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Nearest Neighbor Rule 

Consider a test point x.  
x’ is the closest point to x out of the rest of the test points. 
Nearest Neighbor Rule selects the class for x with the 

assumption that: 

Is this reasonable? 
Yes, if x’ is sufficiently close to x. 
If x’ and x were overlapping (at the same point), they would 

share the same class. 
As the number of test points increases, the closer x’ will 

probably be to x. 



Nearest Neighbor Estimation 

Possible solution for the unknown “best” window problem 
  The best window problem involves deciding how to partition the

 available data 
  Let the cell volume be a function of the training data 
  Instead of an arbitrary function of the overall number of samples 

To estimate p(x) from n training samples 
  Center a cell about a point x 
  Let the cell grow until kn samples are captured 
  kn is a specified function of n 
  Samples are the kn nearest neighbors of the point x 



Nearest Neighbor Estimation 

  Eq. 1 is the probability of choosing point x given n samples in cell volume Vn 
  kn  goes to infinity as n goes to infinity 

  Assures eq. 2 is a good estimate of the probability that a point falls in Vn 

  A good estimate of the probability that a point will fall in a cell of volume Vn is
 eq. 2 

  kn must grow slowly in order for the size of the cell needed to capture kn
 samples to shrink to zero 

  Thus eq. 2 must go to zero 
  These conditions are necessary for pn(x) to converge to p(x) at all points

 where p(x) is continuous 

(1) 

(2) 

(3) 

(4) 



Nearest Neighbor Estimation 

The diagram is a 2D representation of Nearest Neighbor
 applied of a feature space of 1 dimension 

The nearest neighbors for k = 3 and k = 5 
The slope discontinuities lie away from the prototype points 



The diagram is a 3D representation of Nearest Neighbor
 applied of a feature space of 2 dimensions 

The high peaks show the cluster centers 
The red dots are the data points 

Nearest Neighbor Estimation 



Nearest Neighbor Estimation 

Posterior probabilities can be estimated using a set of n
 labeled samples to estimate densities 

Eq. 5 is used to estimate the posterior probabilities 
Eq. 5 basically states that ωi is the fraction of samples

 within a cell that are labeled ωi 

(5) 



Choosing the Size of a Cell 

Parzen-window approach 
  Vn is a specified function of n 

kn-nearest neighbor 
  Vn is expanded until a specified number of samples are

 captured 

Either way an infinite number of samples will fall within 
 an infinitely small cell as n goes to infinity 



Voronoi Tesselation 

Partition the feature space into cells. 
Boundary lines lie half-way between any two points.  
Label each cell based on the class of enclosed point. 
2 classes: red, black   



Notation 

       is class with maximum probability given a point 

Bayes Decision Rule always selects class which results in 
minimum risk (i.e. highest probability), which is   

P* is the minimum probability of error, which is Bayes Rate.  

(37) 

(46) Minimum error probability for a given x: 

Minimum average error probability for x: 



Nearest Neighbor Error 

We will show: 
  The average probability of error is not concerned with 

 the exact placement of the nearest neighbor. 
  The exact conditional probability of error is: 

  The above error rate is never worse than 2x the     
 Bayes Rate:  

Approximate probability of error when all classes, c, have 
equal probability: 



Convergence: Average Probability of Error 

Error depends on choosing the a nearest neighbor that 
shares that same class as x: 

As n goes to infinity, we expect p(x’|x) to approach a delta 
function (i.e. get indefinitely large as x’ nearly overlaps x).  

Thus, the integral of p(x’|x) will evaluate to 0 everywhere 
but at x where it will evaluate to 1, so: 

Thus, the average probability of error is not concerned with 
the nearest neighbor, x’. 

(40) 



Convergence: Average Probability of Error 

At x, assume probability is continuous and not 0. 
There is a hypersphere, S, (with as many dimensions as 

x has features) centered around point x: 

Probability that all n test samples drawn fall outside S: 

(1-Ps) will produce a fraction. 
A fraction taken to a large power will decrease. 
Thus, as n approaches infinity, the above eq. approaches 

zero. 

Let’s use intuition to explain the delta function. 

Probability a point falls inside S: 



Error Rate: Conditional Probability of Error 

For each of n test samples, there is an error whenever 
the chosen class for that sample is not the actual class. 

For the Nearest Neighbor Rule:  
  Each test sample is a random (x,θ) pairing, where θ is the actual 

class of x. 
  For each x we choose x’. x’ has class θ’.  
  There is an error if θ ≠ θ’. 

Plugging this into eq. 40 and taking the limit:  

delta function: x ≈ x’  
(44) 

sum over classes being the same for x and x’ 



Error Rate: Conditional Probability of Error 

Error as number of samples go to infinity:  

Plugging in eq. 37:  

Plugging in eq. 44:  

What does eq. 45 mean? 

Notice the squared term.  
The lower the probability of correctly identifying a class given point x, 

the greater impact it has on increasing the overall error rate for 
identifying that point’s class.  

It’s an exact result. How does it compare to Bayes Rate, P*? 

(45) 



Constraint 2: 

Error Bounds 

Exact Conditional Probability of Error: 
How low can this get? 
How high can the error rate get? 

Expand: 

Constraint 1: eq. 46 

Non-m Posterior Probabilities have equal 
likelihood. Thus, divide by c-1. 

The summed term is minimized when all the posterior probabilities but the mth are equal:  



Error Bounds 

Finding the Error Bounds:  

Plug in minimizing conditions  
and make inequality 

Factor 

Combine terms 

Simplify 

Rearrange expression 



Error Bounds 

Variance: Tightest upper bounds: 

(45) 

(37) 

Finding the Error Bounds:  

Integrate both sides with respect to choosing x and plug in the highlighted terms. 

Thus, the error rate is less than twice the Bayes Rate. 

Found by keeping the right term. 



Error Bounds 

Bounds on the Nearest Neighbor error rate. 

 0 ≤ P* ≤ (c-1)/c 

When Bayes Rate, P*, is small, the upper bound is approx. 
2x Bayes Rate. 

 With infinite data, and a complex 
decision rule, you can at most cut 
the error rate in half. 

Difficult to show Nearest Neighbor performance 
convergence to asymptotic value.  

Take P* = 0 and P* = 1 to get bounds for P* 



k-Nearest Neighbor Rule 

Consider a test point x.  
        is the vector of the k nearest points to x 
The k-Nearest Neighbor Rule assigns the most frequent 

class of the points within      . 
We will study the two-class case. 
Therefore, k must be an odd number (to prevent ties). 



k-Nearest Neighbor Rule 

The k-nearest neighbor rule attempts to match probabilities 
with nature.   

As with the single neighbor case, the labels of each of the 
k-nearest neighbor are random variables.   

Bayes decision rule always selects       .  Recall that the 
single nearest neighbor case assumes      with the 
probability               .   

The k-nearest neighbor rule selects       with the probability 
of : 



Error Bounds 

We can prove that if k is odd, the two-class error rate for 
the k-nearest neighbor rule has an upper bound of the 
function            where            is the smallest concave 
function of     greater than: 

Note that the first bracketed term [blue] represents the probability of error due to i 
points coming from the category having the minimum real probability and k-i>i 
points from the other category 

The second bracketed term [green] represents the probability that k-i points are 
from the minimum-real probability category and i+1<k-i from the higher 
probability category.   



Error Bounds 

Bounds on the k-Nearest Neighbors error rate. 

 Note that as k increases, the 
upper bounds of the error 
rate get progressively closer 
to the lower bound.  At 
infinity, the k-nearest 
neighbors error rate = the 
Bayes rate 

The tradeoff for increasing the value of k is that larger 
values of k increase the computational complexity of the 
problem. 



Example 

Here is a basic example of the k-nearest neighbor 
algorithm for: 

k=3  

k=5  



Computational Complexity 

The computational complexity of the k-nearest neighbor 
rule has received a great deal of attention.  We will focus 
on cases involving an arbitrary d dimensions.  The 
complexity of the base case where we examine every 
single node’s distance is O(dn). 

   
There are three general algorithmic techniques for 
reducing the computational cost of our search: 

  Partial Distance calculation 
  Prestructuring 
  Editing. 



Partial Distance 

In the partial distance algorithm, we calculate the distance using some 
subset r of the full d dimensions.  If this partial distance is too great, 
we stop computing. 
The partial distance based on r selected dimensions is: 

Where r < d.   

The partial distance method assumes that the dimensional 
subspace we define is indicative of the full data space.   

The partial distance method is strictly non-decreasing as we add 
dimensions. 



Prestructuring 

In prestructuring we create a search tree in which all points 
are linked.  During classification, we compute the distance 
of the test point to one or a few stored root points and 
consider only the tree associated with that root.   
This method requires proper structuring to successfully 
reduce cost.   
Note that the method is NOT guaranteed to find the closest 
prototype. 



Editing 

The third method we will look at is Editing.  Here, we prune ‘useless’ points 
during training.  A simple method of pruning is to remove any point that has 
identical classes for all of its k nearest neighbors.  This leaves the decision 
boundaries and error unchanged while also  allowing for Voronoi Tessellation 
to still work. 

Complexity can be reduced without reducing accuracy, making editing very 
useful.   
This algorithm does not guarantee a minimal set of points is found. 
This algorithm prevents the addition of training data later on, as that would 
invalidate the earlier data pruning. 



Example 

It is possible to use multiple algorithms together to reduce 
complexity even further.   



k-Nearest Neighbor Using MaxNearestDist 

Samet’s work expands depth-
first search and best-first 
search algorithms. 

His algorithms using the Max 
Nearest Distance as an 
upper bound can be shown 
to be no worse than the 
basic current algorithms 
while potentially being much 
faster. 



k-Nearest Neighbor Using MaxNearestDist 

Q is our query point 
Ma, Mb, and Mc are non-

object children of Mp 
Rmin is the distance from the 

cluster center to the 
closest object in the 
cluster 

Rmax is the distance from 
the cluster center to the 
furthest object in the 
cluster  



k-Nearest Neighbor Using MaxNearestDist 



References 

Samet, H., 2008. K-Nearest Neighbor Finding Using MaxNearestDist. IEEE 
Trans. Pattern Anal. Mach. Intell. 30, 2 (Feb. 2008), 243-252. 

Duda, R., Hart, P., Stork, D., 2001. Pattern Classification, 2nd ed. John Wiley 
& Sons. 

Yu-Long Qiao, Jeng-Shyang Pan, Sheng-He Sun .Improved partial distance 
search for k nearest-neighbor classification. IEEE International Conference 
on Multimedia and Expo, 2004. June 2004, 1275 - 1278 


