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4.1 Types of classifier Outputs




Types of Classifier Outputs

m The possible ways in which outputs of classifiers
in an ensemble can be combined is based on
information obtained from individual member
classifiers.

m 4 types distinguished in the text are the Abstract,
Rank, Measurement, and Oracle levels.




The Abstract Level

m Each classifier gives a label s.eQ, where i = {1, ..., L}.
For any object x to be classitied, the outputs of the
classifiers define a vector s = [sy, ..., s;|T e QL.

® No information on the certainty of the labels.
m No alternative labels are suggested.

® The most universal level because any classifier can
produce a label for x.




The Rank Level

m The output of each classifier 1s a subset of €.

m Alternatives are ranked in order of possible
correctness.

m Suitable for problems with a large number of
classes.

Character, face, or speaker recognition




The Measurement Level

m Hach classifier returns a c-dimensional vector [d.

1> - 4 J', where d;; is the support for the

hypothesis that a vector x is from the class w..

m Outputs are assumed to be between 0 and 1.




The Oracle Level

m The output for a classitier is known only to be
COffect Of Incorrect.

m [nformation about the assigned class label is
ignored.

m Can only be applied to a labeled data set.

= Output vector y; is 1 if the object is cotrectly
classified, and 0 otherwise.




4.2 Majority Vote




Majority Vote

m Common human decision making system.

m HExample compares unanimity (100% agree),
simple majority (50%+1 agree), and plurality
(most votes) as conditions for the decision.




Majority Vote Example

Unanimity
(all agree)

Simple majority
(50%+1)

. . o
Plurality ,'\ T
(most votes)




Majority Vote Example contd.

m The outputs of the classifiers are c-dimensional binary
Vectors:
iy, ..., d; J" e {0,1}¢
1=1,...,L

d;; = 1if D, labels x in w;, and 0 otherwise.

Plurality will result in a decision for w,_if:
Qim1>r, dig = maxig o )iy oy di;

m Ties decided arbitrarily.




Majority Vote contd.

m This 1s often called the majority vote, and it is
the same as the simple majority when there are
two classes (c=2).

m Threshold plurality vote adds an additional class
w1, which is assigned when the ensemble does
not find a class label or in the case of a tie.




Threshold Plurality

B The decision becomes:
Wi if ) imq oy diy >= oL
Wy otherwise
where 0< o <=1

m Simple majority - o is 1/2 + ¢, where 0<e<1/L
m Unanimity vote - o« = 1

® Only makes decision if all classifiers agree




Properties of Majority Vote

m Assume number of classifiers (I.) 1s odd

m Probability that a classifier will give the correct
label 1s p

m Classifier outputs are independent, so the joint
probability is:
POy 5, -+, Dix=s1) = PDy=s;) x ... x PO=s;0),

whete s; is the label given by classifier D,




Properties of Majority Vote contd.

m Gives an accurate label if at least floor(LL/2)+1
classifiers return correct values

m Accuracy of the ensemble:

Pmaj — Zmzval to L LCm prn (1 _p>L—rn
where val = floor(I./2)+1




Accuracy of Majority Vote

TABLE 4.1 Tabulated Values of the Majority Volte
Accurscy of L Independent Classifiers with Individual
Accuracy p.




Condorcet Jury Theorem

m If p <0.5, P_ . 1s monotonically increasing and

maj

P .- 1as L -> infinity
m [fp <0.5 P_ . 1s monotonically decreasing and

maj

ma —— U as L -> infinity
m[fp=0.5P_.=0.5torany L.

m [ntuitively, individual accuracy over p is only
expected to improve if p > 0.5.

mayj




Medical Example

m [ndependent tests to confirm diagnosis.

m Sensitivity (U) - probabil

ity of a true positive

m Specificity (V) - probabil
m T = positive test results,

s U=DP(T|A),V=D(T

ity of a true negative

A = affected
| 1A)




Medical Example contd.

m FHach test is an individual classifier with
accuracy:
p = U*P(A) + V * [1-P(A)]
P(A) = probability of occurrence in individuals
(prevalence)

m Testing for HIV - requires unanimous positive
from three tests to declare an individual affected.




Medical Example contd.

m Tests are applied one at a time, so the first
negative will end testing.

m Using the majority vote, testing will stop if the
first two tests agree. If they disagree, the third
test will be used to break the tie.




Medical Example contd.

Tests applied independently with the same sensitivity (u) and
specificity (v).

Unanimity:

U, . =u

una

Via =1 € ¥
Majority vote:
U . =u+2u’d y=uv*3 2

m

Vmajzvz@ 2)
ForO<u<land 0 <v <1,
U, <uandV, >V

u

U ->uandeaj>v

maj




Medical Example contd.

There is a gain on sensitivity and specificity if the majority vote 1is
used.

Combined accutacy P, . is greater than that of a single test p.

Unanimity has increased specificity, but decreased sensitivity.
ELISA test has u = 0.95 and v = 0.99
U ..~ 0.8574 V... = 1.0000

una

U,y & 0.9928 Vo & 0.9997

Dangerously low sensitivity using unanimity. Can get around this
by using a different test in addition to the ELISA test.




Limits on Majority Accuracy

m D= {D1, D2, D3} is an ensemble of three classifiers,

each having the same probability of correct
classification (p = 0.6).

m [f we represent each classifier output as either a 0 or a
1, we can represent all combinations distributing 10
elements into the 8 combinations of outputs.

m For example, 101 would represent the case where the
first and third classifiers correctly classified exactly X
samples.




TABLE 4.3 All Possible Combinations of Correct /Incorrect Classification of 10 Objects
by Three Classifiers so that Each Classifier Recognizes Exactly Six Objects.
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Table Analysis

m There 1s a case where the majority vote 1s correct 90
percent of the time, even though this is unlikely. This 1s
an improvement over the individual p = 0.6.

m There 1s also a case where the majority vote is correct
only 40 percent of the time. This 1s worse than the
individual rate given above.

m Best and worst possible cases are “the pattern of
success’” and “the pattern of failure,” respectively.




Patterns of Success and Failure

m Diand Dk classifiers with the
2*2 probability table. (Table
4.4)

m Table for 3 classifier problem
from previous section 1s

shown in Table 4.5.
a+b+c+d+e+f+g+h=1...Eq 8
® Probability for correct

classification (2 or more
correct)

Pmaj = at+b+cte ... Eq9

TABLE 44 The 2 x 2 Relationship Table with
Probabilities.

Dﬁ carrect {1} Dﬁ- wrong fm

D, correct (1) a b
D; wrong (0) c d

Tola a+ b+ c+d=1.

TABLE 4.5 The Probabilities in Two 2-Way Tables
lllustrating a Three-Classifier Voting Team.

D correct (1)
D; — 0y -




Patterns of Success and Failure contd.

m Having p as the individual accuracy,
atbte+f=p ,if D1 is correct
atctetg=p ,1if D2 is correct ... Eq 10
atbt+ctd =p ,1if D3 is correct
Maximizing Pmaj in Eq 9 using Eq 8 and Eq 10 and
a,b,c,d,e,f,g.h>=0 for p=0.6 we find Pmaj = 0.9.
From table 4.3 a=d=f=g=0, b=c=e=0.3, h=0.1
For Pmaj to be correct we need floor(l./2)+1 classifiers

to be correct, so atleast floor(I./2)+1 is required and
remaining 1S Not necessary.




Pattern of Success

B Success Pattern if

Prob of any combination of floor(I./2)+1 correct and
floor(L./2) incotrect votes is o

Prob of all L votes to be incorrect is vy

Prob of any other combination is zero

D3 correct (1) D3 wrong (0)

D1 | D2 1 D1 | D2 1
1 0 o 1

0 o 0 v=1-3 «




Pattern of Success contd.

Combination occurs when all classifiers are incorrect
and when exactly flootr(I./2)+1 are correct. So no votes
are wasted ©

Let I=floor(LL/2)

Pmaj = Cia ... Eq 1l

Pattern of success possible when Pmaj <=1
a <=1/ ©Ci+1) ... Eq12

Relating Pmaj and a to accuracy p
p=11Ca ...Eql3

Substitute Eq 13 in Eq 11,
Pmaj = pl./1+1 = 2pl./L+1 ... Eq 14

If Pmaj <=1, p <= L+1/2L

Pmaj = min {1, 2pL./LL+1} ... Eq 15




Pattern of Failure

m Failure Pattern if

Prob of any combination of floot(LL/2) are correct and
floor(l./2)+1 are incorrect is 3

Prob of all . votes to be correct is 6

Prob of any other combination is 0

D3 correct (1) D3 wrong (0)

D1 | D2 1 D1 | D2 1
| 0=1-33 1 0

0 0 0 3




Pattern of Failure contd.

m Combination occurs when all classifiers are
correct and when exactly | out of L. are correct.

mPmaj=0=1-1Gfp ... Eql6

m Relating Pmaj and a to accuracy p
p=8+11C1 B ... Eq17

m Combining Eq 16 and Eq 17,
Pmaj = pl-1/1+1 = 2p-1)L.+1/1L+1 ... Eq 18




Matan’s Upper and Lower Bound

m Say classifier Di has accuracy pi and D1,...DL
are arranged such that p1=p2=<p3...<pL

mletk=1+1=(1+1)/2and m = 1,2,3,...k
m Upper bound (Pattern of Success)

g = min {1, 2, B(k-1) ... 2(1)}
where X(m) = (1/m) Xy 1 m P

max PP

m [.ower bound (Pattern of Failure)
min P, = max {0, &(k), £(-1).. (1))}
where Em)=(1/m) Xy 11 o1, pL— (L-k)/m




4.3 Weighted Majority Vote




4.3 Weighted Majority Vote

m (Classifiers are not of identical accuracy

Provide a factor to push the competent classitier towards the
final decision

Degtees of suppott for the classes d;;
O di,j =1, 1f D, labels x in W,
N di,j = 0, otherwise
B Discriminant function for wj class using weighted
voting
g(X) = Zimi o1 bid;;

b. is the coefficient of D,




Weighted Majority Vote - Example

m 3 classifiers D, D, and D, with independent
outputs

m Accuracy p;=0.6, p,=0.6, p;=0.7

m P o= (0.6)#%0.3 + 2*0.4*0.6*0.7 + (0.6)**0.7
= 0.6960

m Removing the classifiers D; and D, from the

ensemble overall classification of D, (more
accurate) is improved




Weighted Majority Vote — Example contd.

m Introduce weights b, where 1 = 1, 2, 3

m Choose class label w, if,
> b.d.

Z1 1to L b1d1 k — Max; i=1to L ~1+1,

j=1 to c

= By normahzmg the coetficients,
b.=1

1 Itoc ™

m Assigning b,=b,=0 and b,=1 we get rid of D,
Theretore P_ . = p; = 0.7




Improving Accuracy by Weighting

m 5 classifier ensemble D, D,, D;, D, and D.
independent of each other

m Corresponding accuracy 0.9, 0.9, 0.6, 0.6, 0.6

m Majority Accuracy (atleast 3 out of 5)

B Pmaj = 3%(0.9)%0.4%0.6 + (0.6)° + 6*0.9%0.1+0.4*(0.6)?
= 0.877 (approx.)

m Weights assumed 1/3,1/3,1/9,1/9,1/9




Improving Accuracy by Weighting contd.

m We can sece the first 2 weights of competent classifiers
which scores 2/3 for class label, if both of them agree

m [f one is correct and one is wrong, then the other three
will contribute the majority.
B Pwmaj = (0.9)7 + 2%340.9%0.1%(0.6)20.4 + 2%0.9%0.1%(0.6)?
= 0.927 (approx.)

m Weights that satisty Eq 3 and make D, and D, prevail

when they agree will lead to the same outcome




Theorem — Selecting Weights for the classifiers

B Definition:

D,, D,, ... D, constitutes an ensemble of
independent classifiers

Accuracies pq, Py, --- Pr.
Outputs are combined by Majority Vote Eq 2

Overall Accuracy PY - is maximized by assigning
welghts as,

m b is proportional to log (p; /1 p




Theorem — Selecting Weights for the classifiers

m Proof

s = [sq, Sy, --- 51| T 1s a vector with the label output of
the ensemble, where s. € € is the label for x by
classifier D,

Bayes optimal set of Discriminant function based on
the outputs of L classifiers 1s

= g(x) = log Pwy) P(s|wy), j=1,2,...c




Theorem — Selecting Weights for the
classifiers — Proof contd.

L
gi(x) = Ing[P{mjl l_[ P(.*i;le}j|

=l

= log P(w;) + log n P(s;|w)) n P(s;loy)

i3 =am 1.5 * b

=logPw)+log [] o [] (1 =po

FX =y id, 9wy
P;‘[l - pi)
= log P(w;) + log l_l (1 —py)
LSy =w I = Pi i.5; # oy

L
= log P(ey) + log ]_l %1—[

1.5 =ty =l

Pi
i =P

=logP(w)+ Y log




Theorem — Selecting Weights for the
classifiers — Proof contd.

m The last term in Eq 4 1s independent of j. So we
reduce the discriminant function as,

g(x) = log P(w) + 2 1. di,j log (p; / 1-p)

m Reducing the classification errors not only
depends on the weights assigned to the
classifiers but also upon the Prior probability:.




4.4 Naive Bayes Combination




Naive Bayes Combination

m Assumption: Classifiers are mutually independent given
a class label

m P(s) is the probability of the classtier D, labels x in class
s; € £2.
m Conditional Independence,
P(s | wi) = P(s3,80, -5 | Wi) = Tizy ¢ 1 P8 W)
® Prior probability to label x,
P(w,|s) = P(wi) P(s|wi) / P(s)
= P(wy) ey o, P(si| W) / P(s) ... Eq5

where k=1,...c




Naive Bayes Combination contd.

m P(s), the denominator of Eq 5 does not depend
on w, so the ‘support’ for class w, is,
u, (%) 1s proportional to P(wy) I1._, | P(s,|w) ... Eq6
m For each D,, a c*c confusion matrix CM' is
defined by applying D. to the training set

m The (k,s)™ entry of the matrix cm!,__ is the
number of elements whose true class is w, and
assigned by D. to w, class.




Naive Bayes Combination contd.

Estimate of probability P(s; | wy) is cm'y  / Ny
Estimate of priot probability for w, is N, / N
Eq 6 can be written as,

w (%) is proportional to (1/Ny "N TIi_; , ; emY ¢ ... Eq7
Example on Pg 127

Zero as an estimate of P(st|wk) nullifies p, (x)
regardless of the rest of the estimates

Titterington et al [4] uses naive Bayes for independent
features. Accounting the possible zeroes, Eq 7 is
written as
P(s | wk) is proportional to [ IT_; 1 { cm 4 + (1/¢) } /
N A7
Example on Pg 128




[2] Combining Heterogeneous Classifiers for
Word-Sense Disambiguation

Paper 1s an interesting application of classifier combination.

Uses an ensemble of simple heterogeneous classifiers to perform
English word snse disambiguation.

Word snse disambiguation is a process that attempts to
ascertain the approptiate meaning of a word within a sentence.

= For example, the word “bass” can mean a type of fish, tones of a low
frequency, or a type of guitar that plays these tones.




Word-Sense Disambiguation

m This is an important problem within computational
linguistics - improved solutions can lead to advances in

document classification, machine translation, and other
similar areas.

Common approaches include:
= Naive Bayes
m Decision trees/Decision lists

= Memory-based learning




The System

Split data into multiple training and held-out parts.
2 Rank first-order classifiers globally (across all words).
3 Rank first-order classifiers locally (per word),
breaking ties with global ranks.
4  For each word w
5 For each size k
6 Choose the ensemble E ., to be the top & classifiers

Fanal clagsalve

2nd.aeder ranking

Znd. arder classiliers

7 For each voting method m
Ist. order ranking - 8 Train the (k, m) second-order classifier with E,,.;
1 Y, " 9 Rank the second-order classifier types ik, m) globally.
bst. onder classifiess (1) (3) ':J__f] ONOROROROLLXL 10 Rank the second-order classifier instances locally.

Choose the top-ranked second-order classifier for each word.
Retrain chosen per-word classifiers on entire training data.
Run these classifiers on test data, and evaluate results.

Figure 1: High-level system orgamzation.

Table 1: The classifier construction process.

The first-order classifiers were implemented by a class of

23 students and took varied approaches to the problem.



Classifier Combination

m Combined the first-order classifiers using:

m Majority voting: Chose the output with the most votes. Ties
were broken by always choosing the most frequent output.

= Weighted voting: Each classifer assigned a voting weight. The
sense with the greatest weighted vote is chosen. Weights
must be positive and, unlike majority voting, can differ.

= Maximum entropy: Classifier trained and run on all first
order outputs. Votes are weighted with estimated values,
which can differ and be negative.




[3] Adaptive Weighted Majority Vote
Rule for Combining Multiple Classifiers

m Paper talks about an optimization technique
over the Weighted Majority Vote Rule

m The effectiveness is tested on 30K handwritten
digits extracted from the NIST database.

m The optimization technique is based on a
Genetic Algorithm that searches for proper
value for the weights used in Majority Vote

Rule.
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