Unsupervised Learning and
Clustering

Owen Roberts, Zach Busser,
Ganesh Sugunan

Hierarchical Clustering

Instead of flat clusters, we create a hierarchy of clusters.

Important variables:
e ¢ = number of clusters
e n — number of samples

o At level k whenc=n—-k+1
— Level 1: n clusters (each sample is its own cluster)

— Level n: one cluster (everything together)

Hierarchical Clustering

For the hierarchy business to hold, we need:

e VX;,Xx;, there is some minimum level £ at which x; and x; are
in the same cluster.

e For all I > k, x; and x; are still in the same cCluster

Hierarchical Representations

X, X X; X, X5 X4
®* 9

X7
o o o 100t
90 t

80
70t

o

be

50}
40|
30
20}
10}

CeNOy ik Wi~

22

PPN PmPe P e

similarity scale

1\28

{{x1, {x2,x3}}, {{{xa, x5}, {X6, X7} }, Xg}}

Hierarchical Algorithms

There's two major ways to do hierarchical clustering:
e Agglomerative - bottom up, clump clusters together
e Divisive - top down, split clusters apart

We're going to restrict our attention to agglomerative proce-
dures, as they are usually less computationally complex.

Agglomeration

let c+n

do c+c—1

find nearest clusters D; and D;
merge D; and D;
until c=c¢

return c clusters

"Nearest" Clusters

Different ways to find the nearest clusters:

¢ dmax(DiaDj) — maxxeDi,x’EDij o x,”

o dave(Di,Dj) — ﬁ Z Z le_ X,H
xXeD; X’EDJ'

® dmean(Dz'aDj) = ||m; — m]”

As for m;, remember: m; = > > x (Section 10.7)

VXE'D,'

Complexity

Consider trying to agglomerate ¢ clusters with n pattern in d
dimensional space using, say, d,,in-

e Calculate n(n — 1) distances: O(n?)
e Each such calculation is an O(d) operation: O(n?d)

e Do this ¢ times: O(cn?d), where typically n > ¢

Nearest-Neighbor/Single-Linkage

Nearest-Neighbor: d,,,;,, iS used to find nearest clusters

Single-Linkage: terminate when the smallest 4d,,,;,, €xceeds some
threshold. Think graph theory:

e Each x is a vertex of the graph
e Edges are a path along the vertices of a cluster

e Merging two clusters adds an edge between the two closest
points

e Generates a tree, or a (minimum) spanning tree if we take
c=1

Nearest-Neighbor/Single-Linkage

Farthest-Neighbor/Complete-Linkage

Farthest-Neighbor: dmaz 1S used to find nearest clusters

Complete-Linkage: terminate when the smallest dmazr €xceeds
some threshold. Again, graph theory:

e All vertices in the same cluster are connected (cluster D;
forms the subgraph K,.)

e Merging two clusters adds an edge between every vertex In
the new cluster

Farthest-Neighbor/Complete-Linkage

d,.. = small

d,.. = large

Compromises and Criterion Functions

dmin anNd dmaz are both vulnerable to outliers
Enter averaging: dagve and dmean
dmean 1S COMputationally the simplest, but may be hard to define

If we seek to minimize a criterion function at every merger, we
have a step-wise optimal clustering.

e Example: dyqaxr Mminimizes the change in diameter of the clus-
ters

Stepwise Optimal Clustering

STEPWISE-OPTIMAL (¢, D; = {x;} for i = 1..n)
let ¢« n

doc+—c—-1

find clusters D; and D; whose merger changes the crite-
rion the least

merge D; and D;
until c=c¢

return c clusters

Criterion Functions

C
Remember Je = > Y ||x —m;[|??
1=1x€eD,;

This is another possible criterion function.

T he pair of clusters that minimizes the increase in J. IS:

de(Di, DJ) —

Dissimilarity

If we can’'t come up with a metric, but we can measure dissim-
ilarity as d(x,x’), then we can still use agglomerative clustering
so long as 4 satisfies a few properties.

If we define dissimilarity between clusters as either:
°® 5min(DiaDj) = minxepi’xfepjci(x,x’)

Then we induce a distance function for our n samples, which
preserves ranking across monotonic transformations (think In).

Generalized Distance Functions

The induced distance function is d(x, x’) is the lowest level such
that x and x’ are in the same cluster.

There are some conditions we need to satisfy for a general-

ized distance function d(x,x’), such as our d function, to hold.
vx, x!, x":

e Nonnegativity: d(x,x') >0
e Reflexivity: d(x,x") = 0 iff x = x’
e Symmetry: d(x,x’) = d(x/, x)

e Triangle Inequality: d(x,x) + d(x',x") > d(x,x")

Ultrametric

Furthermore, if, like our dissimilarity metric, we satisfy:
d(x,x") < max(d(x,x’),d(x',x")) vx’

Then d is an ultrametric, which is more resistant to local minima
problems.

The intuition behind this is that our distances are more strictly
ordered.

As we have seen so far, one of the ways to deal with an unknown
value is to substitute values for the unknown value and watch how
the function behaves on the data set. The function we choose to
use is the sum of squared error function, denoted by J. from here
on out. If we assume there are a theoretical number of good
clusters, ¢, on the set D, then J. would drop quickly as you
increase the number of clusters, ¢, until ¢ = ¢; at that point, the
error would still decrease as you gradually seperate each point into
it's own cluster, until Jo =0 when ¢ = n.

Another way to deal with an unknown value, rather than to watch
how a prexisting function behaves, is to generate a fitness function
yourself, and apply it to the set. We cannot use the normal
functions in this setting, because the feature space has such a high
dimensionality that any complex function is too computationally
demanding for serious use, so instead we will use a simple criterion
function denoted J(c). Our goal is to figure out at what level the
reduction in improvement from J(c) to J(c + 1) becomes sufficient
to decide ¢ = ¢. We will decide this by going back to the null
hypothesis that there are ¢ well defined clusters present, and
calculating the difference between J(c) and J(c + 1). Please keep
in mind that the whole process from here on out is extremely
weakly founded, and that all results may be false.

To begin with, assume that n has a normal population with average
1t and variance 0/; which means that there is only one good

cluster. With only one cluster, any improvement in J(c + 1) should
be considered insignificant. For example when m is the mean of D:

Je(1) =) lIx —ml|?

xeD

Resulting in a distribution normal to average ndo?, and variance

2ndo®*. Now, we will subpartition it into two partitions to get the
lower Jo(2):

2
Je2) =) > llx—milf

=1 xebh;

Because we assume that ¢ = 1, we know that while Jo(2) < Jo(1),

Je(1) is the best fit. Without knowing the distribution of J.(2).it is
impossible to determine what exactly the smalles difference
between Jo(2) and J.(1) for meaningful partitioning would be, but
we can guess by looking at the bad partition. In our example Jz(2)
is normal with the average n(?=2)0? and variance 2n(25%)o*.
This is a reduction as you can see by comparing the averages of the
two sum of squared error functions, so we should consider this
reduction a bottom limit for a significant reduction as a result of
increasing the number of partitions.

In order to obtain an optimal partition, we will have to make a few

assumptions. We will assume the suboptimal partition from earlier
Is nearly optimal, that the sample is distributed normally (which we

established earlier), and that the best variance is:

1 1
a2 . 2
7= el = g 3 llx =

our final result for the minimum diffrence in order to be considered
significant comes out to:

1—

Je(2) < 1-— i — 2(W)
Je(1) md nd

We determine « from the error function(erf(.)) at percent

significance p(the chance that we had a bad sample) using the

following:

T L A f
:100[—— e du = 50(1 — erf(—=
p T ((2))

Multidimensional Scaling

There i1s an inability to visualize the structure
of multidimensional data.

It is made worse when similarity and dissimilar-
ity measures lack familiar notion of distance.

T he Solution is to represent higher dimensional
possibly nonmetric similarities in a lower di-
mensional space with normal distances.

source space

target space

dp .
- & ;
> yi. !
®
: ®
®

Vi

A Simple Case

let x1,....2n, De the samples

let y1.....yn De the lower dimensional images
let 9,; be the distance between z; and x;

let d;; be the distance between y; and y;

Note that is very rare that 4;; = d,; for all i and
J

Deciding on Criterion Function

We use one of these sum of squared error func-
tions

Z?{j (dU 53})2
Z?{j 1]

Jee =

by

dlj—élj)z
Ef - Za j'ﬁ Z F

Sum of Squared Errors
Jee €Mphasizes large errors
Jff emphasizes large fractional errors

Jer Is @ good compromise and emphasizes large
products of error and fractional error

Optimal Configuration

An optimal configuration is one that minimizes
the criterion function.

It can be sought by a gradient descent method.

\V _ 2 _ _ N\YETY;
i Jee > i< 0% >k (drj — 0ij) d;

i 00 Ui

Vaydrr = 22k 5% dy;

2, djej—Ok; Yk —Y;

VE ?-_)T — = o A
Yrvef Do 4 9ij Zl?_k Ok dij

The starting configuration function can be choosen
randomly or in a convient way.

Source
C r_i

-
0. @

rarget

Y2
A
o o® o’e o*
N L] ® & o ' L
L da L L
=V,

Fig 10.27
30 points in a spiral in R3
Jep Criterion function is used

20 iterations of the gradient descent

Monotonicity Constraint

In nonmetric multidimensional scaling problems
);; are dissimilarities whos numerical values are

not as important as their rank order. Ideally,

fj. will be the same as () but that is not usually
the case.

If you order the dissimilarities

(Siljl i T S (5i-r??jrrz
Then for any m members satisfying the be-
low equation they make the Monotonicity Con-

straint.

-

1131}1 — (1’12;2 = § dirnjm

e

'--’IJ" nor

The degree by which d;; satisfy the Monoton-
icty Constraint is

7 Lo i e}

This measures the degree that yq, ..., yn repre-
sent the original dissimilarities.

Jmon cont.

But, this is not optimal. You could have .J,,on
vanish at a point.

To side step this we normalize it.

J‘.i' ot

|
Jmon >
) i< 45

Self-Organizing Feature Maps

a.k.a. Kohonen self-organizing feature maps.

They are useful when there is a non-linear map-
ping in the problem.

Example first!

pre-image
of target space

two-dimensional
source space

A

y -

- 1‘

Self-Organizing Feature Maps cont.

We choose to sense the source space by a
two joint arm. Every pair of points (xz71,25)
INn the space has a corresponding pair of angles

(¢1,92) = 9.

We use a sequence of ¢ values. We map from
¢ to y where points neighboring in the source
space are neighboring in the target space.

Self-Organizing Feature Maps

A two layer neural network is used. @1.¢o are
the inputs. The outputs are the points on the
target line.

When o is presented, then each node in the
target space computes the net activation

nety — Htw L

The unit that is most activated y* and its
weights and its neighbors weights are com-
puted by

Wi (T4 1) = weyi (8) +n(ONA(ly — y™[) (¢s — wii (1))

Self-Organizing Feature Maps
n(t) is the learning rate
A(ly — y*|) is the window function

The window function equalsone if y = y*. The
window function makes sure that neighboring

points have weights that are similiar.

n(t) decreases with time to assure that the al-
gorithm terminates.

()

25,000

&
O
O
&
&

©)
&
&
&

50,000

100

75,000

1000

100,000

10,000

150,000

50,000

<SR
.ﬁvi-i%,

N gavas LV,
\4‘ o,. .\.“.‘
B\ A

300,000

25,000

200,000

10,000

[A=

NIVAYZY!

-er“‘mw' ‘-
-. ‘ _‘ u_il
Nentes
astent
AP

150,000

1000

100,000

100

-
75,000

AN Ay
LS ..Iﬂmﬂmﬂ‘uw

AT LS A

1000

1000 400,000 800,000

Clustering and Dimensionality Reduction

Factor Analysis - find a lower dimensional rep-
resentation that accounts for correlations be-
tween features.

By removing or combining highly related fea-
tures.

Data Matrix - n rows are are the d-dimensional
samples.

Ordinary Clustering - group the rows with sim-
ilar numbers of cluster centers.

Dimensionality Reduction - grouping the columns,
with combined features being used to represent
the data.

Modification of Hierarchial Clustering

In place of n by n matrix of distances, consider
d by d correlation matrix

R = [py;]

Where p;; Is the correlation coefficient related
to the covariances by

Ji:__}
VO

With the facts that

0 < p% |

where p;; = 0 for uncorrelated features.

and p;; = 1 for completely correlated features.
Two features where p% are large are good canidates

to be merged and thus reducing the dimension-
ality by 1.

Hierarchical Dimensionality Reduction
1 begin initialize d’, D; & {x},1=1, ..., d
2 d-hat <- d+1

3 dodhated-1

4 compute R

5 find most correlated distinct clusters, say D; and D,
6 D; & DU D

7 delete D;

8 until d-hat=d’

9 return d’ clusters

10 end

References

Duda, Richard, Hart, Peter, and Stork, David. Pattern

Classification. New York: John Wily & Sons, 2001.
Munkres, James. Topology. 2nd ed. Upper Saddle River,
NJ: Prentice-Hall, 28 December 1999.

