Combining Classifiers

By Ishwarryah S Ramanathan Nicolette Nicolosi

4.1 Types of classifier Outputs

Types of Classifier Outputs

- The possible ways in which outputs of classifiers in an ensemble can be combined is based on information obtained from individual member classifiers.
- 4 types distinguished in the text are the Abstract, Rank, Measurement, and Oracle levels.

The Abstract Level

- Each classifier gives a label s_iεΩ, where i = {1, ..., L}. For any object x to be classified, the outputs of the classifiers define a vector s = [s₁, ..., s_L]^T ε Ω^L.
- No information on the certainty of the labels.
- No alternative labels are suggested.
- The most universal level because any classifier can produce a label for x.

The Rank Level

The output of each classifier is a subset of Ω.
 Alternatives are ranked in order of possible correctness.

Suitable for problems with a large number of classes.

Character, face, or speaker recognition

The Measurement Level

Each classifier returns a c-dimensional vector [d_i, 1, ..., d_{i,c}]^T, where d_{i,j} is the support for the hypothesis that a vector x is from the class w_j.
 Outputs are assumed to be between 0 and 1.

The Oracle Level

- The output for a classifier is known only to be correct or incorrect.
- Information about the assigned class label is ignored.
- Can only be applied to a labeled data set.
- Output vector y_{ij} is 1 if the object is correctly classified, and 0 otherwise.

4.2 Majority Vote

Majority Vote

Common human decision making system.
 Example compares unanimity (100% agree), simple majority (50%+1 agree), and plurality (most votes) as conditions for the decision.

Majority Vote Example

Unanimity (all agree)	Å	Ť	Ť	Ť	Ť	Ť	1 I	Ť	Ť	İ
Simple majority (50%+1)	Ť	Ť	Å	Å	ţ	Ť	Å	Å	Ŷ	Å
Plurality (most votes)	ŕ	ŕ	ŕ	Ť	Ŷ	× C	ŕ	å	Å	Å

Majority Vote Example contd.

- The outputs of the classifiers are c-dimensional binary vectors:
- $[d_{i,1}, \dots, d_{i,c}]^{T} \in \{0,1\}^{c}$ $i = 1, \dots, L$ $d_{i,j} = 1 \text{ if } D_{i} \text{ labels x in } w_{j}, \text{ and } 0 \text{ otherwise.}$ Plurality will result in a decision for w_{k} if: $\sum_{i=1->L} d_{i,k} = \max_{j=1->c} \sum_{i=1->L} d_{i,j}$

■ Ties decided arbitrarily.

Majority Vote contd.

- This is often called the majority vote, and it is the same as the simple majority when there are two classes (c=2).
- Threshold plurality vote adds an additional class w_{c+1}, which is assigned when the ensemble does not find a class label or in the case of a tie.

Threshold Plurality

The decision becomes:

 w_k if ∑_{i=1->L} d_{i,k} >= α*L
 w_{c+1} otherwise
 where 0< α <=1

 Simple majority - α is 1/2 + ε, where 0<ε<1/L
 Unanimity vote - α = 1
 Only makes decision if all classifiers agree

Properties of Majority Vote

- Assume number of classifiers (L) is odd
- Probability that a classifier will give the correct label is p
- Classifier outputs are independent, so the joint probability is:
 P(D_{iī} s₁, ..., D_{iK}=s_{1K}) = P(D_{i1}=s_{i1}) x ... x P(D_{iK}=s_{iK}), where s_{ii} is the label given by classifier D_{ii}

Properties of Majority Vote contd.

- Gives an accurate label if at least floor(L/2)+1 classifiers return correct values
- Accuracy of the ensemble:

• $P_{maj} = \sum_{m=val \text{ to } L} C_m p^m (1-p)^{L-m}$ where val = floor(L/2)+1

Accuracy of Majority Vote

TABLE 4.1	Tabulated Values of the Majority Vote
Accuracy of	L Independent Classifiers with Individual
Accuracy p.	

	L = 3	L = 5	L = 7	L = 9
p = 0.6	0.6480	0.6826	0.7102	0.7334
$\rho = 0.7$	0.7840	0.8369	0.8740	0.9012
$\rho = 0.8$	0.8960	0.9421	0.9667	0.9804
p = 0.9	0.9720	0.9914	0.9973	0.9991

Condorcet Jury Theorem

If p < 0.5, P_{maj} is monotonically increasing and
 P_{maj} -> 1 as L -> infinity

- If p < 0.5, P_{maj} is monotonically decreasing and
 P_{maj} -> 0 as L -> infinity
- If p = 0.5, $P_{maj} = 0.5$ for any L.
- Intuitively, individual accuracy over p is only expected to improve if p > 0.5.

Medical Example

Independent tests to confirm diagnosis.
Sensitivity (U) - probability of a true positive
Specificity (V) - probability of a true negative
T = positive test results, A = affected
U = P(T | A), V = P(!T | !A)

- Each test is an individual classifier with accuracy:
 p = U * P(A) + V * [1-P(A)],
 P(A) = probability of occurrence in individuals (prevalence)
- Testing for HIV requires unanimous positive from three tests to declare an individual affected.

- Tests are applied one at a time, so the first negative will end testing.
- Using the majority vote, testing will stop if the first two tests agree. If they disagree, the third test will be used to break the tie.

- Tests applied independently with the same sensitivity (u) and specificity (v).
- Unanimity:

 $U_{una} = u^3$ $V_{una} = 1$ (1) y^3

 Majority vote: U_{maj} = u² + 2u²(1 y) = u²(3 2y) V_{maj} = v²(3 2x)

 For 0 < u < 1 and 0 < v < 1,

 $U_{una} < u < T and 0 < v < T$ $U_{una} < u and V_{una} > v$ $U_{maj} > u and V_{maj} > v$

- There is a gain on sensitivity and specificity if the majority vote is used.
- Combined accuracy P_{maj} is greater than that of a single test p.
- Unanimity has increased specificity, but decreased sensitivity.
- ELISA test has u = 0.95 and v = 0.99
 - $\begin{array}{ll} U_{una} \approx 0.8574 & V_{una} \approx 1.0000 \\ U_{maj} \approx 0.9928 & V_{maj} \approx 0.9997 \end{array}$
- Dangerously low sensitivity using unanimity. Can get around this by using a different test in addition to the ELISA test.

Limits on Majority Accuracy

- D = {D1, D2, D3} is an ensemble of three classifiers, each having the same probability of correct classification (p = 0.6).
- If we represent each classifier output as either a 0 or a 1, we can represent all combinations distributing 10 elements into the 8 combinations of outputs.
- For example, 101 would represent the case where the first and third classifiers correctly classified exactly X samples.

TABLE by Thr	4.3 Al ee Class	l Possib ifiers so	le Comb that Ea	inations ch Class	s of Corr sifier Rec	ect/Inco cognizes	rrect Cla Exactly	assificat / Six Ob	ion of 1 jects.	0 Objects
No.	111	101	011	001	110	100	010	000	Pmai	Pmai - p
	a	ь	с	đ	e	f	g	h		
Pattern	of succe	955								
1	0	3	3	0	3	0	0	1	0.9	0.3
2	2	2	2	0	2	0	0	2	0.8	0.2
3	1	2	2	1	3	0	0	1	0.8	0.2
4	0	2	3	1	3	1	0	0	0.8	0.2
5	0	2	2	2	4	0	0	0	0.8	0.2
6	4	1	1	0	1	0	0	3	0.7	0.1
7	3	1	1	1	2	0	0	2	0.7	0.1
8	2	1	2	1	2	1	0	1	0.7	0.1
9	2	1	1	2	3	0	0	1	0.7	0.1
10	1	2	2	1	2	1	1	0	0.7	0.1
11	1	1	2	2	3	1	0	0	0.7	0.1
12	1	1	1	3	4	0	0	0	0.7	0.1
Identica	al classifi	ers					-			
13	6	0	0	0	0	0	0	4	0,6	0.0
14	5	0	0	1	1	0	0	з	0.6	0.0
15	4	0	1	1	1	1	ō	2	0.6	0.0
16	4	0	0	2	2	0	0	2	0.6	0.0
17	3	1	1	1	1	1	1	1	0.6	0.0
18	3	0	1	2	2	1	0	1	0.6	0.0
19	з	0	0	3	3	0	0	1	0.6	0.0
20	2	1	1	2	2	1	1	0	0.6	0.0
21	2	0	2	2	2	2	0	0	0.6	0.0
22	2	0	1	3	3	1	Ô	0	0.6	0.0
23	2	0	0	4	4	0	0	0	0.6	0.0
24	5	0	0	1	0	1	1	2	0.5	-0.1
25	4	0	0	2	1	1	1	1	0.5	-0.1
26	3	0	1	2	1	2	1	0	0.5	-0.1
27	3	0	0	3	2	1	1	0	0.5	-0.1
Pattern	of failure	e _			•	•	•			
28	4	0	U	Z		_ 2	2	0	0.4	-0.2

Table Analysis

- There is a case where the majority vote is correct 90 percent of the time, even though this is unlikely. This is an improvement over the individual p = 0.6.
- There is also a case where the majority vote is correct only 40 percent of the time. This is worse than the individual rate given above.
- Best and worst possible cases are "the pattern of success" and "the pattern of failure," respectively.

Patterns of Success and Failure

- Di and Dk classifiers with the 2*2 probability table. (Table 4.4)
- Table for 3 classifier problem from previous section is shown in Table 4.5.
 - a+b+c+d+e+f+g+h=1...Eq 8

Probability for correct classification (2 or more correct)

•
$$Pmaj = a+b+c+e$$
 ... Eq 9

TABLE 4.4 The 2 × 2 Relationship Table with Probabilities.

	D _k correct (1)	D _k wrong (0)	
D _i correct (1)	а	b	
D _i wrong (0)	с	d	

TABLE 4.5 The Probabilities in Two 2-Way Tables Illustrating a Three-Classifier Voting Team.

D ₃ correct (1)			D ₃ wrong (0)				
	$D_2 \rightarrow$			$D_2 \rightarrow$			
D₁ ↓	1	0	D₁ ↓	1	0		
1	а	b	1	е	f		
0	C	d	0	g	h		

Patterns of Success and Failure contd.

Having p as the individual accuracy,

- a+b+e+f = p, if D1 is correct
- a+c+e+g = p, if D2 is correct ... Eq 10
- a+b+c+d = p, if D3 is correct
- Maximizing Pmaj in Eq 9 using Eq 8 and Eq 10 and a,b,c,d,e,f,g,h>=0 for p=0.6 we find Pmaj = 0.9.
- From table 4.3 a=d=f=g=0, b=c=e=0.3, h=0.1
- For Pmaj to be correct we need floor(L/2)+1 classifiers to be correct, so atleast floor(L/2)+1 is required and remaining is not necessary.

Pattern of Success

Success Pattern if

- Prob of any combination of floor(L/2)+1 correct and floor(L/2) incorrect votes is α
- Prob of all L votes to be incorrect is γ
- Prob of any other combination is zero

D3 correct (1)			D3 wrong (0)			
D1 D2	1	0	D1 D2	1	0	
1	0	x	1	α	0	
0	x	0	0	0	γ=1-3 α	

Pattern of Success contd.

Combination occurs when all classifiers are incorrect and when exactly floor(L/2)+1 are correct. So no votes are wasted \odot Let l = floor(L/2)■ $Pmaj = {}_{L}C_{l+1} \alpha \dots Eq 11$ ■ Pattern of success possible when Pmaj <= 1 • $\alpha <= 1/(LC_{l+1}) \dots Eq 12$ - Relating Pmaj and α to accuracy p • $p = L_{-1}C_{1}\alpha$... Eq 13 Substitute Eq 13 in Eq 11, • Pmaj = pL/l+1 = 2pL/L+1 ... Eq 14 If $Pmaj \le 1$, $p \le L+1/2L$ Pmaj = min $\{1, 2pL/L+1\}$... Eq 15

Pattern of Failure

Failure Pattern if

- Prob of any combination of floor(L/2) are correct and floor(L/2)+1 are incorrect is β
- Prob of all L votes to be correct is δ
- Prob of any other combination is 0

D3 correct (1)			D3 wrong (0)			
D1 D2	1	0	D1 D2	1	0	
1	δ=1-3β	0	1	0	β	
0	0	β	0	β	0	

Pattern of Failure contd.

Combination occurs when all classifiers are correct and when exactly l out of L are correct.
Pmaj = δ = 1 - LC_l β ... Eq 16
Relating Pmaj and α to accuracy p
p = δ + L-1C_{l-1} β ... Eq 17
Combining Eq 16 and Eq 17,
Pmaj = pL-l/l+1 = (2p-1)L+1/L+1 ... Eq 18

Matan's Upper and Lower Bound

Say classifier Di has accuracy pi and D1,...DL are arranged such that $p1 \le p2 \le p3 \dots \le pL$ Let k = l+1 = (L+1)/2 and m = 1,2,3,...kUpper bound (Pattern of Success) • max $P_{mai} = min \{1, \Sigma(k), \Sigma(k-1) \dots \Sigma(1)\}$ • where $\Sigma(m) = (1/m) \Sigma_{i=1 \text{ to } L-k+m}$ pi Lower bound (Pattern of Failure) • min $P_{mai} = max \{0, \xi(k), \xi(k-1)...\xi(1)\}$ • where $\xi(m) = (1/m) \Sigma_{i=k-m+1 \text{ to } L} pi - (L-k)/m$

4.3 Weighted Majority Vote

4.3 Weighted Majority Vote

Classifiers are not of identical accuracy

Provide a factor to push the competent classifier towards the final decision

Degrees of support for the classes d_{i,i}

- $d_{i,j} = 1$, if D_i labels x in w_j
- $d_{i,j} = 0$, otherwise

 Discriminant function for wj class using weighted voting

•
$$g_j(x) = \sum_{i=1 \text{ to } L} b_i d_{i,j}$$
 Eq 1

b_i is the coefficient of D_i

Weighted Majority Vote - Example

- 3 classifiers D₁, D₂ and D₃ with independent outputs
- Accuracy $p_1 = 0.6, p_2 = 0.6, p_3 = 0.7$
- $\overline{P}_{maj} = (0.6)^{2*}0.3 + 2^{*}0.4^{*}0.6^{*}0.7 + (0.6)^{2*}0.7$ = 0.6960

Removing the classifiers D₁ and D₂ from the ensemble overall classification of D₃ (more accurate) is improved

Weighted Majority Vote – Example contd.

Introduce weights b_i, where i = 1, 2, 3
Choose class label w_k if,
Σ_{i=1 to L} b_id_{i,k} = max_{j=1 to c} Σ_{i=1 to L} b_id_{i,j} Eq 2
By normalizing the coefficients,
Σ_{i=1 to c} b_j=1 Eq 3
Assigning b₁=b₂=0 and b₃=1 we get rid of D₃
Therefore P_{maj} = p₃ = 0.7

Improving Accuracy by Weighting

- 5 classifier ensemble D₁, D₂, D₃, D₄ and D₅ independent of each other
- Corresponding accuracy 0.9, 0.9, 0.6, 0.6, 0.6
- Majority Accuracy (atleast 3 out of 5)
- $\operatorname{Pmaj} = 3^{*}(0.9)^{3*}0.4^{*}0.6 + (0.6)^{3} + 6^{*}0.9^{*}0.1^{*}0.4^{*}(0.6)^{2}$

= 0.877 (approx.)

Weights assumed 1/3, 1/3, 1/9, 1/9, 1/9

Improving Accuracy by Weighting contd.

- We can see the first 2 weights of competent classifiers which scores 2/3 for class label, if both of them agree
- If one is correct and one is wrong, then the other three will contribute the majority.
- Pwmaj = $(0.9)^3 + 2*3*0.9*0.1*(0.6)^{2*0.4} + 2*0.9*0.1*(0.6)^3$ = 0.927 (approx.)
- Weights that satisfy Eq 3 and make D₁ and D₂ prevail when they agree will lead to the same outcome

Theorem – Selecting Weights for the classifiers

Definition:

- D₁, D₂, ... D_L constitutes an ensemble of independent classifiers
- \bullet Accuracies $p_1, p_2, \dots p_L$
- Outputs are combined by Majority Vote Eq 2
- Overall Accuracy P^w_{maj} is maximized by assigning weights as,
 - **b**_i is proportional to $\log (p_i / 1)$

Theorem – Selecting Weights for the classifiers

Proof

- $s = [s_1, s_2, \dots s_L]T$ is a vector with the label output of the ensemble, where $s_i \in \Omega$ is the label for x by classifier D_i
- Bayes optimal set of Discriminant function based on the outputs of L classifiers is

■ $g_j(x) = \log P(w_j) P(s | w_j)$, j=1, 2, ... c

Theorem – Selecting Weights for the classifiers – Proof contd.

$$g_{j}(\mathbf{x}) = \log \left[P(\omega_{j}) \prod_{i=1}^{L} P(s_{i}|\omega_{j}) \right]$$

$$= \log P(\omega_{j}) + \log \prod_{i,s_{i}=\omega_{j}} P(s_{i}|\omega_{j}) \prod_{i,s_{i}\neq\omega_{j}} P(s_{i}|\omega_{j})$$

$$= \log P(\omega_{j}) + \log \prod_{i,s_{i}=\omega_{j}} p_{i} \prod_{i,s_{i}\neq\omega_{j}} (1-p_{i})$$

$$= \log P(\omega_{j}) + \log \prod_{i,s_{i}=\omega_{j}} \frac{p_{i}(1-p_{i})}{1-p_{i}} \prod_{i,s_{i}\neq\omega_{j}} (1-p_{i})$$

$$= \log P(\omega_{j}) + \log \prod_{i,s_{i}=\omega_{j}} \frac{p_{i}}{1-p_{i}} \prod_{i=1}^{L} (1-p_{i})$$

$$= \log P(\omega_{j}) + \sum_{i,s_{i}=\omega_{j}} \log \frac{p_{i}}{1-p_{i}} + \sum_{i=1}^{L} \log(1-p_{i})$$

... Eq 4

Theorem – Selecting Weights for the classifiers – Proof contd.

The last term in Eq 4 is independent of j. So we reduce the discriminant function as,
 • g_j(x) = log P(w_j) + Σ_{i=1 to L} d_{i,j} log (p_i / 1-p_i)
 Reducing the classification errors not only depends on the weights assigned to the classifiers but also upon the Prior probability.

4.4 Naïve Bayes Combination

Naïve Bayes Combination

- Assumption: Classifiers are mutually independent given a class label
- P(s_j) is the probability of the classfier D_j labels x in class
 s_j ∈ Ω.

Conditional Independence,

• $P(s | w_k) = P(s_1, s_2, \dots, s_L | w_k) = \prod_{i=1 \text{ to } L} P(s_i | w_k)$

Prior probability to label x,

$$P(w_k | s) = P(w_k) P(s | w_k) / P(s)$$

= P(w_k) $\Pi_{i=1 \text{ to } L} P(s_i | w_k) / P(s) \dots Eq$
where k=1,...c

5

Naïve Bayes Combination contd.

P(s), the denominator of Eq 5 does not depend on W_k so the 'support' for class W_k is, • $\mu_k(x)$ is proportional to $P(w_k) \prod_{i=1 \text{ to } L} P(s_i | w_k) \dots Eq6$ For each D_i , a c*c confusion matrix CM^i is defined by applying D_i to the training set - The $(k,s)^{th}$ entry of the matrix cm_{ks}^{i} is the number of elements whose true class is W_{l} and assigned by D_i to w_s class.

Naïve Bayes Combination contd.

- Estimate of probability $P(s_i | w_k)$ is $cm_{k,si}^i / N_k$
- Estimate of prior probability for w_s is N_k / N
- Eq 6 can be written as,
 - $\mu_k(x)$ is proportional to $(1/N_k^{L-1}) \prod_{i=1 \text{ to } L} cm^i_{k,si} \dots Eq 7$
- Example on Pg 127
- Zero as an estimate of P(si | wk) nullifies μ_k(x) regardless of the rest of the estimates
- Titterington et al [4] uses naïve Bayes for independent features. Accounting the possible zeroes, Eq 7 is written as
 - ◆ P(s | wk) is proportional to [$\Pi_{i=1 \text{ to } L}$ { cmⁱ_{k,si} + (1/c) } / (N_k+1)]^B
- Example on Pg 128

[2] Combining Heterogeneous Classifiers for Word-Sense Disambiguation

- Paper is an interesting application of classifier combination.
- Uses an ensemble of simple heterogeneous classifiers to perform English word sense disambiguation.
- Word sense disambiguation is a process that attempts to ascertain the appropriate meaning of a word within a sentence.
 - For example, the word "bass" can mean a type of fish, tones of a low frequency, or a type of guitar that plays these tones.

Word-Sense Disambiguation

- This is an important problem within computational linguistics - improved solutions can lead to advances in document classification, machine translation, and other similar areas.
- Common approaches include:
 - Naïve Bayes
 - Decision trees/Decision lists
 - Memory-based learning

The System

- 1 Split data into multiple training and held-out parts.
- 2 Rank first-order classifiers globally (across all words).
- 3 Rank first-order classifiers locally (per word), breaking ties with global ranks.
- 4 For each word w
- 5 For each size k

6

7

8

- Choose the ensemble $E_{w;k}$ to be the top k classifiers
- For each voting method m
 - Train the (k, m) second-order classifier with $E_{w;k}$
- 9 Rank the second-order classifier types (k, m) globally.
- 10 Rank the second-order classifier instances locally.
- 11 Choose the top-ranked second-order classifier for each word.
- 12 Retrain chosen per-word classifiers on entire training data.
- 13 Run these classifiers on test data, and evaluate results.

Table 1: The classifier construction process.

The first-order classifiers were implemented by a class of 23 students and took varied approaches to the problem.

Classifier Combination

Combined the first-order classifiers using:

- Majority voting: Chose the output with the most votes. Ties were broken by always choosing the most frequent output.
- Weighted voting: Each classifer assigned a voting weight. The sense with the greatest weighted vote is chosen. Weights must be positive and, unlike majority voting, can differ.
- Maximum entropy: Classifier trained and run on all first order outputs. Votes are weighted with estimated values, which can differ and be negative.

[3] Adaptive Weighted Majority Vote Rule for Combining Multiple Classifiers

- Paper talks about an optimization technique over the Weighted Majority Vote Rule
- The effectiveness is tested on 30K handwritten digits extracted from the NIST database.
- The optimization technique is based on a Genetic Algorithm that searches for proper value for the weights used in Majority Vote Rule.

References

- I. Ludmila I. Kuncheva "Combining Patter Classifiers Methods and Algorithms" Wiley Publications 2004.
- II. Klein, D., Toutanova, K., Ilhan, H. T., Kamvar, S. D., and Manning, C. D. 2002. Combining heterogeneous classifiers for word sense disambiguation. In Proceedings of the Acl (2) Workshop on Word Sense Disambiguation: Recent Successes and Future Directions- Volume 8 Annual Meeting of the ACL. Association for Computational Linguistics, Morristown, NJ, 74 80
- C.De Stefano, A. Della Cioppa and A. Marcelli. "An Adaptive Weighted Majority Vote Rule for Combining Multiple Classifiers". Proceedings of 16th International Conference on Pattern Recognition, 2002. Vol2 Pg 192- 195
- D.M.Tritterington, G.D.Murray, L.S.Murray, D.J.Spiegelhalter, A.M.Skene, J.D.F.Habbema and G.J. Gelpke. "Comparison of discriminant techniques applied to a complex dataset of head injury patients". Journal of the Royal Statistical Society, Series A (General), 144(2):145 175, 1981