5. Linear Discriminant
Functions

By
Ishwarryah S Ramanathan

Nicolette Nicolosi

Agenda

m 5.5 Minimizing Perceptron Criterion Function
— The Perceptron Criterion Function
— Convergence Proof for Single Sample Correction

— Direct Generalizations

m 5.6 Relaxation Procedures
— The Descent Algorithm

— Convergence proof

m 5.7 Non-Separable Behavior

5.5 Minimizing the Perceptron

Criterion Function

5.5.1 The perceptron criterion function

m Construct a criterion function for solving
linear equalities aty; > 0.

m The naive approach:

— Let J(a; Vi, ..., Yn) = number of samples
misclassified by a.

— This is a poor approach because the function
IS piecewise constant.

The perceptron criterion function contd.

m A better choice is the Perceptron
criterion function:

—Jp(a) = Zyey —aly
— y(a) are the samples misclassified by a

— Jp is 0 if no samples are misclassified

Comparing Criterion Functions

FIGURE 5.11. Four learning criteria as a function of vweighits in a linear classifier. Al the
upper left is the total number of patterns misclassified, which is piecewise constant and
hence unacceptable for gradient descent procedures. At the upper right is the Perceptron
criterion (Eq. 16), which is piecewise linear and acceptable for gradient descent. The
lowwer left is squared error (Eq. 32), which has nice analyvtic properties and is useful
even when the patterns are not linearly separable. The lower right is the square error
with margin {Eq. 33). A designer may adjust the margin b in order to force the solution
vector o lie toward the middle of the b = 0 solution region in hopes of improving
generalization of the resulting classifier. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, FPatterry Classification. Copyright & 2001 by John Wiley & Sons, Inc.

Constructing the Perceptron Algorithm

m The j-th component of the gradient of J, is
®© Jp/ © aj. So,

— AJp = Zyey (-Y)
m This makes the update rule:
—a(k+1) = a(k) + n(k) Zyeyk (y)

— Yk Iis the set of samples misclassified by a(k)

The Batch Perceptron Algorithm

begin
init a, M(*), criterion O, k = 0
do
k =k + 1
a = a + N(k)Zywyx(y)
until | M(k)Zyew(y) | < O
return a
end

The Batch Perceptron Algorithm contd.

m Basica

ly, the next weight vector is determined

by adding the current weight vector to a

multip

e of the number of misclassified samples.

m The term batch is used because a large number
of samples are involved in computing each
update.

m Next slide: two-dimensional example with a(1) =
0 and n(k) = 1.

Perceptron Algorithm

FIGURE 5.12. The Perceptron criterion, J,(a), is plotted as a function of the weights a
and a; for a three-pattern problem. The weight vector begins at 0, and the algorithm
sequentially adds to it vectors equal to the “normalized” misclassified patterns them-
selves. In the example shown, this sequence is ¥y, ¥4, ¥1. ¥3, at which time the vector
lies in the solution region and iteration terminates. Mote that the second update (by y4)
takes the candidate vector farther from the solution region than after the first update
(cf. Thearem 5.1). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.

5.5.2 Convergence Proof of

Single-Sample Correction

Single Sample Perceptron

m Some simplifying assumptions:

— Modify the weight vector whenever a single sample in
the sequence is misclassified

— n(k) is constant - there is a fixed increment
— yXis a sample; y, is a misclassified sample

— This results in the fixed-increment rule for
generating a sequence of weight vectors:

= a(1) arbitrary
= a(k+1) = a(k) + y¢, where k >=1

Fixed-Increment Single Sample Perceptron Algorithm

begin
init a, k = 0
do
= (k + 1) mod n
if y*¥ is misclassified by a
then a = a + y*
until all patterns classified
return a
end

Fixed-Increment Rule

FIGURE 5.13. Samples from bwo categories, anq (black) and ws (red) are shown in aug-
mented feature space, along with an augmented weight vector a. At each step in a
fixed-increment rule, one of the misclassified patterns, v*, is shown by the large dot.
A correction Aa {proportional to the pattern vector ¥*) is added to the weight vector—
toward an e point or away from an . point. This changes the decision boundary from
the dashed position (from the previous update) to the solid position. The seguence of
resulting a vectors is shown, where later values are shown darker. In this example, by
step 9 a soluwtion vector has been found and the categories are successfully separated
by the decision boundary shown. From: Richard . Duda, Peter E. Hart, and David G.
Stork, Fattern Classification. Copyright (C 2001 by John Wiley & Sons, Inc.

Perceptron Convergence

m [f samples are linearly separable, then the
previous algorithm will succeed and return
a solution vector.

m [dea:

— If a2 is any solution vector, then ||ax(k+1) -
az2|| is smaller than ||a(k) - a2(k)]|

— True for many solution vectors, but not in
general (see steps 6 and 7 in previous slide).

Perceptron Convergence contd.

m We've already seen a(k+1) = a(k) + yX. a2 is any
solution vector such that axty; is positive for all i.
We can add a scale factor a and rewrite this
equation:

a(k+1) - aa2= (a(k) - aaz) + yX
|la(k+1) - a@2||? = [[a(k) - aaz|[? + 2(a(k) - c@2)yk + |[yX[|?

m Because yk was misclassified, at(k)yk <= 0,
giving:

la(k+1) - a@z||* <= [la(k) - aaz||* + 0@y + [|y]|?

Perceptron Convergence contd.

m Because axtyX is strictly positive, the
second term will overpower the third term

if a is large enough.

m For example, let B be the maximum

pattern vector length (B = maxi || Vi ||?),
and y be the smallest inner product of the

solution vector with any pattern vector (v
= min; [az2tyi] > 0).

Perceptron Convergence contd.

m \We now have the inequality:
|la(k+1) - aaz2||? <= ||a(k) - aaz||? - 2ay + B?

m Choosing a = B4/y gives:

|la(k+1) - aaz]

m S0, the squarec

2 <= ||a(

distance

K) - 0az||? - B2

between a(k) and aaz

is reduced by at least B2 after each correction.
After k corrections, we have:
[la(k+1) - a@z|[* <= [|a(1) - aaz||* - kB2

Perceptron Convergence contd.

m The squared distance can not be negative, so there must
be at most ko corrections, where ko = ||a(1) - aaz||? /

B2.

The weight vector that results after the corrections are
done must classify all samples correctly, because there
are a finite number of corrections that only occur at each
misclassification.

In summary, ko is @ bound on the number of corrections,
and there will always be a finite humber of corrections
using the fixed-increment rule if the samples are linearly
separable.

5.5.3 Direct Generalizations

Variable Increment Perceptron

m A variant that uses a variable increment

's when

n(k) and a margin b, and correc

at(k)y* does not exceed the margin.

m The update function is now:
a(l) a

rbitrary

a(k+1) = a(k) + n(k)yx k>=1

where at(k)y* <= b for all k

Variable-Increment Perceptron Convergence

m [t can be shown that a(k) converges to a solution
vector a satisfying aty; > b for all i if the samples
are linearly separable and if:

m These conditions on n(k) are satisfied if n(k) is a
positive constant or decreases as 1/Kk.

Variable-Increment Perceptron with Margin

begin
init a, threshold ©, margin b, N(*), k

(k + 1) mod n
if aty® <= b
then a = a + nN(k)y*
until aty* > b for all k
return a
end

Batch Variable Increment Perceptron

®m Another variant is the original gradient descent
algorithm for Jp. The update function for this is:
a(l) arbitrary
a(k+1) = a(k) + n(k) + Zyexy , k>=1

m It can be easily shown to return a solution. If az
IS a solution vector, it correctly classifies the
correction vector:

y< = Zyeyk Y

Batch variable Increment Perceptron contd.

begin
init a, nN(*), kK =0

(k + 1) mod n
{}

do 7 = 7 + 1
1f y; 1s misclassified
then append y; to VY«
until 7 = n
= a + N(k)Zy-yx(y)
until Yx = {}
return a
end

Balanced Winnow Algorithm

m Related to the Perceptron algorithm - the main
difference is that the Perceptron algorithm returns a
weight vector with components ai (i = 0, ..., d), and the
Winnow algorithm scales these by 2sinh[ai].

m The balanced Winnow algorithm has separate positive
(a*) and negative (a’) weight vectors that are each
associated with one of two categories to be learned.
Corrections to either only occur if a training pattern in its
own set is misclassified.

Balanced Winnow Algorithm contd.

begin
init a', a7, N(*), k 0O, a > 1
if Sgnl[a**yx - a‘yx] != zx //misclassified
then
1f zx = +1
then ai* = a™¥iai"; ai” = d7Yiai~ for all i
1f zx = -1
then ai’ = a¥Yiai™; ai- = Ad%¥iai~ for all i
return a‘, a-
end

Balanced Winnow Algorithm contd.

® The main benefits of this version over the
Perceptron algorithm are:

— The two weight vectors move in a uniform direction
and the “gap” between them never increases. This
leads to @ more general convergence proof than that
of the Perceptron.

— Convergence is generally faster. This is because each
weight does not go past the final value if the learning
rate is correctly set.

5.6 Relaxation Procedures

5.6.1 The Descent Algorithm

m \We have the perceptron criterion function

- Jp(a)=2XyEYE &) ... Eqgl

— Y is the set of training samples misclassified by ‘a’, the
solution vector

m Relaxation Procedure

— 'Relaxation’ is a generalized approach to minimize the
perceptron criterion function (eq 1) by linear
classification.

— Jp(.) is a function with ‘a” as a solution vector. Similar
function Jqg(.). Both denotes the misclassified sample.

The Descent Algorithm contd.

- J,(@) = 2 ¢y (@')° ... Eq2
— Adv: The curve is smoother (search is easier) and continuous
— There are two problems with this criterion

= The function is too smooth and slowly converge to a=0

=], is dominated by training samples with large magnitude

Fig.1J,(a) Fig.2 J (a)

[Taken from ‘Pattern Classification’ from Duda and Hart]

The Descent Algorithm contd.

m To avoid the problems of J,, we choose other perceptron
function J..

-). =22 ¢ ((@y-b)?/ |yl ... Eq3
where Y(a) are samples of aty <= b
J(a) is never negative
J(a) = 0, aty >= b for all training samples or when Y is empty

Gradient = 0J.(a) / 0a = AJ,
=12.2% ¢ ((a'y-b).y)/ |yl
=2 ey ((@y-b).y)/ lyl?

Therefore,

a(k+1) = a(k) + n(k) 2 ey ((@y-b).y)/ |yl
where n(k) is learning rate that sets the step size

Batch Relaxation with Margin

begin
init a, n(*), b, k =0
do k=(k+1) mod n
Y, = {}
J =0
do jJ = J+1
if atyl <= b then append yJ to Y,
until j = n
a =a+ n(k) I .o ((b-aty).y) / lyl?
until Y, = {}
return a
end

Relaxation Algorithm contd.

m By Single-Sample Correction Rule
analogous to Eq 3,

—a(l), arbitrary

— a(k+1) = a(k) + n ((b-at(k).y*).y9) / Iy<|2 ...EQq4
where at(k).yk <= b for all k

Single-Sample Relaxation with Margin

begin
init a, n(*), b, k =0
do k=(k+1) mod n
if atyk <= Db
then a=a+ n(k). ((b-at(k).y*) .y*)/|y¥|?
until aty* > b for all y*
return a
end

Single Sample Relaxation Rule

m Geometric Interpretation of Single-Sample Relaxation
Rule

— (k) = (b-a'(k).y*) / [y]
— r(k) is the distance from the hyperplane atyk=b to a(k).

— yk/ |y¥| is the unit normal vector of hyperplane

Figure 5.14: In each step of a basic relaxation algorithm, the weight vector is moved
a proportion 1 of the way towards the hyperplane defined by a®y® = b

Geometric Interpretation of Single-Sample Relaxation Rule

— If n=1, a(k) is moved to the hyperplane
— Eqg 4 becomes,
al(k+1).yk-b = (1-n) (a'(k).y* - b)
m Under-Relaxation
— If n<1 then at(k+1).y¥ is less than b

— Slow descent or failure to converge

m Over-Relaxation
— If n>1 then at(k+1).yk is greater than b

— QOvershoots, but convergence will finally be achieved

m Note: Werestrict0 < n < 2

5.6.2 Convergence Proof

Convergence Proof

m Relaxation rule is on a set of Linearly Separable
Sample. The corrections may not be finite

m As the number of corrections goes to infinity we
could see a(k) converges to a limit vector on the
boundary of the solution region.

m \We can say region of aty >= b is in the region of
aty>0 if b>0

m Which implies that a(k) will enter this region

Convergence Proof contd.

m Proof
Say a is any vector in solution region
ie., atyi > b for all i then, a(k) gets closer to a at each step

From EqQ 4,
[latk+1) - a[[> = [[a(k) - al[|? - 2n ((a-a(k))y*) (b-at(k).y<)/|y¥||?
+ n? (b-a'(k).y<)2/]|y¥|[2

And (d-a(k))tyk > b-at(k)yk >= 0

So,
[la(k+1) - @[> <= [[a(k) - a|[?> = n(2 - n) (b-a¥k)y*)? / [1y¥||?

Because 0<n<2,
lla(k+1) - a[| <= [la(k) - al|

Thus a(1),a(2),... gets closer to a and as limit k goes to infinity, ||a(k) -
a|| approaches a limiting distance r(a)

Convergence Proof contd.

— That is, a(k) confines to a hyper-sphere of radius r(a) with a as centre,

as k goes to oo,

— Therefore, Limiting a(k) is confined to intersect hyper-spheres centered

about all of the possible solution vectors.

m The intersection of the hyper-spheres is a single point on the
boundary of the solution region.

Say a’ and a” are on the common intersection, then ||a’ - a||=]|]|a" - a||
for every a in the solution region.

But ||a’ - a]|=[|a” - 3| implies that the solution region is contained in
(d-1) dimensional hyper-plane of points equidistant from a” and a”.

But the solution region is d dimensional.

Which implies a(k) converges to point ‘a".

Convergence Proof contd.

m The point 'a’ is not inside the solution
region because then the sequence would
be finite.

m [t is not outside the region, because the
correction will make ‘a’ move n times its
distance from boundary plane.

m Therefore, the /imit point must be on the
boundary.

5.7 Non-separable behavior

The Perceptron and Relaxation procedures are methods
for finding a separating vector when the samples are
linearly separable. They are error correcting procedures

Separating Vector in training does not mean the

resulting classifier will perform well on independent test
data

For performance, many training samples should be used

Sufficiently large training samples are almost certainly
not linearly separable

No weight vector can correctly classify every sample in a
non-separable set

5.7 Non-separable Behavior contd.

m Number of corrections in the Perceptron and
Relaxation procedures goes to infinity if set is
non-separable

m Performance improves if n(k)->0 as k->coo

m The rate at which n(k) approaches zero is
Important:

— Too slow: Results will be sensitive to those training
samples that render the set non-separable.

— Too fast: Weight vector may converge prematurely
with less than optimal results.

Research Ideas

m Paper by Khardon and Wachman discusses
performance of variants of the Perceptron
algorithm.

— They discovered that the variant that uses a margin
has the unintended side effect of tolerating noise and
stabilizing the algorithm.

— The authors implemented several variants of the
algorithm and performed experiments using different
sets of data to compare performance.

— Good overview of a practical implementation and its
results.

Research Ideas

m Paper by S. J. Wan on Cone Algorithm —
Extension to Perceptron Algorithm

— Perceptron convergence is important in
machine learning algorithms

— Find a covering cone for a finite set of linearly
contained vectors and the convergence

— Theorems, definitions and equations are well
defined.

References

m Pattern Classification, 2nd ed by Duda R, Hart P,
Stork D, 2001. John Wiley & Sons.

m Noise Tolerant Variants of the Perceptron
Algorithm by R. Khardon and G. Wachman -
Journal. Mach. Learn. Res. Pg 227-248 May2007

m Cone Algorithm: An Extension of the Perceptron
Algorithm by S. J. Wan - IEEE Transactions on
Systems, Man and Cybernetics, Vol. 24, No. 10,
October 1994

THANKS!

