Algorithm independant

machine learning
Ganesh, Owen, Zach

No Best Classifier

Thus we measure the “match” and the "align-
ment'”’ of the learning algorithm.

Bias is used to measure how well the learning
algorithm matches the problem.

Variance is used to measure the precision of
the match.

High bias means poor match.

High variance means weak match.

Bias and Varaince seen through Regression

let F'(x) be the true function with noise that
IS unknown

let F'(-) be the estimate based on n samples in
a set D generated by F(x)

let g(x; D) be the regression function

How dependent is the regression function g(x; D)
on the training set D 7

Mean Square Error
In general the mean square error gives a non-

negative value to how much the estimator dif-
fers from the function it is try to estimate.

Now lets take the average over all training sets
D of a fixed size n, then

epl(g(z; D) — F(x))?] = (eplg(x; D) — F(z)])? +
epl(g(z; D) — eplg(a; D)]]?

where
Bias? = (eplg(a: D) — F(2)])?

Variance = ep[(g(z; D) — eplg(x; D)]]?

Bias and Variance

The Bias is the difference between the ex-
pected value and the true value. Low bias im-
plies that the estimate is a good match to F
from D.

The Variance shows how much the estimate
changes as the training set varies. Low vari-
ance means that the estimate F does not change
much as we very the training set varies.

The equation as the sum of the bias and vari-
ance is similar to a physics conservation law
for classifiers.

a) b) c) d)
gix) = fixad Bl = fived pix) = a, + 61 + 60 ba, Bal=g +ax
lemrned learned
¥ ¥ ¥ ¥
aixly ;
¥ Fa _EI-T{-'_,-‘ ; Fix)
| . /‘ '] //"
— .
. e .
1] 1] . -
x x x x
¥ ¥ ¥ _'l-'
o
2 e, . " ;xxl-. .
T Fixp i Fixj b Fxj Fix)
~ il
" il o " / i o
! S - !
'/"F—ﬁﬁ/'[:/E/Lh - e i A .
X x x x
¥ ¥ ¥ ¥
pic] T Al i Fi
. T Fix s * Fixl "u'ﬁ- Fixi el
. ., o
T e = o
— S g :
- . e / 1
- - -
x x x x
L ¥ - ¥
& * L] &
- L] - L
P ~ P P r
s bias | higs Iﬂl
| | A
! LA
E E E E

P e |

FIGURE 9.4. The bias-variance dilemma can be illustrated in the domain of regression.
Each column represents a different model, and each row represents a different set of
n = 6 training points, T, randomly sampled from the true function Fix) with noise.
Probability functions of the mean-square error of E = Eplig(x) — Fix))*] of Eg. 11
are shown at the bottom. Column a shows a very poor model: a linear gix) whose
parameters are held fixed, independent of the training data. This model has high bias
and zero variance. Column b shows a somewhat better model, though it too is held
fixed, independent of the training data. It has a lower bias than in column a and has the
same zero variance. Column ¢ shows a cubic model, where the parameters are trained
to best fit the training samples in a mean-square-error sense. This model has low bias
and a moderate variance. Column d shows a linear model that is adjusted to fit each
training set; this model has intermediate bias and variance. If these models were instead
trained with a very large number n — oc of points, the bias in column ¢ would approach
a small value (which depends upon the noise), while the bias in column d would not;
the variance of all models would approach zero. From: Richard O. Duda, Peter E. Hart,

and David C. Stork, Pattern Classification. Copyright (© 2001 by John Wiley & Sons,
Inc.

Column a is a poor estimate. T he spike repre-
sents a very high error. This leads to the very
high bias.

Column b is a bit better, but still not good.

Column c¢ is much better. It has a lower bias
but a larger variance. This is because of the
conservation law between the two, but overall
this is the best match of the four.

Column d is ok, it is a linear match to a cubic
which is not correct, but it is better than a and
b.

Bias and Variance for Classification

The slides previous were to understand why
and how bias and variance can be used to give
a value to well and estimates what it is esti-
mating. Now though, we turn to using bias
and variance in classification.

Consider the two category case. We can then
let the discriminant function have values 0O or

+1.

F(z) = Prly = 1|z] = 1 — Pr{y = 0O|z]

It is possible with this case to have a high clas-
sification with a poor mean-square error fit.
This is because we are considering only values
O and 1. The posterior selected could possibly
be only slight larger than the rest. To avoid
this we recast the discriminant function.

let that recast be

y=F(z)+e

where € is a zero mean, random value, and to
make it simple assume it be a centered bino-
mial distribution with variance

I""T{TL'T'[E|5-I:] — F(,j)(l = F(I))

Then we can express the function to be esti-
mated by

F(x) = e[yla]

he goal now is to find an estimate g(z; D)
that minimizes the mean square error.

If we assume equal priors P(wq) = P(w>) = 0.5
then the Bayes discriminant iy, has threshold
1/2 and the Bayes decision boundary is the
set of points for which F(x) =1/2

For a given training set D if the classification
error Prlg(xz; D) = y] averaged over predictions
at X agree with the Bayes Discriminant then we
have the lowest possible error.

Prlg(z; D) =yl = Prlyp(z) # y] = min[F(x),1-
F(x)]

If it does not agree, then we have an increased
error

Prlg(z; D) = y] = max[F(x),1 — F(x)]

Prlg(z; D) # yp] =
d[sgn[F(x)—1/2][eplyg(z; D)]—1/2]Var[g(z; D)]~1/2]

The product of the first and second terms is
called boundary bias.

The third term is the variance.

It is important to take away that this is a non-
linear relationship.

This means that the value of the variance de-
pends on the boundary bias and small changes
lead to very different outcomes.

-

digr g ions

Bowndry

arar
i sbognams

-F\ Fruth
o0
lrl
£
al
oy Ty
'EL L T A
Tow
T 1
%
\\ N, g !
"\«.#1 ""\ - | 'lr-_.
|' i 1 b
o 7.\\ pag® oay"” | Iy
5 5 L |
1 .-'-I, 1
T, I fir, fir, I
Ty,] i i]
h 1 !
L] | _..-,' i
&' e (§] e | ® e
L | - .
X, I nr, II fx, :
..\"\-M] \\ I|
b : % 1
% \ L 'r"- I
. '|-] I .
B SN B S i
] ;"' .'
. x, x,
% * 5 " 5
x, x,
F e F
]
M
|II II
I_._,-F’-‘__\-\-\'"‘-\-__ Ilr__ I __.'I I||I
E, F B £,
iwh Variance Jow
iy

FIGURE 9.5. The (boundary) bias-variance trade-off in classification is illustrated with
a two-dimensional Gaussian problem. The figure at the top shows the true distributions
and the Bayes decision boundary. The nine figures in the middle show different learned
decision boundaries. Each row corresponds to a different training set of n = 8 points
selected randomly from the true distributions and labeled according to the true decision
boundary. Column a shows case of a Gaussian model with fully general covariance
matrices trained by maximum-likelihood. The learned boundaries differ significantly
from one data set to the next; this learning algorithm has high variance. Column b
shows the decision boundaries resulting from fitting a Gaussian model with diagonal
covariances; in this case the decision boundaries vary less from one row to another.
This learning algorithm has a lower variance than the one at the left. Finally, column c
shows decision boundaries learning by fitting a Gaussian model with unit covariances
(i.e., a linear model); notice that the decision boundaries are nearly identical from one
cata set to the next. This algorithm has low variance. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattem Classification. Copyright @© 2001 by John Wiley &
Sons, Inc.

Jackknifing consists of taking the average of a series of versions of
the set with a sample removed in order to estimate some

information about the distribution of the set.
The mean function we are used to:

Now we will modify it to use jackknifing. We will begin by

calculating the mean while leaving one value out:
NOTE: I'm using j as the value to be left out, and leaving i as the

value used within the sum because it is less confusing (in my
opinion); the book has most of these functions the other way

around, so watch that.

As you can see, it is possible to use jackknifing on any technique
you would ordinarily use on a set of numbers.

Now we will modify it to use jackknifing. We will begin by
calculating the mean while leaving one value out:

NOTE: I'm using j as the value to be left out, and leaving i as the
value used within the sum because it is less confusing (in my
opinion); the book has most of these functions the other way

around, so watch that.

1 n
H(j) = P ZX/
I#)
As you can see, it is possible to use jackknifing on any technique
you would ordinarily use on a set of numbers.

Bias is the distance from the target that the error is; in other
words, Bias is accuracy. Variance on the other hand is a measure of
the range of the results; in other words, Variance is precision.

To begin with, it is possible to generalize the leave-one-out
operation. Instead of using (), we can define 6y as being don all
values of x except j; we can then define ¢ as the mean of all
values of #;. We can now use these generalized forms of the

jackknifing process for pattern recognition functions.
It's possible to use jackknifing in order to identify the bias of a
function.

bias = 6 — c[f]

using the jackknife method on theta we get:

N

bias(y = (n — 1)(6) — 6)
rearranging this we get the estimate of the jackknife method on):
0=0— bias(y = nb — (n — I)H(A_)

It is also possible to use 6;yin order to compute an estimate of the
variance of the function, as we did before:

72,(6) = =256 - 8y

n ;
=1

Now | will show an example, it diverges slightly from the book, in
order to make the set easier to understand, but can be contrasted
with the books example; in this case, we are generating the mode

of the following dataset:

{0,0,0,10,10},n =5

A1
Oy =:z(6+5+5+0+0)=3

these both use the same method for deciding ties, when there are
ties for the mode it averaged the two for the mode of that set.

Now we'll go back to my example, which has to use the same
principle from earlier to calculate bias:

bias(y =4(3 —0) =12

Next we calculate the variance, which is where my example is a
little simpler:

4

() = -3((5 = 3)°) +2((0-3)")] = 24

o

the example from the book went as follows:

{0,10,10,10,20,20},n = 6

1
O)= (10 +15+15+15+10 +10) = 125

as you can see, we get a bias of 12 and a variance of 74.9, which
can be compared to the books examples of 12.5 and 5.6 for their
values.

The Jackknife technique does give us a nice estimate for the mean
and variance of a function, but it is extremely time consuming;
which is where the bootstrap method comes in. The bootstrap
method takes n random samples from the data set (where n is the
length of the set), and repeats it T times where T is chosen by the
user. It then averages the T estimates (represented by 8*()) to get
é*(')(or the bootstrap estimate):

1 T
o) — - Z H*(i)
=1

This estimate can be scaled based upon the level of computing
power available to you, as the higher the T, the better the

estimate; as T — oo(the number of samples becomes unreasonably
large), 6*() = 6.

Now with #*(), which corresponds with 9(_), we can create the
bootstrap bias and variance

N

bias*() = 6*() _ g

.
24() 1] — L M) Ax()N2
o U] = = ;(9 g*())

Arcing, Bagging, and Boosting

Arcing (Adaptive reweighting and combining): reusing/reselecting
data to improve classification.

Example arcing procedure: Bagging (boostrap aggregation)

e Use multiple versions of training set, where each set D; is
drawn from a random n; < n patterns in the original set D.

e Each of the D; bootstrapped sample sets is used to train a
component classifier, C;.

e Classification is based on a simple vote of the : classifiers.

Why Perform Bagging?

Unstable classifiers are those for which a small change in the
training set produces a large change in accuracy.

Bagging typically improves unstable classifiers.

Intuitively, bagging averages over differences in the training set.

However, there's no formal proof of this.

Boosting

Boosting - use the most informative subset of the training set D
to train classifiers.

Example of boosting: train 3 classifiers for a 2 class problem
using training set D

e Select n1 < n patterns randomly from D to create D;.

e Train a classifier C7 using D1. (7 needs to be at worst a
weak learner (at least as good as random chance).

e Select D,, made up of the most informative patterns of D
given C41. Half of the patterns of D, should be correctly
classified by C7 and the other half should be misclassified by

Cy.

Boosting Il

e Train Cy using Ds.

e Select D3, made up of those patterns that 7 and C5 disagree
on.

e Train C3 using Ds.

e Classify a test pattern x as hq(x) if h1(x) = ho(x), otherwise,
classify as h3(x).

Boosting Il

VEITEY
nuauodios

15

n,

Junyoa Aq
UONDIISSDID JRil

Boosting IV - Choosing n

How do we choose n1? Our goal is n; ®np ~ n3z = 3.

Problem: if classification is easy, then C7 will do very well and
there won't be a lot of patterns left for n,. The opposite holds
If classification is hard.

Solution: Without prior knowledge, attempt boosting several
times until we pick an acceptable n1.

We can also apply boosting recursively on the component clas-
sifiers: for our example, applying boosting i times gives 3* com-
ponent classifiers.

AdaBoost |

AdaBoost (adaptive boosting) trains k;,qx classifiers, where kpqx
IS set by the user.

Basic idea: focus on using most informative/hard patterns for
training classifiers.

We give each sample x; € D a probability for each iteration of
the k iterations of the algorithm: Wy(i). Wy (i) = - for all i.

At each iteration of the algorithm, we train a classifier C}, using
a D, C D, where patterns are selected according to Wi(z).

For every x;, we update W.(7), increasing it if C;, misclassifies x;
and decreasing it otherwise.

AdaBoost |l - Algorithm

ADA-BOOST (D = {xY,y1, X" yn}, kmaz, W1(i) = %)

train Cp using D sampled according to Wp.(7)
let £, = the training error of C. measured on D
let oy, = 5In[(1 — E;)/Eg)]
for 1 =1..n
let Wiy1(i) = "5 et
where we use —ay. if hp(x') = y;, +ap otherwise

AdaBoost Ill - Classification/Error Rate

Classification decision: we create a discriminant function,
kl'l'l.(l;‘l.'

g(x) = Y aphip(x). Our decision is merely sgn(g(x)).
k=1

The training error rate can be made arbitrarily low by choosing

a sufficiently large kmaz, @S lOng as each Cj is a weak learner.

A weak learner has an error rate of less than % SO we can write

our error rate of C;., E;. = 2 — G, for some % > G,. > 0.
kr k=15 k 2 k

Then our ensemble error rate,

k muar k muar k mar

E=][2/B(1-E)= [[J/1-4G} <exp(-2)_ G
k=1 k=1 k=1

AdaBoost |V - Error Rate

- k

max
I 2 3 4 5 6 7 8 9101112131415

AdaBoost V - Observations

Note that we are minimizing training error using AdaBoost, not
our error rate in general.

Fortunately, choosing a large knq.r does not typically lead to
overfitting.

Boosting only works if our classifiers are weak learners.

Queries and the Oracle

Suppose our training set is unlabeled, but we have an oracle
that we can give query patterns to and receive the correct label.
However, this process may be expensive.

The idea is the same as before: we want to focus on the most
informative training patterns.

We start with a weak classifier Cy that's been trained on a small,
random subset of patterns labeled by the oracle.

e Confidence based: if g;(x) =~ g;(x), then x is informative.

e VVoting based: if we have multiple classifiers and there is
disagreement between them on the class of x, then x is in-
formative.

Queries and the Oracle Example

X>
A
O | ©
- — X;
["1‘.\' — ()()33 /D '
x> 2
\ i

i.i.d. samples

E = 0.05001 o E = 0.02422

Customer Churn

Used an ensemble of stump classifiers

Trained using three variations on AdaBoost, each with slightly
different update rules.

e Real AdaBoost - AdaBoost presented previously
e Gentle AdaBoost - Better performance on noisy data

e Modest AdaBoost - Resistent to overfitting, but slower de-
creases in training error

kmaxz = 100

Customer Churn Error Rates

1 &=L Iy

Error Rae of Bdanced Sampled

024 p— | ! 19 | Ll L 1
| — Red AdsBoost
|
027F FModest AdaBoos! -
— = Gentle AdaBoost
02
015 — -
~ | A ;
0.15 PU" % .
W =
0]4 - , "' \ =
[
Y
0.12 N
J. - I \ % ’ n‘.'
5, \
v e ;h‘." -4
a1 MY AR A A
> i'yv-' ““, -:;T_J,.fl')‘g i 'J-.'.'l. ,‘f‘-"-,.-- .)

-~ A o ! \'n - ok / v,
0. -':‘. ‘47(J "".'-'A*-._ ‘/'3\1
UJQ 1 1 I 4 1 1 1 1

§ 10 210 30 40 50 g0 [l &0 40 100

References

Duda, Richard, Hart, Peter, and Stork, David. Pattern
Classification. New York: John Wily & Sons, 2001.

Shao Jinbo, Li Xiu, Liu Wenhuang. The Application of

AdaBoost in Customer Churn Prediction. In Service

Systems and
Service Management, 2007 International Conference on,

pages 1-6, June 2007.

