
Syntactic Pattern Recognition

By

Nicolette Nicolosi

Ishwarryah S Ramanathan

Syntactic Pattern Recognition

�Statistical pattern recognition is
straightforward, but may not be ideal for
many realistic problems.
� Patterns that include structural or relational
information are difficult to quantify as feature
vectors.

�Syntactic pattern recognition uses this
structural information for classification and
description.

�Grammars can be used to create a definition
of the structure of each pattern class.

Classification

�Producing a classification can be done
based on a measure of structural
similarity in patterns.

�Each pattern class can be represented
by a structural representation or
description.

�It is often difficult to classify patterns
that contain a large number of
features.

Description

�A description of the pattern structure is
useful for recognizing entities when a simple
classification isn’t possible.

�Can also describe aspects that cause a
pattern to not be assigned to a particular
class.

� In complex cases, recognition can only be
achieved through a description for each
pattern rather than through classification.

When to Use It

�Picture recognition and scene analysis are
problems in which there are a large number
of features and the patterns are complex.

� For example, recognizing areas such as highways,
rivers, and bridges in satellite pictures.

� In this case, a complex pattern can be
described in terms of a hierarchical
composition of simpler subpatterns.

Hierarchical Approach

�The hierarchical approach comes from the
similarity that can be seen between the
structure of patterns and the syntax or
grammar of languages.

�Following this analogy, patterns can be built
up from sub-patterns in a number of ways,
similarly to how one builds words by
concatenating characters, and builds a
phrase or sentence by concatenating words.

Definitions

�The simplest sub-patterns are called pattern
primitives, and should be much easier to
recognize than the overall patterns.

�The language used to describe the structure
of the patterns in terms of sets of pattern
primitives is called the pattern description
language.

�The pattern description language will have a
grammar that specifies how primitives can
be composed into patterns.

Syntax Analysis

�When a primitive within the pattern is
identified, syntax analysis (parsing) is
performed on the sentence describing
the pattern to determine if it is correct
with respect to the grammar.

�Syntax analysis also gives a structural
description of the sentence associated
with the pattern.

Syntax Analysis

�One advantage of this approach is
that a grammar (rewriting) rule can
be applied many times.

�This allows for expressing basic
structural characteristics for an infinite
number of sentences in a number of
compact ways.

Other Representations

�Relational graph - describe a pattern
using the relations between sub-
patterns and primitives.

�Relational matrix - any relational
graph can also be expressed as a
matrix.

Other Representations

�Generalizing to allow for any relation
that can be determined from the
pattern, we can express richer
descriptions than through tree-based
structures.

�Hierarchical (tree-based) approaches
are convenient because it is easy to
apply formal language theory.

Syntactic System

�Consists of two main parts:
� Analysis - primitive selection and grammatical or
structural inference

� Recognition - preprocessing, segmentation or
decomposition, primitive and relation recognition,
and syntax analysis

�Preprocessing includes the tasks of pattern
encoding and approximation, filtering,
restoration, and enhancement.

Syntactic System

Syntactic System

Syntactic System

�After preprocessing, the pattern is
segmented into sub-patterns and
primitives using predefined
operations.

�Sub-patterns are identified with a
given set of primitives, so each
pattern is represented by a set of
primitives with the specified syntactic
operations.

Syntax Parsing

�For example, using the concatenation
operation, each pattern is recognized
by a string of concatenated primitives.

�At this point, the parser will determine
if the pattern is syntactically correct.

�It belongs to the class of patterns
described by the grammar if it is correct.

Syntax Parsing

�During parsing/syntax analysis, a
description is produced in terms of a
parse tree, assuming the pattern is
syntactically correct.

�If it isn’t correct, it will either be
rejected or analyzed based on a
different grammar, which could
represent other possible pattern
classes.

Matching

�The simplest form of recognition is template
matching, in which a string of primitives
representing an input pattern is compared
to strings of primitives representing
reference patterns.

�The input pattern is classified in the same
class as the prototype that is the best
match, which is determined by a similarity
criterion.

Matching vs. Complete Parsing

� In this case, the structural description is
ignored.

�The opposite approach is a complete parsing
that uses the entire structural description.

�There are many intermediate approaches;
for example, a series of tests designed to
test the occurrence of certain primitives,
sub-patterns, or combinations of these. The
result of these tests will determine a
classification.

Parsing

�Parsing is required if the problem
necessitates using a complete pattern
description for recognition.

�Efficiency of the recognition process is
improved by simpler approaches that
do not require a complete parsing.

�Basically, parsing can be expensive,
so don’t use it unnecessarily.

Inferring Grammars

�Grammatical inference machine -
similar to “learning” in the
discriminant approach; it infers a
grammar from a set of training
patterns.

�The inferred grammar can then be
used for pattern description and
syntax analysis.

Parsing - Fundamentals

� Parser Hierarchical Structure

� Smaller decompositions

� Graphically shown by derivation trees

Parsing Problems

� Approaches of Parsing

� Parsing/Generation Similarities

� Application of grammar is easier in
generative mode than analytic mode.

� Concerns

� Parser must determine the extent of the
elements that comprise non- terminals.

� Parser must find a use for all of x

Parsing Approaches

� Top-Down Parsing
� From S to terminals. A derivation for x, where x

is a sentence.
� Method 1: Depth First Expansion of non-

terminals, starting with leftmost non-terminal.
Allows back-up.

� Method 2: Recursive Descent may not work on
all grammars. No back-up. Recursive functions
to recognize sub-strings corresponding to the
expansion of a non-terminal.

� Bottom-Up Parsing
� Knowing x, we proceed to S by reversing the

productions defined.

Comparing Top-down and Bottom-up

� Difficult to compare because the
efficiency factor lies with the
grammar.

� Normalization or Transformation of a
grammar will affect parsing efficiency.

� Brute force method of the top-down
and bottom-up approaches have
computational complexity growing
exponentially with |x|.

Alternative Approaches – CYK
Parsing

� Cocke-Younger-Kasami Algorithm

� Parse string x in number of steps proportional to
|x|3.

� The CFG should be in Chomsky Normal Form

� Building CYK table

CYK Parsing contd.

� The cell (1,n) should have S. Then the
parsing is said to be complete.

� Example

� Productions

� CYK table

Stochastic Grammars

� Assumptions of the formal grammar
used in SyntPR

� Languages are disjoint

� No errors in the sentences produced by
the grammar

� In practice the assumptions are faulty

� Errors in the primitive extraction process

� Noise or pattern deformation in
descriptions

Stochastic Grammars contd.

� Definition

� Gs = {VN, VT, Ps, Ss}

� Ps is a set of Stochastic Productions
� Each production is of form

� ai -> bj with probability pij

� Derivations in Stochastic Language

� Derivations of sentence from Ss to x

� Labels tk-1,k where k=1 to n are given to each
production such as βk-1 to βk

� Every production will have a probability pi

� Unconditional Probability is given by

� P(t0,1 ‘n’ t1,2 ‘n’ … ‘n’ tn-1,n)= P(t0,1).P(t1,2) … P(tn-1,n)

Stochastic Grammars contd.

� P(t0,1,t1,2,…,tn-1,n) = Πq=1 to n P(tq-1,q)

� This uses the assumption that every
production is independent of the previous one
applied.

� Proper Stochastic Grammar

� Elements of Ps is of form

� Ai -> βi with probability pij

� Where Ai Є VN, βi Є (VN U VT)
+

� Σk=1 to ni pik =1 (Sum of all the probabilities of
each production in the Grammar is equal to 1)

Stochastic Grammars contd.

� Characteristic Grammar

� Remove the probability measure from the
Stochastic grammar

� Stochastic Languages

� L(Gs)={(x,p(x))|x є VT
+, SS derives x with

probability pj, j = 1 to k, p(x) = Σj=1 to k pj}

� Where pj is the probability to parse a string x
from SS and p(x) is the total probability of
deriving various strings (Say k number of
strings) using the grammar.

Stochastic Grammars contd.

� For example, x is ‘abc’ and productions of a grammar
are
� S->aA with p1; A->bC with p2
� B->dC with p3; C->eD with p4
� B->c with p5; B->f with p6
� B->g with p7; C->c with p8
� C->f with p9; C->g with p10
� D->c with p11; D->f with p12
� D->g with p13

� Then to get x we have S->aA->abC->abc.

� Here the probability to get abc is p(abc)=p1.p2.p8
� p1+p2+…+p13 = 1 if the given grammar is Proper

Stochastic Grammar

Structural Semantic Interconnections: A

Knowledge-Based Approach to Word Sense

Disambiguation

Paper by Roberto Navigli and Paola

Verlardi

Word-Sense Disambiguation

�Same word, different meaning. For
example, “bus” can be a vehicle or a
connection on a computer.

�This leads to ambiguous situations in
which it is not clear which word to
use.

�This paper’s approach uses syntactic
pattern recognition in attempting to
improve disambiguation.

Representation

�Used a graph representation of
senses:

Data

�Took data from a number of sources:
�WordNet 2.0 - online resource featuring
concepts that correspond to word senses

�Domain labels assigned to WordNet

�Annotated corpora - text examples of
word sense usages in context

�Dictionaries of collocations - words that
belong to a semantic domain (ie: bus,
stop, station)

Algorithm

�T = [t1, …, tn], I = [St1, … Stn], P =
{ti | S

ti = null}

�Algorithm iteratively disambiguates
words in the pending set P of words
that have no currently defined sense,
where S is the chosen sense for t.

Grammar

�Describes meaningful connections in
the graph representation.

�Used to do the disambiguation task in
the iterative algorithm.

Results

�Performed better on large contexts.

�Achieved a 66% recall rate when the
number of elements in T is 5.

�Achieved around a 90% recall rate
where the number of elements in T is
40.

Synt Pattern Recognition of ECG

� Trahanias, P and
Skordalakis, E speaks
about how to
recognize ECG
information using
SyntPR

� Patterns and Pattern
parameters

� Primitive pattern
selection

� Pattern Grammar
� Experimental results

are convincing

References

� Fu, K. S. (King Sun), 1930- “Syntactic pattern recognition
and applications” Englewood Cliffs, N.J. : Prentice-Hall,
c1982

� Schalkoff, Robert J, “Pattern recognition : statistical,
structural, and neural approaches” New York : J. Wiley,
c1992

� Navigli, R.; Velardi, P., "Structural semantic
interconnections: a knowledge-based approach to word
sense disambiguation," Pattern Analysis and Machine
Intelligence, IEEE Transactions on , vol.27, no.7, pp.1075-
1086, July 2005

� Trahanias, P.; Skordalakis, E.; “Syntactic pattern
recognition of the ECG”; Pattern Analysis and Machine
Intelligence, IEEE Transactions on Volume 12, Issue
7, July 1990 Page(s):648 - 657

Thanks!

