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Abstract

In this paper we introduce a novel multiple classifier
system that incorporates a global optimization technique
based on a genetic algorithm for configuring the system.
The svstem adopts the weighted majority vote approach to
combine the decision of the experts, and obtains the weights
by maximizing the performance of the whole set of experts,
rather than that of each of them separately. The system
has been tested on a handwritten digit recognition problem,
and its performance compared with those exhibited by a
system using the weights obtained during the training of
each expert separately. The resulls of a set of experiments
conducted on a 30,000 digits extracted from the NIST
database shown that the proposed system exhibits better
performance than those of the alternative one, and that such
an improvement is due to a better estimate of the reliability
of the participating classifiers.

1. Introduction

Traditional pattern recognition systems using a single
feature descriptor and a single classification strategy have
been widely studied, and many efforts have been made
to define description methods and classification algorithms
able to achieve high performance even in presence of
distorted and noisy samples. Nonetheless, in many pattern
recognition applications, especially those involving either
a large number of classes to be discriminated, or data
exhibiting a large variability and a significant amount
of noise, high performing solutions are very difficult to
achieve, For this reason, in the last decade there has been a
considerable research activity on the problem of combining
the classification results provided by a multitude of different
classifiers, each adopting a different feature description
method or a different classification strategy.
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The interest in combining classification results derives
from the observation that classifiers using features of
different types complemeni one another in classification
performance and this implies that, by using simultaneously
more classifiers operating on different features spaces, the
classification accuracy should be improved [4, 10, 8].

Even it many efforts have been done in this direction,
the general problem of combining conflicting classification
results, still remains unsolved, and is the topic of a relevant
research activity. In particular, criteria for choosing the
different classifiers to be included in a multi-expert system
and for determining their number and their combination
topology have been proposed [3, 11, 14, 5], as well as
different combining rules specifically devised for solving
conflicting decisions [18, 13, 6, 2]. In [7] an experimental
comparison of various classifier combination schemes is
presented, and it is shown that the sum rule outperforms the
other combination schemes, although such a result depends
on the most restrictive set of assumptions among those
considered in the study.

Among the combining rules derived according to the
general paradigm of the sum rule, one of the simplest
and widely adopted is the majority vote rule (i1, 12],
according to which the input sample is assigned to the
class for which a relative or absolute majority of classifiers
agrees. If such an agreement cannot be found, the sample
is either rejected or randomly assigned to one of the classes
on which there is a partial consensus among the experts.
The main drawback of this rule is that all the experts are
considered equally reliable: as a consequence, even if an
expert is very confident on its decision, the opinions of
less reliable classifiers may modify the final decision of the
multi-expert system. A possible way of overcoming this
drawback is that of including a measure of the reliability of
each expert in the combining rule. The weighted majority
vote rule [F1, 12] is mainly based on this idea: the votes
of all the experts are collected and the input sample is
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assigned to the class for which the sum of the votes, each
weighted by the estimated reliability of the corresponding
expert, is the highest. A simple and widely adopted method
for estimating the reliability of each classifier is that of
considering the recognition rate on the training set [18].
When an expert assigns an unknown sample to a class, its
decision is weighted in the combining rule by a factor that
is proportional to the recognition rate for that class obtained
by the expert on the training set.

A criticism to this approach can be formulated by
noticing that even if the average performance of a classifier
on the training set for a given class is very high, its
classification may be very unreliable while dealing with
samples belonging to that class, but located in proximity of
the boundary between decision regions in its feature space.
On the contrary, the same samples may be better located
in a different feature space, and therefore another classifier,
exhibiting a lower recognition rate for that class, may be
more reliable in those particular cases. In other words,
using the recognition rate on the training set as a reliability
measure for an expert may provide unsatisfactory results for
those samples that have not been adequately learned during
the training phase of that expert. This represents a kind of
paradox, because the aim of the multi-expert approach is
that of increasing the performance of the single classifiers
by correctly recognizing just those samples which have not
been adequately learned during the training of the single
classifiers.

In this paper we propose a weighted majority vote
approach in which the weights are obtained by maximizing
the performance of the whole set of experts, rather than that
of each of them separately, as it happens when the expert
reliability is obtained during the training. In practice, once
each classifier has been adequately trained on the training
set, we consider a different and statistically independent
test set, and assume that the weights to be used in the
combining rule are those that lead to the multi-expert
highest recognition rate. It follows that the problem
of computing the weights can be reformulated as an
optimization problem, where the multi- expert recognition
rate is the function to maximize depending on the weights
to be estimated. The proposed method adopts a Genetic
Algorithm (GA) to evolve the set of weights assigned to
each class for each classifier. There are in the literature a
few other approaches adopting a GA in the framework of
combining classifiers, but they have been mainly used for
selecting either the features to be used by a single classifier
[9. 16] or the actual set of classifier to be combined [10, 17].
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2. The Genetic Search for the Optimal Weights

The combiner adopts the classical weighted majority
vote rule:

assign the sample s to the class k if

N, N B

> wik - bk = midx > wiydis
J=1

=0 = o

{

where E; is the i-th expert and N, and N, represent,
respectively, the number of classes and the number of
experts to be combined.

. As mentioned in the introduction, the weights w,,
are provided by an optimization procedure implemented
by means of a Genetic Algorithm [35, 1]. GAs are
an abstraction of Biological Evolution based on the
concept of Adaptation. This strategy has been widely
adopted on both numerical and combinatorial oplimization,
since classical non—probabilistic strategies are restricted to
special problems, require specific knowledge and fail in the
presence of landscapes with multiple local optima [1]. The
features that make GA suitable for optimization problems
can be summarized as follows:

)]

with
1 if FE; gives theclass &
0 otherwise

dik

e they do not require any specific knowledge about the

problem at hand, but only values of the function to be
optimized;

they can explore several regions of the configuration
space simultaneously and by means of the selection the
search process is concentrated on the most promising
regions.

furthermore, by using probabilistic transition rules
they are able to manage landscapes with a wide
number of local optima.

Starting from a population of possible solutions to the
problem at hand, a GA generates new solutions by means of
a selection mechanism together with the genetics-inspired
operators of crossover and mutation, hoping to evolve
the population towards the most promising regions of the
solution space. The solutions are encoded by means
of “chromosomes” which consist of strings of “genes”,
e.g. bits, whose values are called “allele”. The selection
mechanism is aimed to choosing the chromosemes in the
population that will be allowed to reproduce in such a
way that better chromosomes in the population have higher
chances to be chosen for reproduction and for genetic
manipulation. The probability that a chromosome will
reproduce is evaluated by means of a fitness function defined
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on the solution space. Typical selection mechanisms
used are the Roulette Wheel and the Tournament selection
schemes [1]. As regards the genetic operators, the
crossover exchanges parts of two selected chromosomes,
thus generating two offspring. Such genetic operator is
usually applied with a probability p. called crossover rate,
typically in the range [0.6, 1.0]. Finally, mutation works
by changing randomly the alleie in some location in the
chromosome with a probability p,, called mutation rate,
typically ~ 102 < 10% per bit. As concern these two
operators, it should be pointed out that the probabilities
pe and p, have 1o be tuned depending on the particular
problem we work with and represent an important feature
of a GA. For example, there are problems in which the
mutation rate neither depends on the number of parameter
to be optimized ner on the length of the chromoscme.
So, a fine tuning of such rates can aveid premature
convergence to less performing solutions. The termination
criterion for the evolution can be a maximum number of
generations (evaluations) or a specific requirement on the
fitness function to be optimized.

3. Experimental Findings and Conclusion

With the aim to test the effectiveness of our approach
in combining classifiers we have used as case study a
handwritten digit recognition problem. The data sets used
in the experiments have been extracted from the NIST
database. In particular, we have extracted 3,000 samples of
each class, and they have been divided into three sets: the
training set TR1 used to train each classifier, the training
set TR2 used to implement the environment the GA works
with, and a test set TS used for performance evaluation.
The three sets have been extracted in such a way 10 be
statistically independent.

The samples belonging to each data set have been
described by means of two different feature sets, namely the
Central Geometrical Moments (CGM) of the binary images
up to the 7-th order, and the mean of the pixels belonging
to the 8 x 8 disjoint windows that can be extracted from
the binary image (MBI}. Thus, each sample is described by
means of 33 real variables in the first case, and by means
of at most 64 real values in the second one. It is worth
noticing that these feature sets have been chosen because
they exhibit a certain degree of complementarity, rather than
for their distinctiveness, There are many other features sets
proposed in the literature for the specific problem that are
more robust with respect to the variations found in large
data sets, as those included in the NIST database.

As with respect to the classifiers, we have used three
different schemes: a Back-Propagation neural network
(BP), a Leaming Vector Quantization neural network (LVQ)
and a 10-Nearest Neighbour (10NN) . Thus, we have a
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Table 1. The results on the test set TS.

F Ey E; Ey Ey FEg
97.09 | 97.02 | 96.01 | 90.33 | 97.01 | 85.42
[ MEg, | MEg; | MEg;

97.91 | 96.75 | 97.01

pool of six experts to be combined, namely: E) (BP using
MBI), E2 (BP using CGM), F5 (LVQ using MBI, E;
(LVQ using CGM), E5 (10NN using MBI), Es (10NN
using CGM). During a training phase each classifier was
separately trained on TR1.

As with respect to the GA, the genes in the chromosome
of an individual in the populaticn encode the weights of
each class for each classifier of the pool. According
to this genetic code, each chromosome is made of 60
genes, and since each gene is encoded by means of 8
bits, each chromosome is made of 480 bits. The resulting
solution space contains 248° different configurations, which
is fairly complex for a genetic search. The environment
the GA interacts with consists of as many specimen as
the number of samples in TR2, each specimen being an
array of six integers, representing the classes assigned to
the corresponding sample by the six experts. Therefore,
the fitness ¢ of each individual is evaluated by using the
weights encoded in the chromesome in eq. (1) to assign a
label to each sample in TR2 and eventually by computing
the recognition rate. In formula: ¢{o;) = %ﬁ, where o;
is the i-th chromosome in the population, r:. is the number
of samples correctly classified and n; is the total number of
samples.

A total number of 500,000 evaluations have been
allowed for each evolution. Namely, we have used
a population size of 500 and a maximum number of
generations of 1,000. All the experiments have been
performed with tournament selection mechanism whose
size has been chosen equal to 10% of the population. As
regards the genetic operators, the crossover rate has been
set equal to 1.0, while the mutation rate 10 1/480. Finally,
the GA has been executed for 30 times with different initial
populations in order to reduce the effects of the stochastic
fluctuations due to the randomness of the search. The values
obtained for the recognition rate on TR2 by the multi-
expert which uses the weights found by the GA ranges from
98.53%, in the worst case, to 98.55% in the best one.

In Table ! we show the recognition rates on TS of
each single expert, and the recognition rate of the multi-
expert MEga using as weights the best solution found by
the GA. For comparison, we also report the recognition
rates cbtained by the multi-experts MEg, and MEg;, whose
weights are the recognition rates of each expert on TR1 and
TR2, respectively. The results reported in Table | show
that the experts £, E> and Es5 exhibit similar performance,
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Table 2. The variation of the recognition rate
of each single expert on each class due to the
multi-expert.

[Class | Ey | Bz | Es | Eq | Es | Fg
¢ |17 |14 67| 74 | 10 | 117
1 27 |13 [ 39| 69 | 06 | 123
2 1118196112109
3 100119 70 | 03] 120
4 | 06|08 03] 55|07 94
5 10 [ 127111 | 128 14 | 227
6 11 ]02 12|24 01| 22
7 |09 03|24 45| 16| 95
8 | 48|26 51 | 186 5.7 | 358
9 [05[06] 11| 46 {-04] 72

while the recognition rates of the remaining ones ranges
from 85.42 to 96.01. As expected, the recognition rate
exhibited by the multi-expert MEg4 outperforms the best
expert (£)), as well as both the MEp, and MEg,;. This
improvement is better revealed by Table 2, which shows the
relative recognition rate variations of each expert on each
- class obtained by adopting the MEg,s. More specifically,
the element (7, 7) in the Table is the difference between the
errors on the samples of i-th class made by the j-th expert
and corrected by the multi-expert, and the errors introduced
by the multi-expert itself, expressed as percentage of the
number of samples in each class.

The findings reported above confirm our criticism to
the use of the recognition rates of the single experts as
weights in the majority vote rule, and support our basic
idea that the reliability of the experts should be evaluated
simultaneously by considering the combined effect of the
outputs provided by each expert in the pool. Eventually,
it may be argued that the proposed approach requires a
very high computational cost (500,000 evaluations repeated
30 times) for providing only a slight improvement in the
performance (less than lless than 100,000 evaluations and
that the weights provided at the end of each evolution were
almost identical. In a further experiment done by using the
weights obtained by averaging the weights provided after
100,000 evaluation in 3 different evolutions we observed
no change in the recognition rate of the multiexpert. This
simple experiment suggests that further investigations may
help in reducing the computational cost of the method.
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