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Multilayer Neural Networks 

We learned in Chapter 5 that clever choices of nonlinear      functions we can obtain 
arbitrary decision boundaries that lead to minimum error.   

Identifying the appropriate nonlinear functions to be used can be difficult and incredibly 
expensive. 

We need a way to learn the non-linearity at the same time as the linear discriminant.   

Multilayer Neural Networks, in principle, do exactly this in order to provide the optimal 
solution to arbitrary classification problems.   

Multilayer Neural Networks implement linear discriminants in a space where the inputs 
have been mapped non-linearly.   

The form of the non-linearity can be learned from simple algorithms on training data.   

Note that neural networks require continuous functions to allow for gradient descent 



Multilayer Neural Networks 

Training multilayer neural networks can involve a number of different 
algorithms, but the most popular is the back propagation algorithm or 
generalized delta rule. 

Back propagation is a natural extension of the LMS algorithm.   
The back propagation method is simple for models of arbitrary complexity.  
This makes the method very flexible. 

One of the largest difficulties with developing neural networks is 
regularization, or adjusting the complexity of the network. 

Too many parameters = poor generalization 

Too few parameters = poor learning 



Example: Exclusive OR (XOR) 

x – The feature vector 
y – The vector of hidden layer 
      outputs 
k – The output of the network 
     – weight of connection  
        between input unit i and          
        hidden unit j  
     – weight of connection   
        between input hidden unit j 
        and output unit k 
bias – A numerical bias used to  
          make calculation easier 



Example: Exclusive OR (XOR) 

XOR is a Boolean function that is true for two variables if and only if one of the variables 
is true and the other is false.   

This classification can not be solved with linear separation, but is very easy for a neural 
network to generate a non-linear solution to. 

The hidden unit computing       acts like a two-layer Perceptron.   

It computes the boundary     +     +         = 0.  If     +     +         > 0, then the hidden unit 
sets     = 1, otherwise      is set equal to –1.  Analogous to the OR function.   

The other hidden unit computes the boundary for     +      +          = 0, setting     = 1 if   
     +      +         > 0.  Analogous to the negation of the AND function. 

The final output node emits a positive value if and only if both     and     equal 1.   

Note that the symbols within the nodes graph the nodes activation function.   

This is a 2-2-1 fully connected topology. 



Feedforward Operation and Classification 

Figure 6.1 is an example of a simple three layer neural network 

The neural network consists of: 
  An input layer 
  A hidden layer 
  An output layer 

Each of the layers are interconnected by modifiable weights, which are
 represented by the links between layers 

Each layer consists of a number of units (neurons) that loosely mimic the
 properties of biological neurons 

The hidden layers are mappings from one space to another.  The goal is to
 map to a space where the problem is linearly separable.   



Feedforward Operation and Classification 



Activation Function 

The input layer takes a two dimensional vector as input. 

The output of each input unit equals the corresponding component in
 the vector. 

Each unit of the hidden layer computes the weighted sum of  its inputs
 in order to form a a scalar net activation (net) which is the inner
 product of the inputs with the weights at the hidden layer. 



Activation Function 

Where 
  i indexes units in the input layer 
  j indexes units in the hidden layer 
  wij denotes the input-to-hidden layer weights at the hidden

 unit j 



Activation Function 

Each hidden unit emits an output that is a nonlinear function of its
 activation, f(net), that is: 

One possible activation function is simply the sign function: 

The activation function represents the nonlinearity of a unit. 
The activation function is sometimes referred to as a sigmoid function,

 a squashing function, since its primary purpose is to limit the output
 of the neuron to some reasonable range like a range of -1 to +1,
 and thereby inject some degree of non-linearity into the network. 

)2(‏ 



Activation Function 

 Because tanh is asymptotic 
when producing outputs of ±1, 
the network should be trained 
for an intermediate value such 
as ±.8. 

LeCun suggests the hyperbolic tangent function as a good activation 
function. tanh is completely symmetric: 

Also, the derivative of tanh is simply 1-tanh2, so if 
f(net) = tanh(net), then the derivative is simply 1-tanh2(net). 
When we discuss the update rule you will see why an activation 

function with an easy-to-compute derivative is desirable. 



Activation Function 

Each output unit similarly computes its net activation based on the
 hidden unit signals as: 

Where: 
  k indexes units in the output layer 
  nh denotes the number of hidden units 

Equation 4 is basically the same as Equation 1. The only difference is
 are the indexes. 



Activation Function 

An output unit computes the nonlinear function of its net 

The output zk can be thought of as a function of the input feature 
vector x 

If there are c output units, we think of the network as computing c  
discriminant functions zk=gk(x)‏ 

Inputs can be classified according to which discriminant function is  
determined to be the largest 



General Feedforward Operation 

Given a sufficient number of hidden units of a general type any  
function can be represented by the hidden layer 

This also applies to: 
  More inputs 
  Other nonlinearities 
  Any number of output units 

Equations 1, 2, 4, and 5 can be combined to express  
the discriminant function gk(x): 



Expressive Power 

Any continuous function from input to output can be implemented in a
 three layer network given 
  A sufficient number of of hidden units nH 
  Proper nonlinearities 
  Weights 

Kolmogorov proved that any continuous function g(x) defined on the
 hypercube In (I = [0,1] and n ≥ 2) can be represented in the form 



Expressive Power 

Equation 8 can be expressed in neural network terminology as follows: 
  Each of the 2n + 1 hidden units takes as input a sum of d

 nonlinear functions, one for each input feature xi 
  Each hidden unit emits a nonlinear function     of its total input 
  The output unit emits the sum of the contributions of the hidden

 units 



Expressive Power 

Figure 6.2 represents a 2-4-1 network, with a bias. 

Each hidden output unit has a sigmoidal activation function f(·) 

The hidden output units are paired in opposition and  
thus produce a “bump” at the output unit. 

Given a sufficiently large number of hidden units, any continuous
 function from input to output can be approximated arbitrarily well by
 such a network. 



Expressive Power 



Backpropagation Learning Rule 

“Backpropagation of Errors” – during training an error must 
be propagated from the output layer back to the hidden 
layer in order learn input-to-hidden weights 

Credit Assignment Problem – there is no explicit teacher to 
tell us what the hidden unit’s output should be 

Backpropagation is used for the supervised learning of 
networks. 



Modes of Operation 

Networks have 2 primary modes of operation: 

  Feed-forward Operation – present a pattern to the input 
units and pass signals through the network to yield 
outputs from the output units (ex. XOR network) 

  Supervised Learning – present an input pattern and 
change the network parameters to bring the actual 
outputs closer to desired target values 



3-Layer Neural Network Notation 
d – dimensions of input pattern x 
xi – signal emitted by input unit i 

 (ex. pixel value for an input image) 

nH – number of hidden units 
f() – nonlinear activation function 
wji – weight of connection between input 

unit i and hidden unit j  
netj – inner product of input signals with 

weights wij at the hidden unit j 
yj – signal emitted by hidden unit j,  

 yj = f(netj) 
wkj – weight of connection between input 

hidden unit j and output unit k 

netk – inner product of hidden signals with 
weights wkj at the output unit k 

zk – signal emitted by output unit k 
  (one for each classifier), zk = f(netk) 

t – target vector that output signals z are compared with to 
find differences between actual and desired values 

c – number of classes (size of t and z) 



Training Error 

Using t and z we can determine the training error of a given pattern 
using the following criterion function: 

(9) 

Which gives us half the sum of the squared difference between the 
desired output tk and the actual output zk over all outputs. This is 
based on the vector of current weights in the network, w. 

(44) 

Looks very similar to the the Minimum Squared Error criterion function:  

Y– n-by-    matrix of x space feature points to y space feature points in  
    dimensions  

a –    dimensional weight vector 
b – margin vector  



Update Rule: Hidden Units to Output Units 

Weights are initialized with random values and changed in a direction 
that will reduce the error: 

(10) 

η – learning rate that controls the relative size of the change in weights 

(12) 

The weight vector is updated per iteration m, as follows: 

(11) 

Let’s evaluate Δw for a 3-layer network for the output weights wkj: 

(13) 

yj  

(14) 

(4) 

Sensitivity of unit k describes how the overall error 
changes with respect to the unit’s net activation: 



Looks a lot like the Least Mean Squared Rule when f’(netk)=1: 

(15) 

(9) (5) 

After plugging it all in we have the weight update / learning rule: 

(17) 

Iterative form: 

(61) 

If we get the correct outputs, tk = zk, then Δwkj = 0 as desired  

Update Rule: Hidden Units to Output Units 



The update rule for a connection weight between hidden unit j and output unit k : 

Working backwards from outputs to inputs, we need to find the update rule for 
a connection weight between input unit i and hidden unit j: 

(21) 

Intuitive  

reasoning  

Update Rule: Input Units to Hidden Units 



Backpropagation Analysis 
What if we set the all the initial weights, wkj, to 0 in the update rule?  

(21) 

Clearly, Δwji = 0 and the weights would never change. 
It would be bad of all network weights were ever equal to 0. 
This is why we start the network with random weights. 

The update rules discussed only apply to a 3-layer network where all 
of the connections were between a layer and it’s preceeding layer. 

The concepts can be generalized to apply to a network with n hidden 
layers, to include bias units, to handle a different learning rate for 
each unit, etc. 

It’s more difficult to apply these concepts to recurrent networks where 
there are connections from higher layers back to lower layers/ 



Training Protocols 
Training consists of presenting to the network the collection of patters whose 
category we know, collectively known as the training set.  Then we go about 
finding the output of the network and adjusting the weights to make the next 
output more like the desired target values. 

The three most useful training protocols are: 
•  Stochastic 
•  On-Line 
•  Batch 

In the stochastic and batch training methods, we will usually make several 
passes through the training data.  For on-line training, we will use each 
pattern once and only once.   

We use the term epoch to describe the overall number of training set passes.  
The number of epochs is an indication of the relative amount of learning. 



Stochastic Training 
In stochastic training patterns are chosen at random from the training set and network 
weights are updated for each pattern presentation. 

Stochastic Back propagation Algorithm 

1.  begin initialize       , w, criterion    ,    , m       0 

2.          do m       m + 1 

3.                             randomly chosen pattern 

4.                                  +            ;                   + 

5.          until               <  

6.      return w 

7.  end     



On-Line Training 
In on-line training, each pattern is presented once and only once. 
There is no use of memory for storing the patterns. 

Useful for live training with human testers.   
On-line Back propagation Algorithm 

1.  begin initialize       , w, criterion    ,    , m      0 

2.          do m      m+1 

3.                          select a new, unique pattern to be used 

4.                                +                           ;   + 

5.          until               <     

6.      return w 

7.  end     



Batch Training 
In batch training, the entire training set is presented first and their 
corresponding weight updates are summed; from there the actual weights in the 
network are updated.  This process is iterated until the stopping criteria is met. 

The total training error over n individual patterns can be written as: 
   

Batch Back propagation Algorithm 

1.  begin initialize       , w, criterion     ,     , m       0 

2.          do r       m+1 (increment epoch)  

3.              m        0; 

4.              do m       m+1 

5.                          = select pattern 

6.                    

7.              until m=n 

8.               

9.          until                <  

10.      return w 

11.  end     



Learning Curves 
training set – network hones weights using update rule 
test set – estimate generalization error due to weight training; performance of fielded 

network. 

validation set – represent novel patterns not yet classified 
training usually stopped at first minimum of validation set 

low expressive power (few network weights) 
 + high Bayes error  
= high asymptotic training error 



Convolutional kernel application example:  

Convolutional Neural Network 



Each pixel in the sample MNIST image becomes an input node. 
Convolutional kernel is applied to the input image in the second layer:  

Convolutional Neural Network 



Simard recommends a convolutional neural network consisting of 5 layers.  

Input layer consists of one neuron per pixel in a 29x29 padded MNIST sample image 

First layer applies 6 feature maps to the input layer. Each map is a randomly distributed 5x5 kernel.  
Second layer applies 50 feature maps to all 6 previous maps. Each map is a randomly distributed 5x5 kernel. 

First and second layers referred to as trainable feature extractor.  

Third and fourth layers are fully connected and compose a universal classifier with 100 hidden units. 

Third and fourth layers referred to as a trainable feature classifier.  

Convolutional Neural Network Applied to
 Handwritten Digit Recognition 

http://www.codeproject.com/KB/library/ 
NeuralNetRecognition/IllustrationNeuralNet.gif 



Structural Adaptability  
One of the biggest issues with neural networks is the selection of a suitable structure for 
the network.  This is especially true in unknown environments.   

Lee Tsu-Chang developed a method for altering the structure of the neural network during 
the learning process. 

If, during training, the error has stabilized but is larger than our target error, we will 
generate a new hidden layer neuron.   

A neuron can be annihilated when it is no longer a functioning element of the network.  
This occurs if the neuron is a redundant element, has a constant output, or is entirely 
dependent on another neuron.   

These criteria can be checked by  monitoring the input weight vectors of neurons in the 
same layer.  If two of them are linear dependent, then the represent the same hyper plane 
in the data space spanned by their receptive field and are totally dependent on each 
other.  If the output is a constant value, then the output entropy is approximately zero.   

This methodology is incredibly useful for finding the optimal design for a neural network 
without requiring extensive domain knowledge.   



Structural Adaptability  

In the graph to the right, the 
letters A, B, and C represent 
the times when structural 
adaptability caused a hidden 
layer neuron to be removed.  
Note that these occurred at 
performance plateaus and 
did in fact improve the error 
rate. 

The error rate was 
calculated for an OCR 
network over each upper-
case English letter. 
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