatory or feature variables. Discriminant analysis is concerned with allocating individuals to
groups or populations on the basis of the observed response; prediction analysis, on the other hand, is
concerned with predicting the response given the explanatory or feature variables. In the context of
tonight’s paper the response variable from either a clinical or from a statistical viewpoint is the outcome or
degree of recovery so that the topic of the paper is prediction, not discrimination.

If this were simply a matter of terminology no particular difficulty would arise but a closer examination
of equation (2) reveals that in all methods tried except for the linear logistic model it is assumed that for
each possible value of the response, r;, the distribution of the feature vector is assumed constant over
centres. This is a very strong and, indeed, counterintuitive assumption because it assumes that, for
example, the age by sex distribution of head-injured patients who die is the same from Glasgow to
Groningen and from Rotterdam to Los Angeles. It is easy to think of social and legal reasons why this
might not be so. The direct method in Section 3.6 avoids such assumptions though I would have preferred a
model taking account of the order in the response categories (McCullagh, 1980). Furthermore, the direct
approach permits an examination of the consistency of any observed relationship over the different centres
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and if necessary an appropriate allowance for between centre differences can be made although this might
be undesirable from a purely scientific viewpoint. The treatment of missing values in this context deserves
further work.

Dr B. J. T. MORGAN (CSIRO, Melbourne) and Mr D. DAVENPORT-ELLERBY (University of Kent):
Tonight’s interesting paper has been of particular relevance to us, as we have also been analysing data on
individuals with head injuries. In our case only 172 individuals were involved, data having been obtained,
mostly retrospectively from records, by Mr John Bartlett and Mr Glen Neil-Dwyer, neurosurgeons at the
Brook Hospital, Woolwich. There were no missing data! The reason for the small sample size was simply
because a particular form of head injury—the extra-dural haematoma—was being considered. We would
like to ask the authors of tonight’s paper how the 1000 individuals of the paper were distributed between
different types of head injury, and indeed how many had an extra-dural haematoma. Such individuals may,
but need not, become severely injured. If the injury is correctly diagnosed, then the haematoma may be
simply evacuated by drilling a burr-hole in the skull. Unfortunately, individuals with this injury, resulting
froma blow to the head, may not even sustain a fracture, and so early diagnosis is difficult. If distinct types
of head injury are present in the sample of 1000 individuals, then prediction of recovery could conceivably
be improved if it was done separately for the different injury types.

In our study, we found that individuals with a fast development of the haematoma frequently had a
poor outcome after operation, while the converse was sometimes true for individuals with a slow
development. This leads us to wonder whether the entry requirement of individuals to the sample of
tonight’s paper—a minimum of 6 hours in coma—might result in predictions of degree of recovery which
may not in general apply to individuals with fewer than 6 hours in a coma.

We found that the best measures for discriminating between individuals with poor and good outcomes
after operation were age, two measures of coma state on hospital admission (one of verbal ability and one
of motor response), and the same two measures prior to operation at the Brook Hospital. In our case also
the linear discriminant function performed well, correctly classifying 79-9 per cent of individuals, as
compared with 849 per cent resulting from a non-parametric procedure using a kernel suggested by
Aitchison and Aitken (1976). However we used equal values for the p(r,), the same test and training set, and
no cross-validation.

There are always, of course, unusual features to data sets which confound any discrimination
technique. In our study a number of individuals with a good outcome which was not predicted were traced
to a surgeon who had amassed more than a lifetime’s experience in locating haematomas when working
with the allied forces in North Africa during the war!

The AUTHORS replied later, in writing, as follows.

We should like to thank all discussants for taking the trouble to make their contributions. We are
warmly grateful for the many positively complimentary remarks and we are, perhaps, even more
appreciative of what we feel are complementary comments to the material of our paper, namely the wide
range of critical contributions and queries. We have reported on a small aspect of the practice of
discriminant analysis and of the statistical analysis of this data-set in particular. To the discussants is due
the credit for any lasting usefulness the publication may have as a more rounded reference on the subject.
In reply we should like to discuss some themes which several people have raised.

(i) A comparison or a case-study?

We should like to emphasize that our work should not be regarded as a fully-reported case study. For
that it would have been appropriate to discuss in more detail the methods of data-collection, the validity of
combining the data-sets from different centres (Dr Brown, Professor Cox, Professor Lachenbruch, Dr
McCullagh), variable selection (Mrs Gregson), exploratory analysis with a view to selection of method or
transformation (Dr Anderson, Professor Copas, Professor Lachenbruch) and the impact on the clinical
protocol of implementation of the chosen procedure or procedures. Our aim was the more restricted one of
paving the way for case studies by trying to assess the suitability and sensitivity (or otherwise) of a
repertoire of techniques. Our results, we hope, may help practitioners to choose what is likely to be a good
method or, at worst, one that is liable to be reasonably reliable and comparatively easy to apply. It is,
however, fair that we should have to comment on the activities alluded to above.
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(ii) What do the data look like?

Several contributors have asked about the pooling of the centres, both from the point of view of
estimation and of prediction (Dr Brown, Professor Cox, Professor Lachenbruch and Dr McCullagh).
Although the present study has not included predictions within the different centres, and although there
are certainly differences among the centres, such as that Glasgow patients are received after primary
admission to other hospitals, the protocols in the centres are carefully standardized and the distributional
patterns for informative indicants and the outcomes are fairly similar; see, for instance, Jennett et al. (1977)
and Jennett et al. (1980) where some information about the stability in time of some features is described.
Predictions for Glasgow and Dutch patients using a Glasgow training set are reported by Teasdale et al.
(1979c) and, in an unpublished study, it was shown that predictions for Glasgow patients using a Glasgow
training set were very similar to those using a Dutch training set.

As far as exploratory work is concerned (Dr Anderson, Dr Brown, Professor Copas and Professor
Lachenbruch), there is much on which we could, and perhaps should, have reported. The problems are
exemplified by the following cross-tabulation of Change with Outcome.

Outcome

D)V SEV  MJG

Change 1 202 23 54
2 99 34 99
3 74 17 132

Clearly no transformation will symmetrize all column patterns, or row patterns, for that matter.
Assumption of Normality is laughable in principle for the conditional distributions of change scores given
the outcome and a categorical model appropriate for an ordered response variable with an ordered
predictor (Ms Gregson, Dr McCullagh) seems much more suitable. Hopefully, refinements of such models
to deal with multivariate and patchy predictors will lead to the robustness of independence or “Normal”
(Fisher-linear-discriminant, as Dr Spicer reminds us) based approaches being outweighed. The collinearity
problem referred to by Dr Anderson is eased by the use of created indicants.

Recently the data-base has been extended to 1250 patients and some information about trends and
interactions is given in Teasdale et al. (1981), for “complete” portions of the data. In particular, the log-odds
of “death” as against “survival” is linear in age, and the slope seems the same independently of the initial
coma-score (EMV). Analysis by loglinear models showed that coma-score and “Pupils” score provided
significant further discriminatory information.

Although there are strong first-order interactions within many pairs of indicants, these interactions are
fairly similar across the outcome categories. Three-way interactions involving outcome are, generally,
small and this appears to explain why NORLIN2 is not inferior to NORQUAD, why the linear logistic approach
should do well and why the independence model also seems robust. This last can be illustrated with the
following extract from the extended data-base, with two outcome categories and using two highly
dependent indicants, E score and V score.

Deaths Survivors

V-score V-score
1 2-5 1 2-5
E-score 1 488 59 1 290 109
2-4 24 28 2-4 56 122

Given these frequencies we obtain the following estimated conditional probabilities of death, with and
without the assumption of conditional independence of E-score and V-score.
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Conditional probabilities

Indicant scores of death
E vV Independence No independence
1 1 0-66 0-62
1 2-5 0-32 0-34
24 1 0-29 0-29
24 2-5 0-09 0-18

The similarity between the two sets of probabilities is clear.

(iii) Generalizability of the results

Dr Anderson and Dr Knill-Jones have issued the caveat that our findings will not universally be true.
We hope that this warning will stimulate further studies on real data. Such studies are, we feel, of
considerable importance, because real data simply do not come from a parametric model. In theoretical
work, as Professor Dawid points out, empiricism must give way. With real data, empirical work is seldom
valueless. We do feel, however, that our general conclusions about the robustness of independence-based
and linear discriminant function methods will often hold. Even in simulation studies the latter can be
disconcertingly efficient compared to, say, the method based on unequal covariance matrices (Aitchison et
al., 1977; Remme et al., 1980) and the robustness of independence models has seemed to perplex Professor
Healy (1979) as well. We hope that our comments in (ii) above are helpful in this context.

As well as comparison across different real-life problems, replication within a large data-set is both
feasible and desirable, for the reasons mentioned by Professor Dawid. The table shows the quadratic scores
for four replications, using all four combinations of training (TR) and test (TE) sets. I

Variable set TR ->TE TE—-TE TE - TR TR- TR
I 0-377 0-354 0412 0-381
II 0438 0422 0-435 0422
111 0-364 0-334 0-396 0-364
v 0-399 0-352 0411 0-392

In general, each column picks out set II as the “worst” set, set III as the “best”. There is, however, a
noticeable effect across the columns. The column 2 scores are uniformly better than those in column 1 and
those in column 4 better than those in column 3. The cause of this is the optimistic bias caused by using the
same set both for developing a discriminant rule and for testing it, as Dr Goodhardt mentions and as Dr
Morgan and Mr Davenport-Ellerby practise. Had it not been for wanting to illustrate this point we should
have used the cross-validatory technique of Lachenbruch and Mickey (1968) and, thereby, have reduced
this bias.

(iv) Diagnostic paradigm versus sampling paradigm

There are two major questions in this context that arise from our paper. Firstly there is the general
problem of which approach is more correct in principle. Secondly, there are the practicalities which set the
linear logistic approach apart from other methods which lead to log-likelihood ratios that are linear in the
observables.

First, it should be said that, since this is a comparison study, we have in principle no axe to grind and we
have presented results from both approaches. It is fair comment that sampling paradigm techniques have
been looked at in greater number and we are grateful to Dr Anderson, Professor Aitkin and Ms Gregson
for reporting on both current and potential increases in sophistication.

In many respects the diagnostic paradigm is intuitively the more appealing one, particularly when
Professor Dawid argues as in his 1976 paper. Also, it is often more plausible, say, that the distribution of an
indicant for disease sufferers is a truncated Normal than a complete Normal. The linear-logistic
formulation is then still nicely appropriate. We are not so sure about the time-based argument that
Professor Dawid, with support from Dr Spicer, offers here. If the appropriateness of the factorization of
p(y, n) should be determined by the time-ordering in which y and = are observed or develop, then it seems
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that, in Dawid (1976), the diagnostic paradigm should be called the prognostic paradigm and the sampling
paradigm should be called the diagnostic paradigm. What seems to be more important is whether the
particular model adopted using one factorization is more suitable than the particular model from the other.
Sometimes, as in direct applied discriminant analysis, the choice of paradigm has little effect; see
Krzanowski (1975). When, however, there are unconfirmed cases in the data bank, the choice of paradigm
may lead to quite different results, if we are interested in discovering how much extra information the
unconfirmed cases provide about the discriminant rule. With the factorization

px, 1) = p(x) p(r | x),

there is no extra information unless the above two factors have parameters in common (Anderson, 1979)
whereas, with the alternative, it can be shown that unconfirmed cases do improve the performance of the
discriminant rule; see, for instance, O’Neill (1978), Ganesalingam and McLachlan (1979) and the dialogue
between Dawid (1980) and Makov (1980).

(v) Treatment of missing values

Missing values constitute one of the major features of this data-set. Many statisticians will envy the
complete response that Dr Anderson stimulates from his collaborators. Undoubtedly, we have used wrong
approaches in that the missing data process will not be ignorable. It seems unlikely that a single convincing
model will be developed for this process, so that we are led to something like the pragmatic but
computationally demanding approach of Rubin (1978). For different suggestions for the missing data
process, the missing values are simulated and the resultant “complete” data set is analysed accordingly.
Many replications from each process are made and the results are compared. If the choice of missing data
process has little effect, it may be safe to assume that any of them can be accepted and the results are fairly
reliable. Otherwise, nothing should be done but to obtain more information about the missing data
process.

The “unevenness” referred to by Dr Anderson is largely due to the unevenness in the literature. His
suggestion of substitution of regression-based estimates in the normal-based approach is worth noting (see
also Little, 1978) and, for illustration, we indicate some results from this method, which we call NORLIN3, on
Variable set IV. The five performance scores are, respectively, 0-260, 0-670, 0-365, 22:4 and 0-048. By
comparison with Table 8 we see that they are comparable with the EM results. The relative computational
burden may not be quite as at first sight, because the EM-algorithm (or some alternative) is only used once,
with the training-set. As far as application to the test set, or to new patients is concerned, it is simply a
matter of evaluating a linear discriminant function, or density estimates. In principle, for the linear logistic
approach, prediction for an incomplete case would require re-estimating the parameters for the relevant
missingness pattern. Important difficulties may arise if the discriminant rules are to be updated as new
prognoses are confirmed. Then, at least, current parameter estimates provide good starting values for a
new maximization, or an approximate, sequential version, on the lines of recent work by one of us
(D. M. T.)and J-M. Jiang, is possible. Also, as Dr Anderson suggests, maybe later observations will not be
incomplete. Unfortunately, good management may not be enough in this study, in which facial damage is
often the cause of missing data on eye responses.

We look forward hopefully to the development of missing-data techniques for the logistic methods and
for the models of Dr McCullagh. The suggestions of Ms Gregson are interesting, particularly the creation
of indicator variables for missingness. The median substitution method is in the same spirit as our mean
substitution and may be misleading if, say, the marginal distribution of that variable is bimodal. A similar
comment seems appropriate to Professor Aitkin’s approach to missing data substitution. A major benefit
of the logistic approach is the lack of dependence on a specific model for the explanatory variables
(Anderson, 1972). Formally, the missing data problem may be resolved using non-parametric density
estimation. Suppose a complete observation is bivariate but that in a particular case from 7, say, only x, is
available. We require, in the likelihood, a factor p(n, x,). This can be written

p(xy) J}’(’h | X1, X5) (X, | x1) dx,.

With a non-parametric (consistent) estimator for p(x, | x,) and if the integration can be done, this gives
a possible approach. If a kernel-based density estimate is used with a Gaussian kernel function and if the
logistic distribution function is approximated by a Normal one, the integration can be done (Aitchison and
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Begg, 1976). The resulting expression is quite complicated, and some work into practical simplification
must be done. The same difficulty is inherent in the missing-data modification of continuous kernel
methods alluded to in Section 3.7.

The introduction of missing-value indicator variables mentioned by Ms Gregson is in similar spirit to
kernel functions like that in Table 1 of Murray and Titterington (1978). The method has been tried on the
head injury data, but without improving the performance noticeably. Both approaches react to some
extent to the missing data pattern, which is in Professor Lachenbruch’s mind. This contrasts with the EM
algorithm’s assumption that the missing data are “missing-at-random”.

(vi) Miscellaneous comments

We are grateful for Dr Anderson’s reference to Crandon et al. (1980). The error rate is a good yardstick
if the loss-structure is well specified. Otherwise, the arbitrariness of the decision boundary is a worry. The
severes in our study are very difficult to identify. Several two-dimensional plots of the data have shown how
they lie sparsely scattered in the overlap zone of the other two groups.

Discriminant analysis and multivariate analysis in general are areas where a technique does not, to
paraphrase Dr Spicer’s words, “merely confirm their own opinions”. Often the picture is too complicated
for the clinicians, but becomes clear via the computer. Perhaps the recent promotion of the logistic Normal
distribution by Aitchison and Shen (1980) may prove to be Dr Spicer’s sought-for alternative to the
Dirichlet; see also Leonard (1973). Is Dr Spicer using the Fisher separation statistic for stepwise variable
selection? Habbema and Hermans (1977) suggest that this should be discouraged.

Maximum likelihood estimation of the overall interaction factors and of the Lancaster model,
proposed by Dr Knill-Jones and Dr Brown, may be worth including. Dr Brown mentions data-based
smoothing and, of course, this may well be yet another good alternative. Parallels between ridge regression
and kernel-based smoothing of relative frequencies can be drawn by comparing the papers of La Motte
(1978) and Titterington (1980, Section 7).

Dr Brown asks us about our use of “comparability” in Section 3.2(ii). The point was that, in order to use
the same data sets for all methods, the “further grouping” mentioned there was avoided.

We are sorry that time has not permitted us to report on application of Professor Copas’ promising
reliability test.

We hope that other clinicians and scientists will be encouraged by Mr Teasdale and Professor Jennett
to seek and implement statistical help. The plethora of useful reports and analyses from this International
Study and the increasingly routine implementation of discriminant analysis by the neurosurgeouns point to
the fruitfulness of practical Medical Statistics.

Variable selection in this study is discussed in Braakman et al. (1980). We do not agree with Ms
Gregson that the linear logistic method can be singled out as especially suited to dealing with variable
selection or ordered outcomes. It would be interesting to compare Ms Gregson’s inclusion criterion in
practice with other techniques.

In reply to Dr Morgan and Mr Davenport-Ellerby we can report that only 84 of the 1000 patients had
an extra-dural haematoma only. Although about half the patients in our study had a haematoma of some
sort (Jennett et al., 1979), many more haematomas are treated in the various centres but are excluded
because the patients were not in coma for more than 6 hours. The discriminant rules we have developed
certainly may not be appropriate for such patients. Prognosis patterns may be very different preoperatively
(Teasdale et al., 1976) from those postoperatively, as a current study is confirming, Six-months prognosis
depends much more on the age of the patient and the degree of brain damage than on its cause.

(vii) Which method is “best”?

Dr Goodhardt would like us to answer this. Professor Cox would like the answer explained. “Best” could
mean “guaranteed consistent” (kernel, apart from the missing-at-random assumption), “most robust to
model variation” (independence or NORLIN2 or NORLIN3, on the basis of simulation studies), “ease of
practical application without a large computer” (independence, methods based on functions of a linear
discriminant function). For this data-set and for reasons which, we hope, have been indicated already in the
reply, the independence and NORLIN2, or NORLIN3, approaches seem as good as any. With further
methodological development and more data the kernel methods must come into contention and
appropriate missing data modifications to the linear logistic method ought to make it a winner. If we add to
this the possibility of acknowledging the ordering in the outcome itself, in any of the above methods,
then one thing seems clear. The “best” is yet to come!
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