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4.6 METRICS AND NEAREST-
NEIGHBOR CLASSIFICATION 

Li Yu, Hongda Mao & Joan Wang 

The properties of a metric 

D(a,b) – the distance between a and b 
  Non-negativity: D(a,b)>=0 
  Reflexivity: D(a,b)=0 if and only if a=b 
  Symmetry: D(a,b)=D(b,a) 
  Triangle inequality: D(a,b)+D(b,c)>=D(a,c) 

Example: Minkowski Metric (Lk norm) 

  The distance between a and b in d dimensions 

  What if k=1 (L1 norm) 
  What if k=2 (L2 norm)     

€ 

Lk (a,b) = ai − bi
k

i=1

d

∑k

L1 Norm 

  d-dimensional 

  1 dimensional 
    L1(a,b)=|a-b| 
  L1 norm is also called Manhattan or city block 

distance € 

L1(a,b) = ai − bi
i=1

d

∑

Manhattan 

•  http://
newyorkcity2005.w
eb.infoseek.co.jp/
information/
images/maps/
manhattan.jpg 

L2 Norm 

  d-dimensional 

  2 dimensional 

  L2 norm is the Euclidean distance 
 Axis rescale problem with Euclidean distance 

€ 

L2(a,b) = (xa − xb )
2 + (ya − yb )
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L2(a,b) = (ak − bk )
2

k=1

d

∑



9/28/08 

2 

Another example in taxonomy:  
Tanimoto Metric 

•  The distance between two sets S1 and S2 

Where 
n1 – number of elements in S1 

n2 – number of elements in S2 

n12 – number of elements in both S1 and S2 € 

DTanimoto(S1,S2) =
n1 + n2 − 2n12
n1 + n2 − n12

Tanimoto Coefficient 

•  The similarity between two “fingerprints” S1 and S2 

Where 
n1 – number of features in S1 

n2 – number of features in S2 

n12 – number of common features 

•  Widely used in biology and chemistry to compare species/molecules 
•   “fingerprints” could be coded molecular structure [1], gas 

chromatograms[2], etc  

€ 

T =
n12

n1 + n2 − n12

[1] D. Flower, “On the Properties of Bit String-Based Measures of 
Chemical Similarity”, Journal of chemical information and computer 
sciences, 1998. 

[2] P. Dunlog, “Chemometric analysis of gas chromatographic data of oils 
from Eucalyptus species”, Chemometrics and Intelligent Laboratory 
Systems, 1995. 

Drawbacks of using a particular metric 

 There may be drawbacks inherent in the uncritical use of a particular 
metric in nearest-neighbor classifiers.  

 Example:   

 1.Consider a 100-dimensional pattern x’ representing a 10x10 pixel 
grayscale image of a handwritten 5. 

 2.Computing the Euclidean distance from x’ to the pattern 
representing an image that is shifted horizontally but otherwise 
Identical . 

 4.Making  a comparison between the two Euclidean distances 

 3.Computing the Euclidean distance from x’ to an unshifted 8. 
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Discussions 

 Like the horizontal transformation, other transformations, such as overall 
rotation or scale of the image, would not be well accommodated by 
Euclidean distance in this manner. 

 Such drawbacks are especially pronounced if we demand that our classifier 
be simultaneously invariant to several transformations, such as horizontal 
translation, vertical translation, overall scale, rotation, line thickness, and so 
on. 

 One remedy:  

    Preprocess the images by shifting their centers to coalign, then have the 
same bounding box, and so forth. 

• Sensitivity to  outlying pixels or to noise 

 Ideally, during classification we would like to first transform the 
patterns to be as similar to one another and only then compute their 
similarity, for instance by the Euclidean distance. However, the 
computational complexity of such transformations make this ideal 
unattainable.  

 Example 

 Merely rotating a k x k image by a known amount and interpolating to 
a new grid is  O(k2). 

 We don’t the proper rotation angle ahead of time and must search 
through several values, each value requiring a distance calculation to 
test whether the optimal setting has been found. 

 Searching for the optimal set of parameters for several 
transformation for each stored prototype during classification, the 
computational burden is prohibitive. 

Tangent distance 

 Construction of the classifier: 

  Perform each of the transformations                   on the 
prototype x’ 
 Construct a tangent vector TVi   for each transformation: 

TVi can be expressed as a  1 X d  vector 

  We can construct  a r X d matrix  T: 
Here r is the number of transformations 
d is the number of dimensions 

 The general approach in tangent distance classifiers is to use 
a novel measure of distance and a linear approximation to the 
arbitrary transforms. 

Linearized approximation to Combination of 
transforms 

 The small red number in each image is the Euclidean 
distance between the tangent approximation and the image 
generated by the unapproximated transformations.  

Tangent Distance 

  Computing a test point x to a particular stored prototype x’. 
The tangent distance from x’ to x is: 

 “ one-sided” tangent distance, 

Only one pattern is transformed.  

 “two-sided” tangent distance, 

Both of the two patterns are transformed.  Although it 
can improve the accuracy, it brings a large added 
computational burden. 

Finding the minimum distance 

According to the gradient Descent method, we can start with an arbitrary a 
and take a step in the direction of the negative gradient, updating our 
parameter vector as: 

 The Euclidean distance: 

 Computing the gradient with respect to the vector of parameters a, 

The projections onto the tangent vectors- as 



9/28/08 

4 

Gradient descent methods [3][4] 

Gradient descent is an optimization algorithm.  To find a 
local minimum of a function using gradient descent, one 
takes steps proportional to the negative of the gradient of 
the function at the current point.  

[3] H. Mao, et al, “Neighbor-Constrained Active Contour 
without edges”, CVPR workshop, 2008. 

[4] C. Li et al, “Level set evolution without re-initialization: 
a new variational formulation”, CVPR , 2005. 4.7 FUZZY CLASSIFICATION 

What is fuzzy classification 

Using informal knowledge about problem domain for 
classification 

•  Example:  
–  Adult salmon is oblong and light in color 
–  Sea bass is stouter and dark 

•  Goal: 
–  Convert objectively measurable parameters to 

“category membership” function 
–  Then use this function for classification 

Categories V.S. Classes 

  Categories here do not refer to final classes  
  Categories refer to ranges of feature values 
  e.g. lightness is divided into five “categories” 

 Dark 
 Medium-dark 
 Medium 
 Medium-light 
 Light 

Conjunction Rule 

  With multiple “category memberships”, we need a 
conjunction rule to produce a single discriminate 
function for classification 

  Many possible ways of merging 
    e.g. for two membership functions ux and uy   

€ 

µx (x)•µy (y)

Example: Classifying Remote Sensing 
Images [5] 

• Three membership 
functions: soil, water, 
vegetation 
• Then summed up to 
form the discriminant 
function 

• [5] F. Wang, “Fuzzy 
classification of remote sensing 
images”, IEEE transactions on 
Geoscience and Remote 
Sensing, 1990. 
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Category membership functions V.S. 
probabilities 

  Category membership functions do not represent 
probabilities 

  e.g. half teaspoon of sugar placed in tea 
 Implying sweetness is 0.5 
 Not probability of sweetness is 50% 

Limitations of fuzzy methods 

•  Cumbersome to use in 
–  high dimensions 
–  Complex problems 

•  Amount of information designer can bring is limited 
•  Lack normalization thus poorly suited to changing cost 

matrices 
•  Training data not utilized (but there are attempts [5]) 
•  Main contribution: Converting knowledge in linguistic 

form to discriminant functions 

4.9 APPROXIMATIONS BY  
SERIES EXPANSIONS�

 Drawbacks of Nonparametric Methods�

  All of the samples must be stored 
  The designer have extensive knowledge of the 

problem 

  Example: 

Modified Parzen-window procedure�

  Basic idea: approximate the window function by a 
finite series expansion that is acceptably accurate in 
the region of interest. 

  Split the dependence upon x and xi 

Modified Parzen-window procedure�

Then from Eq. 11 we have�
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Taylor series�

  There are many types of series expansions can be 
used. 

  Taylor series is a representation of a function as an 
infinite sum of terms calculated from the values of its 
derivatives at a single point.  

Taylor series�

  Exponential function ex near x = 0 

  Take m = 2 for simplicity�

Taylor series�

  This simple expansion condenses the information in n 
samples into the values, b0, b1, and b2. 

Evaluation of Error�

  We have 

The quality of the approximation is controlled by the  
remainder term 

Evaluation of Error�

  Now we have the max error evaluation 

  Stirling’s approximation�

Stirling’s approximation�

  Roughly, this means that these quantities 
approximate each other for all sufficiently large 
integers n.�
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Limitations�

  In a polynomial expansion we might find the terms associated with an xi far 
from x contributing most (rather than least) to the expansion. 

  The error becomes small only when m > e(r/h)2. It needs for many terms if 
the window size h is small relative to the distance r from x to the most distant 
sample. Attractive when the large window. 


