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Unsupervised Procedures 

A procedure that uses unlabeled data in its classification process. 
Why would we use these? 
  Collecting and labeling large data sets can be costly 
  Occasionally, users wish to group data first and label the

 groupings second 
  In some applications, the pattern characteristics can change

 over time.  Unsupervised procedures can handle these
 situations.   

  Unsupervised procedures can be used to find useful features for
 classification 

  In some situations, unsupervised learning can provide insight
 into the structure of the data that helps in designing a classifier 



Unsupervised vs. Supervised 

Unsupervised learning can be thought of as finding patterns in the
 data above and beyond what would be considered pure
 unstructured noise.   How does it compare to supervised
 learning? 

With unsupervised learning it is possible to learn larger and more
 complex models than with supervised learning. This is because
 in supervised learning one is trying to find the connection
 between two sets of observations, while unsupervised learning
 tries to identify certain latent variables that caused a single set
 of observations.   

The difference between supervised learning and unsupervised
 learning can be thought of as the difference between
 discriminant analysis from cluster analysis.  



Mixture Densities 

We assume that p(x|ωj) can be represented in a functional form that is 
determined by the value of parameter vector θj. 

For example, if we have p(x|ωj) ~ N(µj, Σj), where N is the function for 
a normal gaussian distribution and θj consists of the components µj 
and Σj that characterize the average and variance of the distribution. 

We need to find the probability of x for a given ωj and θ, but we don’t 
know the exact values of the θ components that go into making the 
decision. We need to solve: 

€ 

P(ω j | x) =
p(x |ω j )P(ω j )

p(x)

€ 

p(x |θ) = p(
j=1

c
∑ x |ω j ,θ j )P(ω j )

but instead of p(x|ωj) we have p(x|ωj,θj). We can solve for the  
 mixture density:   

(1) 



Mixture Densities 

€ 

p(x |θ) = p(
j=1

c
∑ x |ω j ,θ j )P(ω j )

component densities mixing parameters 

€ 

P(x |θ) =
1
2
θ1

x (1−θ1)
1−x +

1
2
θ2

x (1−θ2)
1−x

We make the following assumptions: 
  The samples come from a known number of c classes. 
  The prior probabilities P(ωj) for each class are known, j = 1…c. 
  The forms for the class-conditional probability densities p(x|ωj,θj) 

are known, j = 1…c.  
  The values for the c parameter vectors θ1... θc are unknown. 
  The category labels are unknown  unsupervised learning. 

Consider the following mixture density where x is binary:  

(1) 



Identifiability: Estimate Unknown Parameter Vector θ 

€ 

P(x |θ) =
1
2
θ1

x (1−θ1)
1−x +

1
2
θ2

x (1−θ2)1−x =

1
2

(θ1 + θ2)       if x =1

1− 1
2

(θ1 + θ2)  if x = 0

 

 
 

 
 

 

Try to solve for θ1 and θ2: 

€ 

        1
2

(θ1 + θ2) = .6

− 1− 1
2

(θ1 + θ2) = .4
 

  
 

  

-1+θ1 + θ2 = .2
θ1 + θ2 =1.2

Suppose we had an unlimited number of samples and use 
nonparametric methods to determine p(x|θ) such that P(x=1|θ)=.6 
and P(x=0|θ)=.4: 

We discover that the mixture distribution is 
completely unidentifiable. We cannot infer the 
individual parameters of θ. 

A mixture density, p(x|θ) is identifiable if we can 
recover a unique θ such that p(x|θ) ≠ p(x|θ’). 



Maximum Likelihood Estimates  

The posterior probability becomes:  

€ 

P(ω i | x k,θ) =
p(x k |ω i,θ i)P(ω i)

p(x k |θ)
We make the following assumptions: 
  The elements of θi and θj are functionally independent if i ≠ j. 
  p(D|θ) is a differentiable function of θ, where D = {x1, … , xn} of n 

independently drawn unlabeled samples.  

The search for a maximum value of p(D|θ) extending over θ and P(ωj) 
is constrained so that: 

€ 

P(ω i) ≥ 0  i =1,...,c    and    P(
i=1

c
∑ ω i) =1

  

€ 

Let ˆ P (ω i) be the maximim likelihood estimate for P(ω i).

Let ˆ θ i be the maximim likelihood estimate for θ i .

€ 

If ˆ P (ω i) ≠ 0 for any i then  ˆ P (ω i) =
1
n

ˆ P (ω i | x k,  ˆ θ )
k=1

n
∑

(6) 

(11) 



Maximum Likelihood Estimates  

The MLE of the probability of a category is the average over the entire 
data set of the estimate derived from each sample (weighted equally) 

€ 

ˆ P (ω i) =
1
n

ˆ P (ω i | x k,  ˆ θ )
k=1

n
∑

€ 

ˆ P (ω i | x k,  ˆ θ ) =
p(x k |ω i, ˆ θ i) ˆ P (ω i)

p(x k |ω j , ˆ θ j ) ˆ P (ω j )j=1

c
∑

(11) 

(13) 

  

€ 

Bayes theorem. When estimating the probability for ω i,  the numerator

    depends on ˆ θ i and not on the full ˆ θ .



Maximum Likelihood Estimates  

€ 

ˆ P (ω i | x k,  ˆ θ )
k=1

n
∑ ∇θ i

ln p(x k |ω i, ˆ θ i) = 0   i =1,...,c
(12) 

  

€ 

The gradient must vanish at the value of θ i that maximizes the logarithm of the

    likelihood, so the MLE ˆ θ i must satsify the following conditions :

  

€ 

Consider one sample, so n =1. Since we assumed ˆ P ≠ 0, the probability

    is maximized as a function of θ i so ∇θ i
ln p(x k |ω i, ˆ θ i) = 0. Note that

    ln(1) = 0, so we are trying to find the a value of ˆ θ i that maximizes p(.).



Case 1: The only unknown quantities are the mean vectors        . 

      consists of components of 

The likelihood of this particular sample is    

         and its derivative is     

Thus, according to Equation 8 in the book the MLE estimate 

must satisfy: 

          where   

Applying MLE to Normal Mixtures 



Applying MLE to Normal Mixtures 

If we multiply the above equation by the covariance matrix       
 and rearranging terms, we obtain the equation for the
 maximum likelihood estimate of the mean vector 

However, we still need to calculate explicitly.  If we have a
 good initial estimate             we can use a hill climbing
 procedure to improve our estimates 



Applying MLE to Normal Mixtures 

Case 2: The mean vector       , the covariance matrix      ,  
 and the prior probabilities          are all unknown 

In this case the maximum likelihood principle only gives singular
 solutions.  Usually, singular solutions are unusable.  However,
 if we restrict our attention to the largest of the finite local
 maxima of the likelihood function we can still find
 meaningful results.   

Using      ,      , and          derived from Equations 11-13 we
 can find the likelihood of       using 



Applying MLE to Normal Mixtures 

The differentiation of the previous equation gives 

                and 

Where       is the Kronecker delta,          is the pth element of         
  ,            is the pth element of        , and        is the pqth
 element of       and             



Applying MLE to Normal Mixtures 

Using the above differentiation along with Equation 12 we can
 find the following equations for the MLE of       ,            , 
 and         



Applying MLE to Normal Mixtures 

These equations work where 

To solve the equation for the MLE, we should again start with
 an initial estimate to evaluate Equation 27, and use
 Equations 24-26 to update these estimates.    

€ 

ˆ P (ω i | x k, ˆ θ ) =
p(x k |ω i, ˆ θ i) ˆ P (ω i)

p(x k |ω j , ˆ θ ) ˆ P (ω j )j=1

c
∑



k-Means Clustering 

Clusters numerical data in which each cluster has a center 
called the mean 

The number of clusters c is assumed to be fixed 
The goal of the algorithm is to find the c mean vectors µ1, 
µ2, …, µc 

The number of clusters c 
•  May be guessed 
•  Assigned based on the final application 



k-Means Clustering 

The following pseudo code shows the basic functionality of the k
-Means algorithm 

begin initialize n, c, µ1, µ2, …, µc 

  do classify n samples according to nearest µi 

   recompute µi 

  until no change in µi 

 return µ1, µ2, …, µc 

end 



k-Means Clustering 

Two dimensional example with c = 3  
clusters 

Shows the initial cluster centers and  
their associated Voronoi tesselation 

Each of the three Voronoi cells are used  
to calculate new cluster centers 



Fuzzy k-Means 

The algorithm assumes that each sample xj has a fuzzy
 membership in a cluster(s) 

The algorithm seeks a minimum of a heuristic global cost function 

Where: 
  b is a free parameter chosen to adjust the “blending” of clusters 
  b > 1 allows each pattern to belong to multiple clusters (fuzziness)



Fuzzy k-Means 

Probabilities of cluster membership for each point are normalized
 as 

Cluster centers are calculated using Eq. 32 

Where: 



Fuzzy k-Means 

The following is the pseudo code for the Fuzzy k-Means algorithm 

begin initialize n, c, b, µ1, …, µc ,             , i = 1,…,c; j = 1,…,n 

  normalize              by Eq. 30 

   do recompute µi by Eq. 32 

    recompute               by Eq. 33 

   until small change in µi and  

 return µ1, µ2, …, µc 

end 



Fuzzy k-means 

Illustrates the progress of the algorithm 

Means lie near the center during the first  
iteration since each point has  
non-negligible “membership” 

Points near the cluster boundaries can  
Have membership in more that one  
cluster 



x-Means 

In k-Means the number of clusters is chosen before the algorithm
 is applied 

In x-Means the Bayesian information criterion (BIC) is used
 globally and locally to find the best number of clusters k 

BIC is used globally to choose the best model it encounters and
 locally to  guide all centroid splits 



x-Means 

The algorithm is supplied: 
  A data set D = {x1, x2, …, xn} containing n objects in d-dimensional

 space 
  A set of alternative models Mj = {C1, C2, …, Ck} which correspond

 to solutions with different values of k 
  Posterior probabilities P(Mj | D) are used to score the models 



x-Means 

The BIC is defined as 

Where 
     is the loglikelihood of D according to the jth model and taken at

 the maximum likelihood point 
  pj is the number of parameters in Mj 

The maximum likelihood estimate is 

Where µ(i) is the centroid associated with xi 



x-Means 

The point probabilities are 

Finally the loglikelihood of the data is 



x-Means 

Basic functionality of the algorithm 
  Given a range for k, [kmin, kmax] 
  Start with k = kmin 

  Continue to add centroids as needed until kmax is reached 
  Centroids are added by splitting some centroids in two according to

 BIC 
  The centroid set with the best score is used as the final output 
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