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Maximum Likelihood 
Estimation

Assume

Likelihood density for each class has known 
form, given by a parameter vector theta, e.g.

Task

Estimate theta from training samples
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Definition of MLE

Likelihood of theta w.r.t. a sample set

Assuming samples are independent and 
identically distributed:

Maximum-Likelihood Estimate of theta

The vector which maximizes p(D|theta); 
“best agrees” with the observed samples
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n∏

k=1
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Example: Maximum Likelihood 
Estimate of the Mean
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FIGURE 3.1. The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figure shows the likelihood p(D|θ) as a function of the mean. If we
had a very large number of training points, this likelihood would be very narrow. The
value that maximizes the likelihood is marked θ̂ ; it also maximizes the logarithm of
the likelihood—that is, the log-likelihood l(θ), shown at the bottom. Note that even
though they look similar, the likelihood p(D|θ) is shown as a function of θ whereas the
conditional density p(x|θ) is shown as a function of x. Furthermore, as a function of θ ,
the likelihood p(D|θ) is not a probability density function and its area has no signifi-
cance. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.



Finding the MLE
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Log-likelihood

Gradient of Log-Likelihood

(Assuming p(D|theta) differentiable, well-behaved!)

Solve for MLE of theta using:

May have multiple solutions; risk of local minima or 
inflection points
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MLE Estimate of the 
Mean

Assuming multivariate normal, MLE for the 
mean must satisfy:

Multiply and rearrange to obtain (drum roll 
please):
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MLE Estimate for Mean 
and Covariance

Conditions:

Substitute estimates for thetas, rearrange:

7

n∑

k=1

1

θ̂2
(xk − θ̂1) = 0

−
n∑

k=1

1

θ̂2
+

n∑

k=1

(xk − θ̂1)2

θ̂2
2

= 0

2

n∑

k=1

1

θ̂2
(xk − θ̂1) = 0

−
n∑

k=1

1

θ̂2
+

n∑

k=1

(xk − θ̂1)2

θ̂2
2

= 0

θ1 = µ, θ2 = σ2 (univariate) θ2 = Σ (multivariate)

2

1 A

p(x|ωj) ∼ N(µj, Σj)

θ contains µj, Σj

p(x|ωj, θj)

p(D|θ) =
n∏

k=1

p(xk|θ)

l(θ) =
n∑

k=1

ln p(xk|θ)

∇θl =
n∑

k=1

∇θ ln p(xk|θ)

∇θl = 0

n∑

k=1

Σ−1(xk − µ̂) = 0

µ̂ =
1

n

n∑

k=1

xk

1

n∑

k=1

1

θ̂2
(xk − θ̂1) = 0

−
n∑

k=1

1

θ̂2
+

n∑

k=1

(xk − θ̂1)2

θ̂2
2

= 0

θ1 = µ, θ2 = σ2 (univariate) θ2 = Σ (multivariate)

σ̂2 =
1

n

n∑

k=1

(xk − µ̂)2

Σ̂ =
1

n

n∑

k=1

(xk − µ̂)(xk − µ̂)t

2



Bias

Our variance, covariance estimates are 
biased

i.e. expected value over all data sets of size n 
is not the estimated value. 

Fix (simple)

Average over n-1, not n for estimated value
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Unbiased Estimators

Absolutely Unbiased

Estimator is unbiased for all distributions

Asymptotically Unbiased

Estimator tends towards becoming unbiased 
as n (# sample) becomes large

• Often acceptable for PR problems with large 
training data available
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Effect of Invalid Model 
(assumed distribution)
Will the theta obtained by MLE 
produce the best classifier over the 
assumed space of models?

No.

• If model selection is poor, cannot be certain 
that inferred classifier is the best possible in 
our model set (space)
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Example: Bayesian 
Learning of the Mean
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FIGURE 3.2. Bayesian learning of the mean of normal distributions in one and two dimensions. The posterior
distribution estimates are labeled by the number of training samples used in the estimation. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Adding Features to 
Better Separate Classes
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FIGURE 3.3. Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace—here,
the two-dimensional x1 − x2 subspace or a one-dimensional x1 subspace—there can
be greater overlap of the projected distributions, and hence greater Bayes error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.



Overfitting: An Example 
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FIGURE 3.4. The “training data” (black dots) were selected from a quadratic function
plus Gaussian noise, i.e., f (x) = ax2+bx+c+ε where p(ε) ∼ N(0, σ 2). The 10th-degree
polynomial shown fits the data perfectly, but we desire instead the second-order func-
tion f (x), because it would lead to better predictions for new samples. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.


